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Abstract

We provide a mathematical formulation of the idea of a defect for a field theory, in
terms of the factorization algebra of observables and using the BV formalism. Our
approach follows a well-known ansatz identifying a defect as a boundary condition
along the boundary of a blowup, but it uses recent work of Butson—Yoo and Rabinovich
on boundary conditions and their associated factorization algebras to implement the
ansatz. We describe how a range of natural examples of defects fits into our framework.
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1 Introduction

The notion of a defect in a field theory has played an increasingly important role in
physics and, perhaps surprisingly, in mathematics. Our goal in this short paper is to
offer a mathematical formulation of defects in field theory that builds upon recent
progress with the Batalin—Vilkovisky (BV) formalism and higher algebra. Let us start
by outlining one interpretation of the idea of a defect.

Suppose we are studying a field theory 7 on a manifold M. Loosely speaking,
a defect is a modification of the theory along a submanifold D C M in a way that
produces a new field theory. We call D the support of the defect, and the dimension
of the defect is the dimension of D. Well-known examples include the Wilson and ‘t
Hooft line defects in Yang—Mills theory: these are supported along one-dimensional
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submanifolds of a four-dimensional manifold. (In physics, these defects provide a
means to characterize the phase of a gauge theory, such as confining or Coulombic.)

We thus view a defect as consisting of a pair of data: the submanifold on which its
supported and how it affects (or couples) to the ambient theory.

Remark 1.1 Note that this approach diverges from the terminology in some commu-
nities, which might prefer to view a defect (or extended operator) as defined for some
large class of submanifolds. For instance, people often refer to a representation V of
a group G as giving a Wilson line operator, since one can produce a line defect from
V on a large class of embedded 1-manifolds.

There is an ansatz for how to produce defects that will guide our approach in this
paper; it works by reducing the problem to studying boundary conditions.

Ansatz Let 7 be a classical field theory on a manifold M, which determines a sys-
tem of partial differential equations. There are two steps to making a defect along a
submanifold D C M:

(1) Take a small tubular neighborhood D D D whose complement is a manifold with
boundary M\ D.
(2) Specify a boundary condition for the theory 7 on this manifold with boundary.

If one takes a small enough neighborhood (or works in some limit as the neighborhood
shrinks), then this new theory (with the imposed boundary condition) looks like the
original theory but modified along D, as the boundary condition affects the solutions
to the equations of motion. We call this new theory the theory T with a defect along D.

If we specify a quantization of 7 on M \5 with this boundary condition, then we
produce a defect for a quantization of 7. See Remark 1.1 for some background about
this ansatz.

Remark 1.2 Note that after removing D from M, there may be solutions to the equa-
tions of motion that do not extend across D. More generally, one may even consider
theories 7 defined only on M — D. We will continue to use the term “defect” for such
situations, where the boundary condition for the theory 7 on M \5 prescribes the
allowed limiting behavior of 7 as one approaches D. In some cases, these conditions
can be described by adding terms in the action functional that involve integrating over
the submanifold D. See Remark 4.3 for an explicit example in BF theory.

Remark 1.3 Many examples of disorder operators can be constructed via this ansatz.
The term “disorder operator” originated with Kadanoff and Ceva [18] in the context of
the Ising model; for many gauge theories, the ‘t Hooft line defects introduced in [26]
are often called disorder operators. (See Fradkin’s survey article on disorder operators
[14] for a recent discussion of the concept, and see [19] for a discussion of subtleties
with the terminology.) For some examples of order operators, see Remark 4.2 below. It
is not easy (or particularly useful) to give a precise definition of “order” and “disorder”
operators at the level of generality considered in this paper, and we will not attempt
to do this. We only use these terms informally in order to draw a connection with the
language used elsewhere in the literature.
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An appealing aspect of this ansatz is that it is constructive, at least once one spells
out how to produce boundary conditions for quantum theories. A drawback is that it
is not a definition: certainly given any defect along D and any tubular neighborhood
D we should be able to obtain a boundary condition as described in the ansatz, but we
will see that this assignment generally does not need to be an equivalence, because of
the reliance within the ansatz of a specific choice of neighborhood D.

A slight shift of perspective, however, offers a useful setting to pose an actual
definition. We shift our focus to the algebra of observables of a theory with defect,
rather than focusing directly on the theory itself, much as it is often fruitful to focus on
the algebra of functions on a space rather than directly on the space. In the setting of
QFT (at least in the perturbative regime), the observables form a factorization algebra
on the spacetime manifold [8]. Recall that a factorization algebra .4 on a manifold
M is a local-to-global object, akin to a sheaf. (For a systematic treatment, see [1, 7]
and references therein.) In particular, it determines a functor A: Open(M) — Ch
assigning a cochain complex A(U) to each open set U C M. For a QFT, A(U)
consists of the observables with support in U, i.e., that depend on the behavior of the
fields only in the region U. The key result of [8] is that if one constructs the QFT in
the BV formalism, the complex of observables forms a factorization algebra.

In the language of factorization algebras, we proffer the following view on defects.

Definition 1.4 Let M be a manifold and D C M a submanifold. Let .A be a factoriza-
tion algebra on a manifold M — D. A defect along D for A is a factorization algebra
B on M with an isomorphism

¢: Blu-p = A 1
on the complement of D.

We view B as an extension of A4 along D, with specifically prescribed modified
behavior. In other words, we view M as stratified D C M and we ask for factoriza-
tion algebras that agree with .4 on the big stratum M — D. When A is the algebra
of observables for a field theory, this definition clearly matches the behavior of the
observables of a defect in its heuristic form.

Our paper explains how one can implement the ansatz carefully to produce such
factorization algebras modeling a defect. More precisely, given a classical BV field
theory 7 on a manifold M, we will produce defects for Obs%l- in the sense of Defi-
nition 1.4. The construction is outlined in Sect. 2. The factorization algebra modeling
the defect depends explicitly on the choice of tubular neighborhood of D.

When, however, the theory satisfies a useful property near the defect—it is topolog-
ical normal to D—we can then use recent results of Rabinovich [25, 27] to construct
defects that do not depend on the size of the neighborhood. Moreover, Rabinovich’s
results allow one to construct the quantum observables for the defects, when a BV
quantization exists. We discuss these results in Sect. 3.

Finally, we describe a number of examples, organized by codimension of the defect,
such as magnetic monopoles and Wilson lines, among others.
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1.1 Some history, context, and future directions

The ansatz we have discussed is well known, at least among quantum field theorists,
and has probably been known for several decades. We are not knowledgeable, however,
of how this idea appeared and evolved within the literature. We found an explicit and
useful articulation in [16] but it begins by acknowledging the idea is well-known.
Another source are lectures by Losev [20], who approaches this kind of idea within
the functorial framework of Segal and Atiyah. It would be useful and interesting
to compare with Losev’s approach, and related work by Mnev [21]. (Insights and
suggestions about the history and literature are welcome.)

