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Abstract—Graph signal processing (GSP) has emerged as a
powerful tool for practical network applications, including power
system monitoring. Recent research has focused on developing
GSP-based methods for state estimation, attack detection, and
topology identification using the representation of the power
system voltages as smooth graph signals. Within this framework,
efficient methods have been developed for detecting false data
injection (FDI) attacks, which until now were perceived as non-
smooth with respect to the graph Laplacian matrix. Conse-
quently, these methods may not be effective against smooth FDI
attacks. In this paper, we propose a graph FDI (GFDI) attack that
minimizes the Laplacian-based graph total variation (TV) under
practical constraints. We present the GFDI attack as the solution
for a non-convex constrained optimization problem. The solution
to the GFDI attack problem is obtained through approximating it
using ℓ1 relaxation. A series of quadratic programming problems
that are classified as convex optimization problems are solved to
obtain the final solution. We then propose a protection scheme
that identifies the minimal set of measurements necessary to
constrain the GFDI output to a high graph TV, thereby enabling
its detection by existing GSP-based detectors. Our numerical
simulations on the IEEE-57 and IEEE-118 bus test cases reveal
the potential threat posed by well-designed GSP-based FDI
attacks. Moreover, we demonstrate that integrating the proposed
protection design with GSP-based detection can lead to significant
hardware cost savings compared to previous designs of protection
methods against FDI attacks.

Index Terms—Graph signal processing (GSP), sensor networks,
power system state estimation (PSSE), false data injection (FDI)
attacks, protective schemes

I. INTRODUCTION

Power system state estimation (PSSE) is a crucial com-

ponent of modern energy management systems (EMSs) that

fulfills various purposes, including monitoring, analysis, secu-

rity, control, and management of power delivery [1]. PSSE is

conducted using power measurements to estimate the voltages

(states) at the system buses. To ensure the reliability of

the measurements, residual-based bad data detection (BDD)

methods are integrated into the EMS [1]. However, BDD

methods are not able to detect well-designed attacks, known

as unobservable false data injection (FDI) attacks [2], [3],

which can cause significant damage by misleading the PSSE

system [4], [5]. These attacks are achieved by manipulating

measurements based on the power network topology [2],

where the topology matrix is either known or can be estimated

from historical data [6], [7].
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Defending power systems against unobservable FDI attacks

involves two primary approaches. The first approach is to

prevent attacks by protecting a subset of measurements using

techniques such as encryption, continuous monitoring, and

separation from the Internet [8]. This often involves iden-

tifying a minimal set of measurements required to prevent

an adversary from constructing a feasible sparse FDI attack

[8]–[12]. These works aim to ensure network observability

and maintain the grid’s immunity to well-coordinated attacks.

Synchronized phasor measurement unit (PMU) placement has

also been suggested for the optimal deployment of protective

measurements [8], [13]–[15]. However, current methodologies

do not consider recent developments of graph signal pro-

cessing (GSP)-based detectors against FDI. The second main

approach to protect power systems is to develop detection

methods against unobservable FDI attacks that rely on system

characteristics. These methods include compressive sensing

algorithms [16]–[19] that require certain structural properties

for the system powers and a differential model with multi-

time measurements. Another detection technique is the mov-

ing target defense [20], where the system configuration is

actively changed. Detection and identification methods based

on machine learning, Kalman filters, and data mining have also

been suggested [21]–[28]. However, these data-driven methods

require a large set of historical and real-time power system

data, which is usually unavailable.

Designing unobservable FDI attacks has also been investi-

gated in the literature (see, e.g., [3] and references therein).

Several studies, such as [2], [8], [29], have examined the

generation of valid unobservable FDI attacks with constraints

on the adversary resources and access to the system sensors.

Other researchers have focused on generating unobservable

FDI attacks where the adversary has incomplete knowledge of

the power grid topology [30], [31]. In some cases, designing an

unobservable FDI attack involves manipulating discrete data

to reflect a false system topology [32]. Data-driven techniques

such as partial component analysis (PCA) [7], [33], random

matrix theory [7], [34], and learning [35] have been used as

well. However, these approaches do not consider the graphical

representation of the power system, and, thus, may not fully

leverage the benefits of GSP techniques in detecting and

mitigating FDI attacks. Thus, incorporating graph-based tech-

niques into the design of FDI attack detection and mitigation

methods can significantly enhance the resilience of power

systems against cyber attacks.

GSP is a new and emerging field that extends concepts and

techniques from traditional digital signal processing (DSP)

to data on graphs. GSP theory includes methods such as

the Graph Fourier Transform (GFT), graph filters [36]–[38],
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and sampling and recovery of graph signals [39], [40]. In

recent years, tools from graph theory and GSP have shown

promise in the design of cyber-attack detection methods for

power systems [9], [41]–[45]. Specifically, theoretical analysis

and experimental studies have demonstrated that the system

state vectors are low-pass graph signals [42]–[44]. The works

in [42]–[45] leveraged this property to design GSP-based

detectors that are able to detect unobservable FDI attacks.

Since then, GSP and graph neural network (GNN) approaches

have been widely adopted and applied in a variety of scenarios

for FDI attack detection (see, e.g., [46]–[51]). The analysis

and the detection design have been formulated for both Direct

Current (DC) and Alternating Current (AC) models, and with

various types of measurements, such as PMU data. However,

the vulnerability of existing GSP-based detection methods to

graph low-pass attacks has not been investigated, but has only

been mentioned as a topic for future research [45]. Moreover,

there is no practical method for generating an FDI attack that

exploits the graphical properties of the states.

In this paper, we investigate the resilience of PSSE against

FDI attacks by leveraging the low graph total variation (TV)

property of power system state variables. First, we intro-

duce a novel type of unobservable FDI attack, called the

graph false data injection (GFDI) attack, which is specifically

designed to bypass GSP-based detectors. Then, we propose

a low-complexity solution to the non-convex GFDI attack

optimization problem, which involves quadratic programming

[52]. Moreover, we propose a protection scheme that identifies

the minimal set of secured sensors needed to prevent the

damage of the unobservable GFDI attack. We then present

a practical greedy algorithm for the implementation of this

scheme. Our simulation results demonstrate the vulnerability

of existing GSP-based detectors to the proposed GFDI attack

design. Moreover, the simulations reveal that the proposed

protection scheme significantly increases the graph TV of the

GFDI attack, even when securing only a small portion of mea-

surements, and thus makes the GFDI attack detectable by the

existing GSP-based detectors. Hence, the proposed protection

scheme, when combined with a GSP-detector, provides a cost-

effective hybrid defense layer against FDI attacks.

