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This paper addresses the following question: given a topological quantum field theory

on Rn
built from an action functional, when is it possible to globalize the theory so

that it makes sense on an arbitrary smooth oriented n-manifold? We study a broad

class of topological field theories — those of AKSZ type — and obtain an explicit

condition for the vanishing of the framing anomaly, i.e. the obstruction to performing

this globalization procedure. We also interpret our results in terms of identifying the

observables as an algebra over the framed little n-disks operad. Our analysis uses the

BV formalism for perturbative field theory and the notion of factorization homology.
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1. Introduction

Topological field theory has o↵ered a rich domain of common interest for math-
ematicians and theoretical physicists over the last few decades. In this paper,
we examine how and when a constructive method from physics — the Batalin–
Vilkovisky (BV) formalism in conjunction with rigorous renormalization techniques
of Axelrod–Singer and Kontsevich for Chern–Simons-type theories — produces
an algebra over the framed little n-disks operad. Our work here builds upon and
extends prior work by the first author [13] that explains how this constructive
method can produce algebras over the framed little n-disks operad in general. We
will see that the obstruction to lifting from the unframed to the framed setting,
or framing anomaly, is always expressed in terms of Pontryagin classes, suitably
interpreted. Our methods are an analog, for a class of theories we will refer to as
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topological AKSZ theories, of the formalism for anomalies associated with Stora
and Zumino [23, 26], but in this topological setting, we can relate directly to the
obstruction theory for algebras over these operads. Here, we focus on an explicit
computation within the BV framework as articulated by Costello [8] and developed
further in [13].

Let us describe concisely some concrete consequences of the results proved here.
Our results apply to theories like Chern–Simons theory, topological BF theories, and
topological AKSZ theories in general. Using a simple point-splitting regularization
(sometimes called the “configuration space method”), one can handle divergences in
such theories; the only obstruction to quantization is whether the quantized action
satisfies the quantum master equation. When this obstruction vanishes, the results
of [13] show that the observables of the theory provide an En-algebra. Here, we
compute the obstruction–deformation complex describing the ability to lift such
an En-algebra structure to a framed En-algebra structure; we also explain how the
obstruction to lifting can be seen as arising from a kind of equivariant quantum
master equation.

Why bother to make such a lift? And how do these algebras relate to more
conventional approaches to topological field theory? We will o↵er answers aimed at
topologists and then at physicists.

Functorial field theories, in the style of Atiyah–Segal–Lurie, arise from (framed)
En-algebras via factorization homology (see [18, §4.1] or [21]). Briefly, an En-algebra
A determines a framed fully extended n-dimensional topological field theory with
values in a “higher Morita category” built from En-algebras. A k-manifold X with
a framing of the bundle TX ⇥ Rn�k is assigned the invariant

Z(X) =

Z

X⇥Rn�k

A,

the factorization homology over the n-dimensional manifold made by thickening X.
The functor Z o↵ers a sophisticated invariant of such n-framed manifolds, but such
manifolds are relatively rare. (Think of the n = 2 case. The only framed closed
two-manifolds are genus 1.) On the other hand, a framed En-algebra A determines
an oriented fully extended n-dimensional topological field theory with values in this
“higher Morita category” built from En-algebras. We now ask that a k-manifold X

admits an orientation on TX⇥Rn�k. Such manifolds are much more abundant. Our
results thus show how a large class of TFTs — in the physicist’s sense — determine
extended oriented TFTs in the sense of Baez–Dolan and Lurie.

This rather abstract formulation can be expressed in more concrete, physical
terms. The En-algebra of a TFT encodes the operator product expansion of the
local operators, with extensive thoroughness. Think of the local operator that arises
from picking a configuration of k distinct, ordered points in Rn and inserting a
local operator at each point. Although the value itself is essentially independent
of the location of the insertions (you can wiggle the points without changing the
output, up to exact terms), the topology of the configurations of points is quite
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rich, and the En-algebra keeps track of how the OPE depends on that topology. In
other words, it encodes Witten descent and related manipulations. The associated
functorial TFT associates to a k-manifold X the En�k-algebra encoding the OPE
of the full theory dimensionally reduced along X.

Our results explain the conditions under which you can implement this con-
struction — the OPE algebras and their dimensional reductions — on oriented
manifolds. In other words, one needs to know how to encode descent given an
orientation, and the anomaly to such descent lies in our obstruction–deformation
complex. In this paper, we do not compute any explicit anomalies, leaving that for
a forthcoming companion paper [11], but we do note theories for which the anomaly
must vanish because the relevant cohomology group vanishes. The following is a
concrete example.

Example 1.1. Consider a topological BF theory on Rn for n � 3, with gauge Lie
algebra g a simple Lie algebra. The results in this paper demonstrate that the only
possible framing anomaly for such a theory lies in the Lie algebra cohomology group

n�1M

i=1

Hi(so(n))⌦Hn�i(g).

Above degree zero, the cohomology of so(n) is generated in degrees 3 mod 4, and
the cohomology of g is generated in odd degrees � 3. Thus, we can draw some
conclusions about the vanishing of the framing anomaly using the vanishing of these
cohomology groups in low degrees. The following is an example of such a conclusion.

