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Rigidity in mechanical biological networks
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Abstract: Multicellular organisms generate complex morphologies required for their function.
Organisms control these morphologies by tuning active forces, and by altering the emergent
“material properties” of a tissue, i.e. the rheology of the tissue. In many cases, organisms take
advantage of dramatic changes in the rheology that occur when the material undergoes a
rigidity transition from a fluid-like or floppy state to a solid-like or rigid state. This transition in
turn depends on internal parameters at the scale of cells and molecules. This review highlights
recent theoretical work identifying the mechanisms that drive such transitions, so that biologists
can look for these mechanisms in in vivo or in vitro systems. We discuss two main types of
transitions: a first-order rigidity transition that depends on the connectivity of small-scale
structures, such as the number of contacts between cells or the number of branch points in a
biopolymer network, and a second-order rigidity transition that depends on the geometry of
small-scale structures, such as the shape of cells or the distance between crosslinks in a polymer
network. We provide examples of each type of transition in model organisms and discuss

methods for distinguishing between the mechanisms in future experiments.

Introduction

In multicellular organisms, developmental processes robustly generate specific morphologies of
organs and body plans that are required for the organism to perform functions that ultimately
enhance their fitness.* A key question is how organisms robustly construct this proper shape
and organization of tissues — often at the scale of millimeters to meters -- given that the control
mechanisms exist at the scale of molecules (e.g. DNA, epigenetics, biochemical signaling

networks).
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One potentially instructive non-biological example for how to frame this question is a hand-
blown glass ornament. A skilled glass-blower controls the shape of the final ornament using
two main mechanisms. The first is applied forces, controlled via a mandrel rod or air pressure.
The second is applied heat to change the local temperature, which controls the material
properties of the glass. Heating is effective because glass transforms from an elastic solid to a
viscous fluid at a critical value of the temperature, which allows the glass to flow in local regions

in response to applied forces.

Similarly, the ultimate shape and mechanical function of tissues and organisms is controlled by
manipulation (perhaps internally) of applied forces and material properties. Unlike non-
biological materials, biological systems are able to program their material properties to change

in space and time, just like a glass-blower, to generate specific shapes.

In the physical sciences and engineering, the term “rheology” is used to describe how a material
deforms in response to applied forces.® For example, in standard Newtonian fluids, an applied
force generates a proportional change in the rate of deformation and vice versa, which is
familiar to anyone who has tried to run though a body of water. In standard elastic solids, the
applied force generates a proportional change in the total amount of deformation, e.g.
stretching a rubber band. Many materials have a complex, viscoelastic rheology that
simultaneously shares features of both liquids and solids, like toothpaste or ketchup. Some
materials, like glass, can also undergo a rigidity transition where they change from fluid-like or
floppy behavior to solid-like or rigid behavior as a function of an external parameter such as
temperature or pressure.’ Here, we use the term solid-like or rigid to describe materials that
cost a finite energy to deform and where the constituent parts keep their same neighbors. In
contrast, floppy materials can be slowly deformed with no energy cost and the constituent parts
are able to move relative to one another. Some floppy materials are also fluid-like, so that in the
presence of finite fluctuations the constituent parts completely rearrange and diffuse. A
subtlety is that deforming floppy and fluid materials quickly (i.e. at finite rates) does cost energy

to due to frictional and damping effects.
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It is clear that evolution has been able to optimize the rheology-- and control floppy-to-rigid

Ill

transitions or vice versa -- in biological “materials” at multiple scales. Examples of biological
“materials” with specific rheologies that appear to be optimized for their function include
intercellular fiber networks (stiffer actin-myosin cortex, softer but highly strain-stiffening
intermediate filament networks), extracellular matrix (with different compositions and initial
patterning that lead to different stiffnesses, porosities, alignment), as well as tissues that are

cellularized, like early embryonic tissues, and acellularized, like cartilage.