The remainder of this paper is organized as follows. In

Section II, we introduce the necessary background on GSP-

based detection, PSSE, and unobservable FDI attacks. The

GFDI attack is introduced in Section III. This attack is then

used in Section IV to develop the GSP-based protection

scheme. Next, a simulation study is presented in Section V,

and the conclusions appear in Section VI.

In this paper, vectors are denoted by boldface lowercase

letters and matrices are denoted by boldface uppercase letters.

The operators ||·||, ||·||0, and ||·||∞ denote the Euclidean

norm, the zero semi-norm, and the max-norm, respectively.

The operators (·)T and (·)−1 are the transpose and inverse

operators, respectively. The notation HS is the submatrix

formed by the |S| rows of H indicated by the indices in S ,

where |·| is the cardinality of the input set. Finally, diag(a) is

the diagonal matrix whose nth diagonal entry is an.

II. GSP-BASED FDI ATTACK DETECTION

A. GSP background

We consider connected, undirected graphs, G(V, ξ), defined

by a set of N nodes, V , labeled 1, . . . , N , and a set of edges,

ξ. Associated with each edge (k, l) ∈ V × V is a nonnegative

weight denoted by ωk,l, unless there is no edge between nodes

k and l, and then, ωk,l = 0. The graph nodes represent the

entities of interest (e.g., users, items, sensors, etc.), and the

edges define the interactions between them. These interactions

are captured by the graph Laplacian matrix,

Lk,l =











∑

m∈Nk
ωk,m k = l

−ωk,l (k, l) ∈ ξ

0 otherwise,

(1)

where Nk is the set of buses connected to bus k.
Given a graph G(V, ξ), a graph signal is defined by the

mapping:

s : V → R
N , (2)

where each coordinate of the state variable in s is assigned

to one of the system nodes, i.e., sn denotes the signal value

at node n. Equivalently to in DSP literature, the graph signal

can also be represented in the (graph) spectral domain. This

representation is provided by the following graph Laplacian

eigendecomposition:

L = UΛUT . (3)

In (3), the diagonal matrix, Λ = diag(λ1, . . . , λn), contains

the eigenvalues of L, which are referred to as the graph

frequencies in the GSP literature. These eigenvalues are real

and are assumed to be ordered as

0 = λ1 < λ2 ≤ . . . ≤ λn, (4)

where the strict inequality between λ1 and λ2 follows because

we only consider connected graphs. In addition, U is a matrix

whose nth column, un, is the eigenvector of L associated with

λn, and UT = U−1. The GFT of the graph signal s is

s̃
△
= UT s. (5)

The resulting signal, s̃, has properties analogous to the discrete

Fourier transform of time series [37], [53]. The inverse GFT

(IGFT) is given by s
△
= Us̃.

Analogous to classical DSP theory, a graph filter is a system

with a graph signal as an input and another graph signal as

an output. The filtering process is often defined by the filter

frequency response f(·) as [37]

f(L) = Uf(Λ)UT , (6)

where f(Λ) = diag(f(λ1), . . . , f(λn)), and f(λn) is the

graph filter frequency response at the graph frequency λn.

B. GSP smoothness measures

The graph TV of a graph signal s is defined as [38]

TV G(s)
△
= sTLs =

1

2

N
∑

k=1

N
∑

n=1

ωk,n

(

sk − sn
)2
, (7)

where the last equality is obtained by substituting (1). The

TV in (7) is a smoothness measure, which is used to quantify
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Fig. 1. Illustration of GSP-based detection of FDI attacks for the IEEE-30 bus system: the system states are presented in block

[a] in both the vertex and graph frequency domains, where it can be seen that the states are smooth, low-frequency graph

signals. In block [b], the state attack (c from (15)) is presented, and block [c] presents the contaminated states. It can be seen

that, in contrast to the states, the state attack in [b] and the contaminated states in [c] are not smooth graph signals and they

have significant energy at the higher graph frequencies. After filtering the contaminated states by the GHPF defined in (11)

(shown in block [d]), the filtered signal in block [e] contains only energy at the higher graph frequencies. Consequently, the

attack can be discovered by the detector in (18).

changes w.r.t. the variability that is encoded by the weights of

the graph [37]. By substituting (3) and (5) in (7), we obtain

TV G(s) =

N
∑

k=1

λks̃
2
k. (8)

According to (8), if s is smooth, its GFT representation from

(5), s̃, decreases as the graph frequency increases. Thus, low

graph TV forces the graph spectrum of the signal to be

concentrated in the small eigenvalues region.

The concept of smoothness w.r.t. the graph has been gen-

eralized in GSP theory. In GSP theory, the smoothness of the

graph signal s is given by

T f (s) = ||f(L)s||2, (9)

where f(L) is a graph high pass filter (GHPF). The GHPF is

a graph filter as defined in (6), where its frequency response,

f(λi), maintains lower values at the higher graph frequencies.

In particular, using the graph frequency response

fTV (λi) =
√

λi, i = 1, . . . , N, (10)

we obtain that the smoothness measure in (9) for this case is

reduced to the graph TV from (8). Another example is the

ideal GHPF, which is defined by the frequency response [54]

f id(λi) =

{

0 λi ≤ λcut

1 λi > λcut

i = 1, . . . , N, (11)

where the cutoff frequency, λcut, can be determined based on

the application.

