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ABSTRACT

Theory and observations reveal that the circumgalactic medium (CGM) and the cosmic web at high redshifts are multiphase, with
small clouds of cold gas embedded in a hot, diffuse medium. We study the ‘shattering’ of large, thermally unstable clouds into
tiny cloudlets of size Cgyaer ~ min(csteoo1) Using idealized numerical simulations. We expand upon previous works by exploring
the effects of cloud geometry (spheres, streams, and sheets), metallicity, and an ionizing ultraviolet background. We find that
‘shattering’ is mainly triggered by clouds losing sonic contact and rapidly imploding, leading to a reflected shock that causes
the cloud to re-expand and induces Richtmyer—Meshkov instabilities at its interface. The fragmented cloudlets experience a
drag force from the surrounding hot gas, leading to recoagulation into larger clouds. We distinguish between ‘fast’ and ‘slow’
coagulation regimes. Sheets are always in the ‘fast’ coagulation regime, while streams and spheres transition to ‘slow’ coagulation
above a critical overdensity, which is smallest for spheres. Surprisingly, £snaer dOes not appear to be a characteristic clump size
even if it is well resolved. Rather, fragmentation continues until the grid scale with a mass distribution of N(> m) oc m~!. We
apply our results to cold streams feeding massive (M, X 10'> M) galaxies at z < 2 from the cosmic web, finding that streams
likely shatter upon entering the hot CGM through the virial shock. This could explain the large clumping factors and covering
fractions of cold gas around such galaxies, and may be related to galaxy quenching by preventing cold streams from reaching

the central galaxy.
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1 INTRODUCTION

Only a small fraction of the Universe’s baryons are found in galaxies,
including both stars and interstellar gas (e.g. Peeples et al. 2014;
Tumlinson, Peeples & Werk 2017; Wechsler & Tinker 2018). The
majority of baryons, and also the majority of metals, reside in the
circumgalactic medium (CGM, gas outside galaxies but within dark
matter, DM haloes), and the intergalactic medium (IGM, gas outside
DM haloes). Besides their importance for the cosmic baryon budget,
the physical properties and chemical composition of the C/IGM offer
valuable insight into galaxy evolution, since they supply galaxies
with fresh gas and also act as a reservoir for their ejected, enriched gas
(the cosmic baryon cycle, e.g. Putman, Peek & Joung 2012; McQuinn
2016; Tumlinson et al. 2017). Moreover, the distribution of neutral
hydrogen (H1) in the high-z IGM can be used to constrain cosmic
reionization, structure formation, and the nature of DM through the
Lyman-« (Lya) forest (e.g. Rauch 1998; Viel et al. 2013; Lidz &
Malloy 2014; McQuinn 2016; Eilers, Davies & Hennawi 2018).
Gas in the C/IGM is highly diffuse and difficult to directly observe.
It has traditionally been traced using absorption line spectroscopy
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along lines of sight to distant quasi-stellar objects (QSOs) or galaxies
(e.g. Bergeron 1986; Hennawi et al. 2006; Steidel et al. 2010;
Lehner et al. 2022). In recent years, the advent of new integral
field unit spectographs such as Keck Cosmic Web Imager (KCWI)
on Keck and Multi Unit Spectroscopic Explorer (MUSE) on the
Very Large Telescope (VLT) have enabled emission-line studies
of the CGM and IGM around galaxies at z < 3 (Steidel et al.
2000; Cantalupo et al. 2014; Martin et al. 2014a, b; Umehata
et al. 2019). Both emission- and absorption-line studies reveal that
the gas in and around galaxy haloes has a complex multiphase
structure (Tumlinson et al. 2017). Surprisingly, large amounts of
cold (~ 10*K) gas have been observed in the outskirts of galaxy
haloes, which cannot be in hydrostatic equilibrium with the halo
gravitational potential. During cosmic noon, at z ~ (2 — 6) near the
peak of cosmic galaxy formation, this cold gas is inferred to be
denser than the ambient hot gas within which it is embedded by a
factor x = p./pn ~ 10> — 103, and to be composed of tiny clouds
with sizes of I ~ Ny/ng < 50 pc (Cantalupo et al. 2014; Hennawi
et al. 2015; Borisova et al. 2016). The cold gas has order unity area
covering fractions, fc ~ O(1), and mass fractions with respect to
the hot CGM mass, fym ~ Mcola/ Mot ~ O(1) (Pezzulli & Cantalupo
2019). However, its volume filling factor is tiny, fyv ~ fu/x ~ 1073,
making it extremely clumpy (Cantalupo et al. 2019) and its apparent
abundance difficult to explain (Faucher-Giguere & Oh 2023).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