As detailed below, sometimes a small change to the microscopic structure of a material can lead
to big changes in its large-scale rheological behavior, and this is especially true close to a rigidity
transition. In fact, it has been shown that some developmental and disease processes are aided
or impeded by rigidity transitions.>%13 In other words, “changing rigidity” could be a very
useful mechanistic description of what is causing a disease or condition. Our hypothesis is that
rigidity transitions are being actively controlled in many biological systems, but they have not

yet been studied.

Other reviews have focused on describing the types of rigidity transitions that occur in biological
systems, as well as the external parameters that can drive such transitions.'**> Therefore, this
review instead seeks to distill recent theoretical work identifying the mechanisms that drive
such transitions, so that biologists can look for these mechanisms in specific in vivo or in vitro
systems. Ultimately, we hope to help researchers identify i) the mechanisms that biological
systems can take advantage of to alter their rigidity, ii) the structural/mechanical signatures of

such transitions, iii) as well as when and where such design principles might be important.

What is a Mechanical Biological Network?
Although eventually we are interested in the material response of a biological material as a
function of timescale or frequency, here we focus on the behavior in the limit of very long

timescales. We also focus on idealized behavior in the limit that fluctuations, such as active
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contractions due to cell cycle® or motor activity, vanish. Clearly, this zero-fluctuation limit rarely
exists in biological systems, but past work in nonbiological systems and recent work in fiber
networks!’*® has demonstrated that the rheology in the presence of small fluctuations is
controlled by the zero-fluctuation behavior. In the idealized case, a rigidity transition occurs
when the system goes from being floppy, where components are able to move around freely, to

rigid, where there is a mechanical energy cost to deforming the material.

We also focus here on a class of materials that can be described as “mechanical biological
networks”. These are materials that can be approximated mechanically as a network of edges
and vertices, which is a surprisingly reasonable description for a wide range of structures.
Examples include i) cytoskeleton composed of fibers such as actin, microtubules, and
intermediate filaments that comprise the network edges, connected at vertices by crosslinkers
and motor proteins,'¥2%; ii) extracellular matrices composed of stiff fibrous proteins such as
collagen or fibronectin, sometimes also interspersed with softer networks composed of
aggrecans and hyaluronic acid,?! and iii) dense cellularized tissues, including epithelial layers
with cell-cell interfaces as the edges of the network and tricellular junctions or rosettes as the
vertices,?? or very dense early embryonic tissues that are well-represented as a network of cell-

cell contacts.3

All these networks have a relatively simple mathematical description: a physical configuration is
given by a list of locations of all the vertices and then the edges that connect the vertices, (and
possibly facets in 3D). In addition, there is a mechanical energy function that describes the
interactions along the edges or facets, or between cell centers. For example, collagen networks
are well described by an energy functional where the fibers between crosslinkers are modeled
as an elastic spring.23 This equation has a few parameters: the stiffness of the spring, the rest
length of the spring, and sometimes the bending energy between two springs. Similarly, a dense
packing of non-confluent cells can be represented by a spring network between touching cell

centers.?
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In what follows, it is useful to make a distinction between two types of variables: the vertices

move around and are called the “degrees of freedom” in the mathematical model, while the

edges (e.g. springs) can be thought of as constraints that restrict those degrees of freedom. We

note that this is precisely the description used in the engineering literature for many other

mechanical systems (bar-joint networks, tensegrity models, origami). As engineers have thought

carefully about how to ensure that structures like bridges remain rigid, this similar mathematical

structure enables us to use powerful results from those fields.