C. Unobservable FDI attacks

A power system is a network of buses (generators or loads)

connected by transmission lines that can be represented as an

undirected weighted graph, G(V, ξ), where the set of nodes,

V , is the set of N buses, and the edge set, ξ, is the set

of P transmission lines between these buses. We denote

the set of all sensor measurements by M, and the set of

transmission lines by ξ. We consider the DC model, in which

each transmission line, (k, n) ∈ ξ, that connects buses k and n
is characterized by a susceptance value bk,n, where the branch

resistances are neglected [1]. The following noisy and attacked

measurement model is considered [1]:

z = Hθ + a+ ν, (12)

where z = [z1, . . . , zM ]T ∈ R
M is the vector of active

powers, θ = [θ1, . . . , θN ]T ∈ R
N are the state variables

(voltage phases), and H ∈ R
M×N is the measurements matrix,

defined as follows. If row r is associated with the power flow

measurement on line (k, n), then

H{r,j} =











bk,n j = k

−bk,n j = n

0 otherwise.

(13)

Otherwise, if row r is associated with the power injection

measurement in substation k, then

H{r,j} =











∑

n∈Nk
bk,n j = k

−bk,j j ∈ Nk

0 otherwise,

(14)

where Nk is defined in (1). Hence, the measurement matrix is

determined by the topology of the network, the susceptance of

the transmission lines, and the meter locations. In addition, a ∈
R

M models an FDI attack and ν ∈ R
M is the measurement

noise modeled as a zero-mean Gaussian vector with covariance

R.
In the considered setting, any subset of measurements can

be regarded as part of the set encompassing active power

injections and power flows, as described by the model in (12)
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with the measurement matrices in (13) and (14). For the sake

of simplicity and to ensure that the attack on the states will

have an impact on the PSSE approach, in this paper we assume

observability of the system. That is, it is assumed that the set of

measurements is such that all state variables can be estimated

from the available measurements through standard PSSE.

An FDI attack is defined to be unobservable if

a = Hc, (15)

where the state attack c ∈ R
N is a nonzero arbitrary vector.

The attack in (15) cannot be detected by classical residual-

based BDD methods [2]. This can be seen by substituting

(15) into (12), which results in

z = H(θ + c) + ν. (16)

Thus, the residual calculated with assaulted measurements,

z−H(θ̂ + c), is the same as it is for normal measurements,

znormal = Hθ+ν (see, e.g., [2], [3]). At the same time, these

attacks can be designed to have severe physical [55], [56] and

economic consequences [57], [58].

D. GSP-based FDI attack detection

The problem of detecting FDI attacks based on the DC

model in (12) can be formulated as the following hypothesis-

testing problem:
{

H0 : θ̂ = θ + ν̄

H1 : θ̂ = θ + c+ ν̄,
(17)

where θ̂ is the PSSE output based on z, and ν̄ is the error

or noise term associated with the estimation. Recently, it has

been shown that GSP-based detectors in the form of [42]–[45]:

T f (θ̂)
H1

≷
H0

γ, (18)

where T f (·) is defined in (9), are able to solve the hypothesis-

testing problem in (17). In this case, the Laplacian matrix of

the graph, L, is selected to be the nodal admittance matrix,

B, which is a submatrix of H, composed of the rows in H

associated with the power injection measurements described in

(14). This selection is applied by setting the edge weights of

the graph as ωk,l = −bk,l, where bk,n < 0 is the susceptance

of line (k, n) ∈ ξ. Thus, by by substituting ωk,l = −bk,l in

(1) we obtain the nodal admittance matrix, B.

The GSP-based detector in (18) is based on the assumption

that the state vector, θ, is a smooth graph signal w.r.t. to L =
B, i.e., that TV G(θ) = θ

TLθ is small compared to other

signals in the system, as shown in [43], [44]. In contrast, the

state attack vector, c, is a general arbitrary vector that is not

smooth w.r.t. the graph. The GSP-based detector in (18) was

implemented in [42] with the ideal GHPF defined in (11), and

in [44] with the graph TV filter from (10), both with L = B.

The detector in (18) can be extended and used for the AC

model, as explained in Subsection V-C.

III. GRAPH FALSE DATA INJECTION (GFDI) ATTACKS

The graph-based detection methodology presented in Sec-

tion II, which provides the PSSE approach with an additional

defense layer against FDI attacks, is illustrated in Fig. 1. In this

Vertex domain

Graph frequency domain 

(absolute value)

c
GFDIGFDI attack: 

Fig. 2. Example of a GFDI attack on the IEEE 30-bus test

case from Fig. 1. It can be seen that the attack energy is

located at the lower graph frequencies. Therefore, in contrast

to the unobservable FDI attack in Fig. 1[b], when added to

the system states, the output will not obtain abnormal energy

in the high graph frequencies and, thus, may bypass the GSP-

based detectors.

section, we demonstrate how an adversary could use graph-

based information to design an attack that is concentrated in

the spectral region of the small eigenvalues and, thus, is more

likely to bypass the GSP detection methods (an illustration

is provided in Fig. 2). In particular, in Subsection III-A,

we formulate the GFDI attack as a constrained optimization

problem. Then, in Subsection III-B, we derive the solution for

the GFDI attack optimization problem. Finally, some remarks

are given in Subsection III-C.

A. Attack design

The proposed GFDI attack is a special case of unobservable

FDI attacks specifically designed to bypass the graph-based

detector in (18). The main idea is to design the attack as the

output of a smooth fake state signal. Mathematically, let a =
Hc from (15) be the attack vector, and L = B be the graph

Laplacian matrix. Note that B is the DC nodal admittance

matrix, which is a submatrix of H. The state FDI attack, c,

is encouraged to be a smooth signal w.r.t. the graph G, i.e., to

minimize the graph TV, which according to (7) satisfies

TV G(c) = cTLc. (19)

Alternatively, as explained in Remark III-C3, the graph TV

measure in (19) can be replaced by its generalization in (9),

which is used for the GSP-based detection in (18). Simultane-

ously, the attack should have a substantial impact on the state

estimation in order to cause damage. Therefore, in order to

make the attack “meaningful”, the adversary further constrains

that [8]

||c||∞ ≥ τ, (20)

with some positive threshold, τ . In other words, the deviation

in the PSSE output in (17) caused by at least one element in

c should be larger than the threshold τ .

In addition, the attack design considers practical limitations.

