Algorithmic Collusion Without Threats

Eshwar Ram Arunachaleswaran =4
Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA, USA

Natalie Collina =&
Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA, USA

Sampath Kannan 24
Simons Institute for the Theory of Computing, University of California, Berkeley, CA, USA

Aaron Roth 24
Department of Computer and Information Science, University of Pennsylvania,
Philadelphia, PA, USA

Juba Ziani 24
ISyE, Georgia Tech, Atlanta, GA, USA

—— Abstract

There has been substantial recent concern that automated pricing algorithms might learn to “collude.”
Supra-competitive prices can emerge as a Nash equilibrium of repeated pricing games, in which
sellers play strategies which threaten to punish their competitors if they ever “defect” from a set
of supra-competitive prices, and these strategies can be automatically learned. But threats are
anti-competitive on their face. In fact, a standard economic intuition is that supra-competitive
prices emerge from either the use of threats, or a failure of one party to correctly optimize their
payoff. Is this intuition correct? Would explicitly preventing threats in algorithmic decision-making
prevent supra-competitive prices when sellers are optimizing for their own revenue?

No. We show that supra-competitive prices can robustly emerge even when both players are
using algorithms which do not explicitly encode threats, and which optimize for their own revenue.
Since deploying an algorithm is a form of commitment, we study sequential Bertrand pricing games
(and a continuous variant) in which a first mover deploys an algorithm and then a second mover
optimizes within the resulting environment. We show that if the first mover deploys any algorithm
with a no-regret guarantee, and then the second mover even approximately optimizes within this
now static environment, monopoly-like prices arise. The result holds for any no-regret learning
algorithm deployed by the first mover and for any pricing policy of the second mover that obtains
them profit at least as high as a random pricing would — and hence the result applies even when the
second mover is optimizing only within a space of non-responsive pricing distributions which are
incapable of encoding threats. In fact, there exists a set of strategies, neither of which explicitly
encode threats that form a Nash equilibrium of the simultaneous pricing game in algorithm space,
and lead to near monopoly prices. This suggests that the definition of “algorithmic collusion” may
need to be expanded, to include strategies without explicitly encoded threats.

2012 ACM Subject Classification Theory of computation — Algorithmic game theory
Keywords and phrases Algorithmic Game Theory, Algorithmic Collusion, No-Regret Dynamics
Digital Object Identifier 10.4230/LIPIcs.ITCS.2025.10

Related Version Full Version: https://www.arxiv.org/pdf/2409.03956 [3]

Supplementary Material Software (Source Code): https://github.com/eshwarram/Non_Myopic_
Pricing, archived at swh:1:dir:8ecaca48118cc1984e5a41878d828d807920a98b

Funding ERA was supported by NSF grants CCF 1910534 and 2045128. NC and AR were partially
supported by NSF grants FAI-2147212 and CCF-2217058, the Hans Sigrist Prize, and the Simons
Collaboration on Algorithmic Fairness.

© Eshwar Ram Arunachaleswaran, Natalie Collina, Sampath Kannan, Aaron Roth, and Juba Ziani;

licensed under Creative Commons License CC-BY 4.0
16th Innovations in Theoretical Computer Science Conference (ITCS 2025).
Editor: Raghu Meka; Article No. 10; pp. 10:1-10:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:eshwarram.arunachaleswaran@gmail.com
https://www.seas.upenn.edu/~eshwar/
https://orcid.org/0009-0006-2988-2491
mailto:ncollina@seas.upenn.edu
https://www.seas.upenn.edu/~ncollina/
https://orcid.org/0009-0006-2584-7728
mailto:sampathkannan@berkeley.edu
https://simons.berkeley.edu/people/sampath-kannan
https://orcid.org/0009-0003-3028-4198
mailto:aaroth@gmail.com
https://www.cis.upenn.edu/~aaroth/
https://orcid.org/0000-0002-0586-0515
mailto:jziani3@gatech.edu
https://www.juba-ziani.com/
https://orcid.org/0000-0002-3324-4349
https://doi.org/10.4230/LIPIcs.ITCS.2025.10
https://www.arxiv.org/pdf/2409.03956
https://github.com/eshwarram/Non_Myopic_Pricing
https://github.com/eshwarram/Non_Myopic_Pricing
https://archive.softwareheritage.org/swh:1:dir:8ecaca48118cc1984e5a41878d828d807920a98b;origin=https://github.com/eshwarram/Non_Myopic_Pricing;visit=swh:1:snp:2e5a8c1cf261eb1af1a3b2e9819574f9909e5fc2;anchor=swh:1:rev:097044ff28e5b2f050feafecd85ca81ee88ca5e7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2

Algorithmic Collusion Without Threats

Acknowledgements We thank Rakesh Vohra and Deke Hill for valuable discussions on the subject
of algorithmic collusion. SK was on leave from the University of Pennsylvania and serving as the
Associate Director of the Simons Institute for the Theory of Computing at the time of writing of this

paper. Finally, we would like to thank the ITCS reviewers for their helpful comments and feedback.

1 Introduction

Consider a market in which there are two sellers of some commodity. We hope and expect
that competition should drive the price of the good in the market down to its production
cost — for if seller A was consistently selling above cost, then there would be an opportunity
for seller B to slightly undercut seller A, capturing the whole market and increasing their
profit. In fact, this is the Nash (and correlated) equilibrium outcome in several classical
formalizations of such competition including the Bertrand Duopoly model. We refer to
pricings that are at (or near) the Nash equilibrium prices as competitive prices.

As the name suggests, competition is essential to maintaining competitive prices: a
monopolist could freely set the price of a good as high as the market could support (which,
for goods with inelastic demand, could be quite high indeed) without fear of being undercut
by a competitor. So, if in a market with multiple participants, we see prices that are closer to
the monopoly price than the competitive price, we might suspect “anti-competitive” behavior
on the part of the sellers.

Yet, defining anti-competitive behavior turns out to be a difficult exercise. The Sherman
act has been interpreted to require express agreement to coordinate on prices in the form of
overt communication as a pre-requisite for liability. However, a recent line of work has focused
on the ability of pricing algorithms to arrive at supra-competitive prices without explicit
communication — concerns rooted in real world observations [4] and a growing academic
literature [2, 20, 15]. The mechanism underlying most results in this literature ultimately
are rooted in “folk-theorem” style equilibria of repeated pricing games [6, 22]. Broadly
speaking, folk theorems establish that all pairs of prices that guarantee the sellers at least
the profit they obtain with competitive pricing can be realized as equilibria of the repeated
game. Crucially, the strategies which are shown to lead to these anti-competitive equilibria
have explicitly encoded threats aimed at punishing the other seller if they deviate from
a proscribed pricing path. Further, reinforcement learning algorithms can automatically
discover these strategies; recent work [8, 18] has shown both empirically and analytically that
these algorithms can converge to supra-competitive prices, and they do so by the emergence of
punishments and threats, even without being explicitly programmed to learn such strategies.
Using such algorithms may not violate current anti-trust law as they do not involve explicit
communication, but one can imagine future legislation and case law that forbids the use
of algorithms that make use of threats (appropriately defined). An algorithm is after all
an explicit commitment to action as a function of its observations, and committing to an
algorithm might be interpreted as communicating the content of the threat encoded within
the algorithm.

