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Abstract:  Mul<cellular organisms generate complex morphologies required for their func<on. 6 

Organisms control these morphologies by tuning ac<ve forces, and  by altering the emergent 7 

“material proper<es” of a <ssue, i.e. the rheology of the <ssue. In many cases, organisms take 8 

advantage of drama<c changes in the rheology that occur when the material undergoes a 9 

rigidity transi<on from a fluid-like or floppy state to a solid-like or rigid state. This transi<on in 10 

turn depends on internal parameters at the scale of cells and molecules. This review highlights 11 

recent theore<cal work iden<fying the mechanisms that drive such transi<ons, so that biologists 12 

can look for these mechanisms in in vivo or in vitro systems. We discuss two main types of 13 

transi<ons:  a first-order rigidity transi<on that depends on the connec<vity of small-scale 14 

structures, such as the number of contacts between cells or the number of branch points in a 15 

biopolymer network, and a second-order rigidity transi<on that depends on the geometry of 16 

small-scale structures, such as the shape of cells or the distance between crosslinks in a polymer 17 

network. We provide examples of each type of transi<on in model organisms and discuss 18 

methods for dis<nguishing between the mechanisms in future experiments.  19 

 20 

Introduc9on 21 

In mul<cellular organisms, developmental processes robustly generate specific morphologies of 22 

organs and body plans that are required for the organism to perform func<ons that ul<mately 23 

enhance their fitness.4 A key ques<on is how organisms robustly construct this proper shape 24 

and organiza<on of <ssues – o[en at the scale of millimeters to meters -- given that the control 25 

mechanisms exist at the scale of molecules (e.g. DNA, epigene<cs, biochemical signaling 26 

networks). 27 

 28 
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One poten<ally instruc<ve non-biological example for how to frame this ques<on is a hand-29 

blown glass ornament.  A skilled glass-blower controls the shape of the final ornament using 30 

two main mechanisms. The first is applied forces, controlled via a mandrel rod or air pressure. 31 

The second is applied heat to change the local temperature, which controls the material 32 

proper<es of the glass. Hea<ng is effec<ve because glass transforms from an elas<c solid to a 33 

viscous fluid at a cri<cal value of the temperature, which allows the glass to flow in local regions 34 

in response to applied forces. 35 

 36 

Similarly, the ul<mate shape and mechanical func<on of <ssues and organisms is controlled by 37 

manipula<on (perhaps internally) of applied forces and material proper<es.  Unlike non-38 

biological materials, biological systems are able to program their material proper<es to change 39 

in space and <me, just like a glass-blower, to generate specific shapes. 40 

 41 

In the physical sciences and engineering, the term “rheology” is used to describe how a material 42 

deforms in response to applied forces.8 For example, in standard Newtonian fluids, an applied 43 

force generates a propor<onal change in the rate of deforma<on and vice versa, which is 44 

familiar to anyone who has tried to run though a body of water.  In standard elas<c solids, the 45 

applied force generates a propor<onal change in the total amount of deforma<on, e.g. 46 

stretching a rubber band. Many materials have a complex, viscoelas<c rheology that 47 

simultaneously shares features of both liquids and solids, like toothpaste or ketchup. Some 48 

materials, like glass, can also undergo a rigidity transi<on where they change from fluid-like or 49 

floppy behavior to solid-like or rigid behavior as a func<on of an external parameter such as 50 

temperature or pressure.9  Here, we use the term solid-like or rigid to describe materials that 51 

cost a finite energy to deform and where the cons<tuent parts keep their same neighbors. In 52 

contrast, floppy materials can be slowly deformed with no energy cost and the cons<tuent parts 53 

are able to move rela<ve to one another. Some floppy materials are also fluid-like, so that in the 54 

presence of finite fluctua<ons the cons<tuent parts completely rearrange and diffuse. A 55 

subtlety is that deforming floppy and fluid materials quickly (i.e. at finite rates) does cost energy 56 

to due to fric<onal and damping effects. 57 
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 58 

It is clear that evolu<on has been able to op<mize the rheology-- and control floppy-to-rigid 59 

transi<ons or vice versa -- in biological “materials” at mul<ple scales. Examples of biological 60 