The essential idea about how to capture defects with factorization algebras has also
been floating around the community of factorization algebraists for at least a decade,
and hence some version was known by many people. What prompted us to document
and extend these ideas is the powerful work of Rabinovich, which makes it possible to
implement the ansatz precisely and rigorously using factorization algebras in a broad
class of examples.

A careful treatment of “defects for a factorization algebra” is already available in
the topological setting, thanks to the pioneering work of Ayala—Francis—Tanaka. The
reader is encouraged to explore Sect. 4.3 of [2] for the complete story, but here we
will gloss the key results and explain how they fit into the story of this paper. (We
will suppress all subtleties about framings. Moreover, that paper works in the setting
of oo-categories; below we will simply use the term “category.” The interested reader
can find details in [2].)

Recall that a factorization algebra 7 on an n-dimensional manifold is locally con-
stant if the structure map F(U) — F(U’) is an equivalence whenever U C U’ are
each open subsets diffeomorphic to R”. In any open ball in the manifold, such a fac-
torization algebra is described by an E,-algebra (i.e., algebra over the little n-disks
operad). Ayala—Francis—Tanaka offer a method for characterizing the ways to extend
a locally constant factorization algebra A on M — D to a factorization algebra 55 on
M that is locally constant when restricted along D. That means that for any inclusion
of disks U C U’ where U N D and U’ N D are nonempty, the map B(U) — B(U’)
is an equivalence; hence, B along D is locally determined by an Ej-algebra if k is
the dimension of D. The local situation is when M = R” and D = R is a vector
subspace. A key result (Proposition 4.8) of [2] is that given the “bulk” E,-algebra A,
which determines A on R” — R¥, we need to pick an E;-algebra B with values in the
category of left modules for f gnk—1 A, where we view this n — k — 1-sphere as linking
the defect. This factorization homology f gkl A encodes how A has to act on B.
(Alternatively, we pick a Swiss cheese algebra of dimensions (k + 1, k) of the form
( f gn—k—1 A, B).) Ayala-Francis—Tanaka explain how to extend factorization homology
for such pairs (A, B) to obtain factorization algebras that are stratified as D¥ ¢ M™.
In other words, they reduce the classification of such defective factorization algebras
to classifying Swiss cheese algebras.

This result is powerful and satisfying, and it tells one how to use computational
methods and results from topology and algebra to classify defects (for factorization
algebras). It is wholly complementary to the physical point of view. On the other
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hand, it is only applicable to topological field theories and topological defects therein;
it would be non-trivial (but useful!) to formulate a version that works in more geo-
metric settings. (It does proffer guidance for the geometric setting, and their result
matches the behavior of, say, vertex modules corresponding to modules over a kind
of “algebra of modes” for a vertex algebra.) Their classification does not capture all
physical expectations and requirements, however, as it merely asks for ways to extend
a factorization algebra. Physics often suggests some additional properties or features
of the extension. Compare, for instance, with the problem of identifying which mod-
ules over a deformation quantization of a Poisson algebra should be seen as physically
relevant: not all D-modules seem to have a place in quantum mechanics (or at least
an obvious place).

Looking to the future, we expect the approach to defects that we describe here to
generalize to several more sophisticated contexts. Here are two natural extensions.

(1) The definitions we introduce here make sense even when D C M is not a sub-
manifold. All we will need is that D admits an open neighborhood U in M with a
continuous contracting map U — D. For example, one could consider situations
where the defect space D is singular, like a nice immersion.

(2) Suppose D is a stratified manifold (possibly singular, as in the example above, or
where the defect ends on the boundary of the bulk manifold). One could form an
extension of the approach explained here to model theories admitting defects within
defects. We hope that a careful analysis of this idea would lead to an instantiation
of higher categorical structures associated to defects, as explained in Kapustin’s
ICM address [17].

Pursuing these directions would allow for many more physical ideas to be translated
into the language of factorization algebras.

Remark 1.5 The approach to defects that we take here is related to Costello and Li’s
conjectures [9] about holography for twisted supersymmetric theories, which uses
Koszul duality to understand and characterize defects. In their work on this approach,
Paquette and Williams [24] develop language for the consideration of line defects and,
in particular, introduce what they call the universal defect. Their definition provides
examples of line defects in the sense of this paper. More specifically, their line defects
can be thought of as “order” type, and they work under the assumption that the theory
is topological in the direction spanned by the line. We will describe some examples
of this type in Sect. 4.

2 The construction

Let M be a smooth manifold and let 7" denote a classical BV theory on M, following
Costello’s definition in Chapter 5 of [12]. The associated factorization algebra Obs%
is described in Chapter 5 of [8]. We will now explain how to produce something
analogous for theories with defects.

Let D C M be a submanifold. Equip the restriction of the tangent bundle 7T M |p
with a fiberwise metric, and let n: N — D denote the normal bundle to D, which
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inherits a fiberwise metric. Let B.(D) C N denote the disk bundle of radius less
than r, and suppose that the exponential map provides a diffeomorphism

p: B3(D) > U

with a tubular neighborhood U of D. (We can always adjust the metric on T M|p to
accomplish this.) We then have a family of tubular neighborhoods

Ui = p(B:(D))

around D parametrized by ¢ € (0, 3). Note that we will only work with values of ¢ up
to 1.

Let M; = M — U; denote the complement of the tubular neighborhood U;. It is a
manifold with boundary, and let

aDM[ = 3U; C M[

denote its boundary along D. (If M has boundary itself, we will ignore that region and
focus only on the boundary introduced by excising a neighborhood of D.) Suppose
we have a theory 7 defined on M — D, so that the theory 7 restricts to a theory on M,,
and, following the ansatz, we wish to impose a boundary condition £, along dp M;
and construct the factorization algebra of classical observables given that boundary
condition. We will use Obscﬁlt to denote this factorization algebra on M;. (In a moment,
we will describe what we mean by a boundary condition and how it determines a
factorization algebra.)

Suppose we have produced this factorization algebra Obs%t and want to produce
the associated factorization algebra modeling the observables in the theory on M with
defect. The essential idea is simple: provide a map n;: M; — M collapsing dp M;
to D and push Obscﬁ1 forward along this map. This pushforward (71,)*Obs°51r ought to
model a defect for Obs%]- on M. We now make more precise what we want to do.

For a specified value of ¢ in (0, 1), let f;: [0,3] — [0, 3] be a smooth non-
decreasing function such that

[z is a diffeomorphism preserving the boundary,
fi(s) =0fors € [0, ¢] and, 2)
fi(s) = s fors € [2¢, 3].