Proposition 1.1. For a topological BF theory as above:

(1) The framing anomaly vanishes when the dimension n is odd and <11.
(2) For g = so(k) or g = sp(k), the framing anomaly vanishes when the dimension

n is odd and <13.

Example 1.2. Let us now consider the example of three-dimensional Chern–
Simons theory with an arbitrary semisimple gauge group, which has a well-known
framing anomaly for ordinary Chern–Simons theory [25, 2]. Although classical
Chern–Simons theory can be defined on any oriented three-manifold, its quanti-
zation depends on a choice of framing for the three-manifold. The quantization of
Chern–Simons theory, including the framing anomaly, is discussed in the language
of the BV formalism by Cattaneo–Mnëv [4] and Iacovino [16].

Proposition 1.2. There is no obstruction to quantizing the iso(3)dR action for

Chern–Simons theory on R3
. However there is a potential obstruction to this quan-

tization as an inner action.

Example 1.3. In higher dimensions, there are abelian Chern–Simons theory on
Rn for any odd integer n � 3, having to do with connection-type data on higher
U(1)-gerbes. Concretely, we consider the perturbative theories expressed in terms
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of the formal mapping space Map(Rn
dR, B

n�1
2 u(1)). Our methods let us understand

the possible obstructions to Chern–Simons theories of this type.

Proposition 1.3. There is no obstruction to quantizing the iso(n)dR action for

Chern–Simons theory on Rn
with gauge Lie algebra u(1), for any odd integer n � 3.

However there is a potential obstruction to this quantization as an inner action

whenever n ⌘ 3 mod 4.

1.1. Overview of the paper

We begin in Sec. 2 by discussing the class of field theory to which our results apply:
topological AKSZ theories. These are topological field theories whose fields can be
described in terms of mapping spaces, with BV action functional generated by the
AKSZ approach [1], via transgression of a shifted symplectic structure on the target
of the mapping space.

While these theories make sense on any smooth manifold, in Sec. 3 we specialize
to theories defined on a vector space Rn, and begin to incorporate the action of
the group of isometries. At the classical level, topological AKSZ theories admit
not only an action of the isometry group, but also a trivialization of this action
up to homotopy. The main results of this paper concern the lift of this homotopy
trivialization to the quantum level.

We discuss the implications of such a lift in Sec. 4, in which we recall results
from [13] that allow for the realization of a framed En-algebra structure on the
observables of a quantum field theory on Rn, provided we can define a quantization
of the homotopy trivialization of the isometry action. Such a structure permits the
application of the tool of factorization homology to extend such a quantum field
theory on Rn to more general oriented smooth n-manifolds.

In the final section, Sec. 5, we characterize exactly when it is possible to quantize
the homotopically trivial isometry action. There is a potential anomaly (the framing
anomaly) obstructing this quantization, and we explicitly compute the cohomol-
ogy group in which the obstruction lives. In many examples, as discussed above,
this immediately tells us that the framing anomaly vanishes, so that there is no
obstruction to quantization.

2. Topological AKSZ Theories

In this paper, we will focus on a natural class of topological field theories that can
be defined in any dimension, which we will refer to as topological AKSZ theories.

Remark 2.1. In this paper, we will model classical and quantum field theories in
terms of the BV formalism [3]. More specifically, we will be using the model for
perturbative classical field theory described in [8, 10]. See also [14, Sec. 1] for a
summary of the definitions that we will using when we define a classical field theory.
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Definition 2.1. Let M be an oriented n-manifold, and let L denote an L1 algebra
equipped with a cyclic pairing of degree n� 3. The topological AKSZ theory on M

associated to L is the classical BV theory with whose underlying graded space of
fields is

⌦•(M)⌦ L[1]

and whose dynamics are encoded by an L1 structure on the cochain complex

EL = (⌦•(M)⌦ L, ddR ⌦ 1 + 1⌦ dL)

arising from the wedge product of forms and the brackets on L.

The pairing on L and integration over M provide a local shifted symplectic
structure, or, more accurately, the antibracket on observables (i.e. the Chevalley–
Eilenberg cochains of EL).

We remark that these theories are also often called generalized Chern–Simons

theories [22, 19].

Remark 2.2. If M is compact and X is an n� 1-shifted symplectic derived stack,
then there is a �1-shifted symplectic structure on the derived mapping stack

MX(M) = Map(MdR, X)

given by the AKSZ construction of Pantev et al. [20]. The shifted tangent complex
L = Tx[�1]X at a closed point x of X has the structure of an L1 algebra with
a degree n � 3 symplectic pairing. We can identify EL with the shifted tangent
complex of the mapping stack M at the constant map with value x.

Example 2.1. Many standard examples fit inside this framework.

(1) For n = 3 and L = g a reductive Lie algebra equipped with an invariant pairing,
the topological AKSZ theory describes perturbative Chern–Simons theory on
M with gauge Lie algebra g.