First, as in other FDI attacks (see, e.g., [2], [59]), the attack

should be sparse. Specifically, similar to previous works (see,

e.g., [8], [18], [19], [60]–[62]), the sparsity constraint is
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applied directly on the state attack vector c, i.e., the number

of the manipulated state variables is considered to be small.

For a sparsity parameter k ∈ R+, the attack is constrained by

||c||0 ≤ k, (21)

where ||·||0 is the ℓ0 semi-norm defined as the number of

nonzero elements of its argument.

Simulations performed in [2] show that the assumption in

(21) stems directly from the commonly-used sparsity restric-

tion on the number of manipulated meters, which states that

the attack vector, a, is sparse.

Finally, it is assumed that certain security constraints are

imposed by the system designer. Specifically, we assume that

a set of indices corresponding to the measurement set is

protected. The measurement constraint for the attacker can

be expressed as

HSc = 0. (22)

In the above, we denote by HS the matrix formed by the |S|
rows of H indicated by the indices in S . The constraint in (22)

implies that the measurements in the set S do not contribute

to the attack vector a in (15).

To conclude, the attack has two main conflicting goals: to

be less detectable by GSP tools (as described in (19)), while

causing a significant impact on the power system (as described

in (20)). These two goals should be achieved while adhering

to the physical constraints on the possible attacked locations:

a quantitative constraint (described in (21)) and a qualitative

constraint on the specific sensors (described in (22)). This can

be formalized by the following optimization problem:

min
c∈RN

cTLc

s.t.











||c||∞ ≥ τ

||c||0 ≤ k

HSc = 0.

(23)

Roughly speaking, the proposed GFDI attack in (23) is the

smoothest attack possible that ensures sufficient damage and

considers practical limitations of sparsity and restricted mea-

surements. It can be seen that without the extra constraint in

(20), a trivial optimal solution to the optimization in (23) is

c = 0, which means that the attacker does not attack the

system.

In the following, we show the necessity of the constraints

from the GFDI optimization problem in (23).

1) No impact: The impact parameter τ must satisfy τ > 0.

This is since otherwise, i.e., if τ = 0, then the solution

of (23) is c = 0, which implies zero-attack (a = 0).

2) Sparsity: The sparsity parameter k must satisfy k < N .

Otherwise, for k = N the solution of (23) is in the linear

space spanned by the first eigenvector of the Laplacian

matrix, i.e., c ∈ span(1). This can be seen from the fact

that the smallest eigenvalue of the Laplacian is 0, which

guarantees that cTLc = 0. This is the lowest value of

TV possible, since L is a positive semidefinite matrix.

Moreover, it can be verified from (13) and (14) that a

solution c ∈ span(1) results in an attack vector Hc = 0.

Thus, c ∈ span(1) is a feasible solution since it satisfies

HSc = 0. However, in this case, the system is not really

attacked in the sense of a, and thus, this is a degenerative

case. It should also be noted that in the case where the

constraint ||c||0 ≤ k is replaced with ||a||0 ≤ k, the

solution is bound to satisfy c ∈ span(1) such that it has

no impact on the actual states. Thus, in the considered

setting, ||c||0 ≤ k is the appropriate sparsity constraint.

3) No availability: A feasible solution may not exist when

the secured set S includes a substantial number of sen-

sors. In the extreme case where S contains all the system

sensors, it is obvious that an FDI attack is infeasible.

However, if an unobservable FDI attack that satisfies the

sparsity and impact restriction in (23) is available for a

selected set S , then a GFDI attack is available as well,

i.e., (23) has a solution.

B. GFDI attack implementation

The optimization problem in (23) is composed of a quadratic

objective function, cTLc, with: 1) a concave inequality con-

straint, ∥c∥∞ ≥ τ , since the ℓ∞-norm is a convex function

[52]; 2) a non-convex sparsity constraint, ||c||0; and 3) a

linear constraint, HSc = 0. Hence, (23) is a non-convex

optimization problem. In this subsection, we derive a solution

for this problem.

The following theorem suggests an equivalent optimization

problem for the GFDI attack optimization problem in (23).

Theorem 1. The solution of the GFDI attack optimization

problem in (23), ĉ, can be obtained by solving the following

series of optimization problems:

min
i={1,...,N}

min
c∈RN

cTLc

s.t.











ci = τ

||c||0 ≤ k

HSc = 0.

(24)

Proof. The proof is given in Appendix A.

It can be seen that in the inner minimization in (24), the

ℓ∞ inequality constraint from (23) is replaced with the ith
linear constraint, ci = τ . In addition, it can be seen that the

inner optimization problem in (24) is composed of a quadratic

objective function with sparsity and linear constraints. Hence,

the major issue for the attacker is that solving optimization

problems with ℓ0 constraints is, in general, NP-hard. Following

standard sparse recovery techniques [63], the ℓ0-norm can

be replaced by its ℓ1-norm relaxation version that promotes

sparsity. Thus, the attacker can solve the following convex

relaxation:
min
c∈RN

cTLc

s.t.











ci = τ

||c||1 ≤ k

HSc = 0.

(25)

That is, instead of solving (23), the adversary should solve a

series of N convex optimization problems obtained by setting

i = {1, . . . , N} in (25). The final step comprises selecting the

minimum from the N solutions.

By introducing the nonnegative vector variables u ≥ 0 and

v ≥ 0, where the vector inequality indicates elementwise
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inequalities, the problem in (25) can be formulated as a

quadratic programming problem, as follows:

min
c∈RN

cTLc

s.t.



























ci = τ

HSc = 0

c = u− v

1T (u+ v) ≤ k

u ≥ 0,v ≥ 0,

(26)

where 1 is the all-one vector. The quadratic programming

problem in (26) can be efficiently solved using interior point

methods [52], e.g., using the Matlab function quadprog.

After solving (26), if a feasible solution is found, then case

i is added to the set of possible solutions, I, and the solution

is denoted by c∗,i. In order for the solution c∗,i to be at most

k-sparse, as required by the original constraints of the problem

in (24), we apply a hard-thresholding step and only keep the k
largest (in the sense of the absolute value of the magnitudes)

components of c∗,i, while zeroing out the remaining entries.