“materials” with specific rheologies that appear to be op<mized for their func<on include 61 

intercellular fiber networks (s<ffer ac<n-myosin cortex, so[er but highly strain-s<ffening 62 

intermediate filament networks), extracellular matrix (with different composi<ons and ini<al 63 

paderning that lead to different s<ffnesses, porosi<es, alignment), as well as <ssues that are 64 

cellularized, like early embryonic <ssues, and acellularized, like car<lage.  65 

 66 

As detailed below, some<mes a small change to the microscopic structure of a material can lead 67 

to big changes in its large-scale rheological behavior, and this is especially true close to a rigidity 68 

transi<on. In fact, it has been shown that some developmental and disease processes are aided 69 

or impeded by rigidity transi<ons.3,10-13 In other words, “changing rigidity” could be a very 70 

useful mechanis<c descrip<on of what is causing a disease or condi<on. Our hypothesis is that 71 

rigidity transi<ons are being ac<vely controlled in many biological systems, but they have not 72 

yet been studied.  73 

 74 

Other reviews have focused on describing the types of rigidity transi<ons that occur in biological 75 

systems, as well as the external parameters that can drive such transi<ons.14,15 Therefore, this 76 

review instead seeks to dis<ll recent theore<cal work iden<fying the mechanisms that drive 77 

such transi<ons, so that biologists can look for these mechanisms in specific in vivo or in vitro 78 

systems. Ul<mately, we hope to help researchers iden<fy i) the mechanisms that biological 79 

systems can take advantage of to alter their rigidity, ii) the structural/mechanical signatures of 80 

such transi<ons, iii) as well as when and where such design principles might be important. 81 

 82 

What is a Mechanical Biological Network? 83 

Although eventually we are interested in the material response of a biological material as a 84 

func<on of <mescale or frequency, here we focus on the behavior in the limit of very long 85 

<mescales. We also focus on idealized behavior in the limit that fluctua<ons, such as ac<ve 86 
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contrac<ons due to cell cycle16 or motor ac<vity, vanish. Clearly, this zero-fluctua<on limit rarely 87 

exists in biological systems, but past work in nonbiological systems and recent work in fiber 88 

networks17,18 has demonstrated that the rheology in the presence of small fluctua<ons is 89 

controlled by the zero-fluctua<on behavior. In the idealized case, a rigidity transi<on occurs 90 

when the system goes from being floppy, where components are able to move around freely, to 91 

rigid, where there is a mechanical energy cost to deforming the material. 92 

 93 

We also focus here on a class of materials that can be described as “mechanical biological 94 

networks”.  These are materials that can be approximated mechanically as a network of edges 95 

and ver<ces, which is a surprisingly reasonable descrip<on for a wide range of structures. 96 

Examples include i) cytoskeleton composed of fibers such as ac<n, microtubules, and 97 

intermediate filaments that comprise the network edges, connected at ver<ces by crosslinkers 98 

and motor proteins,19,20; ii) extracellular matrices composed of s<ff fibrous proteins such as 99 

collagen or fibronec<n, some<mes also interspersed with so[er networks composed of 100 

aggrecans and hyaluronic acid,21 and iii) dense cellularized <ssues, including epithelial layers 101 

with cell-cell interfaces as the edges of the network and tricellular junc<ons or rosedes as the 102 

ver<ces,22 or very dense early embryonic <ssues that are well-represented as a network of cell-103 

cell contacts.3 104 

 105 

All these networks have a rela<vely simple mathema<cal descrip<on: a physical configura<on is 106 

given by a list of loca<ons of all the ver<ces and then the edges that connect the ver<ces, (and 107 

possibly facets in 3D). In addi<on, there is a mechanical energy func<on that describes the 108 

interac<ons along the edges or facets, or between cell centers.  For example, collagen networks 109 

are well described by an energy func<onal where the fibers between crosslinkers are modeled 110 

as an elas<c spring.23 This equa<on has a few parameters: the s<ffness of the spring, the rest 111 