Such a function exists, and the space of these functions is contractible. We now use it
to define a map F; : B3(D) — B3(D) as follows. For each point x € D, let B3(D),
denote the fiber over x in the disk bundle, and let |v| denote the length of a point
v € B3(D)y. Then set F;(x,v) = (x, f;(Jv])v/|v]) for any point (x, v) € B3(D).
This map rescales each fiber so that vectors within distance ¢ of x get collapsed to x,
those with distance at least 2¢ are left unchanged, and those in between get stretched.
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Now define

iy = | Fiop @ peU
t - .
Ds pEM—Uy= My

Note that outside U»;, the map m; leaves M unchanged, while inside it collapses the
boundary dp M; onto D and “stretches” the region between dp M; and dp My, to fill
the neighborhood of D.

Hence, given any factorization algebra .4 on M, we find that

Al Z () «(Alm)) vy

i.e., this construction leaves a factorization algebra unchanged outside Uy;. Pursuing
this idea, we can define a factorization algebra that models observables on a theory
with defect well outside the neighborhood Uy;, by the following procedure.

Definition 2.1 We define a factorization algebra ObsS'—the observables with an effec-
tive defect—on a manifold M with submanifold D C M using the following input
data:

(1) aclassical BV field theory 7 on the manifold M — D,

(2) atubular neighborhood U of M — D with collar coordinate p: B3(D) = U,
(3) achoice of real number ¢ in (0, 1),

(4) afunction f; satisfying conditions (2),

(5) alocal boundary condition £; along dp M;.

This data determines a factorization algebra Obscﬁl[ on M. Let Obs¢! denote the fac-
torization algebra

(771)Obs,

on M.

This factorization algebra Obsfl is nearly, but not exactly, a defect of Obs%l- in the
sense of Definition 1.4. It satisfies the weaker condition that

Obs¢!| a1, = ObsSH - 3)

This behavior is, however, a good match with physical intuition: it says that near D,
the physical defect does change the behavior of the observables, but at some distance
away from D (i.e., on My;), the local behavior of observables are unchanged. This
physical defect changes, of course, the observables on any open set containing D.
In particular, the global observables with defect Obsfl (M) are (typically) sensitive
to the physical defect and do not agree with the global observables ObsCTl(M ) of the
defect-free theory.

Take-away This construction realizes the ansatz at the level of factorization algebras,
provided one can construct the factorization algebra of observables for a classical BV
theory with a local boundary condition.
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In particular, this construction produces a factorization algebra that is “effectively”
a defect for Obs% in the sense that it satisfies the weaker condition (3) rather than the
stronger condition (1).

Remark 2.2 We could ask for slightly more data. Instead of fixing the value of the
radius ¢t € (0, 1) and then choosing f;, £, for this fixed radius, we could choose a
compatible family of such data for all values of ¢. First, choose a smooth function
f@t,s):(0,1] x [0,3] — [0,3] so that fi,(s) = f(to,s) satisfies conditions (2)
for each choice of t = ¢, and f(z, s¢) is monotonic for each fixed s¢. Next, define a
smoothly varying family £, of boundary conditions for each ¢ € (0, 1]. In this way, we
produce a family of factorization algebras ObslCl parameterized by the interval (0, 1);.
One can then investigate the limiting prefactorization algebra as t — 0.

2.1 On boundary conditions

We now return to discussing what boundary conditions mean for a classical BV field
theory. A complete treatment would be lengthy and technical, so we sketch the key
ideas here and point the interested reader to [25, 27] for a special class of theories of
high relevance to this paper. In addition, we will describe a number of examples in
Sect. 4 below that we hope will give the reader a good sense of what we mean.

Remark 2.3 We would like to highlight another powerful approach to boundary prob-
lems involving the BV formalism: the BV-BFV formalism developed by Cattaneo et
al. [10, 11]. This approach has proven to be successful in modifying BV field theory
on manifolds with boundary and corners. In particular, there has been work on the BV
description of AKSZ observables [21], and more recently [22], an interpretation of
the WZW action functional in arbitrary codimension, via Witten’s descent.

For a theory 7 on a manifold N with boundary, let Sol7 denote the sheaf of
solutions to the equations of motion for the theory. In the BV formalism for perturbative
theories, this is a sheaf of formal derived spaces with a local —1-symplectic pairing,
in the following sense.

Definition 2.4 Let L denote a local Ly,-algebra on N, as defined in [8, Sect. 3.1.3],
and let BL denote the associated sheaf of formal derived spaces. A local k-shifted
symplectic structure on BL is a fiberwise non-degenerate density-valued graded skew-
symmetric pairing

w: L ® L — Densy[k],

inducing an invariant pairing on the L, algebra of compactly supported sections of
L under integration.

Near the boundary 0N (or along any hypersurface, really), we anticipate the fol-
lowing structure to hold in good cases.
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Hypothesis 1 The formal derived space Sol7-(d N) of jets of solutions near the bound-
ary dN is represented by a local Lyg-algebra Ly on dN carrying a natural O-shifted
local symplectic structure

wy: Ly ® Ly — Densyy.

As we will see in Sect. 4, this hypothesis is automatically satisfied in many natural
examples, including topological theories such as BF and Chern—Simons theory, as
well as non-topological examples such as Yang—Mills theory. It would be interesting
to establish the technical assumptions on the theory 7 to guarantee the validity of this
hypothesis, but we will not pursue this in the present paper. (In general some version
of presymplectic reduction may be necessary.)

Example 2.5 We mention two quick examples to orient the reader.

(1) First, consider a one-dimensional field theory of maps from a line into a target
Riemannian manifold X. If one uses the standard action functional, then for a
hypersurface (i.e., point) ¢ in the line, the space of jets of solutions is equivalent
to T*X.

(2) Second, consider abelian Chern—Simons theory on an oriented 3-manifold N, so
the sheaf of solutions is modeled by the shifted de Rham complex 23, [1], where the
shift appears so that 1-forms (i.e., deformations of the flat connection dgr) are in
degree 0. Pick a closed, oriented 2-dimensional hypersurface S C N. Then jets of
solutions near S is equivalent to 2°(S5)[ 1], as the Poincaré lemma tells us that the de
Rham complex is insensitive (at the level of cohomology) to the normal direction.
Poincaré duality tells us that °(S)[1] has a natural symplectic structure by the
wedge-and-integrate pairing. As a sheaf on S, this de Rham complex has local
symplectic pairing given by the wedge product, so the local symplectic structure
is well-defined even when S is noncompact.

We can now offer a structural formulation of a local boundary condition.

Definition 2.6 A local boundary condition for 7 on d N is a sheaf £ on d N of formal
derived spaces equipped with the structure of a Lagrangian for the sheaf Sol% of local
0-shifted symplectic formal derived spaces.