To formally rule out “anti-competitive” behavior, an approach one might take is to define
algorithms that do not encode threats. In fact, the standard economic stance [16, 8] has been
that threats are an explicit requirement for collusion, distinguished from other situations in
which supra-competitive prices can arise due to a “failure to optimize:”

“To us economists, collusion is not simply a synonym of high prices but crucially
involves “a reward-punishment scheme designed to provide the incentives for firms
to consistently price above the competitive level” (Harrington 2018, p. 336). The
reward-punishment scheme ensures that the supra-competitive outcomes may be
obtained in equilibrium and do not result from a failure to optimize.” [8]

E. R. Arunachaleswaran, N. Collina, S. Kannan, A. Roth, and J. Ziani

A first attempt might be to say that (at least if there are other optimizers in the market)
“non-responsive” algorithms which set prices completely independently of competitor prices
(and consequences of competitor prices) should be permitted — indeed, if they cannot react
to their competitors, then they cannot threaten them. But this is far too limiting as it does
not allow for algorithms that react to market conditions. Recent work by [17] and [10] set
out a principled definition of what constitutes non-collusive behavior of a pricing algorithm
by defining algorithms that satisfy some internal consistency properties (calibrated regret,
also known as “swap regret”) and then shows that if all algorithms in the market satisfy
these conditions then the outcome will be competitive prices. Can this condition be relaxed?
What if the first entrant to a market deploys (and hence commits to) an algorithm that
satisfies these internal consistency conditions, and then the second entrant plays a simple
policy that does not satisfy the swap regret condition, but also does not encode threats (e.g.
because it is entirely non responsive)? Might we still see competitive prices? Would we, in
accordance with the intuition of [16, 8] see competitive prices if the follower not only did not
deploy threats, but also succeeded in “optimizing”?

In this paper we show that the answer is robustly “no” by showing how a broad class
of “reasonable” behavior on the part of all parties must lead to supra-competitive (near
monopoly) prices. In particular, with the view that deploying an algorithm is inherently a
“commitment” (at least in the short term), we study two seller pricing games in a leader-
follower model, in which the leader first deploys an algorithm, and then the follower deploys
an algorithm which may optimize within the market environment that is implicitly defined
by the leader’s pricing algorithm. If both sellers viewed this scenario as a Stackelberg
game, and optimized over the set of all pricing algorithms, it would hardly be surprising if
anti-competitive behavior emerged. Indeed, the Stackelberg equilibria in algorithm space
(See [11]) in a repeated pricing game would involve the leader committing to an algorithm
that prescribes monopoly prices and commits to punish the follower if she deviates from this
prescription.

However, we instead study the behavior that emerges if sellers attempt to play reasonable
algorithms. In particular, we assume the leader (following the principle set out by [17, 10])
commits to setting prices using an arbitrary no-regret algorithm. No-Regret algorithms
are widely understood to be a “natural” class of algorithms for use in competitive envir-
onments [24], and our results will hold for any algorithm in this class, which includes the
no-swap regret algorithms studied by [17, 10].

Once the leader deploys a no-regret learning algorithm, the other seller (whom we call
the follower, or the optimizer) deploys an algorithm to optimize their own revenue in the
environment defined by the leader’s no-regret learning algorithm. Once again, we do not
assume that the follower is best responding in algorithm space: they may, e.g., use a
heuristic reinforcement learning algorithm to optimize over a limited set of policies — even
non-responsive policies that are explicitly independent of the leader’s prices, and hence
cannot encode threats. We show that however they choose to optimize their own revenue, if
they are even marginally successful (choosing any policy that guarantees them at least the
revenue that a random pricing strategy would), then in combination, the two algorithms will
inevitably lead to supra-competitive prices in a variety of settings. When this happens, it is
not just the follower who enjoys the revenue of the high prices, but as we prove, also the
leader (if the leader deployed a no-regret learning algorithm). Thus the leader will have no
strong incentive to deviate from their deployed algorithm, even if they deployed it without
initially being aware of the competitive environment. In fact, within the class of “reasonable”
strategies we study for the leader and follower (a no-swap-regret algorithm for the leader

10:3

ITCS 2025

10:4

Algorithmic Collusion Without Threats

and a non-responsive algorithm for the follower), there exists a Nash equilibrium of the
simultaneous pricing game in algorithm space, which gives no party any incentive to deviate,
supports near-monopoly prices, and does not involve threats. This suggests that it may
be worth revisiting the standard economic viewpoint [8, 16] that threats are a necessary
precondition for collusion.

Summary of Results

We study two types of models: a simple Bertrand duopoly model, where the firm with the

lowest price captures the entire demand, and a smoother multinomial-logit-based model

where firms with higher prices can still capture some of the demand. Our multinomial logit
model includes a temperature parameter 7 that controls how sensitive the demand for each
firm is to prices, and converges to a Bertrand competition when the parameter 7 grows large.

Within these models, we prove the following results:

1. The second entrant into the market (whom we call the optimizer) can extract a constant
fraction of the monopoly price revenue against any no-regret algorithm by playing a
non-responsive strategy (i.e. a fixed distribution of prices across all rounds, that does not
depend on or respond to the history of play). As a result, if they approximately optimize
their pricing policy (in any set of policies that includes natural fixed price distributions),
they will be guaranteed a constant fraction of the monopoly revenue. Observe that this
holds even if the class they optimize over only includes non-responsive pricing strategies,
which are incapable of encoding threats.

2. Simultaneously, by deploying any no-regret algorithm, the first entrant (whom we call the
learner) extracts a constant fraction of the revenue obtained by any optimizer strategy
that obtains a constant fraction of the monopoly price revenue. Taken in conjunction
with the previous result, this implies that if the first entrant into the market deploys
(and hence commits to) a no-regret learning algorithm, and the optimizer deploys any
strategy that approximately optimizes over any class of policies that includes fixed price
distributions, both parties will extract a constant fraction of the monopoly price revenue.
This has important implications: not only do supra-competitive prices emerge, but the
benefits are shared across both sellers, giving neither a substantial incentive to deviate. In
other words, the optimizer is not “exploiting” the no-regret learner, but rather implicitly
cooperating with them, despite the absence of threats.

3. In fact, we show that if the first entrant into the market deploys a no-swap regret algorithm,
then there is a non-responsive (i.e. fixed) price distribution for the optimizer that forms
a Nash equilibrium of the simultaneous pricing game in algorithm space: i.e. neither
player has any incentive to deviate from their selected algorithm. This demonstrates the
existence of a Nash equilibrium of the game that supports supra-competitive prices and yet
does not involve threats, contra to the economic intuition [8, 16] that supra-competitive
prices result from either threats or a failure to optimize.

When we refer to supra-competitive prices in the above theoretical results, we mean prices
that are within a constant factor of the monopoly price. The constants in our theorems
are small, but we provide numerical evidence that the constant is in fact no smaller than
2/e~0.74.

We also prove an additional result about the Bertrand duopoly model:

Our results apply to any no regret learning algorithm deployed by the first entrant into

the market. This is a super-set of the no-swap regret learning algorithms proposed to

be definitionally “competitive” by [17, 10]. Should no regret algorithms beyond no-swap

E. R. Arunachaleswaran, N. Collina, S. Kannan, A. Roth, and J. Ziani

regret algorithms also be considered competitive? This is not the case for all no-regret
dynamics — [23] show the existence of coarse correlated equilibria supported on supra-
competitive prices in Bertrand pricing games, implying the existence of no-regret dynamics
that result in such prices. However, we show that when both sellers use Mean-based No-
Regret (MBNR) algorithms (a class which includes common no-regret learning algorithms
such as multiplicative weights and follow the perturbed leader) to set prices, the empirical
distribution of play always converges to the competitive price. This suggests that at least
in the Bertrand Duopoly model, mean based no-regret learning algorithms might also be
considered reasonable/competitive pricing strategies, in addition to the no-swap regret
learners proposed by [17, 10]. We note that this result does not necessarily carry over to
the more complex pricing models studied by [17].

Due to space constraints, we defer some proofs to the full version of the paper [3].

1.1 Related Work

The seminal work by [8] experimentally shows that Q-learning algorithms, a simple and
central type of reinforcement learning algorithm, can learn to collude with each other via
threats in a repeated, simultaneous-action pricing game. These algorithms learn to deviate to
lower prices in response to another algorithm doing so, and slowly rise back to higher prices.
[18] attain similar results in the sequential repeated pricing game. The authors in these
works are specifically concerned with the ability of the algorithms to learn clear threats, as
opposed to simply reaching supra-competitive prices. This is because, from the perspective
of many economists, such threats are a requirement for collusion. The prevailing view, as
espoused by [16] and [8], is that any algorithms which reach supra-competitive prices without
threats must be suboptimal, and thus uninteresting as candidate pricing algorithms.