length of the spring, and some<mes the bending energy between two springs. Similarly, a dense 112 

packing of non-confluent cells can be represented by a spring network between touching cell 113 

centers.3 114 

 115 
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In what follows, it is useful to make a dis<nc<on between two types of variables: the ver<ces 116 

move around and are called the “degrees of freedom” in the mathema<cal model, while the 117 

edges (e.g. springs) can be thought of as constraints that restrict those degrees of freedom.  We 118 

note that this is precisely the descrip<on used in the engineering literature for many other 119 

mechanical systems (bar-joint networks, tensegrity models, origami). As engineers have thought 120 

carefully about how to ensure that structures like bridges remain rigid, this similar mathema<cal 121 

structure enables us to use powerful results from those fields.  122 

 123 

Two types of rigidity in mechanical networks 124 

We will briefly review some of the key results from rigidity theory in bar-joint networks.  First, 125 

there is an important mathema<cal object called the rigidity matrix that describes how 126 

changing a vertex (i.e. the 127 

degrees of freedom) changes the 128 

edges (i.e. the constraints). In 129 

many standard materials, the 130 

network becomes rigid when the 131 

number of degrees of freedom 132 

equals the number of 133 

constraints. This is because 134 

changing the ver<ces necessarily 135 

changes the edge lengths, which 136 

costs energy. This simple theory 137 

is referred to as “constraint 138 

coun<ng”.1 It is also called 139 

“first-order rigidity” because 140 

the ver<ces directly impact the 141 

edge lengths.24 In mathema<cs, 142 

this is called a “first-order 143 

perturba<on in the vertex 144 

Fig 1. Examples of first-order (top row) and second order (bo<om row) rigidity 
transi>ons in cellularized >ssues. (A) is an illustra-on of the cell-cell contact 
network (red lines) in solid-like early zebrafish embryos just before the -ssue 
undergoes large-scale flows.  (B) shows that a short -me later, a reduc-on in 
cell-cell adhesion reduces the number of cell-cell contacts, resul-ng in a non-
percola-ng network of connec-ons and a floppy network3. Because the 
transi-on depends on the number of contacts (constraints) compared to the 
degrees of freedom (cell centers), this is an example of a first-order rigidity 
transi-on. (C, D) show cell shapes in early Drosophila embryos during body axes 
elonga-on. Panel C has cell shapes that are more rounded, where D has cell-
shapes that are more elongated, and this change in cell-scale geometry 
coincides with the onset of cellular rearrangement that allow large-scale -ssue 
deforma-on, as predicted by second-order rigidity in vertex models. 6 
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displacements”. In what follows, we use the term “first-order rigidity” because it is standard in 145 

engineering and applied mathema<cs, but emphasize that it is dis<nct from the term “first-146 

order phase transi<on” that o[en appears in physics. The lader term describes a phase 147 

transi<on, such as water to ice, where there is a discon<nuous change in material proper<es at 148 

the transi<on. This contrasts with second-order phase transi<ons, such as the response of iron 149 

to a magne<c field, where the material becomes magne<c con<nuously below a certain 150 

temperature.  The concepts of rigidity and phase transi7ons are somewhat independent; for 151 

example, jammed spheres are first-order rigid, but they show hallmarks of both first-order and 152 

second-order phase transi7ons when they become rigid.25 153 

 154 

Interes<ngly, many biological mechanical networks are always “underconstrained”, including 155 

most physiological collagen networks and vertex models for epithelial <ssues. This means they 156 

have a lot more degrees of freedom than constraints. So how do they become rigid?  157 

 158 

There is a simple example that illustrates the mechanism,1 shown in Fig. 2, which is a chain of 159 

springs connected by ver<ces.  Our argument works for any size chain, but for simplicity, 160 

imagine three springs, where each spring has the same rest length 𝑙! and spring constant 𝑘, and 161 

we have control over the distance between the two ends of the chain. We call this distance 162 

between the end points 𝐿.  The energy for a harmonic spring is then 𝐸 = 𝑘	(𝑙 − 𝑙!)", though it 163 

turns out that the exact form of the energy func<onal is not too important.  164 

 165 

We can perform constraint coun<ng on this chain: there are three constraints and four ver<ces, 166 

so the system is underconstrained – there are fewer constraints than degrees of freedom, and 167 

so we might expect the system to always be floppy.  This is the case if 𝐿 < 3𝑙!, as the chain 168 

wiggles around in space so that all the springs are “happy” -- they can each adain their rest 169 

length and the total energy of the system is zero, as shown in Fig 2A. 170 
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 171 

