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Abstract
Factorization algebras are local-to-global objects living on manifolds, and they arise naturally in mathematics and physics. Their local
structure encompasses examples like associative algebras and vertex algebras; in these examples, their global structure encompasses
Hochschild homology and conformal blocks. In the setting of quantum field theory, factorization algebras articulate a minimal set of
axioms satisfied by the observables of a theory, and they capture concepts like the operator product and correlation functions. This
article gives the definitions and key examples, compares this approach with other approaches to mathematically formalizing field
theory, describes key results, and explains how higher symmetries can be encoded in this framework.

Factorization algebras offer a flexible framework for describing the observables and symmetries of field theories in physics, but
they also appear naturally in several areas of mathematics, notably in topology and representation theory. In this way there is an
interesting transfer of insights between different subjects, and much of the research around them benefits from this transfer.

Factorization algebras are a minimal axiom system for the observables of a quantum field theory (QFT). The idea is to write
down the weakest possible axioms that capture the concepts of operators (called observables in Costello and Gwilliam (2017,
2021)), operator products, and correlation functions.

For chiral conformal field theories (CFT), these aspects of a field theory are captured by a vertex algebra; similarly, for non-
chiral CFTs, these ideas are described by the conformal bootstrap axioms. Factorization algebra aim to capture these concepts for a
general quantum field theory, while imposing the weakest restrictions that can usefully describe this part of QFT. In contrast with
algebraic quantum field theory, we do not demand that observables form an associative algebra. A priori it is not obvious why one
can assign an associative algebra to a quantum field theory (and indeed one cannot in Euclidean signature). Instead, as discussed
in section “AQFT and Factorization Algebras”, associative algebras appear in Lorentzian signature as a consequence of the axioms.

Basics of Factorization Algebras and Their Physical Meaning

Let us now state the axioms of a prefactorization algebra, which are very simple.

Definition 1 Let M be a topological space (which the reader can take to be Euclidean ℝn). A prefactorization algebra F on M with values
in vector spaces is the following data
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• There is a (topological) vector space F ðUÞ for each open set UCM
• There is a linear map mU

V : F ðUÞ-F ðVÞ for each inclusion UCV of open sets
• There is a linear map mU1 ;…;Un

V : F ðU1Þ#⋯#F ðUnÞ-F ðVÞ for every finite collection of open sets where each UiCV and where the
Ui are pairwise disjoint. The following picture represents the situation

• The maps are compatible in the obvious way, so that if Ui;1⊔⋯⊔Ui;niDVi and V1⊔⋯⊔VkDW, the following diagram commutes

For an explicit example of the associativity, consider the following picture.
The case of k¼ n1 ¼ 2, n2 ¼ 1
Factorization algebras have an additional local-to-global axiom that we discuss in section “From Prefactorization Algebras to

Factorization Algebras”.
One should think of the vector space F ðUÞ as the space of measurements one make in the region U. For instance, in a

Lagrangian QFT, F ðUÞ will be built from integrals of local operators against test functions supported in U, as well as similar multi-
local expressions.

The product on prefactorization algebras is the operator product of QFT. It is only defined on disjoint opens because, in a
Euclidean quantum field theory, the operator product expansion has singularities when operators have coincident position. In a
Lorentzian QFT, the singularities can be on the light cone, which suggests a Lorentzian variant of the axioms which we will discuss
shortly.

Factorization Algebras and Associative Algebras

A crucial example of a factorization algebra is given by an associative algebra. Every associative algebra A defines a prefactorization
algebra Afact on the real line ℝ, as follows. To each open interval ða; bÞ, we set Afactðða; bÞÞ ¼ A. To any open set U ¼∐jIj, where each
Ij is an open interval, we set AfactðUÞ ¼#jA. The structure maps simply arise from the multiplication map for A. Fig. 1 displays the
structure of Afact . Notice the resemblance to the notion of an A1 algebra, or algebra over the little 1-disks operad.

Conversely, if a prefactorization algebra F on ℝ has the property that the structure map F ðIÞ-F ðI0Þ is an isomorphism for any
inclusion of intervals ICI0, then F gives rise to an associative algebra. Moreover, if the prefactorization algebra is equivariant under
translation along ℝ, we find an associative algebra with an infinitesimal automorphism, which one might call the Hamiltonian.

This class of examples lets us connect with quantum mechanics, viewed as a one-dimensional field theory. For example, let A be
the algebra of operators for a quantum mechanical system. We view the associated prefactorization algebra as describing when
measurements happen in time: during the period ða; bÞ, we have Afactðða; bÞÞDA describing possible measurements.

Similarly, if g is a Lie algebra of symmetries of the system, there is a map of Lie algebras J : g-A and hence a map of associative
algebra J : Ug-A, where Ug denotes the universal enveloping algebra. This quantum moment map determines a map of pre-
factorization algebras Jfact : Ugfact-Afact . One views Ugfact as a current algebra and Jfact as encoding how currents determine
operators for the quantum system.

Correlation Functions From Prefactorization Algebras

Although the prefactorization algebra axioms are very simple, it is perhaps a little more surprising that this data is enough to
capture concepts such as correlation functions and the operator product expansion. To see this, it is easiest to work on ℝn and
assume that our theory has Euclidean symmetry.

A Euclidean-invariant prefactorization algebra F has a compatible action of the Euclidean group IsoðℝnÞ, giving isomorphisms
between F ðUÞ and F ðgðUÞÞ for any gAIsoðℝnÞ in a way respecting products.

A state is a linear map

〈$ 〉 : F ðℝnÞ-C

that is invariant under the IsoðℝnÞ action.
A local operator at x is an element of the inverse limit

F x ¼ lim
r
F ðDðx; rÞÞ

Fig. 1 The prefactorization algebra Afact of an associative algebra A.
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where Dðx; rÞ is the disc of radius r around x. Given a local operator O at 0, we can use the translation action to build a local
operator OðxÞ at any point x.

Given a state, we define correlation function of local operators, as follows. Given n such operators O1;…;On, the correlation
function is then defined as

〈mðO1ðx1Þ…OnðxnÞ〉AC

where

m : F x1#…#F xn-F ðℝnÞ

is the factorization product. The limit involved in defining the space of local operators means that m is defined as long as the
points xi are disjoint.

Operator Products Expansions and Prefactorization Algebras

Suppose we have a Euclidean-invariant prefactorization algebra on ℝn. Then F ðDð0;rÞÞ is the space of almost-local operators; it is
built from products of operators that have been smeared over a disc of radius r. The factorization product map

m : F ðDð0;rÞÞ#F ðDðx; rÞÞ-F ðDð0;RÞÞ;

where 2ro8x8oRþ r, has the physical interpretation of the operator product.
Wilson’s operator product expansion arises as follows. First, we take the limit as r-0, replacing F ðDðx; rÞÞ by F x and

F ðDð0;rÞÞ by F 0. Then the product is defined for 0o8x8oR. Given two operators O1 and O2, the product

mðO1ð0Þ;O2ðxÞÞ

depends smoothly (and, in practice, real-analytically) on xADð0;RÞÞ. (Here we are using the fact that F ðDð0;RÞÞ is really a
topological vector space.) By construction, for 8x8oe, this product lives in F ðDð0;eÞÞ.