On the other hand, if a feasible solution is not available, then

case i is not included in I.

After solving (26) for i = 1, . . . , N , we determine the

optimal position to attack the system by choosing the optimal

solution among the candidates in I:

î = argmin
i∈I

(c∗,i)TLc∗,i. (27)

Next, we calculate the optimal attack by setting â = Hĉ,

where ĉ = c∗,̂i and î is given in (27). However, due to

the thresholding step applied after solving (26), there is no

guarantee that the resulting ĉ maintains the constraint on the

secured sensors from (26), i.e., there is no guarantee that

âS = HS ĉ = 0. Therefore, in order for the final solution ĉ to

be a feasible solution, we set the elements in â that correspond

to the set S to zero, i.e., we set

âS = 0. (28)
C. Remarks

1) Attack Unobservability: Due to Step 16 in Algorithm 1,

the attack â can be viewed as the following superposition:

â = Hĉ+ ã, (29)

where the vector ã is such that ãS = âS−HS ĉ and ã{M\S} =
0. Consequently, the proposed attack cannot be considered as

a pure unobservable attack in the sense of (15). Nonetheless,

we expect that ∥ã∥ ≤ ϵ, where ϵ is a significantly low value.

This implies that

∥â−Hĉ∥22 ≤ ϵ.

Hence, this attack can be referred to as a generalized unobserv-

able FDI attack (see Section 4.1. in [2]) and is still expected

to be undetected by classical residual-based BDD methods if

a certain degree of noise is present.

2) Known topology: An assumption behind the GFDI at-

tack design in (23) is that L is known. In other words, it is

required that the adversary knows the power system network

configuration. The same assumption is required for generating

the unobservable FDI attack in (15) [2], [59]. The assumption

that H (and consequently its submatrix B) is known or can be

estimated from historical data [6], [7] gives the adversary more

Algorithm 1 GFDI attack creation

Input: L, k, τ , S , H

Output: î, ĉ, and â

1: Initialize I = ∅
2: for i ∈ {1, . . . , N} do

3: solve (26) (e.g., by Matlab quadprog)

4: if a feasible solution, c∗,i, is found then

5: update I = I ∪ i
6: set c∗,im = 0 for m > k and |c∗,ij1

| ≥ . . . ≥ |c∗,ijN
|

7: else

8: go to line 2

9: end if

10: end for

11: if I = ∅ then

12: return “no feasible solution”

13: else

14: compute: î = argmin
i∈I

(c∗,i)TLc∗,i

15: set ĉ = c∗,̂i and â = Hĉ

16: update âS = 0

17: return î, ĉ, and â

18: end if

power than usually is possible in reality. We note that this is a

well-adopted practice in the cyber-security community, which

increases the system’s resilience.
3) Generalization to graph filters: The objective function

of the GFDI optimization problem in (23) can be generalized

by replacing the graph TV measure in (19) with a general

GSP-based smoothness measure in (18), which measures the

energy of the estimated PSSE after it has been filtered by

a selected GHPF. In this case, the quadratic programming

optimization in (26) is modified by replacing the cost function

with f(c) = ∥f(L)c∥2, where f(L) is a general graph filter

as defined in (6). In particular, we can obtain the following

two special cases: 1) if the GHPF is selected as (7), then we

obtain the same result provided by the graph TV measure,

described above and summarized in Algorithm 1; and 2) if

the GHPF is selected as (11), then the attack obtained will

be a graph low pass signal with energy located only in the k
smallest graph frequencies, as conceptualized in [45]. Thus,

the proposed approach also suggests an implementation for

the theoretical idea in [45].
4) Applicability of the GFDI attack for the AC model:

The nonlinear AC provides a more accurate representation of

the power flow equations than the DC model presented in

Section II [59]. As described in Section II, constructing an

unobservable FDI attack for the DC model required knowledge

of the system configuration represented by H. In contrast,

constructing an unobservable FDI attack for the AC model

requires knowledge of both H and the current state of the

system [59], which is often considered unrealistic. However,

since the DC model is a linearization of the AC model, a DC-

based attack could work approximately on the AC model [59].

We show the applicability of our attack design on both the DC

and the AC models in the simulation study in Section V.

IV. STRATEGIC PROTECTION OF THE POWER NETWORK

In addition to GSP-based detection, the operator may install

additional security hardware to disable access to selected
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measurements for an adversary. In this section our goal is

to demonstrate how to harvest the graph-based knowledge,

used for the design of the GFDI attack in Section III, in order

to strategically select the protected measurements. Specifi-

cally, we aim to identify the minimal set of measurements

required to prevent the possibility of a GFDI attack. This

section is organized as follows. In Subsection IV-A we discuss

the protection scheme design. Then, in Subsection IV-B we

provide a practical implementation. We conclude with remarks

in Subsection IV-C.

A. Protection scheme design

In practice, our protection scheme identifies a minimal set

of state variables (denoted by D), such that if secured (not

manipulated), it would disable the possibility of generating

a GFDI attack. After identifying D, we can then deduce the

set of secured measurements (denoted by S) in one of the

following two ways: 1) the set S is composed from the power

measurements positioned in the buses in set D (power injec-

tions) and in the lines entering these buses (power flows); and

2) the set S is composed from PMU measurements installed

at the same locations as in set D. In our implementation, we

adopt the first option.

The proposed protection scheme is formulated by the fol-

lowing heuristic optimization problem:

D̂ = arg min
D⊆V

|D| s.t. (ĉ)TLĉ > δ, (30)

where ĉ is the output of the GFDI attack optimization problem

in (23), which is implemented by Algorithm 1. Thus, the

problem in (30) searches for the set D with the minimal

cardinality, for which the graph TV of the optimal GFDI

solution exceeds a user-defined threshold δ > 0, and therefore,

can be detected by GSP methods. Selecting a minimal set

of secured state variables enables the operator to reduce the

installation cost of security hardware.