 But, we all know that if 172 

we stretch the distance 173 

between the ends of 174 

the chain so that 175 

𝐿 > 3𝑙! (Fig. 2C), then 176 

the system becomes 177 

rigid, and the system 178 

becomes s<ffer and 179 

s<ffer as 𝐿 increases. 180 

This is a familiar concept 181 

to anyone who has 182 

tuned a string 183 

instrument, where the 184 

pitch is propor<onal to 185 

the s<ffness. There is 186 

also a geometrical 187 

consequence: star<ng at 188 

the cri<cal point 189 

𝐿∗ = 3𝑙! (Fig. 2B) the chain forms a straight line. So why can’t we understand this rigidity using 190 

constraint coun<ng?  191 

 192 

It is because the straight line corresponds to a very special geometry. The ver<ces in the middle 193 

of the chain are s<ll constrained by the springs, but the geometry makes those constraints less 194 

effec<ve. Normally, if a vertex gets displaced by a vector ∆𝑥////⃗  with a magnitude that is small 195 

compared to the typical spring length, ∆𝑥 ≪ 𝑙 , then the length of the spring adached to that 196 

vertex is also stretched by approximately ∆%
∥

"
, where ∆𝑥∥ is the component of ∆𝑥////⃗  that is parallel 197 

to the spring (Fig 2D). In math terms, the spring changes to “first order” in ∆𝑥. But in the special 198 

geometry, the allowed displacements are in the ver<cal direc<on, and one can draw a triangle 199 

Fig 2. Mechanism for second order rigidity, described in Ref 1 (A-C) Geometry of a linear 
chain of three springs with rest length 𝑙! for different extension lengths 𝐿.  A) When the 
distance between the endpoints 𝐿 < 3𝑙!, the chain wiggles and the springs can all achieve 
their desired rest length, so that the system is floppy and at zero energy. B) At the cri-cal 
value of the extension 𝐿∗ = 3𝑙!, the chain becomes perfectly straight and each spring length 
𝑙 is precisely at its rest length 𝑙!. C) If one keeps stretching, 𝐿 > 3𝑙!, and each spring is 
stretched past its rest length so 𝑙 > 𝑙!, and the system is rigid and has a non-zero energy. 
(D,E) Illustra-on of a first-order and second-order response to displacing a vertex by ∆𝑥. (D) 
In a standard configura-on, displacing a vertex by ∆𝑥 causes the spring length to extend by 
∆𝑥, i.e. to “linear order” in ∆𝑥. (E) In the special geometry at the cri-cal point, the allowed 
displacements are perpendicular to the spring, and therefore a displacement by ∆𝑥 extends 
the spring by a factor that is propor-onal to ∆𝑥#, or to “second order” in ∆𝑥.       
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and use a so-called Taylor expansion to show that a ver<cal displacement of the vertex by a 200 

magnitude ∆𝑥 only stretches the springs by a factor propor<onal to ∆𝑥"/𝑙 ≪ 	∆𝑥, or in math 201 

terms, to “second order” in ∆𝑥 (Fig 2E). In other words, changing the posi<on of the middle 202 

ver<ces in Fig 2B doesn’t change the edge lengths as much as in the first-order case. This is 203 

called second-order rigidity because mathema<cians would say that changes to ver<ces only 204 

impact the edge lengths to second order.   205 

 206 

Lastly, since we are interested in biological systems that are ac<vely evolving their small-scale 207 

proper<es, it is useful to think about what might happen if the springs in the network could 208 

tune their own rest lengths. Just by looking at the geometry of Figure 2 (A-C), it is clear that 209 

keeping the total length 𝐿 fixed and shrinking the rest lengths is exactly equivalent to keeping 210 

the rest lengths fixed and increasing 𝐿. In other words, if biological networks can tune the 211 

relevant internal geometric parameter -- such as rest length or a target cell shape -- they can 212 

directly tune across this rigidity transi<on without changing the “size of the box”. For example, a 213 

cell could tune the balance between E-cadherin-based adhesion and ac<n/myosin-based 214 

cor<cal tension to decrease the surface area in contact with other cells in a confluent 215 

monolayer. This would reduce the target cell shape and drive the <ssue towards the rigid phase. 216 