If there exists an asymptotic expansion of mðO1ð0Þ;O2ðxÞÞ as 8x8-0, then it automatically will live in the space
F 0 ¼ limrF ðDð0;rÞÞ of local operators. Such an asymptotic expansion will be of the form

mðO1ð0Þ;O2ðxÞÞB
X

FiðxÞOið0Þ

where Oið0ÞAF 0 and FiðxÞ are real-analytic functions. The axioms of a prefactorization algebra do not guarantee the existence of
such an asymptotic expansion, but if it does exist, it is unique, and in perturbative QFT this expansion does exist.

The associativity axiom of a prefactorization algebra is intended as a replacement for associativity of the OPE, which for non-
conformal theories is very challenging to formulate. For chiral theories in dimension 2, one can show that this OPE satisfies the
axioms of a vertex algebra, and the associativity axiom of a vertex algebra is a consequence of the associativity axiom of a
prefactorization algebra (see Costello and Gwilliam (2021)).

A History of Factorization Algebras, and Their Relationship to Other Axioms

We connect these notions to other approaches and place them in historical context.

A Brief History

There are three different notions of factorization algebra in the literature, and while they share the same spirit, they differ in detail.
The original version is due to Beilinson and Drinfeld (2004), from the early 1990s, and it arose as a recasting of vertex algebras
(and related notions from chiral conformal field theory) in the language of algebraic geometry; it has primarily been developed in
the setting of complex algebraic curves. Their theory has profound applications in geometric representation theory, notably the
geometric Langlands program, and its higher-dimensional consequences are still being explored. The second version began with
Francis, Gaitsgory, and Lurie around 2007 (although with roots in earlier work of McDuff (1975), Salvatore (2001), Segal (1973),
and others). These authors recognized that a topological analogue should exist to the Beilinson-Drinfeld version, much as a vertex
algebra is reminiscent of an algebra over the little disks operad (i.e., an E2 algebra). It works in the setting of manifolds (not
necessarily smooth), possibly equipped with data like an orientation or a G-bundle, but it is not sensitive to more geometric
structure (like a metric). This theory is called topological chiral homology by Lurie (n.d.) or factorization homology by Ayala and Francis
(2015) or blob homology by Morrison and Walker (2012), and it has beautiful applications in algebraic topology itself (notably a
nonabelian generalization of Poincaré duality), but it also offers a class of computable topological field theories, a topic we discuss
below. (See Ayala and Francis (2020) for a recent extensive survey. Morrison and Walker came to these ideas by a different route).
The third version grew in response to the other two, as we recognized around 2008 that the observables produced by BV
quantization seemed to form factorization algebras. In Costello and Gwilliam (2017, 2021) we developed axioms that fit well with
differential geometry and field theory. All three versions have overlapping domains of applicability, but comparison is somewhat
subtle and technical. We will focus here on the third version, and its offshoots.
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Segal’s Axioms and Prefactorization Algebras

The concept of factorization algebra has a close relationship with Segal’s axioms for quantum field theory (see Kontsevich and
Segal (2021) and Segal (1988, 2010, 2014)). Segal (following work with Atiyah on topological field theories, and ideas suggested
by Witten) proposed that a quantum field theory in dimension d is a functor Z that assigns to a closed Riemannian manifold ðN; gÞ
of dimension d$ 1, a (topological) vector space ZðN; gÞ, and that assigns to a Riemannian cobordism, a (continuous) linear map.

A quantum field theory in the sense of Segal gives rise to a prefactorization algebra on any Riemannian manifold M, as follows.
Let Z be a Segal QFT. If UCM is open and ∂U is its boundary, then we set

FZðUÞ ¼ Zð∂UÞ:

(To be pedantic, one needs to restrict to opens UCM that have a nice boundary.) If U1;…;UnCV are disjoint opens, then the
closure W of the manifold V \ðU1,…UnÞ provides a cobordism between ∂U1,…∂Un and ∂V , and the factorization product

m : #
i
FZðUiÞ-FZðVÞ

is the map ZðWÞ.
Segal’s axioms, however, are much stronger than those of a prefactorization algebra. In some ways this is a disadvantage: it is

very hard to construct a solution to Segal’s axioms, even in perturbation theory. By contrast, one can rigorously construct
factorization algebras associated to field theories in perturbation theory.

AQFT and Factorization Algebras

Algebraic quantum field theory arises from the same impulse as factorization algebras: one should organize observables by their
spacetime support (see Haag and Kastler (1964) and Haag (1996)). The context and details differ, however, as AQFT focuses on
Lorentzian field theories and typically works with C! or von Neumann algebras. Moreover, an AQFT only assigns an algebra to a
specific class of subspaces or manifolds.

Relationships between the approaches are emerging, especially as modifications and generalizations of traditional AQFT are
being actively explored:

• In Benini et al. (2020), Benini, Perin, and Schenkel carefully compare the two frameworks, and they introduce a useful variation
— called time-orderable prefactorization algebras— that are well-suited to Lorentzian field theories. Adding the natural hypotheses
of Cauchy constancy and additivity, they produce an equivalence between AQFTs and time-orderable prefactorization algebras.

• Gwilliam and Rejzner (2020) compare the BV quantization of free theories (such as a free scalar field or a free fermion) in the
AQFT and factorization setting, showing how they are equivalent and explicating how to transfer information between the two
descriptions of observables. In Gwilliam and Rejzner (n.d.) they show that the perturbative AQFT construction for interacting
field theories can be extended to produce a factorization algebra of observables.

• In Benini et al. (n.d.) show, using a different framework for quantizing free Lorentzian theories, how to compare their AQFT
and factorization algebras.

The works of these authors demonstrates one nice feature of factorization algebras: the associative algebras demanded in
algebraic quantum field theory arise as a consequence of the apparently weaker definition of factorization algebra.

We have already seen this phenonemon in our discussion of quantum mechanics, where we saw that prefactorization algebras
on ℝ (satisfying an extra axiom) give rise to associative algebras, where the associative product comes from the factorization
product.

As shown in Benini et al. (2020), something similar happens for prefactorization algebras on a Lorentzian manifold M. One
must modify the definition of prefactorization algebras in two ways:

(i) First, the factorization product is only defined when the opens U1;…;UnCV are causally disjoint (and not just disjoint),
which means that the opens Ui and Uj cannot be connected by a light ray for ia j. This condition is needed because the
operator product in Lorentzian signature has poles on the light cone.

(ii) The Cauchy constancy axiom states that if UCV are opens in M that are both globally hyberbolic and that share a common
Cauchy hypersurface XCU-V , then the map F ðUÞ-F ðVÞ is an isomorphism. This axiom is a form of causality: it says
that anything that can be measured in a globally hyperbolic manifold V can be measured in a small neighborhood of a
Cauchy hypersurface.