Gz0z Iudy || uo3senb Aq | 16926//£50E/E/9EG/R101E/SEIUW/WOD ANO"DdIWSPEDE//:SARY WO} PEPEOJUMO(


http://orcid.org/0000-0003-1604-1272
http://orcid.org/0000-0001-8057-5880
http://orcid.org/0000-0002-2153-6096
mailto:zhiyuan.yao@mail.huji.ac.il
mailto:nir.mandelker@mail.huji.ac.il
https://creativecommons.org/licenses/by/4.0/

3054 Z. Yao et al.

Recent theoretical advances have shed new light on these issues.
A major new insight (McCourt et al. 2018) is that when the cooling
time of a gas cloud is much less than its sound crossing time such
that it cannot cool isobarically, it does not cool isochorically as had
been presumed (Field 1965; Burkert & Lin 2000). Rather, the cloud
‘shatters’ into many small fragments that lose sonic contact, causing
them to contract independently and subsequently disperse, similar
to a terrestrial fog (McCourt et al. 2018; Gronke & Oh 2020b).
The typical size of the resulting cloudlets is expected to be of order
the minimal cooling length, £gaer ~ Min(csteoo1), With ¢ and feoo)
the sound speed and cooling time, and the minimal value obtained
at T ~ 10*K. For typical CGM conditions at z ~ (2 — 3), this is
X 10pc, consistent with inferred cloud sizes. This would explain
the vastly different area covering and volume filling factors, since
for N droplets of size / dispersed throughout a system of size R,
fc/ fv ~ R/l > 1 (Faucher-Giguere & Oh 2023). A ‘fog’ can also
explain a host of additional observations in the CGM, high velocity
clouds, quasar broad-line regions, and the interstellar medium (ISM,
Gronke et al. 2017; McCourt et al. 2018; Stanimirovi¢ & Zweibel
2018; Faucher-Giguere & Oh 2023; Sameer et al. 2024).

Despite the many appealing features of the shattering model,
numerous puzzles remain. It is unclear under what conditions a large
cooling cloud will shatter, with some suggesting this depends on the
final overdensity between the cold and hot gas (Gronke & Oh 2020b)
and others that it depends on the thermal stability conditions in the
initial cloud (Waters & Proga 2019a; Das, Choudhury & Sharma
2021). Even when clouds do shatter in 3D simulations, they do not
appear to do so hierarchically as was initially proposed by McCourt
et al. (2018). Rather, if the initial cloud is large (r¢ 3> Cshater) and
highly non-linear (§p/p > 1) when it loses sonic contact it initially
cools isochorically, then becomes strongly compressed by its sur-
roundings until its central pressure overshoots, and finally it explodes
into many small fragments (Gronke & Oh 2020b). This process is
sometimes referred to as ‘splattering” (Waters & Proga 2019a, 2023),
and seems to be due to vorticity generated by Richtmyer—Meshkov
instabilities (RMI; Richtmyer 1960; Meshkov 1969; Zhou 2017a, b),
which explains why it is not seen in 1D simulations (Waters & Proga
2019a; Das et al. 2021). Additional fragmentation mechanisms have
been proposed, such as shredding by collisions with larger fragments
(Jennings & Li 2021), or rapid rotation of clumps (‘splintering’;
Farber & Gronke 2023). We will hereafter use the term ‘thermal
fragmentation’ to refer to the general process of cold-gas fragmenta-
tion into numerous small clouds, as the process may be very different
than that originally proposed by McCourt et al. (2018).

Even if a cloud initially fragments, the resulting cloudlets may
recoagulate to form larger clouds. Gronke & Oh (2020b) found that
a cloud remained fragmented if its final overdensity

Xt = Ps.t/ Pog. (D

where psyfl is the cloud density at the temperature floor and ppg is
the background density, was above a critical value of xf i ~ 300
with a weak dependence on cloud size of (r¢;/£ghater)'/®. The origin of
this threshold remains unclear. Several coagulation mechanisms have
been discussed in the literature (see summary in Faucher-Giguere &
Oh 2023). These include direct collisions, similar to dust grain growth
in protoplanetary discs, and coagulation due to the advective flow
generated by hot gas condensing onto a cold cloud. In the latter,
the inflow velocity can be set by thermal conduction (or numerical
diffusion; Elphick, Regev & Spiegel 1991; Elphick, Regev & Shaviv

IThe subscript’s’ refers to’spheres’,’streams’, or’sheets’.
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1992; Koyama & Inutsuka 2004; Waters & Proga 2019b) or, more
relevant for our purposes, by the so-called mixing velocities through
turbulent mixing layers (Gronke & Oh 2023). Of particular interest
is that in the case of turbulent mixing layers, the coagulation can
be modelled as an effective force between two clouds, which scales
as r ", with r the distance between the clouds and n =2, 1, or 0
for clouds in 3, 2, or 1 dimensions, similar to the gravitational force
(Gronke & Oh 2023).