(2) For general n, let L = g� g⇤[n� 3] where g is a finite-dimensional Lie algebra
acting on g⇤[n� 3] by its coadjoint representation. In this case, the topological
AKSZ theory describes perturbative topological BF theory onM with gauge Lie
algebra g. Theories of this type were studied in the BV formalism by Cattaneo
and Rossi [5].

(3) More generally, we can replace g in the above example by the shifted tangent
space Ty[�1]Y to a complex manifold Y , and consider

L = Ty[�1]Y � T
⇤
y [n� 2]Y ⇠= T(y,0)[�1](T ⇤[n� 1]Y ).

We can now identify the topological AKSZ theory with the perturbation theory
around a constant map of the derived mapping space T

⇤[�1]Map(MdR, Y ).

Topological AKSZ theories are extremely amenable to quantization, using tech-
niques developed by Axelrod and Singer [2] and Kontsevich [17]. (See also the sum-
mary of Costello, written in language closer to that used in this paper [7, Sec. 15]).
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We use the term prequantization to mean the construction of a family of e↵ective
action functionals compatible under the renormalization group flow. In this termi-
nology, to provide a quantization, these e↵ective action functionals must also satisfy
the quantum master equation.

Theorem 2.1. Any topological AKSZ theory can be prequantized to all orders,

uniquely up to a contractible choice. This prequantization can be computed explicitly,

and there are no counter-terms.

The explicit computation involves a nice description of the propagator, and con-
sequently a computation of the Feynman weights, using partial compactifications
of the configurations spaces Confm(Rn) first constructed by Kontsevich [17].

It will be useful to concretely describe the ring of local functionals associated
to the topological AKSZ theory EL. See [8, Sec. 10, Chap. 5] for more.

Lemma 2.1. The ring Oloc(EL) of local functionals for the theory EL on an

n-manifold M is quasi-isomorphic to the shifted de Rham complex (⌦•(M) ⌦

C•
red(L)[n], ddR ⌦ 1 + 1⌦ dCE).

For M = Rn, the Poincaré lemma then ensures that

Oloc(EL) ' C
•
red(L)[n].

In particular, for topological BF theories or Chern–Simons theories for gauge Lie
algebra g, deformations and anomalies correspond to cocycles of Lie algebra coho-
mology groups for g. These are well known for semisimple Lie algebras.

Proof. See [10, Lemma 3.5.4.1].

3. The de Rham Isometry Action

From now on, let M = Rn. We will study anomalies for the action of the isometry
group ISO(n) = SO(n)n Rn of Rn. Let iso(n) denote the Lie algebra of ISO(n).

Definition 3.1. If g is a Lie algebra, define gdR to be the dg Lie algebra whose
underlying graded vector space is g[1] � g, with di↵erential given by the identity,
and Lie bracket given by the bracket on g and the adjoint action of g on g[1].

Remark 3.1. This dg Lie algebra gdR is homotopy equivalent to a trivial Lie
algebra. On the other hand, it has an important interpretation from the point of
moduli spaces: its associated formal moduli space o↵ers a useful model of the de

Rham space BgdR of the formal moduli space Bg. In more explicit terms, note
that there is a natural map of dg Lie algebras g ! gdR. A representation of gdR
pulls back to a representation of g, but with an explicit trivialization (up to chain
homotopy). Indeed, we can view the representations of gdR as the representations
of g equipped with a homotopical trivialization.
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Every topological AKSZ theory on Rn has a natural action of iso(n) by the Lie
derivative action of vector fields, since this Lie algebra acts canonically on the de
Rham complex. This action extends canonically to an action by iso(n)dR, where
the component iso(n)[1] acts by contraction of vector fields with di↵erential forms,
thanks to Cartan’s formula. This action can be encoded by a current, in the sense
of Noether, as follows. Consider the degree �1 local functional

Seq 2 C•(iso(n)dR,Oloc(EL))

defined by the formula

Seq( eX,X)(A) = S(A)�

Z
(hA ^ ◆ eXAi+ hA ^ LXAi).

Here, ( eX,X) is an element of iso(n)dR, A is an element of EL, and h�,�i denotes
the symplectic pairing on L. This current determines a derivation {Seq,�} acting
on the classical observables, as we now verify.

Proposition 3.1. There is a map of dg Lie algebras from iso(n)dR to vector fields

on the formal moduli space EL given by {Seq,�}. In particular, this local functional

Seq satisfies the equivariant classical master equation.

Proof. The functional S satisfies the classical master equation by assumption,
so we only need to consider terms in the equivariant classical master equation
with a non-trivial dependence on the auxiliary (or background) fields X or eX
from iso(n)dR.

Write IX(A) = �hA ^ LXAi and J eX(A) = �hA ^ ◆ eXAi. We will show that the
following equations hold:

{S, IX} = 0, (3.1)

1

2
{IX , IX}+ dCEIX = 0, (3.2)

{S, J eX}+ {IX , J eX}+ dCEJ eX = 0, (3.3)

1

2
{J eX , J eX} = 0. (3.4)

Equations (1) and (2) together say that EL is iso(n)-equivariant, which follows by
observing that there is a smooth action of the Lie group ISO(n) on EL by isometries
of Rn, which is infinitesimally generated by the functional IX .