The underlying assumption behind the strategic protection

design in (30) is its effectiveness against the proposed GFDI

attack, along with its capability to provide a defense against

various potential smooth attack vectors that may not be the

optimal GFDI attack. Furthermore, this framework can be

extended to other GSP-based attacks described in Remark

III-C3 by using the generalization to other GHPFs. Future

research is needed to identify an optimal protection strategy

that can defend the system against a broad spectrum of smooth

attacks.

B. Implementation

The problem in (30) is a combinatorial optimization prob-

lem with a non-submodular objective function. Thus, the

number of possible instances for D grows exponentially

with the system size, N . Moreover, it can be seen that, for

each instance, the objective function requires implementing

Algorithm 1. Thus, (30) will suffer from high computational

complexity due to the exhaustive search and is not practical

for large networks. Therefore, we propose a low-complexity

greedy algorithm for selecting the state variables to be pro-

tected, as described in Algorithm 2.

We start with an empty set, D = ∅, and iteratively compose

D as follows. In each iterative step, the GFDI problem in

(24) is first solved by Algorithm 1, taking into account the set

S composed from the power measurements positioned at the

buses in the current set D (power injections) and in the lines

entering these buses (power flows). Then, the state variable at

position i, where the attack obtains the maximal value τ , is

added to the secured state variable set D.

Algorithm 2 Protection scheme

Input: L, k, τ , δ
Output: D

1: Initialize: D = ∅
2: repeat

3: derive S from D by including power injections in the

buses in D and power flows entering the same buses

4: get î and ĉ from GFDI Algorithm

5: add î to D
6: until (ĉ)TLĉ > δ
7: return D

C. Remarks

1) Generalization to graph filters: If the GFDI optimization

problem is realized with a general graph filter as explained

in Remark 2) in Subsection III-C, then the constraint in (30)

should be replaced accordingly. The following is conducted by

replacing the graph TV measure in (30) with ∥f(L)c∥2, which

is obtained by substituting s = ĉ in (9). In this case, row 4 of

Algorithm 2 calls Algorithm 1 with the changes discussed in

Remark 2) in Subsection III-C.

2) Comparison to previous protection schemes: The pro-

posed protection scheme differs from previous designs in that

it does not aim to prevent the adversary from launching an FDI

attack. Rather, it seeks to eliminate the possibility of an attack

with low graph TV. Consequently, the proposed designs forces

the GFDI output to be a non-smooth attack, which, with high

probability, would be detected by a GSP-based detector. As

a result, there are two minor drawbacks and one significant

advantage. The first drawback is that a GSP-based detector

must be installed in the system control center. However, since

these detectors are software-based, they can be implemented

easily. The second drawback is that if an attack is detected,

the system still operates with unreliable measurements, which

is currently a common limitation of detection policies. On

the other hand, the relaxation provided by enabling a GFDI

attack instead of no FDI attack at all significantly reduces the

number of secured measurements required, as demonstrated in

the simulation study (see Fig. 5).

V. SIMULATION STUDY

This section demonstrates the performance of the proposed

GFDI attack and GSP-based protection policy by numerical

simulations. The simulations are conducted on the IEEE-57
and IEEE-118 bus test cases, where the topology matrix and

measurement data are extracted using the Matpower toolbox

for Matlab [64]. In Subsection V-A, we describe the FDI

attack construction methods, and protection policies used as

reference. The simulation setup is then provided in Subsection

V-B. Next, we present the analysis conducted for the GFDI

attack in Subsection V-C and for the GSP-based protection

policy in Subsection V-D.
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A. Methods

1) FDI attack constructions: The GFDI attack (denoted as

GFDI) implemented by Algorithm 1 is compared to previous

unobservable FDI attacks. Considering that an unobservable

FDI attacks satisfies a = Hc, where H is a known parameter,

the attack can be equivalently defined using the state attack c.

The previous designs include the following:

A.1 Random unobservable FDI attack [2] (denoted as

rand): This attack is constructed by: 1) selecting k
elements randomly for the support of the state attack, c;

and 2) assigning random values at these index locations

according to the Gaussian distribution, N (0, 1).
A.2 Random unobservable FDI attack with GFDI support

(denoted as rand+GFDI): The state attack support is

the one obtained from the GFDI solution in Algorithm

1, where random values are assigned to the selected

indices following the Gaussian distribution, N (0, 1).
A.3 The sparsest unobservable FDI attack with the lowest

graph TV (denoted as sparse-low): The attack de-

fined by the linear programming problem in Equation

(14) in [8] solved using the Matlab function linprog. If

there is more than one solution, the one with the lowest

graph TV is chosen as the attack.

A.4 The sparsest unobservable FDI attack with average

graph TV (denoted as sparse-avg): The attack de-

fined by the linear programming problem in Equation

(14) in [8] solved using the Matlab function linprog.

In this case, if there is more than one solution, the one

closest to the average graph TV is chosen.

The attacks are scaled to satisfy ||c||∞ = τ .

2) Protection policies: The proposed GSP-based

protection policy, suggested in Section IV in the

presence of a GFDI attack, is compared with the following

protection policies:

P.1 Random-based protection policy, where the el-

ements in D are selected randomly.

P.2 Sparsest-based protection policy, where the

elements in D are selected to increase the number of

nonzero elements in c required for a feasible unobserv-

able FDI attack described by Equation (14) in [8]. The

policy is defined in Algorithm 3 in [8].

B. Simulation setup

The simulations were conducted on the IEEE-57 and IEEE-

118 bus test cases. Detection thresholds were computed from

simulated historical data obtained by 10, 000 off-line simula-

tions of (12) under the null hypothesis. All numerical results

were obtained using 10, 000 Monte Carlo simulations. The

FDI attacks in both settings are modeled by the GFDI attack

and Attacks A.1-A.4.

1) DC model: For the DC model, the measurements are

computed using (12). The state vector, x, is assumed to be a

smooth graph signal that has a low graph TV, as defined in

(7), and is modeled as follows [65], [66]. In particular, we first

set x̃1 = 0 and generate

x̃2:end ∼ N (0, βΛ−1

2:end,2:end), (31)

where β is a smoothness level selected as β = 0.05. Then, we

use the IGFT defined below (5) to obtain x = Ux̃.