Two types of rigidity in mechanical networks

We will briefly review some of the key results from rigidity theory in bar-joint networks. First,

there is an important mathematical object called the rigidity matrix that describes how
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Fig 1. Examples of first-order (top row) and second order (bottom row) rigidity
transitions in cellularized tissues. (A) is an illustration of the cell-cell contact
network (red lines) in solid-like early zebrafish embryos just before the tissue
undergoes large-scale flows. (B) shows that a short time later, a reduction in
cell-cell adhesion reduces the number of cell-cell contacts, resulting in a non-
percolating network of connections and a floppy network3. Because the
transition depends on the number of contacts (constraints) compared to the
degrees of freedom (cell centers), this is an example of a first-order rigidity
transition. (C, D) show cell shapes in early Drosophila embryos during body axes
elongation. Panel C has cell shapes that are more rounded, where D has cell-
shapes that are more elongated, and this change in cell-scale geometry
coincides with the onset of cellular rearrangement that allow large-scale tissue
deformation, as predicted by second-order rigidity in vertex models. ©

changing a vertex (i.e. the
degrees of freedom) changes the
edges (i.e. the constraints). In
many standard materials, the
network becomes rigid when the
number of degrees of freedom
equals the number of
constraints. This is because
changing the vertices necessarily
changes the edge lengths, which
costs energy. This simple theory
is referred to as “constraint
counting”.! It is also called
“first-order rigidity” because
the vertices directly impact the
edge lengths.?* In mathematics,
this is called a “first-order

perturbation in the vertex
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displacements”. In what follows, we use the term “first-order rigidity” because it is standard in
engineering and applied mathematics, but emphasize that it is distinct from the term “first-
order phase transition” that often appears in physics. The latter term describes a phase
transition, such as water to ice, where there is a discontinuous change in material properties at
the transition. This contrasts with second-order phase transitions, such as the response of iron
to a magnetic field, where the material becomes magnetic continuously below a certain
temperature. The concepts of rigidity and phase transitions are somewhat independent; for
example, jammed spheres are first-order rigid, but they show hallmarks of both first-order and

second-order phase transitions when they become rigid.?

Interestingly, many biological mechanical networks are always “underconstrained”, including
most physiological collagen networks and vertex models for epithelial tissues. This means they

have a lot more degrees of freedom than constraints. So how do they become rigid?

There is a simple example that illustrates the mechanism,! shown in Fig. 2, which is a chain of
springs connected by vertices. Our argument works for any size chain, but for simplicity,
imagine three springs, where each spring has the same rest length [, and spring constant k, and
we have control over the distance between the two ends of the chain. We call this distance
between the end points L. The energy for a harmonic spring is then E = k (I — [,)?, though it

turns out that the exact form of the energy functional is not too important.

We can perform constraint counting on this chain: there are three constraints and four vertices,
so the system is underconstrained — there are fewer constraints than degrees of freedom, and
so we might expect the system to always be floppy. This is the case if L < 31, as the chain
wiggles around in space so that all the springs are “happy” -- they can each attain their rest

length and the total energy of the system is zero, as shown in Fig 2A.
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Fig 2. Mechanism for second order rigidity, described in Ref ! (A-C) Geometry of a linear
chain of three springs with rest length [, for different extension lengths L. A) When the
distance between the endpoints L < 31, the chain wiggles and the springs can all achieve
their desired rest length, so that the system is floppy and at zero energy. B) At the critical
value of the extension L* = 3, the chain becomes perfectly straight and each spring length
Lis precisely at its rest length [,. C) If one keeps stretching, L > 3l,, and each spring is
stretched past its rest length so [ > [, and the system is rigid and has a non-zero energy.
(D,E) Illustration of a first-order and second-order response to displacing a vertex by Ax. (D)
In a standard configuration, displacing a vertex by Ax causes the spring length to extend by
Ax, i.e. to “linear order” in Ax. (E) In the special geometry at the critical point, the allowed
displacements are perpendicular to the spring, and therefore a displacement by Ax extends
the spring by a factor that is proportional to Ax?, or to “second order” in Ax.

But, we all know that if
we stretch the distance
between the ends of
the chain so that
L > 31, (Fig. 2C), then
the system becomes
rigid, and the system
becomes stiffer and
stiffer as L increases.
This is a familiar concept
to anyone who has
tuned a string
instrument, where the
pitch is proportional to

the stiffness. There is
also a geometrical
consequence: starting at

the critical point

L* = 31, (Fig. 2B) the chain forms a straight line. So why can’t we understand this rigidity using

constraint counting?