Equation (4) is straightforward: it follows from the fact that ◆2eX = 0. It remains
to deduce Eq. (3), which is a consequence of Cartan’s formula. Indeed,

dCEJ eX(A) = �
⌦
A ^ (L eX(A) + ◆[X, eX](A))

↵

= �
⌦
A ^ ([d, ◆ eX ](A) + [LX , ◆ eX ](A))

↵

= �{S, J eX}(A)� {IX , J eX}(A).
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Let us restrict this action to an action of the ordinary algebra of isometries
iso(n) alone, acting by the Lie derivative. This action can be defined at the quantum
level, and it naturally comes from a smooth action of the group ISO(n).

Proposition 3.2. There is a smooth classical action of the Lie group ISO(n) on the

topological AKSZ theory EL. This action can be lifted to an action at the quantum

level.

We applied this result in a specific family of examples in [12, Proposition 5.10],
using the same argument.

Proof. This claim follows from the result [10, Proposition 9.1.1.2]. This proposition
proves the given claim for the group of translations, but as remarked following the
result in [10], the same argument works for the full group of isometries. According
to the cited result, it su�ces to prove that the e↵ective interaction associated to any
parametrix is isometry invariant. In turn, it is enough for the classical interaction,
along with the choice d⇤ of gauge-fixing operator to be isometry invariant.

Likewise, let us restrict the iso(n)dR action to an action of Rn
dR. We can, again,

define this action at the quantum level.

Proposition 3.3. The classical action of Rn
dR on the topological AKSZ theory EL

can be lifted to an action at the quantum level.

Proof. We will prove this claim by thinking about the weights of Feynman dia-
grams that would generate an anomaly obstructing the quantization of such an
action. Consider a Feynman diagram of shape � containing a vertex at position
x 2 Rn labeled by the interaction J eX(A), where eX is the vector field generating a
translation.

The weight of the diagram � can be decomposed as a sum of weights W�,e,
where a single internal edge e of � is labeled by the heat kernel, and the remaining
edges are all labeled by the propagator. Let us show that this sum vanishes. There
are two classes of summand:

(1) Suppose we label � so that the special edge e labeled by K is not adjacent to
the vertex at x. Then the associated Feynman weight is a limit of terms of the
form

Z

t2[",⇤]

Z

(x1,...,xN�1)2(Rn)N�1

✓Z

x2Rn

d⇤Kt(x� x1) ^ ◆@jd
⇤
Kt(x� x2)

◆

^F (x1, . . . , xN�1),

where F is some di↵erential form (we won’t need its explicit form, only the
fact that it is independent of the location x). Because d⇤ and ◆@j commute, the
term inside the parentheses vanishes, so W�,e = 0.
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(2) There are two labelings where the special edge e labeled by K is adjacent to
x, say e = e1 or e = e2. The weights of these two labeled diagrams di↵er by
a sign, and therefore they cancel when we sum over all labelings. Indeed, by
integration by parts in the x variable

W�,e1 =

Z

t2[",⇤]

Z

(x1,...,xN�1)2(Rn)N�1

✓Z

x2Rn

d⇤Kt(x� x1) ^ ◆@jKt(x� x2)

◆

^F (x1, . . . , xN�1)

= �

Z

t2[",⇤]

Z

(x1,...,xN�1)2(Rn)N�1

✓Z

x2Rn

Kt(x� x1) ^ ◆@jd
⇤
Kt(x� x2)

◆

^F (x1, . . . , xN�1)

= �W�,e2 .

As a result, the sum of the weights W�,e over all edges vanishes, which implies
that the anomaly for the Rn

dR action vanishes as claimed.

So, putting this together, we find it is always possible to quantize a topological
AKSZ theory on Rn equivariantly for the action of the dg Lie algebra so(n)n(Rn

dR).
In the following section, we will fix an equivariant quantization for this dg Lie
algebra, and study lifts to iso(n)dR-equivariant quantizations.

4. En-Algebras from Topological AKSZ Theories

Let us briefly review the relationship between topological field theories and En-
algebras as described in [13]. Consider a classical field theory E on Rn, and suppose
that E admits a smooth action of Rn

dR as discussed in the previous section. For
example, E might be a topological AKSZ theory. We can often describe either
the classical or the quantum observables of the field theory using the language of
homotopical algebra.

Recall that an En-algebra is defined as a module, in the category of cochain
complexes, over the operad of little n-disks. A framed En-algebra is an En-algebra
equipped with a compatible action of the group SO(n) of rotations. In this section,
we will discuss the realization of En-algebras as a special case of the theory of
factorization algebras, as developed in [9, 10] in the context of quantum field theory.

Let us write Obscl(E) for the factorization algebra of classical observables of
the theory E . This factorization algebra inherits a smooth action of Rn

dR from the
action on the classical fields. If, furthermore, there is no anomaly obstructing the
action of Rn

dR at the quantum level — for instance, for topological AKSZ theories
by Proposition 3.3 — then there an action of Rn

dR on the factorization algebra
Obsq(E) of quantum observables. This is exactly the context in which we can invoke
the following result.