This perspective is supported by [1] (experimentally) and [2] (theoretically). These works
consider a different class of reinforcement learning algorithms and show that, while they do
not converge to supra-competitive prices when they have full computational capacity, they
can reach supra-competitive prices if these algorithms are limited in their ability to explore.
These supra-competitive prices arise even though these algorithms do not retain enough
state information to encode threats. Therefore, while these works do show supra-competitive
prices without threats, they are only shown arising from algorithms which are specifically
designed to be suboptimal.

Another line of research has explored the emergence of supra-competitive prices as a
byproduct of algorithmic symmetry. [15] show that, if two identical, deterministic algorithms
are played against each other, their “exploration” will be symmetric, and hence they will
be unable to ever observe the benefits of undercutting their competitors (an inherently
asymmetric outcome).

[5] study algorithms that attempt to estimate the payoff of actions through stochastic
experiments. They show that in certain settings in which players update the reward for the
action they play, but not other actions, then the experiments can correlate the actions of the
players, leading to supra-competitive prices. In contrast, the algorithms we study operate
in the full information setting (because agents can observe the price played by the other
agent, they can estimate the profit they would have made had they played a different price
at a given time period), and are designed for adversarial settings, which are well specified in
competitive environments: they are designed with the understanding that there are no reward
distributions to estimate because profits depend on the evolving actions of an opponent.

In contrast to these previous works, which argue variously that the property of algorithms
which leads to supra-competitive pricing are threats and sub-optimality, we argue that the
core is in the fact that deploying an algorithm is a form of commitment. This is most in line

10:5

ITCS 2025

10:6

Algorithmic Collusion Without Threats

with the perspective of [20]. This work treats algorithms as a form of commitment which
contributes to collusion. However, the algorithms explored in that work are constrained
to simple, two-state automata, which severely limits the strategy space. By contrast, we
consider the space of all possible algorithms mapping histories to future prices, and show
results for broad families of “reasonable” algorithms — not just equilibrium strategies.

There is also a recent line of work on regulating pricing algorithms. Both [10] and [17]
suggest that observed swap regret might be taken as a proxy for collusive behavior. They
show, in a related but more general model than our own, that if both sellers in a duopoly
have vanishing swap regret, the time-average price must converge to the competitive price.
Our work highlights the importance of both sellers having no-swap regret; as we show, if the
first entrant into a market deploys a no swap regret algorithm, then many natural behaviors
for the second entrant lead to supra-competitive prices.

Finally, there is a recent line of experimental work demonstrating anti-competitive
behavior in large language models, including market division in the Cournot competition
model [21] and, more similarly to this work, price fixing in the Bertrand competition
model [14]. These works provide evidence for the emergence of algorithmic collusion in the
increasingly ubiquitous realm of LLMs, underscoring the importance of understanding the
foundations of algorithmic collusion.

The emergence of anti-competitive behavior in no-regret dynamics is also explored in [19],
though in a somewhat different setting — this work considers agents deploying no-regret
algorithms to bid for them in an auction, and shows that agents misreporting their true item
value to the algorithms can lead to collusive outcomes.

2 Model

2.1 The Single-Stage Pricing Game

We will first formally define the payoff model of the stage game, in which both sellers select
a price only once and specify the payoff they obtain.

We work in a duopoly model, where two sellers are competing to sell to a single buyer.
Both sellers pick from a discrete set of prices P = %, %, ---1}. Here, k is a discretization
parameter, and we assume that k > 20.

Game definition

We consider two sellers, who we will refer to as the Sellers 1 and 2. The action space of
each seller is the set of possible prices in (0, 1], up to some discretization parameter 1/k.
Both sellers can choose to distributions of prices from the set P, and we denote the set of all
distributions by A”.

To define our game, we first need to define the concept of an allocation rule. An allocation
rule is a (potentially randomized) rule that divides demand across the two sellers as a function
of their chosen prices:

» Definition 1 (Allocation Rule C;(p1,p2)). An allocation rule C; : P x P +— [0,1] is a
mapping from a price pair (p1,p2) from the two sellers, respectively, to a fraction of the
demand that will be allocated to seller i € {1,2}.

Given an allocation rule that defines and controls market outcomes as a function of
prices, we can now define the payoff of a seller in our single-stage game as a function of said
allocation rule C.

E. R. Arunachaleswaran, N. Collina, S. Kannan, A. Roth, and J. Ziani

» Definition 2 (Seller Payoff in the Stage Game). Given an allocation rule C(.,.), the payoff
of seller i is given by

wi(p1, p2) = pi - Ci(p1,p2). (1)

When the sellers play distributions, the payoff of the seller is understood to be the expected
payoff.

We define the buyer price as the price charged by the seller that is the output of the
allocation rule.

» Definition 3 (Average Buyer Price in the Stage Game). For an allocation rule C' and (mized)
strategies p1, p2, the average price paid by the buyer is Elp1Cy(p1,p2) + p2Ca(p1,p2)]. Note
that this means that the average buyer price is equal to the (expected) sum of payoffs of the
two sellers.

Throughout this paper we assume that the total demand (added across both sellers) for
the item being sold is fixed and independent of the prices. Without loss of generality, this
total demand is set to be normalized to 1. As a result, the “monopoly price” in these models
is always 1. Within this fixed-demand model, we consider two allocation rules: a Bertrand
model and a multinomial-logit-based model, both formalized in Section 2.1.1. Both allocation
rules are symmetric and therefore the resulting games are symmetric as well.

We can now formally define the one-stage game studied in this paper, often informally
referred to simply as the “stage game”:

» Definition 4 (Pricing Stage Game). A two-player pricing stage game G(k,C) is defined as

a combination of:

1. Two sellers, respectively named 1, 2;

2. An action space A =P = {%, %, ..., 1} corresponding to possible prices that can be played
by 1 and 2. We denote by py the action of Seller 1 and py the action of seller 2. These
actions may be picked from the set of distributions over P, which we call AT .

3. Payoff functions u;(p1,p2) fori € {1,2}, defined as a function of the competitive allocation
rule C' as in Definition 2.

A particular pricing game is defined by the allocation rule C and the discretization parameter

k. We will work with symmetric allocation rules (the allocation does not depend on the labels

of the sellers), which will naturally induce a symmetric finite game between the two sellers.

The one-stage game described is this section is the starting point of our study, one that
helps us define competitive prices as the Nash equilibria outcome of the game. However, the
primary object of our study is repeated interactions between sellers, described in Section 2.2.

Equilibria of the Stage Game

We will refer to two kinds of equilibria of the stage game which differ in their assumed
timing. The Nash equilibria characterize outcomes in simultaneous play, whereas Stackelberg
equilibria characterize outcomes of optimal play when one player may first commit to a
strategy, and the other player then responds.

» Definition 5 (Nash Equilibrium of the Stage Game). A pair of (independent) distri-
butions (p1,p2) for the two sellers is said to be an e-Nash equilibrium if ui(p1,p2) >

maxpep w(p,p2) — € and uz(p1,p2) > maxpep uz(p1,p) —e. When € = 0, this pair is a
Nash equilibrium.

10:7

ITCS 2025

10:8

Algorithmic Collusion Without Threats

» Definition 6 (Stackelberg Equilibrium of the Stage Game). A pair of (independent) distribu-
tions p1,p2 for the two sellers is said to be an e-Stackelberg equilibrium of the stage game
with seller 1 as the leader if

u2(p1,p2) > max us(p1,p),
peP
and

U , > max u , —€
1(p1 pz) (AP 1(Q1 QQ)

s.t. ua(qr,q2) > maxus(qi,q).
qeP

When € = 0, this pair is a Stackelberg equilibrium.

2.1.1 Competition Models

Now that we have defined the pricing stage game in full generality, we will instantiate it with
two different specific competition rules, which result in two well-known economic pricing
models.