In this situation Benini et al. (2020), shows that F ðUÞ is an associative algebra for any globally hyperbolic submanifold UCM.
We feel that this construction of Benini et al. provides an important conceptual improvement to algebraic quantum field theory.

Example 1 Let us outline their argument in the case of ℝ2. Recall that the causal diamond centered on ðx0; t0Þ of width r is

Dðx0; t0; rÞ ¼ fx; tjjx$ x0jþ jt $ t0jorg:

We will define the product on the diamond Dð0;0;1Þ.
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Let O1;O2 be two elements of F ðDð0;0; 1ÞÞ.Assuming a version of the local-to-global factorization algebra axiom, one can show that O2

lives in F ðDð0;e; 1$ eÞÞ for some small e. This assumption is physically reasonable: any given observable is a measurement in some bounded
subregion of the causal diamond.

By Cauchy constancy, we can then lift O1 to some small neighborhood of the Cauchy hypersurface t ¼ 0, and also lift O2 to some small
neighborhood of t ¼ e, which is a Cauchy hypersurface in F ðDð0;e;1$ eÞÞ. These neighborhoods are causally disjoint, so we can define the
factorization product of O1 with O2. This product turns out to be associative, and it defines the algebra seen in AQFT.⋄

Chiral Conformal Field Theory and Factorization Algebras

Conformal field theory (CFT) in two dimensions, particularly chiral CFT, has experienced extensive exploration by mathematicians
as well as physicists, with deep consequences for representation theory, complex geometry, topology, and operator algebras. There
are now many different mathematical formulations — including (but not limited to) vertex algebras, conformal nets, and Segal’s
functors — and comparisons in various directions. We list here a few results that entangle factorization algebras, in the style
described here, with those other approaches.

• Chapter 5 of Costello and Gwilliam (2017) examines prefactorization algebras on C and identifies properties that allow one to
extract a vertex algebra, leading to a functor from this class of prefactorization algebras to the category of vertex algebras. This
functor produces many examples, such as the universal affine vertex algebra for an affine Lie algebra L̂g, Virasoro vertex algebras
(by Williams (2017)), and chiral differential operators (by Gwilliam et al. (2020)).

• Bruegmann (n.d.) gives a functor from Z-graded vertex algebras to factorization algebras on C. His construction provides a kind
of inverse to the functor of Costello and Gwilliam (2017), and it builds upon work of Huang (1997).

• Henriques (2018) shows that a conformal net of finite index is a factorization algebra on the circle. He uses this result in a
larger project to understand the 3-category of conformal nets and to construct important examples such as WZW theories and
Chern-Simons theories.

• Hennion and Kapranov (2023) provide a functor from locally constant Beilinson-Drinfeld factorization algebras to locally
constant Costello-Gwilliam factorization algebras. It would be interesting to extend it to encompass the non-locally constant
algebras.

Topological Field Theory and Factorization Algebras

Topological field theories (TFTs) provide another area where mathematicians have explored deeply, along with physicists. On the
one hand, there is a collection of examples that seem endlessly productive, such as the A- and B-models appearing in mirror
symmetry, Chern-Simons and Rozansky-Witten theories related to knot and 3-manifold invariants, and four-dimensional gauge
theories related to the Donaldson and Seiberg-Witten invariants. On the other hand, there is the functorial framework, introduced
by Atiyah (1988) and Segal (2004), that has evolved into a powerful tool for analyzing TFTs, particularly nonperturbative aspects
rooted in topology (see Freed et al. (n.d.), Gaiotto et al. (2015) and Sharpe (2015)). Joining the two hands is a work in progress.

Factorization algebras connect with both directions.

• In Section “Observables as Prefactorization Algebras” of Lurie (2009), Lurie explains why factorization homology should yield
a fully extended framed n-dimensional TFT from an En-algebra, and Scheimbauer gave a detailed development of this idea in
her thesis (Scheimbauer, 2014). Further structural results by Ayala and Francis (2019), Ayala et al. (2017) and Morrison and
Walker (2012) enrich this story.

• This approach has been deployed on concrete examples, notably by Ben-Zvi, Brochier, and Jordan, who computed the
factorization homology on surfaces of the representations of a quantum group in Ben-Zvi et al. (2018a, 2018b). There are many
outgrowths of this work, such as Brochier and Woike (2023), Brochier et al. (2021), Cooke (2023), Keller and Müller (2023)
and Kirillov and Tham (2022)

• Elliott and Safronov (2019) show how a prefactorization algebra on ℝn with an action of a super translation algebra (e.g., the
observables of a supersymmetric field theory) determines an En algebra after choosing a “twist” in the super Lie algebra.

• There is extensive work on the rigorous construction of perturbative topological field theories, such as Chern-Simons theory or
Poisson s-models, going back to Axelrod and Singer (1994) and Kontsevich (1994). Due to the main theorem of Costello and
Gwilliam (2021), such work yields factorization algebras, with the local behavior producing an En-algebra (see Elliott and
Safronov (2019)) as well). For some examples, the values of factorization homology have been computed, such as for
topological B-models by Li and Li (2016), Rozansky-Witten theories by Chan et al. (2017), and the Kapustin-Witten gauge
theories by Elliott et al. (n.d.)

A recent expository source is Tanaka (2020).
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From Prefactorization Algebras to Factorization Algebras

Now let us get a bit more formal and discuss the local-to-global axiom that distinguishes factorization algebras from pre-
factorization algebras.

A factorization algebra is, in essence, a prefactorization algebra whose value on large open sets is determined by its behavior on
small open sets. In other words, its global behavior is governed by its local structure. We will use terminology from sheaf theory to
make the local-to-global condition precise, but similar intuition motivates ordinary homology in algebraic topology (which is
covariant in open sets, just as a prefactorization algebra is). See Remark 2 for more on this comparison.

We have already seen how to define correlation functions using prefactorization algebras. Let us generalize the discussion and
consider a prefactorization algebra on a manifold M instead of on ℝn. A state is given by a linear map

〈⋯〉 : F ðMÞ-C

that allows us to define correlators of operators in disjoint opens U1…;Un via the composition

F ðU1Þ#…#F ðUnÞ-F ðMÞ-C:

In particular, we have n-point correlation functions for any n-tuple of operators supported at points.
We would like to say that a state is the same data as its collection of correlation functions of operators. Equivalently, we would

like to say that the vector space F ðMÞ is the universal recipient of correlation functions. That is, there are correlation functions valued
in F ðMÞ, and any set of correlation functions valued in some other vector space V is obtained via a linear map from F ðMÞ to V .

The factorization algebra axiom aims to capture this idea. It was inspired by the work of Ayala and Francis (2015), Beilinson
and Drinfeld (2004) and Lurie (n.d.). Before we give the definition, let us point out that this axiom is tailored to local operators. In
general, it does not aim to capture extended defects.

The key definition that allows us to formulate the local-to-global axiom is the following.