Studying this process in a cosmological context is extremely chal-
lenging, since even in the most advanced cosmological simulations
employing novel methods to enhance the resolution in the CGM
(Hummels et al. 2019; Peeples et al. 2019; Suresh et al. 2019;
van de Voort et al. 2019) or the IGM (Mandelker et al. 2019b,
2021), cell sizes are still significantly larger than £gayer. AS a result,
the amount and extent of cold, dense, low-ionization gas in the
CGM increases with resolution and is not converged. Furthermore,
different simulations disagree on the magnitude of the effect of
enhanced CGM refinement, at least in part due to the different subgrid
models employed for galaxy formation physics, such as stellar and
active galactic nucleus (AGN) feedback, galactic winds, and gas
photoheating and photoionization. This has obscured the details of
why higher resolution leads to more cold gas in the CGM, where this
cold gas comes from, and what a meaningful convergence criterion
for the formation of multiphase gas might be. Numerically, it seems
that the formation of multiphase gas requires resolving the cooling
length at T ~ 10°K where isochoric cooling modes are stable (Das
et al. 2021; Mandelker et al. 2021), though it is unclear how generic
this is and other convergence criteria have been proposed (Hummels
et al. 2019; Gronke et al. 2022).

For these reasons, thermal fragmentation and coagulation are
most commonly studied using idealized simulations and numerical
models. In the vast majority of cases, such models assume a spherical
or quasi-spherical cloud or distribution of clouds. However, many
systems in the C/IGM where these processes are important are
filamentary (cylindrical) or planar in nature. Modern cosmological
simulations reveal strong accretion shocks around intergalactic fila-
ments (Ramsgy et al. 2021; Lu et al. 2024) and sheets (Mandelker
etal. 2019b, 2021) that make up the ‘cosmic web’ of matter on Mpc-
scales, similar to virial accretion shocks around massive DM haloes
(Rees & Ostriker 1977; White & Rees 1978; Birnboim & Dekel 2003;
Stern et al. 2021). The post-shock gas in the high-z cosmic web can
fragment (Mandelker et al. 2019b, 2021; Lu et al. 2024), with the
resulting cold cloudlets in intergalactic sheets potentially explaining
observations of extremely metal-poor Lyman-limit systems (e.g.
Robert et al. 2019; Lehner et al. 2022). The small-scale structure of
cosmic filaments and sheets have additional important consequences
for a wide variety of issues, including how gas is accreted onto DM
haloes, interpretations of Ly« forest statistics, measured dispersions
of Fast radio bursts (FRBs), radiative transfer and the self-shielding
of photoionized gas, and the overall cosmic census of baryons (see
discussion in Mandelker et al. 2021). On smaller scales, gas accretion
onto massive galaxies at high-z is thought to be dominated by cold
streams flowing along cosmic-web filaments, which penetrate the
halo virial shock and flow freely towards the central galaxy (e.g.
Dekel & Birnboim 2006; Dekel et al. 2009). The interaction of these
cold streams with the hot CGM can lead to fragmentation and the
formation of small-scale cold clouds (Mandelker et al. 2020a; Lu
et al. 2024). Finally, filamentary structures are expected around both
inflowing and outflowing gas clouds in the CGM due to cloud-wind
interactions (e.g. Banda-Barragan et al. 2016, 2019; Gronke & Oh
2018; Li et al. 2020; Sparre, Pfrommer & Ehlert 2020; Gronke & Oh
2020a; Tan, Oh & Gronke 2023; Tan & Fielding 2024).
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An additional complication arises due to the metallicity of the gas,
which affects the cooling rates and therefore £ er and the resulting
cloud sizes, as well as the strength of coagulation forces. While
most studies in the literature assume solar metallicity gas (though
see Das et al. 2021), gas in the high-z cosmic web is expected
to have much lower metallicity, Z ~ (107* — 0.1)Z, (Mandelker
etal. 2021). Similarly, the presence of a ultraviolet (UV) background
(UVB) is typically not included in studies of thermal fragmentation
although it too can influence cooling rates and cloud sizes.

In this paper, we explore the effects of geometry and metallicity
on thermal fragmentation and coagulation using idealized 3D sim-
ulations of spherical clouds, cylindrical filaments, and planar sheets
with metallicity values in the range (0.03 — 1.0)Z. In Section 2, we
introduce our numerical tools and simulation methods. In Section 3,
we compare the evolution of fragmentation and coagulation pro-
cesses among planar, cylindrical, and spherical geometries at solar
metallicity. In Section 4, we extend the cylindrical geometry to lower
metallicity and include a UVB. In Section 5, we discuss the size
distribution of cloudlets formed through thermal fragmentation. We
present a model for the coagulation criteria in both streams and
spheres in Section 6, and tentatively apply this to the case of cold
streams penetrating the halo virial shock in Section 7. In Section 8, we
address caveats caused by additional physical processes not included
in our analysis, before concluding in Section 9.

2 NUMERICAL METHODS

In this section, we describe the details of our simulation setup.