2.1.1.1 Bertrand Competition

In the Bertrand Competition model, the seller picking the lower price captures all of the
demand. The seller picking the higher price earns nothing. For cases in which sellers chose
the same price pyr,, they split the market equally.

» Definition 7 (Bertrand Competitive Allocation Rule CP). CE is a competition rule such
that, given player j # 1,

pi < Dy,
Pi = Py, (2)
pi > Dj

CiB(plaPZ) =

S = =

» Definition 8 (Bertrand Pricing Stage Game G®(k)). The Bertrand Pricing Game is a
pricing game instantiated with the competition rule CP and with a pricing discretization

1
Of %

The Bertrand model is discontinuous in that the seller who selects the lower price captures
the entire market. We also study a generalization of Bertrand competition in which the
fraction of the market captured by a seller is a smooth function (a logit function) of the
difference in prices set by the two sellers. This model has a temperature parameter 7, and as
T tends to infinity, it recovers the Bertrand competition model as a special case.

2.1.1.2 Multinomial-logit-based Price Competition

This competition model is parameterized by a temperature parameter 7 > 0

» Definition 9 (Logit Competitive Allocation Rule C*7). C*7 is a competition rule such that
for j #i:
L errs
C pep2) = 3)

eTPi + eTPj

E. R. Arunachaleswaran, N. Collina, S. Kannan, A. Roth, and J. Ziani

» Definition 10 (Multinomial-logit-based Pricing Stage Game GZ(k,7)). The Multinomial-
logit-based Pricing Game is a pricing game instantiated with the competition rule C*™ and
with a pricing discretization of %

We prove similar results as in the Bertrand model in this logit model, assuming that the
temperature parameter is sufficiently large, i.e., the allocation rule is sufficiently sensitive to
differences in price. As 7 — 0o, we recover the Bertrand model in the limit, since the lower
price seller wins the demand with probability 1. Likewise, when 7 = 0, the sellers each win
with probability 1/2 regardless of their price, so it is to be expected that we need 7 to be
reasonably large to prove any meaningful results.

This model is a special case of the logit model of [8] and is obtained by setting all “product
indices” in their model to be equal, and by removing the outside good from consideration
(by setting its product index ag to —c0), the latter action fixing the total demand.

For simplicity, in the main body of the paper we prove our results in the Bertrand game
(Section 4). We show that they generalize to the Multinomial-Logit-Based pricing game in
the full version of the paper.

2.2 The Repeated Pricing Game

We now move from the stage game to the repeated pricing interaction that will be our main
setting of interest. The pricing game is played repeatedly over T rounds. During each round
t, the two sellers simultaneously pick mixed strategies p1 ¢, p2¢ over the set of prices P (these
are independent distributions over P). The sellers receive the corresponding utilities equal
to the expected payoff of pricing p;+ against ps; in the stage game. Both sellers observe
the full mixed strategy of their opponent. Here, the pricing behavior of each player will be
defined by algorithms which map history to the pricing distribution at the next round, and
we study this larger interaction as a game in which the strategy space for each player is the
algorithm that they will deploy. We formalize this setting below by defining the strategy
space and the utility functions.

Algorithms as Strategies

The sellers’ strategy space is the space of all algorithms, mapping histories to price distribu-
tions at the following round in arbitrary ways.

» Definition 11. An algorithm A for the T round repeated game is a mapping from the
history of play (without loss of generality of only the other seller) to the next round’s action,
denoted by a collection of T functions Ay, As -+ Ar, each of which deterministically map the
transcript of play (up to the corresponding round) to a mized strategy to be used in the next
round, i.e., A14(p2,1,D2.2, - s D2,4—1) = p1,¢ for the algorithm A; used by seller 1.

We define a restricted subclass of algorithms below — algorithms that do not use nor
respond to the history of play. Such algorithms, in particular, cannot make use of or respond
to threats as they are oblivious to the behavior of their opponent.

» Definition 12. If A; is independent of its input for all t, we call it non-responsive. If in
addition A; outputs the same distribution for all t we call it static.

If the two sellers pick algorithms A; and As respectively, this induces a
transcript of T price distribution pairs ((p1,1,p2.1), - (P1,6,P2,) - - (P17, P2, 1)) Where
A14(p2,1, P22, ,P24-1) = p1,¢ and, similarly, As¢(p1,1,p1,2,- - ,P1,t-1) = p2,¢ for each
round t.

10:9

ITCS 2025

10:10

Algorithmic Collusion Without Threats

Game definition

We again consider two sellers, who we will now refer to as the learner and the optimizer.
The action space of each seller is now the set of possible algorithms mapping the history of
play to a pricing distribution at the current round.

» Definition 13 (Seller Payoff in the Repeated Game). Let piT and pL™ represent the sequence
of T distributions over prices by the learner and the optimizer, respectively, given A; and A,.
Then, the payoff of seller i € {l,0} is

T
Ui(A;, Ap) = Zui(pf,pé) (4)

We can now formally define the central game studied in this paper:

» Definition 14 (Repeated Pricing Game). A two-player repeated pricing game G(k,C,T) is

defined as a combination of:

1. Two players, named the “learner” and the “optimizer”;

2. A time horizon T specifying the length of the repeated game;

3. An action space A = AT corresponding to possible sequential pricing algorithms for games
of length T';

4. Payoff functions U;(A;, Ao) for the learner and U,(A;, A,) for the optimizer, defined as
in Definition 183.

A particular repeated pricing game is defined by the allocation rule C' and the discretization

parameter k.

Equilibrium Notions in Algorithm Space

Once again, we can study two kinds of equilibria of the repeated game in “algorithm space”,
depending on the timing of the game: Nash equilibria if play is simultaneous, and Stackelberg
equilibria if the learner has commitment power and moves first.

» Definition 15 (Nash Equilibrium in Algorithm Space). A pair (A;, A,) of algorithms for
the two sellers is said to be an e-Nash equilibrium in “algorithm space” if Uj(A;, A,) >
max ge a7 Uj(A, Ay) — ¢ and Uy(A;, Ap) > max g qr Uy (A, A) —e. When e = 0, we call

this pair a Nash equilibrium in algorithm space.

» Definition 16 (Stackelberg Equilibria in Algorithm Space). A pair (A;, A,) of algorithms for
the two sellers is said to be an e-approximate Stackelberg equilibrium in “algorithm space” if

UO(Al)Ao) Z max UO(Al7A)?
Ae AT
and

Ul(.Al,.Ao) > max UI(BI,BO) — €
(B1,B,)€AT

s.t. Uy(By, B,) > max U, (B, B)
Be AT

When € = 0, we call this pair a Stackelberg equilibrium in algorithm space.

E. R. Arunachaleswaran, N. Collina, S. Kannan, A. Roth, and J. Ziani

We investigate a setup in which one seller, who we call the Learner, commits to an
algorithm Ay, and then the other seller, who we call the Optimizer, responds with their own
algorithm Ao !. This is reminiscent of a Stackelberg game in algorithm space; however, in
contrast to standard Stackelberg games, we do not necessarily assume that the Optimizer
exactly best-responds to the Learner’s algorithm, or that the Learner necessarily deploys
the algorithm representing the optimal commitment strategy. Instead, we examine which
pricing outcomes arise under various Optimizers of different capacities, and show that, when
the Optimizer is responding to a no-regret algorithm (defined in Section 3), a robust set of
responses, including exactly optimal but also including approximately optimal non-responsive
strategies, lead to supra-competitive prices.

Competitive vs supra-competitive prices

In the economics literature, competitive prices are defined as prices that can emerge from
the static Nash equilibria of the pricing game (i.e. Nash equilibria of the stage game, where
prices, rather than algorithms, form the strategy space). We formalize this below:

» Definition 17 (Competitive and Supra-competitive prices). For some pricing model G, let
p be the highest price that is in the support of any Nash equilibrium of the stage pricing
game. Then, p' is a competitive price if p' < p. Furthermore, p’ is a supra-competitive price
Z'fp/ = Qk(l) 2.