Definition 2 Given a manifold M and an open set UCM, a Weiss cover of U is a collection of open subsets V¼ Vif giAI with the
property that any finite set of points fx1;…; xng in U is contained in some Vi from V.

This notion is stronger than the usual notion of cover, which simply requires that any single point in U is contained in some
open set in the cover. A typical Weiss cover of U is given by the collection of opens in U that are finite disjoint unions of open balls
of radius less than δ, for some small δ. It is a Weiss cover because any finite subset is inside such a union of open balls. Typically,
Weiss covers contain infinitely many elements, because for a manifold, we can always find a finite set not contained in some finite
collection of proper open subsets.

Definition 3 A factorization algebra on M is a prefactorization algebra satisfying

(a) If U1 and U2 are disjoint opens in M, then the map F ðU1Þ#F ðU2Þ-F ðU1∐U2Þ is an isomorphism, and
(b) F satisfies the cosheaf condition (dual to the sheaf condition) for Weiss covers, which means that if the fVig form a Weiss cover of U, then

the sequence

"
ia j

F ðVi-VjÞ-"
i
F ðViÞ-F ðUÞ-0 ð1Þ

is exact on the right and in the middle.

Remark 1 In our book (Costello and Gwilliam, 2017) we use the derived version of this condition. In that case, each F ðUÞ is a cochain
complex, and we ask that F ðUÞ is quasi-isomorphic to the ̆Cech double complex arising from a Weiss cover. In order to make this
survey as broadly accessible as possible, we have decided to present the un-derived version of the definition.⋄

Let us unpack this definition in the case that we use the Weiss cover built from disjoint unions of open balls of radius less than
some small δ. Given points x1;…; xnAU and radii e1;…; enoδ such that the balls Dðxi; eiÞ are pairwise disjoint, we have a map

#
i
F ðDðxi; eiÞÞ-F ðUÞ:

For F a factorization algebra, this map satisfies two conditions. First, the span of the images of these maps, as xi and ei varies, is
all of F ðUÞ. That is, any element of F ðUÞ is built from a sum of products of almost-local operators. Therefore, any linear
functional on F ðUÞ is indeed determined by its correlation functions on operators in F ðDðx; eÞÞ for eoδ and δ arbitrarily small.

The second condition deals with a redundancy in this construction. Pick a linear function on F ðUÞ, giving correlation functions
for almost-local operators. Pick some operators O1;…;On in F ðDðxi; eiÞÞ. Suppose Dðyi; δiÞ are open discs obtained by moving the
discs Dðxi; eiÞ a little, and suppose that Oi come from the intersection F ðDðyi; δiÞ-Dðxi; eiÞÞ. Then the correlators of the operators
Oi, viewed as elements of F ðDðxi; eiÞÞ and as elements of F ðDðyi; δiÞÞ, should be the same. Asking that the sequence (1) is exact in
the middle ensures that this is so (and imposes other similar constraints).
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Given a factorization algebra F on M, we often call its global sections F ðMÞ (and especially the derived version) the factor-
ization homology of F on M. A common notation is

R
MF .

An example might help clarify what information is contained in factorization homology.

Example 2 Let A be an associative algebra. It determines a factorization algebra Afact on the circle with values in vector spaces, where

• For any proper open set U ¼ I1⊔⋯⊔Ik consisting of finitely many open intervals, AfactðUÞ ¼ A#k and
• AfactðS1Þ ¼ A=½A;A', the quotient of A by the vector subspace spanned by commutators ab$ ba.

This quotient space is the source of all trace maps: any linear map t : A-R satisfying tðabÞ ¼ tðbaÞ for all a; bAA corresponds to a linear
map A=½A;A'-R. (Compare with the use of density matrices in quantum mechanics.)⋄

This example generalizes substantially. We will state a version that is easy to interpret.

Theorem 1 Let A be a dg algebra. It determines a factorization algebra on S1 assigning A to each open interval inside S1 and whose
factorization homology is quasi-isomorphic to the Hochschild complex CHoch! ðA;AÞ.

One can thus view factorization homology as providing a systematic generalization of Hochschild homology, with
R
MF

reflecting the shape of the given manifold M.

Remark 2 A factorization algebra F is locally constant if the structure map F ðDÞ-F ðD0Þ is a quasi-isomorphism whenever we have an
inclusion of disks DCD0. In this setting, Ayala and Francis show that the factorization homology satisfy axioms akin to the Eilenberg-Steenrod
axioms for homology theories, although the “coefficients” (the value on a disk) are now much richer than an abelian group. (For framed
n-dimensional manifolds, the coefficients are En-algebras, i.e., algebras over the little n-dimensional disks operad.) Their character-
ization offers a powerful toolkit in the setting of algebraic topology, notably some alternative computational methods. For a physicist, the
observables of a topological field theory provide examples of locally constant prefactorization algebras.⋄

Factorization Algebras From Deformation Quantization

Axiom schemes for quantum field theory are not so useful unless one can produce solutions to these axioms. In Costello and
Gwilliam (2017, 2021) we show that essentially any perturbative field theory in Riemannian signature has a factorization algebra
of observables (see Section “Key Results for Perturbative Theories” for more). These books also they explore how many standard
notions and constructions can be articulated in terms of factorization algebras. Using these methods, one obtains a direct path
between concrete Lagrangian formulations and the structural points of view. Recent work indicates that analogous results hold for
perturbative theories in Lorentzian signature (see Benini et al. (2020) and Gwilliam and Rejzner (n.d.)).

In this section we will outline why prefactorization algebras appear in classical field theory (even nonperturbatively) and why
perturbative quantization deforms this classical structure. We discuss nonperturbative issues in Section “Noether’s Theorem
Beyond the Perturbative”.

Observables as Prefactorization Algebras

So far in our discussion of factorization algebras, we have focused on factorization algebras valued in vector spaces. For a proper
discussion of field theory, we need to use factorization algebras valued in cochain complexes. This is because we work in the BV-
BRST formalism, which is needed to quantize gauge theories (and is useful even without gauge symmetry). The reader
uncomfortable with this homological language can generally ignore this extra technology and continue to take the factorization
algebras to be valued in vector spaces.

A classical field theory T , specified by a Lagrangian density or action functional, yields a system of partial differential equations
that we will call the equations of motion for T . In a setting like a gauge theory, we may want to consider solutions to these
equations up to an equivalence relation (e.g., gauge transformation) that respects locality. (It is better, in mathematical practice, to
work with a stack of solutions that encodes how different solutions are identified.) In brief, a classical field theory produces a sheaf
SolT on spacetime M that assigns to each open set U, a space SolT ðUÞ of solutions to the equations of motion on U. (This space
might be a manifold, possibly infinite-dimensional, or a stack or a derived stack, depending on the context.) It is a sheaf because
PDE impose constraints that are local in spacetime, and a solution is determined by its behavior on a cover.