Let us briefly unpack exactly what sort of data we are specifying. To motivate our
approach, consider the situation of a symplectic vector space (V, ), such as R** =
T*R" with the standard symplectic form ) _; d p; Adg;. This form produces a canonical
isomorphism w” : V — V* by sending v to w (v, —) € V*. A vector subspace L C V
is Lagrangian if w|; = 0 (i.e., L is isotropic) and the map «”|; : L — Lt is an
isomorphism, where L' means the elements of V* that vanish on L. The second
condition can be rephrased as saying there is a short exact sequence

0—>-L—>V->L"=0

where the second map sends v € V to " (v)|z. In other words, the kernel of this
second map is equal to L. This formulation admits a nice generalization in the derived
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setting, by replacing equalities with homotopies and by replacing the kernel (which is
a limit) by its homotopical (or derived) version. Let (V, w) is a dg vector space with a
symplectic structure (i.e., the pairing w : A2V — C is a cochain map and the induced
cochain map »” : V — V* is a quasi-isomorphism). A Lagrangian is a cochain map
i : L — V such that i *w is homotopic to the zero pairing (i.e., i is derived-isotropic)
and the map L — hofib(V — L*) is a quasi-isomorphism. Here, hofib (or “homotopy
fiber”) denotes the derived version of kernel and can be modeled by (a shift of) the
mapping cone. (This discussion is a gloss of Calaque’s lovely exposition in Sect. 1.3
of [5]. The original definition in the derived setting is due to Pantev et al. [23].) So far
we have discussed the case of vector spaces; to generalize to manifolds (or derived
stacks) one asks for maps of such spaces where these conditions hold for each tangent
complex.

In our setting, a Lagrangian structure is thus a map of sheaves of formal derived
spaces

f: L — Soly

together with a trivialization of f*w, the pullback of the symplectic pairing, such that
the induced map

T, — hofib <T£* e f*T501A7>

is a quasi-isomorphism of sheaves of complexes. (In the setting of field theory, there
are often serious functional analysis issues that appear. See [27] for a careful treatment
in the most important situations for this paper.)

We call this data a boundary condition because we will use it to specify which
solutions we care about: we want solutions on N that live in £ near the boundary. We
call this data a local boundary condition because it is a sheaf on dN, and hence is
local-to-global.

Example 2.7 We return to our examples above.

(1) For a particle traveling through X, a boundary condition is precisely a Lagrangian
submanifold of 7*X.

(2) For abelian Chern—Simons theory on an oriented 3-manifold N with boundary,
one can specify a boundary condition on § = dN by fixing a complex structure.
The local boundary condition is then the map of sheaves

1,0 .
Qg" — QF,

which is manifestly isotropic because any two (1, x)-forms have trivial wedge
product.

The data of a local boundary condition determines a new sheaf on N of formal
derived spaces, as follows. Let i: 0N < N be the inclusion of the boundary. By
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definition, we have a diagram of sheaves

Solr

Ir

L L5 Sty

where r is the map that restricts a solution to its jet of a solution near the boundary.

The homotopy fiber product F of this diagram is the sheaf encoding solutions to the
equations of motion that satisfy the boundary condition. As F is a sheaf of formal
derived spaces, its algebra O (F) of functions determines a cosheaf of dg commutative
algebras (and hence a commutative factorization algebra) on N.

3 Atheorem

We now describe a condition under which we obtain a defect in the sense of Defini-
tion 1.4 because the theory has nice behavior near D. We begin by reviewing some
relevant recent results of Rabinovich, starting with classical theories before discussing
quantum theories. Boundary conditions in the classical BV formalism were previously
discussed in a paper of Butson and Yoo [4], which also offers a bounty of examples.

For a manifold N with boundary, Rabinovich [25] defines a classical BV theory
that is fopological normal to its boundary in Definition 2.4 of loc. cit. (after Butson—
Yoo [4, Definition 3.8]). Definition 2.21 then offers a clean characterization of a local
boundary condition for such a theory, and in Definition 2.25 he characterizes the sheaf
of solutions satisfying the boundary condition. The totality of such data he dubs a
classical bulk-boundary system. A key result of Rabinovich’s paper, explained and
proved in Sect. 4 of loc. cit., is that the observables of this bulk-boundary system
form a factorization algebra with a defect along the boundary (in the sense of our
Definition 1.4).

Let us briefly sketch Rabinovich’s definition of a theory that is topological normal
to its boundary. We refer to the original paper for a full account.

Definition 3.1 (See [25, Definition 2.4]) A classical BV theory 7 on a manifold
M with boundary dM is topological normal to its boundary if there exists a tubular
neighborhood U of d M, a collar coordinate ¢ : dM x [0, €) — U, and an isomorphism
for the graded vector bundle E of fields

¢*Ely = Ey KA®T([0, &),

where Ej is a graded vector bundle on the boundary such that the solutions Sol7 to the
equations of motion for 7, when viewed as a sheaf on [0, ¢) (i.e., in terms of the collar
parameter), is locally constant and takes values in solutions Solg; for a “boundary
theory” 7. (We refer to [25] for the full definition of the boundary theory.)

We will apply Rabinovich’s results in the following setting. Let p: Blp(M) - M
denote the blow-up of M along D associated to the tubular neighborhood U and collar
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coordinate p. Let us describe it in explicit terms. Let D have codimension k as a
submanifold. We have fixed a disk bundle B3(D) inside the normal bundle N — D,
equipped with a metric. Let S;(D) denote the unit sphere bundle inside N — D.
Observe that there is a natural diffeomorphism

¢ : By(D) — D = S;(D) x (0,3)

by using the fiberwise metric; this map produces a diffeomorphism U — D = §1(D) x
(0, 3). Then

Blp(M) = (M — D) Uy—p (S1(D) x [0,3)),

which simply attaches a copy of D to the “end of the cylinder” S1 (D) x (0, 3). The map
p: Blp(M) — M is the identity away from the boundary 0Blp(M) = S1(D) x {0},
and it collapses the sphere bundle downto D. Let B°1D (M) denote Blp(M)—0Blp (M),
and let p: Blp (M) — (M — D) denote the restriction of p to the complement of the
boundary.

Definition 3.2 For a smooth manifold M with smooth submanifold D, let 7 be a
classical BV theory on M — D. We say 7 is topological normal to D if the pullback of
T along the blow-up map p extends to a theory on Blp (M) that is topological normal
to its boundary.

Note a key property of such a theory. For any choice of radius 0 < r < R < 3,
let A, gy denote the annular bundle over D (i.e., the points in the normal bundle of
distance between the radii). For any choices of radii0 < r <" < R’ < R < 3, the
restriction of solutions from the bigger annular bundle A gy to the smaller annular
bundle A gy is an equivalence:

SO]']‘(A(V’R)) — SO]T(A(,,/’R/)).
Thus, the observables are likewise equivalent along the extension map
ObsSH (A gry) — ObsSH(A(r )

determined by those radii. This claim follows immediately from the topological-
normal-to-the-boundary condition, because the pullback map Q°((r, R)) — Q°*((r/,
R’)) along the inclusion of intervals is a quasi-isomorphism.