2350011-9
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Definition 4.1. Let Obs be a factorization algebra on Rn with a smooth action of
Rn

dR. It is rescaling-invariant if the structure map

Obs(Br(0)) ! Obs(BR(0))

for the inclusion of concentric balls is a quasi-isomorphism for any r < R.

Theorem 4.1 ([13, Corollary 2.30]). Let Obs be a rescaling-invariant factor-

ization algebra on Rn
with a smooth action of Rn

dR. Then the cochain complex

Obs(B1(0)) of observables on the unit ball can be canonically equipped with the

structure of an En-algebra.

Remark 4.1. We will apply this result to the factorization algebra of quantum
observables of a topological AKSZ theory, where the condition of rescaling invari-
ance is automatically satisfied. At the classical level it is immediate from Lemma
2.1, since the de Rham complex is locally constant. When we quantize, as a graded
vector space the quantum observables are isomorphic to

(⌦•(U)⌦ C•
red(L)[n])[[~]],

and we need to observe that the quantum corrections to the di↵erential on the
factorization algebra of observables do not violate rescaling invariance. We can see
this using the spectral sequence associated to the filtration by ~ degree, whose E2

page recovers the factorization algebra of classical observables. The rescaling map
is a map of filtered complexes and induces a quasi-isomorphism on the E2 page of
this spectral sequence, so we therefore obtain a quasi-isomorphism at the E1 page.

If we can promote the smooth action of translations to a smooth action of rota-
tions, then we can strengthen this result to provide a framed En-algebra structure.

Theorem 4.2 ([13, Corollary 2.39]). Let Obs be a rescaling-invariant factor-

ization algebra on Rn
with a smooth action of ISO(n)dR. Then the cochain complex

Obs(B1(0)) of observables on the unit ball can be canonically equipped with the

structure of an Efr
n -algebra.

Field theories provide our main source of factorization algebras, by the central
result of [10]: a BV theory on Rn determines a factorization algebra on Rn. Hence,
a deformation of the theory determines a deformation of the factorization algebra,
and in fact there is a map from the deformation complex of the theory to the
deformation complex of its factorization algebra of observables. For this reason,
if we want to show that a group acts smoothly on the observables, it su�ces to
understand how it acts on the theory. In particular, for this paper, we want to
characterize when a quantization is ISO(n)dR-equivariant.

For a topological theory, as given by Definition 2.1, we have seen that the the-
ory (and its usual quantization) is rescaling-invariant and ISO(n)-equivariant, and
thus so is the factorization algebra of observables. In fact, we have also shown
that the translation action is homotopically trivial, so what remains is to trivialize
homotopically the so(n)-action.
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5. Computation of Framing Anomalies

Let’s follow the procedure we just outlined in Sec. 3, using the classical action of
iso(n)dR of Proposition 3.1 and the quantization of the algebras iso(n) and Rn

dR that
we have already constructed in Propositions 3.2 and 3.3, respectively. We would
like to lift this to an action of all of iso(n)dR at the quantum level. Our main result
is the following.

Theorem 5.1. Fix an so(n) n (Rn
dR)-equivariant quantization of the topological

AKSZ theory EL associated to a cyclic L1 algebra L, as described in Definition 2.1.
The obstruction to lifting this quantization to an iso(n)dR-equivariant quantization
is given by an element in

M

i+j=n

Hi
red(so(n))⌦Hj

red(L). (5.1)

The obstruction to lifting to an inner iso(n)dR-equivariant quantization is given by

an element of

M

i+j=n

Hi
red(so(n))⌦Hj(L). (5.2)

Corollary 5.1. If the cohomology group 5.1 vanishes then the factorization alge-

bra of quantum observables for the topological AKSZ theory EL can be canonically

equipped with the structure of a framed En-algebra.

We will outline the argument and then prove the intermediate results that realize
it. The reader should pay attention to how Pontryagin classes can be seen as labeling
obstruction classes.

First, we identify the obstruction–deformation complex where the obstruction
to our quantization will live. Let

Actg(EL) = C•
red(g,Oloc(EL))

denote the formal moduli space describing g-equivariant deformations of a classical
theory EL. (For an overview, see [10, Chap. 11], and for extensive discussion, see
[10, Sec. 2, Chap. 12 and Sec. 2, Chap. 13].) Its tangent complex is a cochain
complex, and the obstruction to g-equivariant quantization is a degree 1 cocycle in
that complex. These results lead to equivariant refinements of Lemma 2.1, which
characterize the equivariant local functionals up to equivalence:

Actg(EL) ' C•
red(g, C

•
red(L)[n]).

In this paper, g will be iso(n)dR or so(n)n Rn
dR.

By hypothesis, we have an so(n) n Rn
dR-equivariant quantization and we are

asking to lift to an iso(n)dR-equivariant quantization. Hence, we need to describe
the fiber of the map

Actiso(n)dR ! Actso(n)nRn
dR
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to characterize the lifting problem. This fiber is derived in nature; it has an explicit
cochain model Cn,L that we describe in Lemma 5.1.