Now consider the observables of this theory, which should describe functions on solutions. Let ObsT assign to each open set U,
the commutative algebra of functions on SolT ðUÞ. If SolT ðUÞ is a (possibly derived) stack, then this algebra OðSolT ðUÞÞ will be a
dg commutative algebra. Let O denote the functor that takes a space X (e.g., a derived stack for some theories) and produces its
algebra of functions OðXÞ (e.g., a dg commutative algebra for those theories). This functor ObsT ¼O3SolT : OpenðMÞ-CAlg is
covariant, because O is contravariant and SolT is also contravariant in open sets.
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Note that this functor ObsT provides a prefactorization algebra because

SolT ðU⊔VÞDSolT ðUÞ ( SolT ðVÞ

for disjoint open sets U;V , and so there is a canonical map

OðSolT ðUÞÞ#OðSolT ðVÞÞ-OðSolT ðUÞ ( SolT ðVÞÞ

that gives the structure map

ObsT ðUÞ#ObsT ðVÞ-ObsT ðU⊔VÞ:

This map just says that observables supported on disjoint regions can be multiplied. All the other structure maps can be built
from this one and the maps ObsT ðUÞ-ObsT ðU0Þ arising from an inclusion UCU0.

This argument is robust, and it does not depend on the signature of the metric or other details of the theory, just the locality of
classical Lagrangian field theory. It applies nonperturbatively.

Two separate questions now arise. First, under what conditions is ObsT a factorization algebra? And second, what happens
when we quantize T ?

The second question depends on what notion of quantization is used. So far, research has focused on BV quantization, as it
produces a deformation of the differential on the observables and hence is well-suited to this setting. Other methods of quan-
tization might also apply, but they have not yet been explored in this context, so far as we know. Hence we will discuss only BV
quantization here.

Even at the classical level, one does not expect the observables of an arbitrary classical field theory to form a factorization
algebra. Physically, it is because the local-to-global axiom is linked to local operators, and classical gauge theories can have
extended defects such as Wilson lines. Mathematically, it is because the functor O that takes a space X and produces its algebra of
functions OðXÞ can lose information; for example, functions on a quotient stack like BG¼ !=G are trivial but the space is not. It is
thus unlikely that the composite ObsT ¼O3SolT is a factorization algebra. (The observables of a Dijkgraaf-Witten theory are
typically not a factorization algebra.)

Remark 3 One takeaway is that prefactorization algebras appear naturally, but we do not yet know what local-to-global axiom is appropriate
in nonperturbative settings. For TFTs, variants are know (Morrison and Walker, 2012): introduced blob homology, and (Ayala et al., 2018)
have enhanced factorization homology, in steps toward a potential proof of the cobordism hypothesis described by Ayala and Francis (n.d.). ⋄

In the perturbative setting, however, the situation improves considerably. By a perturbative classical field theory, we mean that
we fix a global solution fASolT ðMÞ and we study formal deformations of this solution. In this case, there is a robust mathematical
framework, known as derived deformation theory and compatible with the BV-BRST formalism, and a key results is the for a
formal moduli space, its algebra of functions knows everything (if one remembers a canonical filtration). Since the perturbative
space SolT ;f of solutions is a sheaf and hence satisfies a local-to-global condition, the observables then also satisfy a local-to-global
condition. In fact, these classical observables form a factorization algebra.

If a BV quantization exists (i.e., the anomaly vanishes), it produces, in essence, a deformation of the differential that produces a
deformation of ObsT as a factorization algebra. Such a BV quantization involves issues of renormalization and homological
algebra, and it is these issues that are the focus of Costello and Gwilliam (2021), Fredenhagen and Rejzner (2013), Gwilliam and
Rejzner (n.d.) and Benini et al. (2020).

Key Results for Perturbative Theories

In this section, whenever we speak of a perturbative classical or quantum field theory, we will mean the definitions articulated in
Costello and Gwilliam (2017, 2021), Costello (2011), which encompass the Euclidean versions of many field theories studied in
physics and mathematics. The main result is the following.

Theorem 2 The observables of a perturbative classical field theory on M form a factorization algebra Obscl that assigns to every open set, a dg
commutative algebra. A Batalin-Vilkovisky quantization of this theory, if it exists, yields a factorization algebra Obsq that is a flat deformation
of Obscl over ℝ½½ℏ''.

This theorem provides an elegant interpretation of Batalin-Vilkovisky formalism as a kind of deformation quantization: the
classical world is commutative and the quantum world deforms it in a noncommutative direction. An important refinement,
which we will not examine here, is that the classical observables have a 1-shifted Poisson structure (the BV anti-bracket), which is
the analogue of the usual, unshifted Poisson bracket in traditional deformation quantization.

Remark 4 One might hope that a similar statement holds for Lorentzian theories as well, and recent work (discussed in Section “AQFT and
Factorization Algebras”) gives cause for optimism.⋄
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Symmetries play a key role in analyzing and organizing field theories, and they can be encoded using factorization algebras. We
saw in section “Factorization Algebras and Associative Algebras” how a Lie algebra g acting on an associative algebra A by inner
derivations (i.e., given a Lie algebra map g-A) determines an associative algebra map Ug-A and hence a map of factorization
algebras Ugfact-Afact . This pattern continues. Any Lie algebra g (or L1 algebra) has an enveloping factorization algebra Ug on a
manifoldM (see Knudsen (2017)) for a thorough treatment.) More generally, any reasonable sheaf G of Lie algebras on a manifold
M has an enveloping factorization algebraUG (see chapter 3, section 6 of Costello and Gwilliam (2017), where G is a local L1 algebra).
A rich source of examples are the current algebras of physics, and these allow for a systematic extension of constructions from
mechanics (like quantum moment maps) and conformal field theory (like the Kac-Moody or Virasoro vertex algebras).

An interesting feature of this construction is that UG has a natural filtration and its associated graded is a 1-shifted Poisson
algebra. In other words, UG is itself a kind of BV quantization, much as the universal enveloping algebra Ug is a deformation
quantization of SymðgÞ ¼Oðg!Þ. This feature leads to the following refinement of Noether’s (first) theorem in this setting for field
theory. See the final chapters of Costello and Gwilliam (2021) for a full discussion and many examples.

Theorem 3 Let a local L1 algebra G act as symmetries of a classical field theory on M; in particular, it acts by Hamiltonian vector fields for
shifted Poisson structure on Obscl. Then there is a map of factorization algebras

Jcl : SymðGc½1'Þ-Obscl

that respects shifted Poisson structures.
If the classical theory admits a BV quantization, then there may be a cohomological obstruction a to deforming Jcl to a map of factorization

algebras UG-Obsq. This cocycle determines a central extension of G as an L1-algebra, and hence there is a map of factorization algebras

Jq : UaG-Obsq

where UaG is the a-twisted enveloping factorization algebra of G.
Because we use sheaves of L1-algebras, our formulation of Noether’s theorem incorporates the infinitesimal higher symmetries

of Gaiotto et al. (2015) as well as ordinary symmetries.
The central extension is called a ’t Hooft anomaly in physics literature. (The term “anomaly" is a bit overloaded in physics. It

means two quite distinct things: a gauge anomaly is an obstruction to quantizing a system, and a ’t Hooft anomaly is a central
extension of a symmetry algebra. The mathematical terminology, of obstruction and central extension, is typically clearer.)