Moreover, a choice of local boundary condition £ on Blp (M) determines a local
boundary condition £, for every ¢, as solutions are locally constant with respect to the
collar coordinate.

As an immediate corollary of Rabinovich’s work, we thus obtain the following
result.

Theorem 3.3 If the classical BV theory T is topological normal to D C M, then a
local boundary condition L; determines a factorization algebra Obsf1 on M that is a
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defect for Obs%l-, ie.,
Obs!pr—p = Obsy—p.

The point is that the observables for 7 do not care about the “width” of a collar,
so that when we push forward along 7, the stretching of the annular neighborhood is
irrelevant.

Remark 3.4 1t is important to notice that this theorem applies for a fixed value of the
radius ¢ around the defect. This is particular to theories that are topological normal to
the boundary. For theories without this condition, in order to obtain a genuine defect
one would need to define a family of theories for all ¢ in the interval (0, 1), and take
an appropriate limit as # — 0, as discussed briefly in Remark 2.2.

Remark 3.5 We expect that the hypothesis can be weakened from “topological normal
to D” to “rescaling-equivariant normal to D.” Compare with [16], where Kapustin
requires the theory with defect to have a symmetry by the group of conformal trans-
formations preserving the support of the defect.

Another important feature of Rabinovich’s work is that he explains how to quantize
classical BV theories that are topological normal to the boundary. That is, he offers
a rigorous renormalization method (building upon Costello’s approach in [12] and
the work of Albert [3]) and formulates a version of the quantum master equation.
His central result is that, when a BV quantization exists (i.e., the master equation is
satisfied), it has a factorization algebra of quantum observables. Hence, as another
corollary of Rabinovich’s work, we have the following.

Theorem 3.6 Ifthe classical BV theory T is topological normalto D C M witha local
boundary condition L; that admits a BV quantization, then the quantum bulk-boundary
system determines a factorization algebra Obs;l on M that is a defect for Obqu, ie.,

Obs{! | y—p = ObsT-|y—p.

4 Examples

We organize our examples by codimension of the defect. In each example we will focus
on how to formulate the field theory and boundary condition along the blowup of a
submanifold; we do not analyze the associated factorization algebra. At the classical
level, most statements about the factorization algebra boil down to statements about
the behavior of solutions with the boundary condition. We postpone such analysis of
more interesting examples, including quantizations, to future work.

Remark 4.1 Another rich source of examples arises by applying our construction to
examples from [15], which constructs the quantizations and factorization algebras
for free bulk-boundary systems (i.e., where the bulk theory is free and the boundary
condition is linear). Thus, the reader can produce defects for abelian Chern—Simons
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theory (including higher-dimensional Chern—Simons theories) or the Poisson sigma
model into a Poisson vector space. The relevant factorization algebras are analyzed,
to some extend, in [15]. See [4] for a number of interacting bulk-boundary systems of
interest to mathematicians and physicists. We also mention that [13] contains a wealth
of examples and insights about defects that would be well-suited to treatment by the
approach advocated by this paper.

4.1 Codimension 1

When the defect’s support is a dividing hypersurface, the defect is often called a
domain wall. We will offer a few examples, building from point defects in mechanical
systems toward domain walls for BF theories.

4.1.1 Topological mechanics

Following [15, 25], the data of topological mechanics can be encoded in a symplectic
vector space V; in physical terms, we are studying maps from a real line (or worldline)
R into a target V. The factorization algebra of classical observables for this system
encodes the Poisson algebra O(V) = Sym(V*) of functions on V. A choice of
Lagrangian vector subspace L C V provides a boundary condition for the half-line
[0, 00); in physical terms, it means the path must start in L. In [15], it is proven that
the factorization algebra of classical bulk-boundary observables encodes O(V) =
Sym(V*) as the bulk observables together with the module

O(L) = Sym(L") = Sym((V/L)")

as the boundary observables. In addition, this system can be quantized, and [15] shows
the factorization algebra of quantum bulk-boundary observables encodes the Weyl
algebra Weyl(V*) as the bulk observables together with the Fock module Fock (L*)
for the boundary observables. (As a vector space, Fock (L*) = (O(L).) The Fock space
is a right module for Weyl(V*) as the boundary is on the left end of the half-line.

We can leverage those results to construct point defects. Take the point defect
for topological mechanics to be supported at the origin, so the complement of the
origin has two boundary points. Pick Lagrangian subspaces L_ and L for boundary
conditions on (—oo, 0] and on [0, 00), respectively. Our main construction gives a
factorization algebra of quantum observables with a defect where on R — {0}, it
encodes Weyl(V*) but for an interval containing the origin, the observables encode
Fock(L* ) ® Fock (L’ ). Note that this tensor product of Fock modules is a bimodule
for the Weyl algebra.

4.1.2 Domain walls in BF theories

Let g denote a Lie algebra for a Lie group G. Consider BF theory on an oriented
n-manifold M in the BV formalism: the graded vector space of fields is

QF (M, g)[1]1® QE(M, g*)[n — 2]

@ Springer



Defects via factorization algebras Page 150f26 46

where an element of the first summand is called the A-field and where an element
of the second summand is called the B-field. (We mean here the graded vector space
of differential forms, without its differential, and use # to indicate this.) The action
functional is

SBr(A, B) = f (B A Fy)
M

where Fy = dA + %[A, A] and the notation (— A —) indicates that we use the
evaluation pairing between g and its dual g* but wedge the form component. The
equations of motion are 4 = 0 and V4B = 0. In other words, this theory picks out
a flat connection and a horizontal section of the coadjoint bundle.

Take M to be a connected manifold and D a dividing hypersurface, so that

M — D = Myu M;

isa cisjoint union of two manifolds. Let Mo =M — M, and let Ml =M — My, so
that M; is a manifold with boundary isomorphic to D. Then,

M%M()UDH]

by construction.

As the equations of motion do not care about the geometry of the manifold, just
its underlying topology, we see that Solg (D), the formal space of solutions near the
boundary of M;, is modeled by

Q*(D, g)[11® Q*(D, g")[2 — nl,

since the de Rham complex in the collar direction is quasi-isomorphic to R by the
Poincaré lemma.

There are many possible choices of local boundary conditions here. Two obvious
options are the summands: one can take

Q* (D, g1,
which corresponds to taking the B-field to be zero, or one can take
Q*(D, gM)I2 —nl,
which corresponds to taking the A-field to be zero. Other options arise from taking
shifted conormal spaces to a “subspace” of Q°*(D, g)[1], which models the formal
neighborhood of the trivial connection among all flat G-bundles. (We will mention
other possibilities in a moment, to produce “order” operators.)

__Fix local boundary conditions £y for BF theory on M and £, for BF theory on
M . Then, our main construction produces a factorization algebra on M that agrees
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with ObsgF on M — D but, for an open set U intersecting D, is given by
Obs% (U N'Mo) ® Obs? (U N'M)).