Supra-competitive prices are sometimes defined as any prices that are strictly above the
competitive price. In this work, we use and guarantee a stronger definition, and require
supra-competitive prices to be a constant fraction of the maximum possible price (1), even
when the competitive price tends to 0 as k — co. Thus our definition of supra-competitive
prices really refers to “near monopoly” prices.

Throughout the paper we will regularly use high seller payoff as proof of supra-competitive
prices. We make that connection explicit here, showing that in both the Bertrand and Logit
models, the average price over time is exactly equal to the sum of the average utilities of the
two sellers:

» Definition 18 (Average Buyer Price in the Repeated pricing Game). For an allocation rule
C and seller algorithms A;, A,, the average buyer price over the rounds is simply the time
average of the buyer prices over each round induced by the seller’s prices and the allocation
rule in the resulting transcript of play (see Definition 3).

We make a simple observation connecting the average payoffs of the sellers with the
average prices over the rounds.

» Observation 19. The average buyer price in a repeated pricing game exactly equals the
sum of the average payoffs of the sellers.

We follow the convention in prior work in renaming the leader and follower as the learner and optimizer
where one of the key cases considered is the leader playing a no-(swap-)regret algorithm. This is helpful
in clarifying the roles of the players, as we will use the fact that the optimizer, playing against a
no-swap-regret algorithm, can get their Stackelberg leader value in the stage game

The Q%(1) notation means that this quantity remains a constant between 0 and 1 regardless of the
growth of k, in contrast to an expression such as %

10:11

ITCS 2025

10:12

Algorithmic Collusion Without Threats

3 Online Learning Preliminaries

Classes of Algorithms

We are interested in three specific classes of algorithms that the learner might commit to:
no-regret algorithms, no-swap-regret algorithms, and mean-based algorithms. The learner and
optimizer repeatedly play a single-stage game G for T rounds. We refer to the learner’s
payoff function (in the stage game) as uy, and the actions chosen by the learner and optimizer
in round ¢ as x; € A™ and y; € A™ respectively (the action spaces are distributions over
finite sets of actions).While we describe these algorithms from the perspective of the learner,
they are also valid algorithms for the optimizer and afford them the same properties against
algorithms picked by the learner.

No-regret definitions

We consider a setting in which a learner faces an adversary, here called an “optimizer” that
can choose an arbitrary sequence of actions, with knowledge of the learner’s algorithm. The
learner obtains a payoff uy, (¢, y:) as a function of his own action 2 and the optimizer’s action
y;. A desirable property is that in hindsight, after the sequence of learner and optimizer
actions have been realized, the learner does not regret not having played a simple strategy
(like consistently playing whichever turned out to be the best fixed action in hindsight). We
say that an algorithm A has regret 7(T) on some sequence of length T if, regardless of the
sequence of optimizer actions, the learner is guaranteed that in hindsight, they obtained
payoff at least as high as they could have with the best fixed action, minus r(T).

» Definition 20 (r(T")-Regret Algorithm). An algorithm has worst-case regret v(T') if, for
any sequence of actions (y1,ys,...,yr) taken by the optimizer, the total payoff of the learner
can be lower bounded by

z*€[n] et

T T
ZuL(xt,yt) > <max uL(x*,yt)> —r(T).

An algorithm is a no-regret algorithm if it is an r(T)-regret algorithm with r(T) = o(T).

We also consider a strict subset of the class of no-regret algorithms, the class of no-
swap regret algorithms. An algorithm A is a no-swap-regret algorithm if it has the no
regret property not just marginally, but conditionally on each action it played. This can be
formalized by requiring that the learner’s cumulative payoff is at least as high as it would
have been had they, retrospectively, been able to apply some swap function 7 : [n] = [n] to
their sequence of actions in hindsight.

» Definition 21 (r(T)-Swap Regret Algorithm). An algorithm has worst-case swap regret r(T')
if, for any sequence of actions (y1,y2,-..,yr) taken by the optimizer, the total payoff of the
learner can be lower bounded by

ZuL(xt,yt)z max ZuL(ﬂ(xt),yt)—r(T).

7:[n]—[n] P}

where w(x¢) refers to the linear extension of m acting on the support of ;.

An algorithm is a no-swap regret algorithm if it is an r(T)-swap regret algorithm with
r(T) = o(T).

E. R. Arunachaleswaran, N. Collina, S. Kannan, A. Roth, and J. Ziani

Here the maximum is over all swap functions 7 : [n] — [n] (extended linearly to act on
elements y; of A,). It is a fundamental result in the theory of online learning that both
no-swap-regret algorithms and no-regret algorithms exist (see [9]).

Some no-regret algorithms have the property that at each round, they approximately
best-respond to the historical sequence of losses interpreted as a mixed strategy. Following
[7] and [13], we call such algorithms mean-based algorithms. Formally, we define mean-based
algorithms as follows.

» Definition 22 (Mean-Based Algorithm). An algorithm A is v(t)-mean-based if whenever
j,7" € [m] satisfy

t t
1) 1 .
23wl — 1 e 2 (),
s=1 s=1

then x; ; < ~(t) (i.e., if j is at least ¥(t) worse than some other action j' against the historical
average action of the opponent, then the total probability weight on j must be at most y(t)).
A learning algorithm is mean-based if it is y(t)-mean-based for some (t) = o(1).

Many standard no-regret learning algorithms are mean-based, including Multiplicative
Weights, Hedge, Online Gradient Descent, and others (see [7]).

Up to low order terms, best responses to no-swap regret algorithms in algorithm space
are well understood: the optimizer can do no better than to play a static non-responsive
strategy which at every round plays an identical action distribution that is very close (in any
reasonable norm) to their optimal Stackelberg leader strategy in the stage game:

» Lemma 23 ([13]). If the learner plays a no-swap-regret algorithm, then there exists e = op(1)
and a o(T)-additive best-response of the optimizer that involves playing a distribution D’ in
each round such that ||D — D'||ec < & where D is the optimizer’s leader Stackelberg strategy
of the underlying stage game.

4 Results in the Bertrand Model

4.1 Equilibria of the Stage Game

In this section, we focus on Nash and Stackleberg Equilibria of the stage game. We remind
the reader that the Nash Equilibria of the stage game define which prices are competitive. In
turn, this section identifies what the baseline competitive prices are in the Bertrand model
(the equivalent result for the logit model can be found in the full version).

We begin by showing that in any Nash equilibrium of the Bertrand stage game, the
2
%>
prices yield in total a vanishing fraction of the monopoly revenue. To prove this, we need to

resulting competitive prices must be at most implying in particular that competitive
show that pricing high relative to the other seller’s price distribution is a dominated strategy,
in a robust sense. Intuitively, it is clear that the best-response to a deterministic price is
to undercut your opponent. We show that the same idea works against distributions in
the following Lemma that we use throughout this section. The proof is deferred to the full
version.

» Lemma 24. Consider one seller (say seller 2) in the Bertrand stage game playing a
distribution d where the total weight placed on prices above x (where x > %) s equal to
b, for b < ﬁ. Then, for the other seller (seller 1), there is some price ' < x such that
up (', d) > uy(z,d) + ﬁ.

10:13

ITCS 2025

10:14

Algorithmic Collusion Without Threats

The above lemma has a simple corollary which will also be useful:

» Corollary 25. In a Bertrand stage game in which one seller’s distribution is d, pricing at
p = maxz(supp(d)) is a strictly dominated strategy when max(supp(d)) > 2.

We are now ready to show what constitutes competitive prices in the Bertrand game.

» Lemma 26. All Nash Equilibria of the Bertrand stage game are supported on prices that
are at most %

Proof. We will show this by induction:

Base Case: No Nash Equilibrium (NE) of this game have support on price 1. To see this,
note that by Corollary 25, the price 1 is dominated for both sellers, and thus cannot be in
the support of any NE.

Induction Hypothesis: If no NE has support on price 7+ or higher and m is an integer s.t.
m > 4, then no NE can have support on price mT_l To see this, consider any NE, (dy, d2) such
that neither distribution is supported on prices §* or higher. Since max(supp(d;)) < mT_l,
where 7~ L> %, the best-response to it cannot be mT_l (the proof of this is deferred to the

m—1

full version). Therefore dy cannot have support on price —. A similar argument holds for

dj, extending the induction hypothesis.