This formalism, combining BV quantization, factorization algebras, and Noether’s theorem, has been deployed in a number of
nontrivial applications:

• Grady et al. (2017) give a direct connection between Fedosov quantization and the factorization algebra of a 1-dimensional
field theory, obtaining a new proof of the algebraic index theorem of Nest and Tsygan (1995a, 1995b) (a cousin of the Atiyah-
Singer index theorem). See Gui et al. (2021) for further progress.

• Gwilliam et al. (2020) constructed rigorously a 2-dimensional QFT depending on a Calabi-Yau manifold X, known as the
curved bg system, and showed the factorization algebra recovers the chiral differential operators of X, verifying a conjecture of
Witten and Nekrasov. Subsequently Gui and Li (n.d.) used this theory to produce a chiral algebraic index theorem.

• Li and Li (2016) constructed the topological B-model and show the factorization algebra recovers the expected topological
vertex algebra (see Li (2023)) for a deeper treatment). This provides a direct connection to mirror symmetry, a topic of active
interest in mathematics for the last three decades.

• Rabinovich (2019) showed how the local index theorem of Getzler and the axial anomaly are simultaneously captured by
quantizing free fermions. Subsequently, he recovered the Quillen determinant line in Rabinovich (2020).

• Costello (n.d.) introduced a 4-dimensional gauge theory whose factorization algebra recovers the Yangian, a quantum group
introduced by Drinfeld, and he subsequently gave extensive applications to quantum integrable systems with Witten and
Yamazaki in Costello et al. (2018), Costello et al. (2019) and Costello and Yamazaki (n.d.).

• Costello, Gaiotto, Li, Paquette, and others have explored the AdS/CFT correspondence and its interaction with topological
string theory. See Budzik and Gaiotto (n.d.), Costello and Gaiotto (n.d.), Costello and Paquette (2021) and Costello and Li
(2020) as starting places.

Much of the work by the community that uses this formalism is focused on holomorphic or topological field theories,
primarily because of the researchers’ backgrounds, not because the techniques only apply to such theories.

Defects, Boundaries, and Compactifications

Prefactorization algebras apply to many different geometric situations, so that it is easy to work on manifolds with boundaries or
corners and to incorporate defects. In this section we will briefly explain how other concepts from field theory are captured in the
language of prefactorization algebras.
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Basic Constructions

In the one-dimensional case, it is straightforward to include a module for the algebra by including a boundary.

Example 3 Let A be an associative algebra and V a right A-module. This data determines a prefactorization algebra FA;V on the half-line
ℝ)0 ¼ ½0;1Þ, as follows. To any open set U in the interior ð0;1Þ, we set FA;V ðUÞ ¼ AfactðUÞ, and we use the multiplication map of A to
combine elements from disjoint intervals, as in Example ??. To an open set U ¼ ½0;aÞ, we set FA;V ðUÞ ¼ V . The module structure determines
the structure maps involving open sets that contain the boundary. For instance, given open sets U ¼ ½0;aÞ and U0 ¼ ðb; cÞ, with aob, and a
larger open interval U00 ¼ ½0;dÞ, with cod, we have

FA;V ðUÞ#FA;V ðU0ÞDV#A-VDFA;V ðU00Þ:

One can similarly work with a closed interval ½0;T' and describe incoming and outgoing states. See Chiaffrino et al. (n.d.) for a detailed
analysis of this situation using the BV formalism.⋄

More generally, a QFT with a boundary condition gives rise to a factorization algebra on a manifold with boundary (in the case
above, on ½0;1Þ). A similar construction can be used for a “domain wall” between two systems: for to0, one has an algebra A$
and for t40, one has an algebra Aþ, and for an open interval containing the origin, one has a bimodule.

Maps between spaces let one produce new factorization algebras.

Definition 4 Let p : M-N be a continuous map. Let F be a factorization algebra on M. Its pushforward p!F is the factorization algebra on
N defined by

p!F ðUÞ ¼F ðp$1UÞ

on open sets and likewise for structure maps

Example 4 Consider a prefactorization algebra F for a theory on a manifold of the form ℝ(N, where we view ℝ as a time-like parameter
and N as space-like. Let us assume that N is compat. If we push forward along the projection p : ℝ(N-ℝ, we get a prefactorization algebra
p!F on ℝ that can be seen as the observables of a quantum mechanical system. In the case of a free scalar field, this push-forward operation
gives the familiar Weyl algebra produced by canonical quantization. ⋄

Thus the pushforward also offers a language for compactification.
This natural operation gives a view on the state-operator correspondence and on canonical quantization.

Example 5 We return to Euclidean field theory on ℝ2. Consider the map p : ℝ2-½0;1Þ sending a point ðx; yÞ to its radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
.

The interval ½0;aÞ has a disk centered at the origin as its preimage, and any open interval ða; bÞC½0;1Þ has an annulus as its
preimage. The pushforward p!Obs thus determines a prefactorization algebra whose value on an open interval ða; bÞ behaves like
an algebra of operators (those from radial quantization) and whose value on ½0;aÞ behaves like the state space of that algebra. This
state space is, however, the algebra of local operators in the two-dimensional theory. In this sense we have a state-operator
correspondence.⋄

An Overview of Related Work

In the topological setting Ayala et al. (2017) and Morrison and Walker (2012) have given a powerful formalism that characterizes
the local algebraic structure of topological defects, generalizing the relationship between En algebras and locally constant fac-
torization algebras. They explain, for instance, how to obtain knot invariants by this process. This kind of relationship also offers a
way to characterize defects using Koszul duality (see Paquette and Williams (2022)) for a nice discussion).

In Costello (2014) and Costello (n.d.), Costello explained why line defects, in a gauge theory dubbed 4-dimensional Chern-
Simons theory, satisfy the quantum Yang-Baxter equation and how the associated factorization algebra encodes the Yangian, a
quantum group introduced by Drinfeld. Subsequently, this framework has been expanded to encompass many further features of
quantum integrable systems (Costello et al., n.d., 2018, 2019; Costello and Yagi, 2020; Costello and Yamazaki, n.d.).

In his thesis Rabinovich (n.d.) proved an analog of Theorem 2 for manifolds with boundary: on a manifold with boundary, if a
perturbative theory is topological in a direction normal to the boundary and a local boundary condition is imposed, then the
observables form a factorization algebra whose observables in the bulk agree with those of Costello and Gwilliam (2021). This
setting encompasses many examples (e.g., the Chern-Simons/WZW correspondence) but it also allows one to implement a
standard ansatz for constructing defects (see Contreras et al. (2023), following Kapustin (2006) for the physical ansatz). Rabi-
novich’s approach should extend to situation where the theory is scale-equivariant (or conformal) in a direction normal to the
boundary.
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Noether’s Theorem Beyond the Perturbative

In this section we discuss how higher symmetries act on a QFT using p re factorization algebras (c.f. Gaiotto et al., 2015; Sharpe,
2015), inspired by our formulation of Noether currents using factorization algebras. It can be seen as a conjectural formulation of
a non-perturbative Noether theorem. The language here is a little more mathematically sophisticated, as it is important to use
derived stacks. Our formulation should hold in either Euclidean or Lorentzian signature. Everything we discuss here has been
formulated and proved for perturbative theories in Costello and Gwilliam (2021).