Note the similarity with the construction in topological mechanics; by compactifying
along D (at least in a collar neighborhood), the two constructions can be identified.

Remark 4.2 We want to remark on another useful class of domain walls, which provide
examples of order operators. The essential idea is simple: put a field theory 7’ on
the hypersurface D that couples to the theory 7 on M. Away from D, the fields of 7°
should satisfy the usual equations of motion, but on an open intersecting D, there is an
interesting system of equations involving the fields of both 7 and 7. The observables
should thus provide a factorization algebra with a defect along D. In terms of this
paper’s point of view, note that if one writes M as the union (M — U) Uyy U for some
tubular neighborhood U of D, then one obtains a local boundary condition along U
by taking the boundary values of the coupled field theory on U. (We will not show
such boundary conditions are always Lagrangian, but in practice it is typically the
case.) We will discuss examples of this nature in higher codimension in Sects.4.2.3
and 4.3.2 below. An extensive discussion of the order operator case can be found in
[24], which provides motivation and many useful examples, as well as references to
the pertinent literature.

4.2 Codimension 2

In the setting of BF gauge theories, we exhibit a class of codimension 2 defects that
depend upon monodromy of flat connections. We will then examine point defects
for 2-dimensional free scalar theory; our approach works for point defects of scalar
theory in any dimension. Finally, we explain how to produce a Wilson line defect for
Chern—Simons theory.

4.2.1 A point defect in 2-dimensional BF theory: monodromy

Take M = R? and the origin D = 0 as a submanifold. Let g be the Lie algebra of
a Lie group G. If we consider BF theory for g on M = R? — {0}, then a solution to
the equations of motion provides a flat connection V = d 4 A. Such a flat connection
has monodromy Mon(V) for a loop y that winds once around the origin, and this
monodromy is an element of G, only up to conjugation. (And every element of G
can appear as monodromy. ) In other words, we have Mon(V) € G/G, the adjoint
quotient space, and, in fact, two flat connections with the same monodromy are gauge-
equivalent (for a textbook account, see [28, Sect. 13.2]).

In a BF theory, a solution also involves a choice of V-closed g*-valued function
B, i.e., a g*-valued function that is horizontal for V. Such a function is completely
determined by its value at one point p in M ,1.e., an element of g*. Thus, the quotient
space (G x g*)/G, with respect to the adjoint—coadjoint action, parametrizes solutions
to the BF theory on M, and hence perturbative BF theories. Given a pair (m, b) €
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G x g*, let 7(;,, ) denote the perturbative BF theory around a pair (V, B) lying in the
corresponding G-orbit, i.e.

[Mon(V), B(p)] = [m, b].

Let Obsfln b) denote the factorization algebra on M of classical observables of this
theory.

Remark 4.3 It can be useful to describe this kind of theory 7, 1) via an action func-
tional, which may be more familiar to physicists. We explicate the case where b = 0.
Fix an element A € g, and consider the functional

S1(V, B) = Sgr(V, B) — (A, B(0)),

where the second term evaluates B at the origin (which is an element of g*) with —A.
This new functional is not a local functional in the usual sense because the second term
is not given by integrating a smooth Lagrangian density. (Instead, it can be written as

—f B A MSpdx dy,
R2

a distributional Lagrangian density.) The equations of motion for S, impose that the
curvature Fy is —Adp dx dy. In other words, it is flat away from the origin but is not
flat everywhere. Alternatively we can characterize the solutions to the equations of
motion by considering the contour integral around any contour y winding around the
origin with winding number one: if p is a cocharacter of g, we have

/M*(V) = (U, A).
Y

In other words, we have described the cohomology class in H!(R?\ {0}, g) associated
to the solution to our modified equations of motion. Equivalently (i.e., applying the
natural bijection between flat G-connections and G-local systems) the monodromy of
the connection V around y is given by m = exp(—A).

Similar approaches can be taken to model other defects of this type from a
Lagrangian perspective, such as the monopole operators of the next section. This
example also suggests some more sophisticated maneuvers that one might pursue,
like promoting A from a background field (i.e., coupling constant) to an interacting
field or—going further—quantizing this A theory. Such methods get used frequently
in the literature.

We note that such a theory is topological. In particular, if we choose any closed disk
D, of radius 1 < |p|, the formal space of jets of solutions Sol3 (9 D;) at the boundary

circle 9D, = (R% — Dy) is canonically independent of ¢.
Suppose for simplicity that [m, b] = [e, 0]. Similarly to the previous example, this
space of formal jets of solutions is modeled by the shifted de Rham complex

Q*(3D;, g[11 @ g%).
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(If we choose a non-trivial value of [m, b] then we must instead use a twisted de Rham
complex where the differential becomes a connection with monodromy m.) Broken
into components by degree, this complex is Q°(S') ® g in degree —1, Q! (SH @ g ®
Q%S ® g* in degree 0, and Q! (S!) ® g* in degree 1. The summands in degrees -1
and 1 are dual to one another, and the summand in degree 0 is isomorphic to C*°(S!) ®
(g9 ® g*). (One needs to choose a volume form on the circle to identify Qs with
C*°(S").) In more conceptual notation, we have T*Flatg (S'), the cotangent bundle
to the moduli space of flat G-bundles on S!. More accurately, the complex we wrote
describes the formal neighborhood of the trivial flat bundle inside this moduli space.
(Picking another value [m, b] amounts to working in the formal neighborhood of that
point in the moduli space.)

A Lagrangian must be compatible both with the pairing just explained and with the
shifted Lie algebra structure on this complex (arising from the shifted Lie structure
on g[1], its action on g*, and the commutative structure on Q°(S 1Y). One type of
boundary conditions arises by choosing a Lie subalgebra | € g, whose associated
boundary condition is given by

Q*sHeIleESH e,

where [~ C g* consists of the linear functionals that annihilate [. It can be seen as
conormal substack to Flat; (S') < Flatg(S!), where L is the Lie subgroup integrating
[ inside g; more accurately, it is the formal neighborhood at the trivial flat connection
to this conormal substack. If we pick [ = g, then we are working with the boundary
condition that imposes b = 0; it is a Dirichlet condition. If we pick [ = 0, then we are
working with the boundary condition that imposes m = 0; it is a Neumann condition.

Remark 4.4 There was nothing particular to M = R? in the calculation we just out-
lined. If we take M = R” and take D to be a choice of embedding R*~? — M, then
we can perform an identical calculation. For example, this provides a description of a
class of line defects in 3-dimensional BF theory, and of a class of surface defects in
4-dimensional BF theory. Small and straightforward modifications allow one to con-
struct such “monodromy defects” for a codimension 2 submanifold inside any oriented
manifold, although characterizing the allowable monodromies can be elaborate.