Remark 5.1. The case of an inner action is quite similar. Here, we extend Actg(EL)
to InnerActg(EL) by C•

red. (See [10, Lemma 12.2.3.2].) Concretely, we are asking for
the g-action to be inner, i.e. realized by local functionals.

Next, we begin to calculate the cohomology of Cn,L by using a spectral sequence
arising from a natural filtration on the complex Cn,L.

The first pages of this spectral sequence reduce to computations well known
from topology. Recall that the cohomology of the classifying spaces BSO(n) are
graded polynomial rings with even generators given by the Pontryagin classes (and
when n is even, an extra generator called the Pfa�an). Explicitly,

H•(BSO(n),C) ⇠=

(
C[p1, p2, . . . , pk], n = 2k + 1 odd,

C[p1, p2, . . . , pk�1, p
0
k], n = 2k even,

(5.3)

where each generator pj has degree 4j and, for n = 2k even, the generator p0k has
degree 2k = n. Recall as well that the Lie algebra cohomology H•(so(n)) equals the
cohomology H•(SO(n),C); these are graded polynomial rings with odd generators,
where each generator’s degree is one less than the corresponding Pontryagin class.
Explicitly,

H•(so(n)) ⇠=

(
C[⌘1, ⌘2, . . . , ⌘k], n = 2k + 1 odd,

C[⌘1, ⌘1, . . . , ⌘k�1, ⌘
0
k], n = 2k even,

(5.4)

where |⌘k| = 4j�1 and, for n = 2k even, |⌘0k| = |p
0
k|�1. Thus, there are generators

in degrees 3, 7, and so on.
In terms of those cohomology rings, the E2-page of the spectral sequence com-

puting H•(Cn,L) is

E
i
2
⇠=

M

j+k+`=n+i
k>0

Hj(so(n))⌦Hk(BSO(n))⌦H`
red(L).

This isomorphism is the content of Proposition 5.1. The di↵erential on this E2-page
sends each ⌘j to pj . As shown in Lemma 5.3, the E3-page is then isomorphic to

Hi(Cn,L) =
M

j+`=n+i�1
i>0

Hj(so(n))⌦H`
red(L)

and the spectral sequence collapses on this page. Thus, we know that anomalies
obstructing the so(n)dR action live in

M

j+`=n
j>0

Hj(so(n))⌦H`
(red)(L),

as claimed.
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Remark 5.2. We have identified the space of possible anomalies abstractly in
terms of classes in H>0(so(n)), but we can make our description more explicit. That
is, we can describe where these classes came from in H>0(BSO(n)) ⌦ H•(so(n)).
The classes that survive to the E1 page of the spectral sequence are all linear in
the Pontryagin classes pk. If we identify H•(BSO(n))⌦H•(so(n)) as the polynomial
algebra in the classes pj and ⌘j , we can identify the factor in our spectral sequence
surviving to the E1 page as the image of the generators of R[⌘1, . . . , ⌘k] under the
di↵erential induced by the map sending ⌘i to pi for all i. In other words, the classes
that survive take the form

X̀

j=1

⌘i1⌘i2 · · · ⌘ij�1pij⌘ij+1 · · · ⌘i` ,

for any sequence 1  i1 < i2 < · · · < i`  k.
This description will follow directly from our proof of Theorem 5.1. We discuss

the simplest two examples, where the dimension n is equal to 3 or 4, in Examples
5.1 and 5.2.

Now that we have traced the path, we will begin with the first step.

Lemma 5.1. The fiber of the map

Actiso(n)dR ! Actso(n)nRn
dR

(5.5)

is quasi-isomorphic to Cn,L, whose underlying graded vector space agrees with that of

C•(so(n), Sym>0(so(n)⇤[�2])⌦ ⌦•(Rn))⌦ C•
red(L)[n],

but whose di↵erential is

(dCE + ddR + d0)⌦ 1 + 1⌦ dCE, (5.6)

where dCE is the Chevalley–Eilenberg di↵erential (for the relevant Lie algebra acting

on the relevant module), ddR is the de Rham di↵erential on ⌦•(Rn), and d0 is the

operator extended as a derivation from the identity map so(n)⇤[�1] ! so(n)⇤[�2].

Observe that this model of the fiber is, in fact, a dg commutative algebra: the
tensor factors are dg commutative algebras and the di↵erential can be checked to
be a derivation.

Proof. We can describe the complexes Actiso(n)dR and Actso(n)nRn
dR

directly as in
[10, Sec. 11.2]. This complex Cn,L is the set-theoretic fiber product (i.e. kernel of
the map of cochain complexes). But, using the projective model structure [15] on
cochain complexes (or dg Lie algebras), we see the map (5.5) is a fibration and so
the kernel provides the homotopy fiber product.