2.1 Simulation code

We use Eulerian adaptive mesh refinement (AMR) code RAMSES?
(Teyssier 2002) to perform 3D idealized numerical simulations. We
adopt the multidimensional MonCen limiter (van Leer 1977) for the
piecewise linear reconstruction, the Harten—Lax—van Leer—Contact
(HLLC) approximate Riemann hydro solver (Toro, Spruce & Speares
1994) for calculating fluxes at cell interfaces, and the Monotone
Upstream-centered Schemes for Conservation Laws (MUSCL)-
Hanchock scheme (van Leer 1984) for the Godunov integrator. The
adiabatic index is y = 5/3, and the Courant factor is 0.6.

2.2 Radiative cooling

We utilize the standard RAMSES cooling module, which accounts
for atomic and fine-structure cooling for our assumed metallicity
values. When comparing the three geometries in Section 3, we
assume solar metallicity for both cold and hot phases and set a
temperature floor at Tjoor = 1.68 X 10* K. When focusing on cold
streams in Section 4, we follow Mandelker et al. (2020a) and
assume metallicity values of Z,, = 0.1 Z, for the background CGM
and Z; = 0.03 Z for the streams, and include photoheating and
photoionization from a z = 2 (Haardt & Madau 1996) UVB. At our
assumed densities, the equilibrium temperature between the radiative
cooling and the UV heating is roughly at Ty, Which we adopt in
Section 3. In all cases, we shut-off cooling above 0.8 Ty, to prevent
the cooling of background (e.g. Gronke & Oh 2018; Mandelker
et al. 2020a).

2Git commit hash: ebcb676
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2.3 Clump finder

To quantify the degree of cold-gas fragmentation, we utilize the
built-in RAMSES clump finder module PHEW (Bleuler et al. 2015),
which is a parallel segmentation algorithm for 3D AMR data sets. It
detects connected regions above a certain density threshold based on
a ‘watershed’ segmentation of the computational volume into dense
regions, followed by a merging of the segmented patches based
on the saddle point density. Basically, each clump is centred on a
local density peak (whose density is above the density threshold)
and includes all surrounding gas with densities above both the
density threshold and any local saddle points or density minima.
Two neighbouring peaks separated by a saddle point whose density
is above the secondary saddle density threshold are then ‘merged’
into a single clump. If the saddle density is below this secondary
threshold, the two peaks represent two distinct clumps. We choose
the clump density threshold to be the initial density of warm gas
(see Section 2.5 below), while the saddle density threshold is the
geometric mean of the initial warm gas density and the final cold-gas
density.

2.4 Grid structure and boundary conditions

The coordinates can be generalized by (x;, x7, x3), which represents
(x,5,2), (r,¢,z), and (r,0, ¢) in sheets, streams, and spheres,
respectively. The sheets are aligned with the yz plane, while the
stream axis is aligned with the z-axis. Sheets are initially confined to
the region |x| < ry;, while streams and spheres are initially confined
tor < rg;. Here, ry; represents the initial sheet half-thickness, cylin-
drical radius, and spherical radius for the three different geometries,
with cold gas always occupying the region |x;| < 7.

The simulation region is a cubic box with size L = 32r;. We
use a statically refined mesh with higher resolution around the
cold gas. In our fiducial setup, the maximal refinement level is 10
corresponding to a minimal cell size A = L/1024 = r,;/32 valid
in the region |x;| < 3rs;. The cell size increases by a factor of
2 at |x;| =[3,6,9, 12]ry;, reaching a maximal value of ry;/2 at
|x1] > 12r;. Our fiducial grid structure for stream geometry is
illustrated in Fig. 1.

We adopt outflow conditions for all boundaries, such that the
gradients of all hydrodynamic variables are set to zero. We note
that while periodic boundary conditions along the stream axis and
within the plane of the sheet would have been preferable to model
the idealized cases of infinitely long streams and sheets, for technical
reasons to do with our clump finder we were forced to adopt the same
boundary conditions on all six boundaries. We opted to implement
outflow boundary conditions everywhere as these are necessary to
allow correct entrainment flows to develop perpendicular to the sheet
plane and the stream axis, which are necessary for properly modelling
coagulation. While this has no impact on our analysis of spheres, we
find that streams contract along their axis and sheets within the plane
due to coagulation along these axes induced by entrainment flows
that develop after the initial fragmentation. To avoid any potential
effects of these boundary conditions on our analysis in streams and
sheets, we restrict our analysis of these geometries to a narrower
box, excluding gas within 10 r,; of the boundaries along the stream
axis (x3) and within the sheet plane (x2, x3). We find this narrower
box to be unaffected by this contraction over the run time of our
simulations, ~ (10 — 20)¢,., where

Iy = rs,i/cs,c (2)

MNRAS 536, 3053-3089 (2025)
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Figure 1. The grid structure for our fiducial setup in stream geometry, within
the central 16 rg; (i.e. half the box), for illustrative purposes. The smallest
cells have size A = ry;/32 within |x| < 3 ry;, and the cell size doubles at
x| =13,6,9, 12] ry ;. The initial stream configuration is depicted in blue,
overlaid on the grid.

is the sound crossing time of the initial cloud radius at the sound
speed of cold gas, ¢, ¢, with a temperature of T, ~ Tjoor <~ 10* K.