Remark 4.5 As we discussed in Sect. 1.1, each choice of boundary condition will lead
to a module for the algebra of classical observables on an annulus. One can describe
this algebra fairly concretely starting from the dg Lie algebra Solgp(d D;)[—1], by
forming the Chevalley—Eilenberg cochains.

4.2.2 Point defects in scalar field theory

We will now move on to discussing another example of point defects in M = R?, but
now in a non-topological theory (so the results of Sect.3 will not be applicable). We
will consider the example of a free classical scalar field theory on R? equipped with
its flat metric, with a defect at the origin, so D = {0} € R?. The blow-up is easy to
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describe here: it is given by excising a disk Dg(0), so
R? — Dg(0) = {z € R?: |z| > R}.

We will trace the dependence on radius R below.
The free scalar field theory has graded space of fields

CX[R?) & CX R[],

where C(EO(RZ) denotes the space of smooth complex-valued functions. The action
functional is

S(®) =/¢A¢

and depends only on the field in cohomological degree zero. Here, A is the usual
Laplacian operator. The formal space of solutions near ¢ = 0 is modeled by the
complex

(=) 2 cE ()

concentrated in degrees zero and one. The space of jets of solutions along the boundary
Sk of the blowup can also easily be described. Let us use polar coordinates (r, #) on
RIS, and let t = r — R be a collar coordinate near our boundary. Then, jets of fields
near the origin are modeled by

CR(RY)" = c(sHire,

and the differential becomes

1 1
AN =92 + 9 + 92
TTH R T+ R2Y

1 \" 1 t\") .,
__ a2
‘3f+iz(i> %t R Z(E) %

m=>0 m=>0

We will use the more attractive D to denote this operator A” obtained by restricting
to jets along the boundary S}e, and we write it succinctly as

D =097 + gr()d; + gr(1)*d3.,
where
1 t\"
gr(t) = ® Z <E>
m=>0
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denotes the geometric series. It is routine to verify the following properties of the
operator D:

(1) D is surjective and thus coker(D) = 0.
(2) ker(D) = CX(Sh & C2(Sh).

This second fact boils down to showing that any solution is determined by its t°- and
t!-terms.
These facts imply that there is a quasi-isomorphism of the form

CcX(sH®? — Solj,

where the injective map is defined by the inclusion of the kernel of the operator D. This
inclusion is a section of a quasi-isomorphism Sol) — C&°(S 1) given by projection
onto the 7°- and 7' -components in the degree zero part of Sol”. The space of solutions
is thus quasi-isomorphic to the tangent bundle 7CZ°(S 1, viewing the 1°-term as
“position” and the #!-term as “velocity.”

There is a natural pairing on C2”(S 1Y®2 given by

2 2w
o ((p1,v1), (P2, 12)) = / pi1v2do —/ pav1do.
0 0

where p; denotes the °-component of a solution and v; the ¢'-component of the same
solution. This pairing is non-degenerate in the sense that it injects C(f':"(Sl)692 into its
continuous linear dual. Natural examples of Lagrangians here are

e the Dirichlet boundary condition {v = 0} (i.e., the zero section of the tangent
bundle 7CX(S1)),

e the Neumann boundary condition { p = 0} (i.e., the tangent space T()CKO:o (S1)), and

e any section of the tangent bundle 7 Cg°(S by,

These are modeled on the case of a (co)tangent bundle of a finite-dimensional manifold.
One can produce more exotic examples, such as the conormal bundle to a subspace of
cE (S1), which might be determined by spectral conditions (e.g., taking the subspace
of positive Fourier modes). Unwinding this situation using Fourier series can be quite
helpful.

Remark 4.6 We point out that our approach here works in higher dimensions. For free
scalar theory on R” with a point defect at the origin, one simply replaces S! by §"~1.
The remaining analysis is parallel. (Spherical harmonics replace Fourier modes for a
very explicit approach.)

4.2.3 Chern-Simons theory coupled to a charged fermion: a Wilson line
Letus now take M = R3and D = R x (0, 0), the x-axis. We will describe an “order”

type defect obtained by coupling a background gauge theory on M to a charged particle
along the line D. Thus, fix a Lie algebra g with a non-degenerate pairing, and let V
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be a finite-dimensional representation of g equipped with an invariant inner product.
We define our BV theory on R3 to be

T =R ®glll,

with the BV bracket defined using the pairing on g. This is a perturbative description
of Chern—Simons theory near the trivial flat connection.

If we choose a tubular neighborhood U of the embedded line R, with boundary
dU, the formal space Solg(dU) of jets of solutions near the boundary is determined
by the shifted de Rham complex

Q*(U) ® gl1l,
with cohomology concentrated in degrees —1 and 0.
We can define a boundary condition in a trivial way.
Definition 4.7 Let iy: 0U — U denote the inclusion of the boundary of U. There is
a canonical Lagrangian given by the restriction map

i5(Q°(U) ® g[1) — Q*(3V) ® gl11.

It is the trivial defect along D.

We can enhance this trivial defect by coupling to an additional field along the line
D, valued in the representation V. Define a topological free fermion theory on R by
setting

Ty = Q*(R) @ IV

with BV pairing defined using the inner product on V and wedge-and-integration of
the forms. Here, IT indicates that we place the representation V in odd degree for an
auxiliary Z/27Z-grading. The action functional is

Sv() = /R(w, dyr)

for the associated BV field theory, with ¢ € 7y .

We will now define a defect by coupling the topological free fermion 7y along D
to the Chern—Simons theory in the bulk. Observe that the g-module structure on V
makes 7y |y[—1] into a module for the sheaf of dg Lie algebras i}, 7[—1], where ip
is the inclusion of the defect line in U. In terms of action functionals, this means that
we can view the gauge field A as modifying the fermion action by minimal coupling:

Sy min(¥; A) = fR W, [ + A,

The equation of motion for this theory picks out sections 1 that are horizontal (or flat)
for the connection d + A; if we worked with a circular defect rather than a line, we
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could ask about the holonomy of the connection on this vector bundle. In this way, the
fermionic theory allows one to encodes the Wilson operator (i.e., trace of holonomy).

We can formulate a BV theory that involves both the gauge field and the fermion
in terms of the super dg Lie algebra

Eqv(U) = (2°(U) ® g)  (ip)« (Q*(R) @ TV[~1])

with bracket generated by the Lie bracket on g and the action of g on V. The associated
action functional is the sum of the Chern—Simons action and minimally coupled action
for the fermion.

Definition 4.8 The charged line defect associated to a free fermion valued in the rep-
resentation V of g is the boundary condition

i3q.v (U) — (V) ® gl11.

If we set V = 0, we recover the trivial defect defined above.
This charged line defect is another example of an order operator, as discussed in
Remark 4.2.

Remark 4.9 Note that once we introduce a non-trivial representation V, the boundary
condition is no longer associated to the inclusion of a subcomplex. In the derived
setting, as we have here, a map can admit a Lagrangian structure even if it is not a
degreewise inclusion.