As discussed in the outline, we now consider the spectral sequence associated
to the filtration that turns on the term d0 in the di↵erential.
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Proposition 5.1. Consider the spectral sequence associated to the filtration Fp on

the complex Cn,L with

Fp Cn,L =
M

a�p

C•(so(n), Syma(so(n)⇤[�2])⌦ ⌦b(Rn))⌦ C•
red(L)[n]

for p � 1, where the right-hand side is equipped with the di↵erential (5.6), and
F0 Cn,L = 0.

The E2-page of this spectral sequence is equivalent to

E
i
2
⇠=

M

j+k+`=n+i
k>0

Hj(so(n))⌦Hk(BSO(n))⌦H`
red(L).

This filtration produces a spectral sequence of graded commutative algebras.
This isomorphism on the E2-page is, in fact, a map of graded commutative algebras.

To compute the E2-page of this spectral sequence, the following result is useful.

Lemma 5.2. If V is a finite-dimensional so(n)-representation, then there is a

natural isomorphism

H•(so(n), V ⌦ ⌦•(Rn)) ⇠= H•(so(n))⌦ (V ⌦ ⌦•(Rn))so(n).

In words, computing the cohomology decouples into knowing H
•(so(n)) and

knowing the strict invariants of V -valued di↵erential forms.

Proof of Lemma 5.2. The complex C•(so(n), V ⌦⌦•(Rn)) is the totalization of a
double complex where one di↵erential is the exterior derivative and the other is the
Chevalley–Eilenberg di↵erential. Consider the spectral sequence of this double com-
plex, where we take the exterior derivative first. Then the E2-page is H•(so(n), V ).
For any finite-dimensional representation W of a semisimple Lie algebra g, there is
a natural isomorphism

H
•(g,W ) ⇠= H

•(g)⌦W
g

so the E2-page is isomorphic to H•(so(n))⌦ V
so(n). The sequence collapses on this

page, so the claim is shown.

That lemma makes the proof of the proposition straightforward.

Proof of Proposition 5.1. By examining the filtration, one finds that computing
the E2-page boils down to computing the cohomology of the double complex

C•(so(n), Syma(so(n)⇤[�2])⌦ ⌦•(Rn))

for each natural number a. But then

(Sym(so(n)⇤[�2]))so(n) ⇠= H•(BSO(n),C),

by Chern–Weil theory, as in [6].
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Lemma 5.3. The di↵erential d3 on the E2-page

E
i
2
⇠=

M

j+k+`=n+i
k>0

Hj(so(n))⌦Hk(BSO(n))⌦H`
red(L)

of our spectral sequence is induced, as a module over H•(BSO(n)), by the map

sending ⌘j ⌦ ↵ to 1⌦ (pj ^ ↵), where 1⌦ (pj ^ ↵) 2 H•(so(n))⌦H•(BSO(n)).

Proof. This statement follows immediately from the definition of the spectral
sequence of a filtered complex. The di↵erential on the E2 page is inherited from
the restriction of the di↵erential (5.6) to the space of two-almost cycles, i.e. those
terms closed for the piece of the di↵erential that does not raise filtered degree. This
restricted di↵erential is identical to the restriction of the summand d0 ⌦ 1 of the
di↵erential, and d0 acts on generators of Sym•(so(n)⇤) exactly as stated.

Example 5.1. It may be useful to the reader to understand the cohomology of the
di↵erential d3 in some small examples. Let us consider the example where n = 3,
and where L is trivial. So, H•(BSO(3)) ⇠= R[p] is a polynomial ring in a single
variable of degree 4, and H•(so(3)) ⇠= R[⌘] is an exterior algebra in a single variable
of degree 3. Our E2 page is therefore identified with the ideal I in the ring R[⌘, p]
generated by p, and the di↵erential d3 sends the generator ⌘ to p. In terms of a
linear basis we can illustrate the complex (E2, d3) pictorially as

where the arrows all represent isomorphisms between one-dimensional summands.
So, when we compute the cohomology with respect to d3 the result is the one-
dimensional vector space generated by p.

Example 5.2. If we consider the next simplest example, where n = 4, we now
have a pair of even generators for H•(BSO(4)), namely the first Pontryagin class
p and the Pfa�an p

0, and we have a corresponding pair of odd generators ⌘, ⌘0 for
H•(so(4)). When we compute the cohomology with respect to the di↵erential d3,
we find a three-dimensional vector space, spanned by the classes p, p0 and p⌘

0
�p

0
⌘.

Now, we are finally ready to prove the main theorem of this section.

Proof of Theorem 5.1. It is su�cient to identify the E3-page of our spectral
sequence with the desired expression, and to verify that the higher di↵erentials all
vanish.

First, we reinterpret the E2-page in more algebraic terms. Observe that the
graded vector space

H
•(so(n))⌦H•(BSO(n))⌦H`

red(L)

2350011-15



July 31, 2023 12:16 WSPC/S0129-055X 148-RMP J070-2350011

C. Elliott & O. Gwilliam

naturally forms a graded commutative algebra, as it is the tensor product of three
graded commutative algebras. Let A = H`

red(L) denote the non-unital algebra of
the third tensor factor. Then we can write the full algebra as

R = A[{⌘j}], [{pj}]

the free commutative algebra over A with the generators cj and ⌘j from the algebras
H•(so(n)) and H•(BSO(n)). More useful for us is this algebra’s maximal ideal

R =
M

i+j>0

A ⌘
i
p
j
,

spanned by monomials other than the unit monomial c0⌘0. (Here, i and j are vectors
that encode multiple exponents. For instance, i = (i1, i2, . . .) and ⌘

i = ⌘
i1
1 ⌘

i2
2 . . ..)