It is because the straight line corresponds to a very special geometry. The vertices in the middle

of the chain are still constrained by the springs, but the geometry makes those constraints less

effective. Normally, if a vertex gets displaced by a vector Ax with a magnitude that is small

compared to the typical spring length, Ax « [, then the length of the spring attached to that

Il -
vertex is also stretched by approximately —, where Ax! is the component of Ax that is parallel

Ax
2

to the spring (Fig 2D). In math terms, the spring changes to “first order” in Ax. But in the special

geometry, the allowed displacements are in the vertical direction, and one can draw a triangle
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and use a so-called Taylor expansion to show that a vertical displacement of the vertex by a
magnitude Ax only stretches the springs by a factor proportional to Ax?/l < Ax, or in math
terms, to “second order” in Ax (Fig 2E). In other words, changing the position of the middle
vertices in Fig 2B doesn’t change the edge lengths as much as in the first-order case. This is
called second-order rigidity because mathematicians would say that changes to vertices only

impact the edge lengths to second order.

Lastly, since we are interested in biological systems that are actively evolving their small-scale
properties, it is useful to think about what might happen if the springs in the network could
tune their own rest lengths. Just by looking at the geometry of Figure 2 (A-C), it is clear that
keeping the total length L fixed and shrinking the rest lengths is exactly equivalent to keeping
the rest lengths fixed and increasing L. In other words, if biological networks can tune the
relevant internal geometric parameter -- such as rest length or a target cell shape -- they can
directly tune across this rigidity transition without changing the “size of the box”. For example, a
cell could tune the balance between E-cadherin-based adhesion and actin/myosin-based
cortical tension to decrease the surface area in contact with other cells in a confluent

monolayer. This would reduce the target cell shape and drive the tissue towards the rigid phase.

In one dimension, there is an obvious link between the geometry and the transition. However, it
is not immediately clear that the same mechanism occurs in disordered networks in 2D and 3D,
like epithelial tissues, such as those in Fig 1C,D, and fiber networks, such as those in Fig 3A-D.
Recent work has established that this is in fact the case for mathematical models for tissues and
fiber networks,?® and it is also true for structures like origami?’ and other non-biological
networks with exotic mechanical properties.?® So, we now understand that there are two
distinct mechanisms for rigidity: first-order rigidity that depends on the number of connections
(the connectivity) of the network, and second-order rigidity that depends on internal small-

scale geometric parameters.

Examples of rigidity in biological mechanical networks
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An immediate question is which mechanism causes rigidity in known biological mechanical
networks? In the past five years several examples have emerged. First-order rigidity has been
implicated in embryonic development, including in the zebrafish tailbud,!! and in epiboly at the
very early stages of zebrafish development.? In the former case, labeling of the interstitial fluid
demonstrated that the rigidity was dependent on the packing fraction of the cells (the space
taken up by the cells divided the total space),!! which is a hallmark of first-order jamming
transitions in soft spheres. In the latter, researchers actually counted the total number of cell-
cell contacts and demonstrated that the tissue fluidized precisely when the number of contacts