Remark 4.10 Let us conclude this section by mentioning an additional interesting
collection of codimension two defects that one could hope to describe in the present
formalism. Costello and Yamazaki [13] consider a large class of surface defects of both
order and disorder type in four-dimensional Chern—Simons theory: a gauge theory
analogous to Chern—Simons theory, but defined on R> x C where C is a Riemann
surface, in which the solutions to the equations of motion are topological in the two
real directions and holomorphic in the complex direction. They consider defects placed
along planes of the form R? x {z} for points z € C, from which they are able to engineer
a large number of interesting integrable systems on the Riemann surface. We should
note that these examples will not be topological normal to the boundary, but only
holomorphic in the normal directions.

4.3 Codimension 3

We now turn to the most well-known examples from gauge theory: we describe the
magnetic monopole and the Wilson line in 4-dimensional Yang-Mills theory. The
results of Sect.3 will not apply in this section, because Yang—Mills theory is not
topological (it may be possible to recover similar results using the weaker condition
of conformal invariance, but do not make any claims in this direction at present).
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4.3.1 The magnetic monopole

On four-dimensional manifolds, Yang—Mills theory admits a first-order formulation
that is convenient for producing boundary conditions, so we will stick to dimension 4
in this paper. We will also only consider Yang—Mills theory for the abelian group U(1).
(In a companion paper [6], we will work out the monopole for abelian Yang—Mills
theory in arbitrary dimensions.)

Let M be a Riemannian 4-manifold and let « denote its Hodge star operator. Fix
a principal U(1)-bundle L — M with a non-degenerate inner product, and fix a
connection V on L. (The choice allows us to describe the space of connections as
sections of a vector bundle.) The first-order formulation of U(1)-Yang—Mills theory
has graded space of fields

-1 0 1 2
QM. L) @'(M, L) @2(M, L)
Q2 (M, L) @*M,L) Q"(M, L)

where Qﬁ_(M , L) denotes the self-dual 2-forms,( i.e., o such that x¢ = «, using the
inner product to identify L- and L*-valued 2-forms) and where the top row indicates
the cohomological degree. We call an element of the first row the A-field and an
element of the second row the B-field. The action functional is

Sym(A, B) = / BAVLA—c(B)AA
M

where ¢ denotes a coupling constant and where V_ denotes the covariant derivative
followed by projection onto self-dual 2-forms. The equations of motion are

ViA=cB and VB =0,

which together imply the usual equations of motion. For instance if ¢ # 0, we deduce
that V % VA = 0. (When ¢ = 0, we recover self-dual Yang-Mills theory.)

A solution to the equation of motion for U(1)-Yang—Mills theory is a connection
V = V + A on the bundle L. The tangent complex at V to the derived space of
solutions is modeled by the cochain complex

¥ v
QM, L) —— Q' (M, L) —— Q3 (M, L)
En = e 4)
QL (M, L) —— Q3(M, L) —— Q*(M, L)
concentrated in degrees —1, 0, 1, 2. Note that there is a natural subcomplex given by
the top row, i.e., the subcomplex consisting only of A-fields. If M is a manifold with

boundary, then jets of this subcomplex along d M yield a local boundary condition.
Let £p—¢ denote this boundary condition.
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Remark 4.11 We can describe this in a little more detail, though we will not include
a detailed calculation in this paper. We can model the jets of solutions along dM, i.e.
the formal space Sol{,,(d M), by the cochain complex

0 e‘BM 1
QUOM, Llgy) —— 2 (0M, Llym)

Eom = )

Viom

2Q2(OM, Liyp) —— z23(0M, Liyum)

concentrated in degrees —1, 0 and 1, where z is a chosen formal coordinate normal to
oM C M. So Lp— is equivalent to the complex

v
QOOM, Liass) —™5 Q1 (M, Lisn)

in degrees —1 and 0.

We can now finally formulate magnetic monopoles, as follows. Let M = R* and fix
aline D C M,so D = R. Werequire that D “extend to infinity,” i.e., it is not contained
in any compact subset of M; for simplicity, we also require that D is unknotted. For
example, when the metric is Euclidean, use an axis of the usual Cartesian coordinate
system. The manifold M — D is then diffeomorphic to §? x R In this situation, U(1)-
bundles up to isomorphism are computed by H'(M — D,U(1)) £ HX(M — D, 7Z),
which is isomorphic to Z. For a line bundle L, its first Chern class c¢{(L) is the
identifying cohomology class. Any line bundle L does admit solutions to the equations
of motion for U(1)-Yang—Mills theory, and a physicist would call ¢; (L) the magnetic
charge of the solution. When ¢ (L) # 0, such asolution is called a magnetic monopole.
(We can view the case of ¢ (L) = 0 as a charge-free monopole.)

Thus, let V be a magnetic monopole with magnetic charge m. Then if we impose
the boundary condition £p_¢ along the line D, we can use our construction for any
small value of ¢ to produce an effective factorization algebra for the monopole.

Remark 4.12 There is a qualitatively different story describing monopoles in non-
abelian Yang-Mills—Higgs theory (such as 't Hooft-Polyakov monopoles), where
there is no locus on which the fields become singular. We will discuss such examples
in [6].

4.3.2 Wilson line defects in Yang-Mills theory

As a final example, let us discuss Wilson lines in Yang—Mills theory. This example
will be defined very similarly to the order type operators described above, particularly
in Sect.4.2.3.

To begin, recall that the irreducible representations of U(1) are all one-dimensional,
labeled by their weight n € Z. We will denote this representation by V,;; we will view
n as the electric charge of a charged particle.
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Let M = R* andlet D € M be an embedding of a line with tubular neighborhood
U. Write ip: D — U for the inclusion. We can describe a “coupled” theory along
the line using the complex

Eun=Eu X (ip)«(R°(D) @ V),

where &y is the complex from Eq. (4), and where u(1) x V,, is the Lie algebra with
underlying vector space R @ V,, whose only non-trivial bracket is generated by

[(1,0), (0,v)] = (0, nv).

This is an example of the representations g X V described in Sect.4.2.3, but with the
representation V now placed in even rather than odd degree.
We can define the Wilson line defect associated to the representation V,.

Definition 4.13 Choose a tubular neighborhood U of D in M, and let ¢j be the embed-
ding of the boundary of U in M. The Wilson line defect with electric charge n is the
defect

& — Eau.s

where &y is the complex modeling germs of solutions to the equations of motion
along aU [e.g., as defined in Eq. (5)].

Remark 4.14 1f we also chose a magnetic monopole with magnetic charge m, singular
along D, we could similarly define a Wilson line defect with electric charge n in this
background: one can define a defect by taking the magnetic charge m monopole defect
L p—o and forming the tensor product with the electric charge n Lie algebra (1) x V;,
defined above. The result is called a dyonic defect with charge (m, n).
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