2.5 Initial conditions

We initialize the simulations with a static, warm component
(sheet/stream/sphere) of density ps; in pressure equilibrium with a
static, hot background of density ppe. The initial overdensity is thus
Xi = ps,i/ Pog- The temperature of the warm gas, T ;, is lower than
that of the hot background, T, but higher than the temperature floor
Thoor- As the warm component cools towards thermal equilibrium at
Thoor, @ pressure contrast is generated between the cold gas and the
hot background. We define n= ps,f/ps,i = (Ts,i/Ms,i)/(Tﬂoor/:us,f),
where p,¢ denotes the final density of cold gas once pressure
equilibrium has been re-established at Tjoor, and pus; and gy are
the mean molecular weight in the initial warm and final cold gas,
respectively. Consequently the final overdensity between the cold
and hot gas is xt = pst/0bg = nxi, Which is expected to be the
key parameter determining whether cold gas remains fragmented
or coagulates (Gronke & Oh 2020b). We fix p, s = 0.01 m, for all
simulations and vary x; by changing ppg.

Table 1 summarizes the parameters of the simulations analysed
throughout this work, and the sections where they are discussed.

2.6 Perturbations

We introduce density perturbations in the initial warm gas compo-
nent. In units of the initial mean density of warm gas, the density
follows a Gaussian distribution with (u, o) = (1, 0.01), truncated
at 30, similar to Gronke & Oh (2020b). We further introduce
shape perturbations at the interface between the warm and hot
components, as described below. Such interface perturbations have
been shown to suppress the carbuncle instability (Quirk 1994), which

MNRAS 536, 3053-3089 (2025)

is a numerical instability affecting strong shock fronts on the grid
scale in multidimensional simulations, by misaligning the interface
and the grid, and by generating additional vorticity and turbulence
when the shock overtakes the interface.

For the stream geometry, we adopt the same interface perturbations
as implemented in Mandelker et al. (2019a, 2020a),

Npert,str

Sr Z costkjz+mip+¢;)| . 3)

j=1

r=re; |1+
Npert,str

Here, 6r =0.1r,; is the rms amplitude of perturbations, and
k; = 2mn; where n; is an integer corresponding to a wavelength
Aj = 1/n;. We include all wavenumbers in the range n; = 16 — 64,
corresponding to wavelengths in the range from ry;/2 to 2rg;. m;
is the azimuthal mode number of the perturbation, with m =0
corresponding to axisymmetric modes, m = 1 to helical modes, and
m > 2 to high-order fluting modes (Mandelker et al. 2016, 2019a).
For each longitudinal wavenumber, 7;, we include two azimuthal
modes, m; = 0, 1. This results in a total of Nper,sr =2 x 49 = 98
modes. Each mode has a random phase, ¢; € [0, 27).
For sheets, we use analogous interface perturbations

N, pert,sht

F=rg |1+ 5r ) costex +kjy+op)| . (4
=1

pert,sht

where k, ; = 2mn, .k, j =2mn, j.ny j,andn, ; are the wavenum-
bers along the x- and y-directions, chosen from 16 to 64 with
an interval of 6, i.e. [16, 22, ..., 58, 64]. This corresponds a total
of Npershe = 9 x 9 = 81 modes, each with a random phase ¢; €
[0, 27).

For spheres, we use spherical harmonics to perturb the interface:

1 1
471_ max
r=r Ty [ PPN ACA ¢)] : Q)
pert,sph 1—=0 m—=0

where Y;" is the spherical harmonic given by

20+ 11 —m)!
dr (I +m)!

Yo, ¢) = P/"(cosf)cos(me), (6)
with P/" the associated Legendre polynomial. We choose /. = 13,
yielding Nperspn = 1/2 x 14 x 15 = 105 modes.

3 GEOMETRICAL EFFECTS ON THERMAL
FRAGMENTATION AND COAGULATION

In this section, we present our results comparing thermal fragmenta-
tion and coagulation in the three geometries at solar metallicity. We
begin in Section 3.1 by addressing the initial implosion and explosion
phases of the fragmentation process. Then, in Section 3.2, we discuss
the subsequent coagulation of the resulting cloudlets.