Therefore, no Nash Equilibria of the game have support on any prices above 2

& <
We observe a gap between the equilibrium prices of the stage game between the Nash
and the Stackelberg equilibrium. The following lemma relies upon results we will show in

Section 4.2.1, but we state it here for ease of organization.
» Lemma 27. The Stackelberg Equilibria of the stage game leads to supra-competitive prices

Proof. By Lemma 30, the optimizer can achieve utility Qx(7") against a no-swap regret
learner (by playing a static strategy). [13] establish that the maximum possible average payoff
achievable against a no-swap regret learner is upper bounded by the stage game Stackelberg
leader value. Therefore, the stage game Stackelberg leader value is > Q(1), and thus the
resulting price is > Q (1) (see Observation 19 which lower bounds the average price by the
average payoff of either seller). <

4.2 Results for the Repeated Bertrand Game

We begin by considering the Stackelberg equilibria of the repeated Bertrand game. As we
observed earlier, allowing unrestricted commitment to any possible algorithm opens the door
for explicit usage of threats to maintain collusive prices. The following lemma shows that
supra-competitive prices emerge out of such commitments, and is unsurprising.

» Lemma 28. The Stackelberqg Equilibrium of the repeated Bertrand game induces supra-
competitive prices.

The proof, which is based on the algorithm of [11] to find optimal algorithmic Stackelberg
strategies in repeated games, is deferred to the full version. It is known that the resulting
leader algorithm is “obviously” anti-competitive, in that it encodes an explicit threat for
the follower. However, we show that supra-competitive prices arise from a vast array of
algorithms which are not facially anti-competitive. In particular, we consider the class of
mean-based no-regret algorithms and the class of no-swap regret algorithms, which are
well-behaved in the following sense: for both classes of algorithms, when both sellers use any
algorithm in the class, the prices converge to competitive prices.

E. R. Arunachaleswaran, N. Collina, S. Kannan, A. Roth, and J. Ziani

4.2.1 Committing to No-Regret Algorithms Induces Supra-Competitive
Prices

In this section, we will prove two key results pertaining to the repeated version of the game:

1. While playing against any no-regret learner, the optimizer can always guarantee themselves
at least Qx (7)) net payoff, even when restricted to static non-responsive strategies (recall:
strategies which are oblivious to their opponent’s behavior and simply play the same
pricing distribution every day). In fact, they attain Qg(T') net payoff even by playing a
uniform distribution over prices each day.

2. If an optimizer attains Q(7) net payoff against a no-regret Learner, that no-regret
Learner also obtains Q(7") net payoff.

Taken together, these two results imply that, if the optimizer, optimizing in the environ-
ment defined by the learner’s no-regret algorithm, does at least as they could do using a simple
static and non-responsive strategy, the induced prices are supra-competitive. Furthermore,
both the learner and the optimizer benefit from these high prices. Finally, we will show that,
when the learner is playing a no-swap regret algorithm and the optimizer plays a static
non-responsive best response, this is in fact an approximate Nash Equilibrium in algorithm
space (where the approximation is a sublinear additive factor). We emphasize that despite
the fact that the optimizer happens to be playing a static, non-responsive algorithm, this is
a best response for them in all of (unrestricted) algorithm space. This result in fact holds
true in all games not just pricing games — but in the context of pricing games, it gives an
example of a Nash equilibrium with supra-competitive prices between two algorithms which
do not explicitly encode threats.

To achieve these results, we must reason about an optimizer’s payoff when playing against
a no-regret learner. Consider a no-regret algorithm playing against a seller who plays the
same distribution in each round. This fixes the expected cumulative payoff of each fixed
action for the no-regret learner; and thus, by the no-regret guarantee, the learner must play a
best-response for all but a diminishing fraction of rounds. This, in turn, has implications for
the follower’s aggregate payoff. We capture this relationship in the following lemma. Note
that this lemma applies to all bimatrix repeated games, not just pricing games.

» Lemma 29. Consider any T-round repeated game defined by a stage game G with non-
negative payoffs. Against any learning algorithm with the no regret property, if the optimizer
plays a static strategy s each round, the optimizer’s expected payoff is at least u,(BR;(s),s) -
T — o(T), where u, is the optimizer’s value in G and BRj(s) is the element of the learner’s
best response to s in G that minimizes u,(BR}(s), s).

Proof. Let the total regret of the learning algorithm be r(T'), and let BR,(s) be the
set of all best responses to s from the learner. Furthermore, let g = ’LL@(BRZ(S)7S) -
maXyem]\BRy) Wt (y7 S)

Let p* be the average probability distribution played by the learning algorithm against
s. Since there is no correlation between the two seller’s randomness, the learner’s average
payoff is

ue(p”,s) <Plp" =z € BRe(s)] - ue(BRe(s),s) + Plp* =z ¢ BRy(s)] - (ue(BRe(s),s) — g)

(1)

As the learner’s algorithm has average regret ==, we have that

r(T)

Plp" =z € BRi(s)]-ue(BRe(s), s)+P[p" = x ¢ BR(s)]-lue(BRe(s),8) —g] = ue(BRe(s), 8) = ==

10:15

ITCS 2025

10:16

Algorithmic Collusion Without Threats

Therefore, P[p* = x ¢ BRy(s)] - g < T(TT), which implies P[p* = x ¢ BRy(s)] < Té?, and
finally P[p* = x € BRy(s)] > 1 — %.
This allows us to lower bound the payoff of the optimizer (where the first inequality

implicitly uses the fact that the both sellers always get non-negative payoff) —

Uo(p*,) > Plp* =z € BRy(s)] - uo(BR;(5),s)

T g
_ . o(T) uo(BRj(s),s)
=uo,(BRj(s),s) — T ;
o(T).

<

We are now ready to show that if an optimizer’s only goal is maximizing their own payoff,
and they do even a passable job, they will get high payoff against a no-regret learner. In
fact, they can do this even by performing the extremely simple static strategy of pricing
uniformly randomly every day. Recall that by Observation 19, the average payoff of the
optimizer lower bounds the average price. Therefore, as long as the optimizer is optimizing
in the environment defined by the learner’s no regret algorithm, there is a wide range of
optimizer behaviors which induce supra-competitive prices. This includes all optimizers that
perform better than static random pricing, ranging from approximate optimization over
static responses to exact optimal dynamic responses.

» Lemma 30. The optimizer can get payoff at least Q. (T) against any no-regret learner in the
Bertrand model by playing a static strategy of uniformly random pricing. Formally, for any
no-regret algorithm A™"9 and the static uniformly random algorithm A", U,(A", A7) >

(7).

Proof. Let r be the uniformly random distribution over prices. By Lemma 29, the optimizer’s
expected payoff is at least us(BRj(r),r) - T — o(T).

First, we will prove that any best-response of the learner BRy(r) > <. To see this, note

1
g.
that by pricing at % against r, the learner’s payoff would be at least

17 1 1 1 1
Z|.Z = >+ ==
]P’{r>2] 5]P’{r_[z—kk} 5

vV
IS N
—_

\

—
N —

+
El
S~—

_ 1
> k
-2

1 1
>
—4 2k

1 1 1
> - — ==
-4 20 5

As the learner can get payoff at least %, their best response price will always be at least
%, as otherwise they would always get payoff strictly less than 1.