 217 

In one dimension, there is an obvious link between the geometry and the transi<on. However, it 218 

is not immediately clear that the same mechanism occurs in disordered networks in 2D and 3D, 219 

like epithelial <ssues, such as those in Fig 1C,D, and fiber networks, such as those in Fig 3A-D.  220 

Recent work has established that this is in fact the case for mathema<cal models for <ssues and 221 

fiber networks,26 and it is also true for structures like origami27 and other non-biological 222 

networks with exo<c mechanical proper<es.28  So, we now understand that there are two 223 

dis<nct mechanisms for rigidity: first-order rigidity that depends on the number of connec<ons 224 

(the connec<vity) of the network, and second-order rigidity that depends on internal small-225 

scale geometric parameters. 226 

 227 

Examples of rigidity in biological mechanical networks 228 
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An immediate ques<on is which mechanism causes rigidity in known biological mechanical 229 

networks? In the past five years several examples have emerged.  First-order rigidity has been 230 

implicated in embryonic development, including in the zebrafish tailbud,11 and in epiboly at the 231 

very early stages of zebrafish development.3 In the former case, labeling of the inters<<al fluid 232 

demonstrated that the rigidity was dependent on the packing frac<on of the cells (the space 233 

taken up by the cells divided the total space),11 which is a hallmark of first-order jamming 234 

transi<ons in so[ spheres. In the lader, researchers actually counted the total number of cell-235 

cell contacts and demonstrated that the <ssue fluidized precisely when the number of contacts 236 

dropped below the constraint coun<ng predic<on.3 237 

 238 

Another set of examples than interpolates between first-order and second-order rigidity are 239 

collagen networks. In recons<tuted in vitro systems, one can control the effec<ve connec<vity 240 

of the collagen network,7 as highlighted in the inset to Fig 3E.  The main panel of Fig 3E 241 

illustrates that in collagen networks where the recons<tuted network connec<vity is above the 242 

cri<cal constraint coun<ng value, the networks are rigid and quite s<ff, but when the 243 

connec<vity is below the cri<cal threshold, the networks are orders of magnitude less s<ff (i.e. 244 

floppy), as predicted by first-order rigidity. In direct analogy to the distance 𝐿 for the 1D chain 245 

example, when researchers change the size or shape of the “box” for the collagen network, 246 

applying a dila<on or shear strain to the network, there is a cri<cal strain (the analogue of 𝐿∗ 247 

above) at which the material s<ffens by orders of magnitude 7,29. One can show mathema<cally 248 

that this strain-s<ffening of physiological fiber networks is a second-order rigidity transi<on.26 249 

Similarly, there is significant evidence that epithelial layers can tune their geometric individual 250 

cell shapes to cross a second-order fluid-to-solid transi<on, in an in vitro cultured system for 251 

asthma<c and non-asthma<c human bronchial epithelial cells,12 during body axis elonga<on of 252 

developing Drosophila embryos,6 and in a cell line model for breast cancer.30  In many of these 253 

examples, it is also the case that mutants or disease states change the internal geometric 254 

parameters and lead to rigidity transi<ons that are enhanced or delayed in comparison to non-255 

diseased states.13,30,31  Ongoing work is focused on understanding whether these corrupted 256 

transi<ons are responsible for downstream breakdown in func<on associated with the disease. 257 
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 258 

How to iden9fy rigidity transi9ons and their mechanisms in biological materials 259 