But the E2-page corresponds to the subcomplex

H•(so(n))⌦H•
red(BSO(n))⌦H`

red(L),

which is the ideal I ✓ R generated by ({pj}). Note that the quotient algebra is

R/I =
M

i>0

A ⌘
i
,

the maximal ideal of the polynomial ring over A generated by all the ⌘s. In fact,
R/I ⇠= A⌦Hred(so(n)).

Now, we turn to the di↵erential, which has a convenient description in terms
of these algebraic structures. The filtration from Proposition 5.1 has an analog
where we work with all of Sym(so(n)[�2]) and do not keep only positive symmetric
powers. Its E2-page can be identified with R. The di↵erential on that page makes R
into a dg algebra over A with derivation d sending ⌘j to pj . This di↵erential makes
both R and I into dg ideals; and this dg ideal (I, d) is precisely the E2-page of our
spectral sequence, as can be verified by unwinding the construction.

Hence, the E3-page is the cohomology of this dg ideal (I, d). To compute its
cohomology, we use the long exact sequence associated to the short exact sequence

0 ! I ! R ! R/I ! 0,

where we mean the cochain complexes with di↵erential d. For the middle term,
observe that H•(R, d) = 0 by direct computation (as any monomial goes to another
monomial). For R/I, the di↵erential inherited from R is zero, so the (i + 1)st
cohomology group is simply the degree i + 1 component (R/I)i+1 of R/I. Hence,
the long exact sequence tells us that H0(I) = 0 and

Hi(I) ⇠= (R/I)i+1

for all i > 0.
We conclude that

E
i
3
⇠= (R/I)i+1 =

M

j+k=n+i

Hj
red(so(n))⌦Hk

red(L).
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These cohomology classes are all represented by elements in the E2-page H•(so(n))⌦
H•(BSO(n))⌦H•

red(L) with degree zero in the H•(BSO(n)) factor. In other words,
these are polynomials in the generators pj , not involving the ⌘i. There are no higher
di↵erentials in our spectral sequence between terms of this type, and so the spectral
sequence collapses at the E3-page. We have, therefore, obtained the equivalence we
desired.

The case of inner actions remains, but the proof carries over easily. We need
to replace the (homotopy) fiber of the map (5.5) by the (homotopy) fiber of the
analogous map. That is, the fiber of the map

InnerActiso(n)dR ! InnerActso(n)nRn
dR
, (5.7)

where InnerAct means we allow local functionals purely of the background fields
(as in the non-inner case, we refer to [10, Sec. 11.2]). Concretely, that means the
fiber is quasi-isomorphic to Inner Cn,L, whose underlying graded vector space agrees
with that of

C•(so(n), Sym>0(so(n)⇤[�2])⌦ ⌦•(Rn))⌦ C•(L)[n],

with di↵erential as in (5.6). Note that the only change is in the far right term:
C•

red(L)[n] is replaced by C•(L)[n]. Such a change does not a↵ect the proof above,
which focuses on the so(n) contributions.

Our main theorem establishes a su�cient condition for the vanishing of the
framing anomaly of a topological AKSZ theory, namely the triviality of the coho-
mology group Hi(so(n))⌦Hn�i

red (L) for all i > 0. We believe that this condition will
also be necessary. In a follow-up paper [11], we will establish the non-vanishing of
the framing anomaly at the one-loop level in the case where this cohomology is non-
trivial. This is possible by evaluating the appropriate one-loop Feynman diagrams
using a maximally holomorphic gauge fixing condition, by applying the results of
[24]. In this way, it is possible to obtain a concrete identification of the one-loop
framing anomaly in terms of characteristic classes.

Acknowledgments

The authors would like to thank Pavel Safronov and Brian Williams for helpful com-
ments and conversations during the preparation of this paper. The National Science
Foundation supported O.G. through DMS Grant Nos. 1812049 and 2042052. Any
opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the National
Science Foundation.

References

[1] M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, The geometry of the
master equation and topological quantum field theory, Internat. J. Modern Phys. A

12(7) (1997) 1405–1429; doi:10.1142/S0217751X97001031.

2350011-17



July 31, 2023 12:16 WSPC/S0129-055X 148-RMP J070-2350011

C. Elliott & O. Gwilliam

[2] S. Axelrod and I. M. Singer, Chern–Simons perturbation theory. II, J. Di↵erential

Geom. 39(1) (1994) 173–213; arXiv:hep-th/9304087.
[3] I. Batalin and G. Vilkovisky, Gauge algebra and quantization, Phys. Lett. B 102(1)

(1981) 27–31.
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