E. R. Arunachaleswaran, N. Collina, S. Kannan, A. Roth, and J. Ziani 10:17

We now invoke Lemma 29 to lower bound the payoff of the optimizer. The worst learner
best-response to the uniform distribution, from the perspective of the optimizer, must be
bounded below by % i.e. the optimizer must select a price that is at least p* := L%J 3,
Additionally, the optimizer’s payoff is monotone increasing in the learner’s price. Thus the
optimizer gets total payoff at least T - u, (r,p*) — o(T). Analyzing this gives us the desired
result —

uo(r,p*) - T —o(T) = Elr|r < p*] - Plr <p*]- T — o(T)

1 1
ZEPVSp“—J-PPSp“—J-T—Nﬂ

E[r|r <k: p* — 1] is exactly % (the average of ; and p* — 1). Substituting p* results

in & = %, this is lower bounded by 2—25 (assuming k& > 20). On the other hand, we can
ki

rewrite P [r <p" - %] (by substituting p*) as Lsi L This term is monotone increasing in k

and lower bounded by 5 (assuming k > 20). Thus, the optimizer payoff is lower bounded
by % — o(T), completing the proof. <

Since by Observation 19 the average payoff of the optimizer lower bounds the average
price, we have already shown that any no-regret algorithm induces supra-competitive prices
against any optimizer who performs better than random pricing. We will now go on to show
that the learner deploying the no-regret algorithm benefits from these supra-competitive
prices as well.

» Theorem 31. For any no-regret learner algorithm A;'°"Y, and for any optimizer algorithm

Ao, if

Uo(A7"Y, Ao) > Qi (T)
then

UL (A9 Ay) > O (T)

Proof. Let U,(A”"Y, A,) > ¢- T for some constant ¢ between 0 and 1, independent of k.

Note that, in order to achieve ¢ payoff on average, the optimizer must have priced at or
above § with average probability (over the rounds) at least §. Assume for contradiction that
the optimizer does not do this. Then, we can upper bound their utility by assuming they
capture demand in all rounds:

Ua(A1, Ao) <P [po = 5] 14 (1= P[00 2 5]) - ()

This is strictly less than ¢, and thus by contradiction, the optimizer must have priced at or
above § with frequency at least 3.

3 By construction, p* is in the set of prices available to the seller

ITCS 2025

10:18

Algorithmic Collusion Without Threats

Given this, one fixed action that the learner could have taken is to price at 5. Then,

UL(A9, A,) >

By the no-regret guarantee of the learner, therefore, we have that U;(A""7, A,) >

T o(T) = Qu(T). <

We can now combine these results, to show that, if the learner deploys any no-regret
algorithm in the Bertrand model and the optimizer responds via any strategy which gets
them payoff at least that of static random pricing, then prices are supra-competitive and
both the learner and the optimizer get a constant fraction of the profits.

» Theorem 32. In a Bertrand repeated game, for any no-regret learner algorithm A}
and any optimizer algorithm A, such that

Uo(A", Ap) > Up (A7, A7), (5)
where A is the static uniformly random algorithm, we have

Uo(A;7, Ao) = i (T)) (6)

Un(A", Ao) = Qe (T) (7)
Further, the average price is Q. (1).

Proof. By Lemma 30, the optimizer gets payoff at least Q;(1) - T against any no-regret
algorithm by playing static random pricing. Therefore, the optimizer’s payoff utilizing any
strategy which is better than static random pricing also gives them a payoff of at least
Qk(1) - T. Furthermore, by Theorem 31, this implies that the learner also gets a payoff of at
least (1) - T. Finally, by Observation 19, this implies that the average price is Qx(1). <«

We show an equivalent result for the more general Multinomial-logit model in the full
version of the paper. Note that despite our treatment of the problem in a sequential play
setting, neither sequential play nor commitment power is necessary for our results. In fact,
in the game where leader and optimizer pick their algorithm simultaneously, if one player
plays any no-swap regret algorithm and their opponent plays a static strategy corresponding
to the Stackelberg leader distribution of the stage game, then this forms a Nash equilibrium
in algorithm space:

» Theorem 33. There exists an o(T)-approzimate Nash Equilibrium in algorithm space
in any repeated game consisting of a no-swap regret algorithm for the leader and a static,
non-responsive algorithm for the follower.

Proof. In particular, such an equilibrium exists between any algorithm with total swap regret
r(T) = o(T) and the static algorithm which plays (something very close to) the Stackelberg
leader strategy of the stage game each round. To show that this is true, we will show that

each is an LTT)—approximate best response to the other.

E. R. Arunachaleswaran, N. Collina, S. Kannan, A. Roth, and J. Ziani

First, we will show that a particular distribution (which is e-close to the Stackelberg
leader strategy of the stage game) is near-optimal against any No-Swap Regret algorithm
(NSR) when played on every round. By Lemma 23, there exists a distribution D’ such that
[|D — D'||oc < e, where D is the static Stackelberg leader strategy and D’ is a o(T)-best
response to any algorithm with sublinear swap regret (7).

It remains to show that NSR is optimal against this distribution. However, NSR is
optimal against any static distribution played on every round. The best response against any
algorithm playing a static distribution is to play (one of) the best-response action(s) each
day. Therefore, the gap between the average payoff of the optimal response and the average
payoff attained by the NSR algorithm is bounded by the average external regret of the NSR,
algorithm, which is at most r(T") = o(T). <

Here, notably, both players are “succeeding in optimizing” since they are playing best
responses in algorithm space against one another, neither is using an algorithm which encodes
threats, and yet the outcome is near monopoly prices.

5 Numerical Investigation of Constants

We showed in Lemma 30 that the optimizer can get a payoff of Q;(7") against any no-regret
learner, just by playing the uniform distribution over their prices. An implication is that
they would do at least as well with their optimal static strategy, which was enough for our
results which are stated in asymptotic notation. While we did not get attractive constants via
this simple approach, we numerically verified that the optimal static optimizer distribution
against a no-regret algorithm, which is the Stackelberg leader strategy for a number of values
of k, results in average prices of more than % (in fact approximately %) [12] give an
efficient algorithm for computing the Stackelberg equilibrium of a two player game, which
we use to numerically compute the Stackelberg leader strategy as well as the payoff of the
Stackelberg leader, which will approximately (up to subconstant in 7" additive error) be the
average payoff of the optimizer repeatedly playing the Stackelberg leader strategy (using
Lemma 29). Our numerical results show that the Stackelberg value of the leader (as well as
the follower) is approximately % for a range of values of k in Figure la. By Observation 19,
if the follower optimizes over the space of static strategies, the average price for the buyer
will be % > % We note that while our experiments show these prices are achievable
by non-responsive optimizers for all values of k from 1 to 200, it remains interesting future
work to prove that this holds for all k. Finding a closed form analytical expression for the
Stackelberg leader strategy of the stage game is an open problem and would likely help in
proving the conjecture for all k.

We also show the Stackelberg strategy for £ = 100 in Figure 1b. Our numeric results also
indicate that every price between 36/100 to 98/100 is (tied for being) a best response for the
follower given the optimal leader commitment?.

The code for these experiments can be found at Code Repository.

4 In the Stackelberg Equilibrium problem, the follower typically tie-breaks in favor of the leader, in our
application the optimizer adds some infinitesimal extra probability mass on price 99/100 to ensure that
no-regret learner learns a unique best-response of 98/100 (which is the best outcome for the optimizer).

10:19

ITCS 2025

https://github.com/eshwarram/Non_Myopic_Pricing.git

10:20

Algorithmic Collusion Without Threats

Plot of Leader and Follower Payoffs with (k-1)/(ek) Curve Plot of Leader Stackelberg strategy

—®— Leader payoffs —— Stackelberg strategy

o
_«_ﬁ__?\: s
X
b
o
&

i

i

T

|

|

i

: MWW
00 o 0.00

0 25 50 7 100 125 150 175 0 20 40 60 80 100
Discretization Parameter k Index of Prices

(a) Stackelberg Leader/Follower Payoffs for vary- (b) Stackelberg Leader Strategy for k& = 100.
ing k.

6 Discussion and Conclusion

Defining anti-competitive behavior is delicate. Monopoly like prices can arise in a number of
scenarios: a failure to optimize (if e.g. players are simply not best responding to one another)
as well as through collusion (which has been interpreted as requiring explicit threats when
speaking of algorithmic collusion [8, 16]). Past work [17, 10] have proposed no-swap-regret
algorithms as reasonable competitive algorithms in pricing scenarios, on the basis that they
converge to competitive prices when both parties use them, and they seem both to successfully
optimize and not to encode threats.