As this is an emerging idea, it may be the case that similar rigidity transi<ons are being tuned by 260 

organisms at a mul<tude of scales. Here we discuss some features that researchers might look 261 

for in experimental systems – to determine if a rigidity transi<on is occurring in biological 262 

materials, and if so to iden<fy the mechanism that is causing rigidifica<on.   263 

 264 

To understand whether a system is becoming rigid, researchers can study the dynamics of their 265 

systems. If researchers have access to microscopic imaging, they may be able to track the 266 

mo<on of cells or fibers using par<cle-tracking algorithms, and compute a quan<ty such as the 267 

mean-squared displacement.32 Fluid-like systems have components that  exhibit mean-squared 268 

displacements that scale linearly with <me on long <mescales, while systems that are in the 269 

process of rigidifying exhibit subdiffusive behavior (sub linear scaling, or even a flat plateau) on 270 

intermediate <mescales.33  If the resolu<on is not good enough to allow for par<cle tracking, 271 

par<cle image velocimetry or image cross-correla<on approaches can also be used to es<mate 272 

structural flows.34 Another possibility is to explicitly iden<fy rearrangements to network 273 

structure, which is o[en a signature of a fluid-like state. One example is T1 transi<ons in 274 

epithelial monolayers, where two cells that do not ini<ally have a contac<ng interface switch 275 

neighbors and come in contact.35 Systems that do not have network rearrangements are more 276 

solid-like.36  Finally, in some cases it may be possible to directly measure the viscosity of a 277 

structure using a mechanical measurement such as micropipede aspira<on.3,37 Solid-like states 278 

have a diverging viscosity, while fluid-like states do not. 279 

 280 

To understand the mechanisms that are driving rigidifica<on, researchers should study the 281 

microscopic structure of their systems.  First, it is useful to characterize the network connec<vity 282 

– e.g. the number of branches per crosslink in fiber networks (Fig 3E) or the number of touching 283 

neighbors in cell packing.3,7 Then, one can study whether an increase in fluidity occurs at <mes 284 

or in spa<al loca<ons where the connec<vity drops below the cri<cal constraint coun<ng value, 285 

which would indicate first-order rigidity is controlling the transi<on. This, in turn, would suggest 286 
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that muta<ons or 287 

environmental 288 

condi<ons that 289 

perturb connec<vity 290 

could alter global 291 

<ssue mechanics and 292 

morphology. 293 

 294 

For second-order 295 

rigidity, the 296 

observables are a 297 

lidle less direct. 298 

Recently, several researchers have suggested using a “straightness” parameter to es<mate the 299 

tension along edges (cell-cell interfaces, fibers between crosslinks) in biomechanical 300 

networks.38,39 This method is based on the hypothesis that ac<ve processes at the subcellular 301 

scale generate fluctua<ng forces that act as an effec<ve temperature forcing the edge. In that 302 

case, one expects the magnitude of the observed fluctua<ons in the shape of the edge to be 303 

inversely propor<onal to the tension along the edge. This matches our intui<on that a less 304 

wiggly string is under higher tension. In second-order rigid systems, the tension along edges is 305 

propor<onal to how rigid the system is. Therefore, one could study whether an increase in 306 

fluidity is associated with less tension along edges, which would indicate second-order rigidity is 307 

controlling the transi<on.  308 

 309 

In addi<on, some researchers have seen that alignment of edges, as seen in Fig 3D, increases 310 

significantly in strain-s<ffening systems, and this even forms the basis for some engineering 311 

models of collagen networks.40 Although it is not clear that edge alignment occurs in all second-312 

order systems, it does seem to be associated with large shear strains in both <ssue 6 and fiber 41 313 

systems. It is also not typically seen in first-order rigid systems, and so it could poten<ally be 314 

used to dis<nguish between the two mechanisms. 315 

A B

C D

E

Fig 3. Rela>onship between small-scale structure (geometry, connec>vity) and large-scale 
material proper>es in collagen networks.  (A,B) Confocal images illustra-ng architecture of 
in vitro recons-tuted collagen networks prepared at two different temperatures, 25°C (A) 
and 37°C (B).2 (C,D) SEM images of bovine knee car-lage at two different -ssue depths: (C) 
closer to the surface and (D) deeper in the -ssue, highligh-ng the collagen network 
structure. The collagen in the deeper network is more aligned.5 (E) Schema-c diagram 
illustra-ng observed rigidity transi-on in recons-tuted collagen networks as a func-on of 
the connec-vity/branching of the polymer network, z, and the applied external strain, which 
corresponds to a change in the “shape of the box” that contains the network.7      
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 316 