3.1 Cold-gas fragmentation

3.1.1 The implosion and explosion of cold gas

We begin with a detailed physical description of the implosion of the
initial cloud, triggered by a lack of pressure support due to cooling,
and the subsequent explosion triggered by a reverse shock reflected
off the cloud centre. While this process is interesting in its own right,
the main outcome relevant for our discussion of coagulation which
follows is the ‘explosion velocity’, ve, the characteristic velocity of
the cold gas once the reverse shock reaches scales of order the final
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Table 1. Summary of simulations analysed throughout this work. From left to right, we list the initial cloud geometry (sheet, stream, or sphere); the ratio of the
equilibrium cloud density to its initial density, n = ps ¢/ ps,i; the initial density contrast between the cloud and the background, x; = ps,i/pbg; the final density
contrast between the cloud and the background, xt = ps./obg = nxi; the initial cloud radius, 7y, in kpc; the cloud radius where it loses sonic contact, r*, in
kpc; the final equilibrium cloud radius, r r, in kpc; the sound crossing time of the initial cloud radius at the sound speed of cold gas, t,c = 7 i/cs,c, in Gyr; the
shattering length-scale at the initial cloud metallicity, £shater = min(cseool), in pc; the initial cloud metallicity, Zs, in solar units; the background metallicity,
Zyg, in solar units; the number of cells per initial cloud radius, rs;/A; whether or not a Haardt & Madau (1996) UVB is assumed; whether or not the end result
is a fragmented cloud; and the section where the simulation is discussed.

Geometry n Xi Xt Ts.i r* T's.f tse Lshatter Zs Zy rsi/A UVB Fragmentation Section
[kpc]  [kpc]  [kpc]  [Gyr] [pc] [Zo]l  [Zo]

Sheet 10 10 100 3 3 0.30 0.15 3.7 1.0 1.0 32 Off False 3
Sheet 10 20 200 3 3 0.30 0.15 3.7 1.0 1.0 32 Off False 3
Sheet 10 40 400 3 3 0.30 0.15 3.7 1.0 1.0 32 Off False 3
Sheet 10 60 600 3 3 0.30 0.15 3.7 1.0 1.0 32 Off False 3
Sheet 10 100 1000 3 3 0.30 0.15 3.7 1.0 1.0 32 Off False 3
Stream 10 10 100 3 3 0.95 0.15 3.7 1.0 1.0 32 Off False 3,4,6
Stream 10 20 200 3 3 0.95 0.15 3.7 1.0 1.0 32 Off True/Borderline 3,4,6
Stream 10 40 400 3 3 0.95 0.15 3.7 1.0 1.0 32 Off True 3,4,6
Stream 10 60 600 3 3 0.95 0.15 3.7 1.0 1.0 32 Off True 3,4,6
Stream 10 100 1000 3 3 0.95 0.15 3.7 1.0 1.0 32 Off True 3,4,6
Stream 5 80 400 3 3 1.34 0.15 3.7 1.0 1.0 32 Off True 6
Stream 30 10 300 3 2.66 0.55 0.15 3.7 1.0 1.0 32 Off True 6
Stream 10 10 100 30 30 9.49 1.5 3.7 1.0 1.0 32 Off False 6
Stream 40 10 400 30 30 4.74 1.5 3.7 1.0 1.0 32 Off True 6
Sphere 10 10 100 3 3 1.39 0.15 3.7 1.0 1.0 32 Off False 3,6
Sphere 10 20 200 3 3 1.39 0.15 3.7 1.0 1.0 32 Off True 3,6
Sphere 10 40 400 3 3 1.39 0.15 3.7 1.0 1.0 32 Off True 3,6
Sphere 10 60 600 3 3 1.39 0.15 3.7 1.0 1.0 32 Off True 3,6
Sphere 10 100 1000 3 3 1.39 0.15 3.7 1.0 1.0 32 Off True 3,6
Sphere 30 6 180 3 3 0.97 0.15 3.7 1.0 1.0 32 Off True 6
Sphere 30 10 300 3 3 0.97 0.15 3.7 1.0 1.0 32 Off True 6
Sphere 10 11 110 3 3 1.39 0.15 3.7 1.0 1.0 32 Off False 6
Sphere 10 12 120 3 3 1.39 0.15 3.7 1.0 1.0 32 Off True 6
Sphere 10 13 130 3 3 1.39 0.15 3.7 1.0 1.0 32 Off True 6
Sphere 10 21 210 30 30 13.92 1.5 3.7 1.0 1.0 32 Off False 6
Sphere 10 22 220 30 30 13.92 1.5 3.7 1.0 1.0 32 Off False 6
Sphere 10 23 230 30 30 13.92 1.5 3.7 1.0 1.0 32 Off True 6
Sphere 10 24 240 90 90 41.77 4.5 3.7 1.0 1.0 32 Off False 6
Sphere 10 26 260 90 90 41.77 4.5 3.7 1.0 1.0 32 Off False 6
Sphere 10 28 280 90 90 41.77 4.5 3.7 1.0 1.0 32 Off False 6
Sphere 10 30 300 90 90 41.77 4.5 3.7 1.0 1.0 32 Off True 6
Stream 10 3 30 3 2.44 0.95 0.15 293 0.03 0.1 32 On False 4,5,6
Stream 10 6 60 3 2.44 0.95 0.15 293 0.03 0.1 32 On True/Borderline 4,5,6
Stream 10 10 100 3 244 0.95 0.15 293 0.03 0.1 32 On True 4,5,6
Stream 10 40 400 3 2.44 0.95 0.15 293 0.03 0.1 32 On True 4,5,6
Stream 10 100 1000 3 2.44 0.95 0.15 293 0.03 0.1 32 On True 4,5,6
Stream 10 10 100 1 0.49 0.32 0.05 293 0.03 0.1 32 On True 5,6
Stream 10 10 100 1 0.49 0.32 0.05 293 0.03 0.1 64 On True 5
Stream 10 10 100 1 0.49 0.32 0.05 293 0.03 0.1 128 On True 5
Stream 10 6 60 30 30 9.49 1.5 293 0.03 0.1 32 On False 5,6
Stream 10 10 100 30 30 9.49 1.5 293 0.03 0.1 32 On False 5,6
Stream 10 20 200 30 30 9.49 1.5 293 0.03 0.1 32 On True 5,6
Stream 10 100 1000 30 30 9.49 1.5 293 0.03 0.1 32 On True 5,6