From a mathematical perspective, there is an equivalence between an object with a symmetry and a family of objects. For
example, let G be a discrete group. To give a G-action on Cn is then the same as giving a vector bundle V of rank n on the classifying
space BG, together with a framing of the fiber of V at the base point in BG.

More generally, given some derived stack X with a base point xAX, one can say that a vector space V with X-symmetry is a vector
bundle V on X with an isomorphism VxCV .

Similarly, for a quantum field theory, one should treat parameters in the theory (i.e., coupling constants) and symmetries on
the same footing. We took this perspective in Costello and Gwilliam (2017, 2021); a somewhat similar perspective is taken in
Córdova et al. (2020)

Since a quantum field theory on a manifold M is local on M, a symmetry should be given not just by a fixed space X but by a
sheaf of spaces X on M. Here are some examples to bear in mind.

Example 6 Let L be a sheaf of (homotopy) Lie algebras on a space M. There is a sheaf of formal derived stacks BLðUÞ, the classifying space of
the formal group associated to LðUÞ. A theory with L-symmetry is the same as a family of theories over BLðUÞ. This is the context relevant to
our perturbative Noether theorem, described above.⋄

Example 7 Let ConnGðUÞ be the stack of principal G-bundles on U with a connection, up to gauge equivalence. As U varies this construction
forms a sheaf of stacks we call ConnG. A theory T that can be coupled to a background G-gauge field is the same as a family of theories TConnG

over the sheaf ConnG, which restricts to the original theory T at the trivial connection.⋄

Remark 5 Physicists often conflate theories that have a G-symmetry and theories that live in a family over ConnG. In general, these are not
the same, although in physically relevant examples they tend to be.⋄

We can now formulate a general notion.

Definition 5 Let X be a sheaf of (possibly infinite-dimensional) derived stacks over a manifold M, with a global section x. Let T be a quantum
field theory on M. Giving X-symmetry to T means we give a family of theories T X over X that restricts to T at the section x.

Remark 6 We will not attempt to be careful here about what infinite dimensional derived stack means, but see Alfonsi and Young (n.d.),
Carchedi (n.d.) and Steffens (n.d.). ⋄

In the language of factorization algebras of Costello and Gwilliam (2021), this definition means that the observables (or
operators) on an open U will be a kind of vector bundle over XðUÞ, and that the factorization product will be compatible with the
sheaf structure on X. Since X is a sheaf of stacks, this notion encompasses both varying the coupling constants as well as
compatibility with symmetry.

One can formulate a rather general Noether “theorem” once one has this language. More accurately, it is a proposal for
capturing symmetries of the form just described, and it is conjectural until an adequate framework for nonperturbative field theory
emerges.

There are a few preliminary steps. We let XcðUÞ denote the space of sections of X on U that are equal to our base section x
outside a compact subset of U. It is the space of sections of X with compact support.

Note that if U1;U2 are disjoint open subsets of V , there is a natural map

XcðU1Þ ( XcðU2Þ-XcðVÞ ð2Þ
as follows. If s1; s2 denote elements of XcðU1Þ, XcðU2Þ, respectively, then si is equal to x outside a compact subset Ki of Ui. Hence s1
extends to a section of X on the open U2\K2 by setting it to be x away from K1. Similarly, s2 extends to a section on the open U1\K1.
These sections agree on their overlap and thus define a section on all of V . In short, we have shown that Xc defines a prefactorization
space.

Example 8 Consider the case that the space-time manifold is ℝ. Let G be a discrete group and let X be the sheaf of sections for the trivial
bundle ℝ( BG-ℝ. For any open interval I, we find

XcðIÞ ¼G;

because compactly supported maps in BG is equivalent to the based loop space OBGCG. Alternatively, a compactly supported map into BG
determines a principal G-bundle on I that is trivialized outside a compact set, and hence the bundle is determined by its parallel transport from
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0 to 1. Furthermore, if I1; I2 are disjoint intervals inside I3, the factorization product

XcðI1Þ ( XcðI2Þ-XcðI3Þ

is the group multiplication G( G-G.
More generally, one can replace the real line with any manifold M, and this example shows how to encode 0-form symmetries. If NCM is a

compact and connected submanifold of codimension one, then a tubular neighborhood U*N is diffeomorphic to N ( ℝ. Thus,

MapcðU;BGÞDMapcðN (ℝ;BGÞDMapðN;Mapcðℝ;BGÞÞCMapðN;GÞ;

and as G is discrete, we have MapðN;GÞ ¼G. In other words, we are labeling the submanifold N by group elements.
By replacing BG with Bkþ1A, for A an abelian group, one can similarly encode k-form symmetries on codimension kþ 1-submanifolds.⋄
To build a prefactorization algebra, we need to apply some linearization functor that takes spaces to vector spaces. This functor

must be covariant. A natural functor to use is distributions, the (correct) linear dual to functions; since functions are contravariant,
distributions are covariant. Let DistðXcðUÞÞ denote the space of distributions on XcðUÞ, and let DistXc denote the prefactorization
algebra that assigns DistðXcðUÞÞ to each open set U.

Example 9 (Example 8 continued) For G discrete, we care about BG as a homotopy type, and likewise for XcðUÞ. The distributions on a
homotopy type are encoded by the singular chain complex C!ðXcðUÞÞ. (Functions are encoded by the singular cochains.) For the spacetime
being ℝ, we find that

DistðBGcÞðIÞDC!ðGÞCCG;

so the we recover the group ring as the linearized symmetries.⋄
Roughly speaking, the Noether theorem should say that when a theory has X-symmetry, the prefactorization algebra of

observables receives a map from DistXc . There is one subtlety, though: we need to take into account ’t Hooft anomalies, which in a
perturbative treatment lead to a central extension to the algebra.

To understand the ’t Hooft anomaly, let us return to case that the space-time manifold is ℝ and X is the constant sheaf BG, the
classifying space of a discrete group. Here, we expect the ’t Hooft anomaly to yield a central extension of G, namely a group Ĝ
living in an exact sequence

1-C(-Ĝ-G-1:

The central extension Ĝ is a principal C(-bundle over G, i.e., a line bundle L. The fact that Ĝ is itself a group is reflected in the
fact that the line bundle L is multiplicative: under the group multiplication map m : G( G-G, there is an isomorphism

m!LCL⊠L:

(This isomorphism must be associative in the natural sense). Since the product on G comes from the prefactorization structure
on Xc, we introduce the following definition in general.