dropped below the constraint counting prediction.3

Another set of examples than interpolates between first-order and second-order rigidity are
collagen networks. In reconstituted in vitro systems, one can control the effective connectivity
of the collagen network,’ as highlighted in the inset to Fig 3E. The main panel of Fig 3E
illustrates that in collagen networks where the reconstituted network connectivity is above the
critical constraint counting value, the networks are rigid and quite stiff, but when the
connectivity is below the critical threshold, the networks are orders of magnitude less stiff (i.e.
floppy), as predicted by first-order rigidity. In direct analogy to the distance L for the 1D chain
example, when researchers change the size or shape of the “box” for the collagen network,
applying a dilation or shear strain to the network, there is a critical strain (the analogue of L*
above) at which the material stiffens by orders of magnitude 7*°. One can show mathematically
that this strain-stiffening of physiological fiber networks is a second-order rigidity transition.2®
Similarly, there is significant evidence that epithelial layers can tune their geometric individual
cell shapes to cross a second-order fluid-to-solid transition, in an in vitro cultured system for
asthmatic and non-asthmatic human bronchial epithelial cells,'? during body axis elongation of
developing Drosophila embryos,® and in a cell line model for breast cancer.?® In many of these
examples, it is also the case that mutants or disease states change the internal geometric
parameters and lead to rigidity transitions that are enhanced or delayed in comparison to non-
diseased states.'33931 Ongoing work is focused on understanding whether these corrupted

transitions are responsible for downstream breakdown in function associated with the disease.
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How to identify rigidity transitions and their mechanisms in biological materials

As this is an emerging idea, it may be the case that similar rigidity transitions are being tuned by
organisms at a multitude of scales. Here we discuss some features that researchers might look
for in experimental systems — to determine if a rigidity transition is occurring in biological

materials, and if so to identify the mechanism that is causing rigidification.

To understand whether a system is becoming rigid, researchers can study the dynamics of their
systems. If researchers have access to microscopic imaging, they may be able to track the
motion of cells or fibers using particle-tracking algorithms, and compute a quantity such as the
mean-squared displacement.3? Fluid-like systems have components that exhibit mean-squared
displacements that scale linearly with time on long timescales, while systems that are in the
process of rigidifying exhibit subdiffusive behavior (sub linear scaling, or even a flat plateau) on
intermediate timescales.3® If the resolution is not good enough to allow for particle tracking,
particle image velocimetry or image cross-correlation approaches can also be used to estimate
structural flows.3* Another possibility is to explicitly identify rearrangements to network
structure, which is often a signature of a fluid-like state. One example is T1 transitions in
epithelial monolayers, where two cells that do not initially have a contacting interface switch
neighbors and come in contact.3> Systems that do not have network rearrangements are more
solid-like.3® Finally, in some cases it may be possible to directly measure the viscosity of a
structure using a mechanical measurement such as micropipette aspiration.>3” Solid-like states

have a diverging viscosity, while fluid-like states do not.

To understand the mechanisms that are driving rigidification, researchers should study the
microscopic structure of their systems. First, it is useful to characterize the network connectivity
— e.g. the number of branches per crosslink in fiber networks (Fig 3E) or the number of touching
neighbors in cell packing.>” Then, one can study whether an increase in fluidity occurs at times
or in spatial locations where the connectivity drops below the critical constraint counting value,

which would indicate first-order rigidity is controlling the transition. This, in turn, would suggest

10
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Fig 3. Relationship between small-scale structure (geometry, connectivity) and large-scale
material properties in collagen networks. (A,B) Confocal images illustrating architecture of
in vitro reconstituted collagen networks prepared at two different temperatures, 25°C (A)

and 37°C (B).2 (C,D) SEM images of bovine knee cartilage at two different tissue depths: (C) For second-order
closer to the surface and (D) deeper in the tissue, highlighting the collagen network
structure. The collagen in the deeper network is more aligned.> (E) Schematic diagram rigidity, the

illustrating observed rigidity transition in reconstituted collagen networks as a function of

the connectivity/branching of the polymer network, z, and the applied external strain, which observables are a

corresponds to a change in the “shape of the box” that contains the network.”

¢vo0 little less direct.

Recently, several researchers have suggested using a “straightness” parameter to estimate the
tension along edges (cell-cell interfaces, fibers between crosslinks) in biomechanical
networks.383° This method is based on the hypothesis that active processes at the subcellular
scale generate fluctuating forces that act as an effective temperature forcing the edge. In that
case, one expects the magnitude of the observed fluctuations in the shape of the edge to be
inversely proportional to the tension along the edge. This matches our intuition that a less
wiggly string is under higher tension. In second-order rigid systems, the tension along edges is
proportional to how rigid the system is. Therefore, one could study whether an increase in

fluidity is associated with less tension along edges, which would indicate second-order rigidity is

controlling the transition.