Summary and Future Direc9ons 317 

As with any interes<ng science problem, there are s<ll a lot of open ques<ons about rigidity in 318 

biomechanical networks.  One class of ques<ons focuses on systems that might interpolate 319 

between first-order and second-order rigidity. For example, fiber networks that have a lot of 320 

embedded cells (or even beads) possess a rheology that is quite different from bare fiber 321 

networks.42 Bare fiber networks are second-order rigid, while packing of beads and rounded 322 

cells are first-order rigid, so understanding what happens to the composite is an ac<ve area of 323 

research.43 Another type of interpola<on is deformable par<cles44 or ac<ve foams,45 where the 324 

system can con<nuously transform between first-order so[ spheres to second-order vertex 325 

models, though there may be interes<ng feedbacks that arise when the cells are highly 326 

deformable46 A third type of interpola<on might be related to the rheology behavior of 327 

composite networks, like car<lage, composed of a s<ffer fiber backbone and a so[er hydrogel 328 

like hyaluronic acid. Recent work has suggested that the so[er network might act as an 329 

addi<onal set of constraints on the mo<on of the s<ff backbone, effec<vely increasing the 330 

connec<vity of the network and reducing the amount of strain needed to reach the second-331 

order rigidity strain-s<ffening regime.47 332 

 333 

Another open ques<on is how the rheology of biomechanical networks change in the presence 334 

of finite fluctua<ons in forces or tensions. Is there an important difference between fluids and 335 

networks which are technically always “rigid” but have very small barriers to rearrangement?48 336 

Or fluids that behave as solids if you strain them too far? 49 Also, what happens to the 337 

rheological proper<es if cross-linkers are dynamic, 50 or if the fibers themselves are being 338 

assembled and dissembled (e.g. ac<n polymeriza<on and depolymeriza<on)?51  339 

 340 

Some of the more interes<ng open ques<ons concerns how biological <ssues control changes to 341 

their cell-or fiber-scale proper<es.  It seems likely that biological systems are tuning cell-scale 342 

proper<es in order to drive the system towards or away from a rigidity transi<on.  Recent work 343 

suggests that cell shapes in fruit flies are carefully controlled in order to maintain rigidity in the 344 
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amniocerosa.38 Even more specula<vely, it may be that some biological systems have simple 345 

mechanical feedback control loops that help the organism achieve a par<cular rheology. For 346 

example, there are enzymes that preferen<ally sever low-tension edges in extra-cellular matrix 347 

networks,52 and theore<cal work suggests that a rule of this type could allow a network to 348 

maintain rigidity despite rapid turnover.53 More broadly, many <ssues contain mechanosensi<ve 349 

components54 that could drive new and interes<ng feedbacks between small-scale features like 350 

cell connec<vity and large-scale material proper<es. 351 

 352 

Although this review focuses on understanding biological process through the lens of materials 353 

science, it seems likely that biological insights could facilitate the design of smart materials that 354 

change their morphology. Can we design new types of materials that behave like biological 355 

networks?23,55 356 

 357 

In summary, biological materials can tune their emergent behavior at the scale of <ssues and 358 

organs by exer<ng spa<o-temporal control over the material rheology.  Drama<c changes in the 359 

rheology occur when the material undergoes a transi<on from fluid-like/floppy to solid-360 

like/rigid mechanics, which in turn depends on internal parameters at the scale of cells and 361 

molecules. There are two main types of transi<ons:  first-order rigidity that depends on the 362 

connec<vity of small-scale structures, and second-order rigidity that depends on the geometry 363 

(shape or length) of small-scale structures, which can be dis<nguished in biology experiments. 364 
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