0 0.02 0.04 0.06 0.08 0.1

10
-4

10
-2

10
0

(a) Graph TV

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(b) Probability of detection

Fig. 3. The GFDI attack is compared to Attacks A.1-A.4. In

(a) and (b), the graph TV of the attacks and the probability

of detection, respectively, are presented versus τ . The curves

of the probability of detection are generated w.r.t. to the

GTV-GHPF detector for the DC model.

The measurement noise is modeled as a zero-mean Gaussian

noise with variance 0.001I. In addition, one of the additive

attacks presented in Subsection V-A is added to the measure-

ments.

2) AC model: For the AC model, the measurements are

modeled by

zAC = v(Yv)∗ + a+ ec, (32)

where v are the complex voltages located at the system

buses and Y is the admittance matrix. The voltage phases are

generated according to (31). The voltage magnitudes, which

are assumed to be close to 1, are generated according to

|v|
i.i.d
∼ N (1, 0.01). (33)

The matrix Y follows the structure in (1), but, in this case, the

weights are complex [42]. As discussed in Subsection III-C,

the same attack used on the DC model is also used on the AC

model. Hence, one of the attacks in Subsection V-A is added

to the measurements. The measurement noise, ec, is modeled

as a circularly-symmetric complex Gaussian vector with zero-

mean and a variance of 0.001, i.e., ec ∼ CN (0, 0.001I).

C. GFDI attack analysis

Figure 3.(a) presents the graph TV of the attacks as a

function of the attack impact ||c||∞ = τ (see (19)) for k = 5
and S = ∅ over the IEEE-57 bus test case. It can be seen that

the GFDI attack (ĉ from Algorithm 1) has the lowest graph

TV, while the other attacks generally demonstrate a rapid

increase in the graph TV as τ increases. These results can be

interpreted as an indication of the vulnerability of the different

attacks to the GSP-based detectors in the form of (18). For this

scenario, there is only one nonzero element in Attacks A.3-

A.4. Thus, A.3 is the attack with the lowest TV from all FDI

attacks limited to manipulate only one state variable. It can be
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Fig. 4. The GFDI attack is compared to Attacks A.1-A.4. In

(a) and (b), the receiver operating characteristics (ROC) curves

of the attacks are generated w.r.t. to the GTV-GHPF detector

for the DC model and the AC model, respectively.

seen that enabling the adversary to manipulate more than one

element, as performed in the GFDI attack, results in better

detection performance.

Figure 3.(b) presents the probability of detection as a

function of the attack impact, ||c||∞ = τ , for k = 5 and S = ∅
over the IEEE-57 bus test case. The detection is conducted by

the GTV-GHPF detector, which is obtained by applying (9)

with the GHPF in (10) and with a false alarm probability

of 0.05%. The results show that the probability of detection

increases as τ increases, as expected. Comparing the results in

Fig. 3.(b) with those in Fig. 3.(a) confirms the assumption that

smooth attacks are harder to detect by GSP-based detectors.

As a result, the GFDI (â from Algorithm 1) is the attack

that is the hardest to detect. The sparse-low attack that is

suggested in this paper takes the attack with the lowest graph

TV from all the possible results provided by solving (14) in

[8], and provides the closes probability of detection to the

proposed GFDI attack. However, it is important to note that

the authors of [8], who introduced the sparsest attack, did not

discuss the influence of graph TV on detection. Thus, selecting

the attack with the lowest graph TV, i.e., the sparse-low

attack, can be seen as an additional contribution of this paper.

Compared to the GFDI attack, the random FDI attacks and

the sparse-avg attack are easily detected.

Figure 4.(a) presents the ROC curves (probability of de-

tection versus probability of false alarm) of the GTV-GHPF

detector for the different unobservable FDI attacks under the

DC simulation setup with τ = 0.2, k = 5, and S = ∅ over the

IEEE-57 bus test case. It can be seen that the GFDI attack (â

from Algorithm 1) is the hardest to detect, while it performs

slightly better than the sparse-low attack Figure. 4.(b)

presents the ROC curves of the GTV-GHPF detector for the

different unobservable FDI attacks under the AC simulation

setup with τ = 0.07 and k = 5 over the IEEE-30 bus test case.

It can be seen that the relationship between attack designs in

Fig. 4.(b), where attacks with low graph TV are less likely

to be detected by the GSP-based detectors, is similar to those

in Fig. 4.(a). An extension of the GTV-GFHP to the AC is

provided as follows.

• GTV-GHPF: Based on our results in [44], an alert to an

attack is provided if the GSP-based detector in (18) when

using the GTV-GHPF in (10) indicates an attack for at

least one of the following cases: 1) L = B, y = ℜ{θ̂},

where θ̂ are the phases of v̂; and/or 2) L = B, y =
|v̂| − 1|v̂1|.

Similar detection results to those presented in Figs. 3.(b),

4.(a), and 4.(b) were found when using the Ideal-GHPF

detector, obtained by substituting (11) in (18). In addition,

we verified that the BDD detector cannot detect any of the

attacks, since they are all unobservable. Extensions of the

Ideal-GFHP and BDD detectors for the AC model can be

obtained as follows.

• Ideal-GHPF: Attack alert is provided if the GSP-based

detector in (18) when using the ideal GHPF in (11)

indicates an attack for at least one of the following cases:

1) L = ℜ{Y}, y = ℜ{v̂}; 2) L = ℜ{Y}, y = ℑ{v̂};

3) L = −ℑ{Y}, y = ℜ{v̂}; and/or 4) L = −ℑ{Y},

y = ℑ{v̂}. The vector v̂ is the AC PSSE output.

• BDD: The BDD detector for the AC model

||zAC − v̂(Yv̂)∗||22 ≷H1

H0
, where v̂ is the AC PSSE

output.