Our results complicate this picture. We show that if the first entrant into a market
deploys a pricing algorithm with the no-swap-regret guarantee, then this very strongly
incentivizes the next entrant to deploy an algorithm that will lead to supra-competitive
prices. In fact, anything the second entrant does that obtains them profit at least that of
a random pricing strategy will inevitably lead to supra-competitive prices. Moreover, this
will not be at the expense of the first entrant — the no(-swap) regret learner will also enjoy
supra-competitive revenue. And the algorithm of the second entrant can be entirely static
and non-responsive, and therefore unable to encode threats. In fact, this phenomenon does
not hinge on the sequential nature of play that we focus on and does not hinge on either
player having commitment power. As we show, there is a Nash equilibrium of the game — in
algorithm space — maintaining supra-competitive prices, which involves one player playing a
no swap regret algorithm and the other playing a static pricing distribution. Both players are
best responding to one another in the space of all pricing algorithms (without any restriction)
and so neither player is failing to optimize — but neither are either of the players deploying
threats. We suggest that this might require a reconsideration of what constitutes algorithmic
collusion.

—— References

1 Ibrahim Abada and Xavier Lambin. Artificial intelligence: Can seemingly collusive outcomes be
avoided? FEnergy Engineering (Energy) eJournal, 2020. URL: https://api.semanticscholar.
org/CorpusID:219341239.

2 Ibrahim Abada, Xavier Lambin, and Nikolay Tchakarov. Collusion by mistake: Does al-
gorithmic sophistication drive supra-competitive profits? FEuropean Journal of Operational
Research, 318(3):927-953, 2024. doi:10.1016/j.ejor.2024.06.006.

3 Eshwar Ram Arunachaleswaran, Natalie Collina, Sampath Kannan, Aaron Roth, and Juba
Ziani. Algorithmic collusion without threats, 2024. doi:10.48550/arXiv.2409.03956.

https://api.semanticscholar.org/CorpusID:219341239
https://api.semanticscholar.org/CorpusID:219341239
https://doi.org/10.1016/j.ejor.2024.06.006
https://doi.org/10.48550/arXiv.2409.03956

E. R. Arunachaleswaran, N. Collina, S. Kannan, A. Roth, and J. Ziani

10

11

12

13

14

15

16

17

18

19

20
21

22

23

24

Stephanie Assad, Robert Clark, Daniel Ershov, and Lei Xu. Algorithmic pricing and com-
petition: Empirical evidence from the german retail gasoline market. Journal of Political
Economy, 132(3):723-771, 2024. doi:10.1086/726906.

Martino Banchio and Giacomo Mantegazza. Artificial intelligence and spontaneous collusion,
2023. arXiv:2202.05946.

Jean-Pierre Benoit, Vijay Krishna, et al. Finitely repeated games, 1984.

Mark Braverman, Jieming Mao, Jon Schneider, and Matt Weinberg. Selling to a no-regret
buyer. In Proceedings of the 2018 ACM Conference on Economics and Computation, pages
523-538, 2018.

Emilio Calvano, Giacomo Calzolari, Vincenzo Denicold, and Sergio Pastorello. Artificial
intelligence, algorithmic pricing, and collusion. American Economic Review, 110(10):3267—
3297, 2020. doi:10.1257/aer.20190623.

Nicolo Cesa-Bianchi and Gébor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Sylvain Chassang and Juan Ortner. Regulating collusion. Annual Review of Economics,
15(Volume 15, 2023):177-204, 2023. doi:10.1146/annurev-economics-051520-021936.
Natalie Collina, Eshwar Ram Arunachaleswaran, and Michael Kearns. Efficient stackelberg
strategies for finitely repeated games. In Proceedings of the 2023 International Conference
on Autonomous Agents and Multiagent Systems, pages 643-651, 2023. doi:10.5555/3545946.
3598695.

Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit to.
In Proceedings of the 7Tth ACM conference on Electronic commerce, pages 82—90, 2006. doi:
10.1145/1134707.1134717.

Yuan Deng, Jon Schneider, and Balasubramanian Sivan. Strategizing against no-regret learners.
Advances in neural information processing systems, 32, 2019.

Sara Fish, Yannai A. Gonczarowski, and Ran I. Shorrer. Algorithmic collusion by large
language models, 2024. doi:10.48550/arXiv.2404.00806.

Karsten T Hansen, Kanishka Misra, and Mallesh M Pai. Frontiers: Algorithmic collusion:
Supra-competitive prices via independent algorithms. Marketing Science, 40(1):1-12, 2021.
doi:10.1287/MKSC.2020.1276.

Joseph E Harrington. Developing competition law for collusion by autonomous artificial agents.
Journal of Competition Law & Economics, 14(3):331-363, 2018.

Jason D. Hartline, Sheng Long, and Chenhao Zhang. Regulation of algorithmic collusion. In
Proceedings of the Symposium on Computer Science and Law, CSLAW ’24, pages 98108, New
York, NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3614407.3643706.
Timo Klein. Autonomous algorithmic collusion: Q-learning under sequential pricing. The
RAND Journal of Economics, 52(3):538-558, 2021. doi:10.1111/1756-2171.12383.

Yoav Kolumbus and Noam Nisan. Auctions between regret-minimizing agents. In Proceedings
of the ACM Web Conference 2022, WWW ’22, pages 100-111. ACM, April 2022. doi:
10.1145/3485447.3512055.

Rohit Lamba and Sergey Zhuk. Pricing with algorithms, 2022. arXiv:2205.04661.

Ryan Y. Lin, Siddhartha Ojha, Kevin Cai, and Maxwell F. Chen. Strategic collusion of llm
agents: Market division in multi-commodity competitions, 2024. doi:10.48550/arXiv.2410.
00031.

Michael L Littman and Peter Stone. A polynomial-time nash equilibrium algorithm for
repeated games. In Proceedings of the 4th ACM Conference on Electronic Commerce, pages
48-54, 2003. doi:10.1145/779928.779935.

Uri Nadav and Georgios Piliouras. No regret learning in oligopolies: Cournot vs. bertrand.
In International Symposium on Algorithmic Game Theory, pages 300-311. Springer, 2010.
doi:10.1007/978-3-642-16170-4_26.

Denis Nekipelov, Vasilis Syrgkanis, and Eva Tardos. Econometrics for learning agents. In
Proceedings of the sizteenth acm conference on economics and computation, pages 1-18, 2015.

10:21

ITCS 2025

https://doi.org/10.1086/726906
https://arxiv.org/abs/2202.05946
https://doi.org/10.1257/aer.20190623
https://doi.org/10.1146/annurev-economics-051520-021936
https://doi.org/10.5555/3545946.3598695
https://doi.org/10.5555/3545946.3598695
https://doi.org/10.1145/1134707.1134717
https://doi.org/10.1145/1134707.1134717
https://doi.org/10.48550/arXiv.2404.00806
https://doi.org/10.1287/MKSC.2020.1276
https://doi.org/10.1145/3614407.3643706
https://doi.org/10.1111/1756-2171.12383
https://doi.org/10.1145/3485447.3512055
https://doi.org/10.1145/3485447.3512055
https://arxiv.org/abs/2205.04661
https://doi.org/10.48550/arXiv.2410.00031
https://doi.org/10.48550/arXiv.2410.00031
https://doi.org/10.1145/779928.779935
https://doi.org/10.1007/978-3-642-16170-4_26

	1 Introduction
	1.1 Related Work

	2 Model
	2.1 The Single-Stage Pricing Game
	2.1.1 Competition Models

	2.2 The Repeated Pricing Game

	3 Online Learning Preliminaries
	4 Results in the Bertrand Model
	4.1 Equilibria of the Stage Game
	4.2 Results for the Repeated Bertrand Game
	4.2.1 Committing to No-Regret Algorithms Induces Supra-Competitive Prices

	5 Numerical Investigation of Constants
	6 Discussion and Conclusion