cloud radius. In Appendix A, we present a detailed mathematical
discussion of these processes and a derivation of v, for sheets. In 12
this section, we offer more general considerations valid for all three fe = s _ r, ( P ) ’ 8)
geometries, and demonstrate these using results from one simulation Cs “\yP
for each geometry (Fig. 2).

Consider a warm gas cloud with cooling time,

crossing time is

with P the gas pressure. Mass conservation during the collapse tells
us that g oc p~"/@*D with n = 2, 1, and 0 for spheres, streams, and

kT

& =D’ "

Teool =

with n the gas number density, k£ the Boltzmann constant, y = 5/3
the adiabatic index of the gas, and A the cooling function. The sound

sheets, respectively. Thus, fooo1 /tse ¢ p~ "+ D/C1+2) which decreases
as the density rises. A cloud for which 7.0 > #, initially will cool
isobarically, contracting, and growing denser as it cools, until it
reaches a radius r* where 7., becomes shorter than #,.. At this stage,
the cloud loses sonic contact and proceeds to cool isochorically
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Figure 2. Radial profiles during the implosion and explosion of clouds. From top to bottom, we show radial profiles of density, temperature, pressure, and radial
velocity, in simulations with r¢; = 3 kpc, n = 10, and xr = 100 (top row of Table 1). Different colour lines mark different geometries, sheets in blue, streams
in orange, and spheres in red. Black dashed and dotted lines show respectively the cold (T < 10° K) and hot (T > 105 K) components of the stream case.
The density and pressure profiles are volume-weighted while temperature and velocity are mass-averaged. The four columns represent four different stages of
evolution. From left to right, these are the initial conditions, the implosion, the shock collision and peak central pressure, and the end of the explosion phase when
pressure equilibrium is re-established and the cold-gas explosion velocity, vex, is at its peak. The time of each phase in the sphere simulation is shown in each
column in units of the cold-gas sound crossing time of the initial cloud, tsc = r5,i/cs . For streams and sheets, the time in the last two columns is shifted slightly
to correspond to the peak central pressure and peak vex, respectively. During the implosion phase, an isothermal shock propagates into the cloud more rapidly
than the CD between cold and hot gas, while a rarefaction wave propagates into the hot medium, adiabatically lowering the pressure there. The implosion shock
is faster in streams than in sheets and faster still in spheres, as are the post-shock density and velocity. The peak in central density and pressure is only ~ (2 — 3)
times greater than the equilibrium values for sheets, but 1 and 2 orders of magnitude larger than that for streams spheres, respectively. Correspondingly, the peak
explosion velocity for streams and spheres is vex ~ ¢ ¢ while it is only ~ 0.4c¢; . for sheets.
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(Burkert & Lin 2000; Gronke & Oh 2020b; Waters & Proga 2023).
From this point, the pressure within the cloud drops as it cools, driving
it further away from equilibrium with the surrounding background.
The resulting pressure gradient causes the cold gas to implode, with
an isothermal shock (due to strong cooling) propagating inwards
and a rarefaction wave outwards. This implosion decelerates and
eventually reverses when the shock nears the centre and the central
pressure becomes large compared to the background pressure,
causing the cold gas to explode outwards. Eventually, the cold
gas regains pressure equilibrium with its surroundings such that
ps,fTﬂoor/ll-s,f = )Os,iTs,i/H«s,is Or Pg.f = NPs,i (Section 25) Assuming
that most of the cold-gas mass in this final state is in a single cloud,
mass conservation yields ,osyfr: f“ = psyirs”jl, with r ¢ the final radius
of the cold cloud. We thus obtain r, s = r¢; n~"/®*D, showing that
at a given 7, the final contraction radius decreases from spheres to
streams to sheets.