Definition 6 Given the prefactorization space Xc as above, a factorizing line bundle is a line bundle LðUÞ on every XcðUÞ, with coherent
isomorphisms

m!LðVÞCLðU1Þ⊠LðU2Þ

associated to the factorization products (2)
Equivalently, we note that sending every U to BC( defines a prefactorization space on M, where the factorization product is

defined using the fact that BC( is an abelian group in stacks. A factorizing line bundle is a map of prefactorization spaces from Xc

to BC(.
Finally, we can formulate the non-perturbative analog of the Noether theorem:

Conjecture 1 Let T be a quantum field theory on a manifold M, and let X be a sheaf of derived stacks on M.

If T has X-symmetry, then there exists a factorizing line bundle L on the prefactorization space Xc and a map of prefactorization algebras

J : DistLXc
-ObsT :

from distributions on X, twisted by L, to ObsT
This relationship should hold in both Lorentzian and Euclidean signature.
In the case that T is a perturbative theory and we work in Euclidean signature, and X is a sheaf of formal derived stacks

(completed along the section x), then this conjecture is the Noether theorem proved in Costello and Gwilliam (2021).

Remark 7 In Lorentzian signature, it is important to note that DistLXc
does not normally satisfy the Cauchy constancy axiom of Benini et al.

(2020). This axiom fails even in the basic case when X ¼ConnG is the stack of G-connections, roughly because a G-connection does not satisfy
any PDE whatsoever and so is not determined by initial data. Thus, this Noether construction cannot be entirely formulated in AQFT in its
standard form.⋄
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Let us give some examples of these nonperturbative Noether currents.

Example 10 Consider a quantum mechanical system with G-symmetry, where G is a discrete group. As we have seen, for any interval,
ConnG;cðIÞCG. The non-perturbative Noether theorem tells us that there is central extension of G and a ring homomorphism from the twisted
group algebra CL½G' to the algebra of operators of the system.

In the case G is a Lie group, a similar statement applies, although the twisted group algebra should be interpreted as the algebra of
distributions on G under convolution. Distributions supported at the identity in G give the (twisted) universal enveloping algebra of g,
recovering the perturbative statement of Noether’s theorem.⋄

Example 11 Let T ¼ C(ð Þn be an Abelian complex algebraic group. Suppose that T acts as symmetries on a chiral conformal field theory on a
Riemann surface M. For UCM, let BunTðUÞ be the stack of holomorphic T-bundles on U. This has a basepoint given by the trivial bundle.

Let F be the factorization algebra associated to a chiral CFT with T-symmetry. Such a CFT can be coupled to a background holomorphic
T-bundle and so has BunT-symmetry.

Now observe that for U a very small disk — in fact, a formal disk D̂ — the space BunT;cðD̂Þ is the affine (or loop) Grassmannian GrT . It
has components labeled by p1ðTÞDZn, a lattice (Beilinson and Drinfeld, 2004). described, in their algebraic context, this factorization
space, now known as the Beilinson-Drinfeld Grassmannian.

Noether’s theorem then says there will be a map from DistðBunT;c; LÞ to observable of the chiral CFT, for a line bundle on L. There is a
factorizing line bundle on BunT;c associated to a pairing on the lattice p1ðTÞ. Beilinson and Drinfeld have shown that DistðBunG;c; LÞ encodes
the lattice vertex algebra associated to the lattice p1ðTÞ.

The map J : DistðBunT;c; LÞ-F then encodes how this WZW model acts on the chiral CFT. Note that in this example, the perturbative
Noether theorem is much weaker: it only yields a map from the Heisenberg subalgebra of the lattice vertex algebra.⋄

Example 12 An important special case of the previous example is given when T ¼C(, and F is the factorization algebra associated to a pair
of chiral free fermion fields c;c0 with Lagrangian

R
c∂c0. (Physicists would call this system a chiral complex fermion.) In this case, the map

J : DistðBunT;c; LÞ-F

is an isomorphism, and it encodes the boson-fermion correspondence. It is essential that we use the non-perturbative Noether theorem for this
statement, as the fermion fields c and c0 come from components of the affine Grassmanian disjoint from the identity component.⋄

Example 13 Consider any quantum field theory on a manifold M of dimension n that can be coupled to a background Uð1Þ gauge field, i.e.,
has ConnUð1Þ-symmetry. For an open subset UCM, the space ConnUð1Þ;cðUÞ has components labeled by H2

c ðUÞ, which, by Poincar’e duality,
is isomorphic to Hn$2ðUÞ. The non-perturbative Noether theorem thus supplements the ordinary local Noether currents by non-local defects
living on codimension 2 subspaces. This observation is behind several of the higher-form symmetries discussed in Gaiotto et al. (2015). ⋄

There are further examples of the non-perturbative Noether’s theorem associated to homotopy types, as we discussed in
Example 8 and which we can quickly generalize now.

Let ðX; xÞ be a pointed topological space. The prefactorization space Xc on a manifold M assigns compactly supported maps
into X; the natural linearization is given by singular chains, giving a prefactorization algebra C!ðXcÞ. This prefactorization algebra
ChainsðX cÞ ¼ C!ðMapcðU;XÞÞ with values in chain complexes is the higher X-symmetry algebra. (It is already well-understood in
topology via nonabelian Poincaré duality of Ayala and Francis (2015), Lurie (n.d.), McDuff (1975), Segal (1973) and Salvatore
(2001) Symmetries associated to such homotopy types encode generalized global symmetries. For X ¼ BG, as we have already
discussed, one encodes 0-form symmetry by a Noether map J.

Example 14 Let G be a compact semisimple Lie group G, and let Z be the center of G. Using X ¼ B2Z, one can encode the center symmetry of
a G-gauge theory by such a map. Indeed, in this case, the relevant prefactorization space has the feature that

p0ðMapcðU;B2ZÞÞ ¼H2
c ðU;ZÞ ¼Hn$2ðU;ZÞ:

We thus find symmetries associated to neighborhoods of codimension 2 manifolds.
Any gauge theory with G-symmetry can be coupled to a background field, which is a map to B2Z. It is perhaps easiest to see this using the

̆Cech picture: given a ̆Cech 2-cocycle valued in Z, one can modify the notion of principal G-bundle with connection by asking that the failure of
the transition functions to satisfy the cocycle condition is given by the chosen Z-valued 2-cocycle. Taking such twisted principal G-bundles with
connection as fields modifies the gauge theory.

The Noether theorem then gives us a homomorphism from the prefactorization algebra ChainsðMapscðB2ZÞÞ to observables of the theory.
These observables are the standard higher symmetries associated to the center of the group, as explained in Gaiotto et al. (2015) ⋄

There is a great deal of further work to be done to flesh out this conjectural Noether theorem. In particular, we have been very
vague about what one means by distributions on the infinite-dimensional derived stack that appear in the formulation of the
conjecture, and we have explored few of the symmetry prefactorization algebras that appear in the theorem.
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