In addition, some researchers have seen that alignment of edges, as seen in Fig 3D, increases
significantly in strain-stiffening systems, and this even forms the basis for some engineering
models of collagen networks.*° Although it is not clear that edge alignment occurs in all second-
order systems, it does seem to be associated with large shear strains in both tissue © and fiber 4
systems. It is also not typically seen in first-order rigid systems, and so it could potentially be

used to distinguish between the two mechanisms.

11
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317 Summary and Future Directions

318 As with any interesting science problem, there are still a lot of open questions about rigidity in
319 biomechanical networks. One class of questions focuses on systems that might interpolate
320 between first-order and second-order rigidity. For example, fiber networks that have a lot of
321 embedded cells (or even beads) possess a rheology that is quite different from bare fiber

322  networks.*? Bare fiber networks are second-order rigid, while packing of beads and rounded
323  cells are first-order rigid, so understanding what happens to the composite is an active area of
324  research.*® Another type of interpolation is deformable particles** or active foams,* where the
325  system can continuously transform between first-order soft spheres to second-order vertex
326 models, though there may be interesting feedbacks that arise when the cells are highly

327 deformable® A third type of interpolation might be related to the rheology behavior of

328 composite networks, like cartilage, composed of a stiffer fiber backbone and a softer hydrogel
329 like hyaluronic acid. Recent work has suggested that the softer network might act as an

330 additional set of constraints on the motion of the stiff backbone, effectively increasing the

331  connectivity of the network and reducing the amount of strain needed to reach the second-
332  order rigidity strain-stiffening regime.*’

333

334  Another open question is how the rheology of biomechanical networks change in the presence
335  of finite fluctuations in forces or tensions. Is there an important difference between fluids and
336  networks which are technically always “rigid” but have very small barriers to rearrangement?*8
337  Orfluids that behave as solids if you strain them too far? 4° Also, what happens to the

338 rheological properties if cross-linkers are dynamic, *° or if the fibers themselves are being

339 assembled and dissembled (e.g. actin polymerization and depolymerization)?>!

340

341 Some of the more interesting open questions concerns how biological tissues control changes to
342  their cell-or fiber-scale properties. It seems likely that biological systems are tuning cell-scale
343  properties in order to drive the system towards or away from a rigidity transition. Recent work

344  suggests that cell shapes in fruit flies are carefully controlled in order to maintain rigidity in the

12
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amniocerosa.3® Even more speculatively, it may be that some biological systems have simple
mechanical feedback control loops that help the organism achieve a particular rheology. For
example, there are enzymes that preferentially sever low-tension edges in extra-cellular matrix
networks,>? and theoretical work suggests that a rule of this type could allow a network to
maintain rigidity despite rapid turnover.>®> More broadly, many tissues contain mechanosensitive
components>* that could drive new and interesting feedbacks between small-scale features like

cell connectivity and large-scale material properties.

Although this review focuses on understanding biological process through the lens of materials
science, it seems likely that biological insights could facilitate the design of smart materials that
change their morphology. Can we design new types of materials that behave like biological

networks?23>>

In summary, biological materials can tune their emergent behavior at the scale of tissues and
organs by exerting spatio-temporal control over the material rheology. Dramatic changes in the
rheology occur when the material undergoes a transition from fluid-like/floppy to solid-
like/rigid mechanics, which in turn depends on internal parameters at the scale of cells and
molecules. There are two main types of transitions: first-order rigidity that depends on the
connectivity of small-scale structures, and second-order rigidity that depends on the geometry

(shape or length) of small-scale structures, which can be distinguished in biology experiments.
Acknowledgements. We thank Alessandro Mongera for suggesting the glass-blowing analogy. We
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