D. GSP-based protection policy analysis

Figure 5 illustrates the influence of securing system state

variables, according to the different protection policies, on the

GFDI attack. In Fig. 5.(a) the graph TV of the GFDI attack

(ĉ from Algorithm 1) is presented versus the ratio between

the secured state variables and the total number of states for

the IEEE-57 bus test case with τ = 0.6 and k = 3. The

results indicate that using a GSP-based policy leads to an

immediate increase in graph TV as the number of protected

state variables increases. In comparison, Policies P.1-P.2 have

only a minor effect on the graph TV. In addition, it is important

to mention that when at least 0.175% of the state variables

are secured, Policy P.2 prevents the generation of the smooth

attack. Figure 5.(b) examines the probability of detecting the

GFDI attack by the GTV-GHPF detector, with a false alarm

probability of 0.05%, for the IEEE-57 bus test case under

both the DC and AC models. For the simulations conducted

on the DC and AC models, we used (τ, k) = (0.6, 3) and

(τ, k) = (0.25, 3), respectively. It can be seen that protecting

a low percentage of state variables according to the locations

provided by a GSP-based protection policy can significantly

enhance the detection probability. This is also true in Fig. 5.(c),

which examines the probability of detecting the GFDI attack

by the GTV-GHPF detector, with a false alarm probability

of 0.05%, for the IEEE-118 bus test case under both the

DC and AC models. For the simulations conducted under

the DC and AC models, we used (τ, k) = (0.55, 5) and

(τ, k) = (0.28, 5), respectively. It can be seen in Figs.

5.(b) and 5.(c) that protecting state variables according to
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Fig. 5. The GSP-based protection policy is compared to

Policies P.1-P.2. The IEEE-57 bus test case is observed in

(a) and (b), where in (a), the GFDI attack graph TV and

in (b), the probability of detecting the GFDI attack by the

GTV-detector, are presented versus the ratio of the secured

state variables out of the total number of states,
|D|
N

. In (c),

the case in (b) is examined over the IEEE-118 bus test case.

the locations provided by a sparse-based protection policy

also enhances the detection probability. However, this policy

necessitates securing a significantly higher proportion of state

variables. Moreover, it should be noted that the sparsest-based

policy was created to prevent the possibility of an attack being

generated, which requires, in general, securing at least 30% of

the state variables. Finally, it can be seen that protecting state

variables according to the locations provided by a random-

based protection policy does not promote enhanced detection

probability unless a large portion of state variables is secured.

Moreover, similar behavior is witnessed for both the DC and

AC models, where for both models, the proposed protection

scheme significantly enhances the detection probability by

protecting only a small percentage of state variables.

VI. CONCLUSIONS

We introduce a new, GSP-based, defensive approach against

FDI attacks in power systems. First, from the adversary’s

point of view, we present a new unobservable FDI attack,

the GFDI attack, that utilizes the graph properties of the

states to bypass the recently developed GSP-based detectors.

Then, from the perspective of the system operator, we present

countermeasures against the GFDI attacks. The proposed

protection scheme aims to select a minimal set of sensors

to prevent the success of GFDI attacks by forcing the attack

to have a high graph TV and, thus, enabling its detection

by advanced GSP tools. This approach requires a smaller

set of secured states than existing designs, which translates

to a lower construction cost and a shorter installation time

for new hardware. The proposed GFDI attack design and

protection scheme are applicable for both DC and AC models.

Our numerical simulations show that existing detection meth-

ods have a significantly lower detection probability for the

proposed GFDI attack compared to previous attack designs,

indicating the significant threat posed by the GFDI attack to

power systems. Moreover, the simulations demonstrate that our

proposed GSP-based protection scheme requires a smaller set

of secured sensors compared to existing designs, resulting in

lower construction costs and shorter installation times. There-

fore, our approach provides a new and cost-effective solution

for enhancing the resilience of power systems against FDI

attacks. Future research should include a practical investigation

of the GSP-based detectors, attacks, and protection schemes

under various real-world settings. Other research directions

involve extending the GFDI attack design and the proposed

protection scheme to partially observable systems, as well as

optimizing the protection scheme. In addition, the proposed

approach, including the attack and protection design, could be

extended to general sensor networks that are based on GSP

data tasks.

APPENDIX A: PROOF FOR THEOREM 1

Let c∗ and c∗∗ be the optimal solutions of (23) and (24), re-

spectively. In the following, we first show that (c∗∗)TLc∗∗ ≤
(c∗)TLc∗ and then that c∗∗ is in the feasible set of (23). If

both requirements are met, then c∗∗ is a feasible solution in

the minimization problem (23) with a cost function smaller

than the cost function associated with the optimal solution, c∗.

Therefore, c∗∗ is the optimal solution of (23), i.e., c∗ = c∗∗.

Without loss of generality, let the index j be such that

||c∗||∞ = |c∗j | and define c̄∗ = sign(c∗j )
|c∗j |

τ
c∗, where sign(·)

denotes the sign function, which assigns 1 to positive argument

and −1 for negative ones. As a result, we obtain that

(c̄∗)TLc̄∗ = (τ/|c∗j |)
2(c∗)TLc∗ ≤ (c∗)TLc∗, (34)

where ||c∗||∞ = |c∗j | ≥ τ . In addition, it can be observed that

the definition of c̄∗ ensures c̄j
∗ = τ . Moreover, because c∗ is

a feasible solution in (23), and thus, satisfies the last constraint

in (23), we obtain that

HS c̄∗ = sign(c∗j )
|c∗j |

τ
HSc∗ = 0,

and

∥c̄∗∥0 = ∥sign(c∗j )
|c∗j |

τ
c∗∥0 = ∥c∗∥0 ≤ k.

Thus, c̄∗ is also a feasible solution for the inner minimization

of (24) for the case i = j. Consequently, c̄∗ is a feasible

solution in (24). As a result, its cost function is ensured to be
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higher than or equal to the cost function of the optimal result

in (24), i.e., (c∗∗)TLc∗∗ ≤ (c̄∗)TLc̄∗. Hence, from (34) we

obtain (c∗∗)TLc∗∗ ≤ (c∗)TLc∗. Now, let i be the case that

minimizes the outer minimization in (24), then the optimal

solution of (24), c∗∗, satisfies |c∗∗i | = τ , ||c∗∗||0 ≤ k, and

HSc∗∗ = 0. Hence, c∗∗ is a feasible solution for (23).
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