If the peak central pressure is sufficiently large compared to the
background pressure (see Fig. 2, panel ¢3, discussed below), a strong
reflected shock propagates outwards from the cold to the hot gas,
and a rarefaction wave propagates inwards causing the cold gas to
expand. The post-shock cold gas is accelerated outward by the shock,
and the peak cold-gas expansion velocity occurs when the central
pressure subsides and pressure equilibrium between the cold and
hot gas has been regained. Below, we provide three explanations
for why this peak velocity, ve, is of order the cold-gas sound
speed, cg c.

We first consider energy conservation as the thermal energy after
the implosion gets converted into kinetic energy of the expanding
gas. The total internal energy after the implosion is

PV ms ik T,

E= = , 9
y =1 umy(y —1) ©

where my; is the initial mass in the cooling cloud, and 7 is the final
equilibrium cloud temperature.’> When the shock propagation time is
shorter than the cooling time of post-shock gas, we can assume that
most of this internal energy becomes the kinetic energy of cold gas,
E ~ 1/2mg;v? . We thus obtain

2 172
Vex ™~ (ﬁ) Csc ~ 1.34 ¢ . (10)
vy —

Note that once thermal and pressure equilibrium have been re-
established at the very end of the fragmentation process, the internal
energy of the cold gas is the same as it is after the implosion since the
same mass of gas is at the same temperature, 7. It would thus seem
that one cannot convert the internal energy in equation (9) to kinetic
energy. However, the peak pressure at the end of the implosion phase
initially causes the cloud to adiabatically expand, with the central
temperature dropping to as low as < 0.3 7. before rising back up
to 7. due to mixing and compression of the hot gas. This drop in
temperature seen in our simulations cannot be due to cooling, since
we do not allow cooling below 7. While energy is not conserved
throughout the implosion—explosion process due to strong cooling,
the radiative losses primarily come at the expense of the kinetic
energy of imploding gas, which declines without a corresponding
increase in thermal energy due to strong cooling keeping the cold
gas roughly isothermal during the implosion (Fig. 2, panels b2 and
b3, and Fig. 3, dashed and dot—dashed blue lines). On the other hand,

3We hereafter use 7, and Thoor interchangeably, as in our simulations the two
are nearly identical.
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Figure 3. Energy and velocity evolution of the cloud during the implosion
and explosion phases in the stream simulation with 7 ; = 3 kpc, n = 10, and
xt = 100. Dashed, dash—dotted, and solid blue lines show the thermal, kinetic,
and total energy of the cold gas (defined as T < 10° K), respectively. The
dotted blue line represents the kinetic energy of outflowing gas specifically.
The orange line represents the radial velocity of the cold-gas interface
normalized by the sound speed of cold gas (shown on the right y-axis).
The time is normalized by the cold-gas sound crossing time of the initial
stream radius, fsc = rsi/Csc, and the energy is normalized by the initial
thermal energy of the stream, E, with initial temperature Ty ~ 2 X 10° K.
After t.o01, the internal energy drops to approximately 0.1 Ey corresponding
to n = 10. It remains constant until the expansion phase, where roughly half
of it is converted to outflowing kinetic energy. Following the explosion (grey
region), the internal energy slowly increases again after the explosion velocity
peaks around c; ¢. The total energy is not conserved during the expansion due
to efficient radiative cooling in the post-reflected shock gas. However, most of
the energy loss comes from the kinetic energy of gas which is still imploding,
while the sum of the internal energy and the outflowing kinetic energy remains
roughly constant.

after the end of the implosion phase, the internal energy of post-
implosion gas is converted to kinetic energy of exploding gas (Fig.
3). It is during this adiabatic expansion phase that the cold gas is
accelerated to vex. The energy and velocity evolution of the cloud
during the first . is illustrated in Fig. 3.

An alternative way to see that the explosion velocity must be
of order the cold-gas sound speed is to consider the shock-jump
conditions. For isothermal shocks, we know that vjv, ~ Cf,m where
v; and v, are the pre- and post-shock velocities in the shock frame. v,
must be several times larger than ¢ . due to the shock speed exceeding
¢sc and the negative velocity of the still imploding pre-shock cold
gas. Thus, v, must remain small, indicating that the post-shock gas
should have a velocity close to ¢ ¢ in the lab frame.

Yet a third way to understand why vex ~ ¢ is as follows. One can
think of the contracting cloud as a spring which is compressed and
then released. Thus, from energy conservation, the explosion velocity
cannot exceed the implosion velocity (in general, it will be smaller,
because of radiative losses). The implosion velocity, or velocity of
the cloud-crushing shock v, is given by pcv: ~ 8P ~ P ~ pyc2y,
or v ~ con//X ~ s (Klein, McKee & Colella 1994). Hence, the
cold-gas velocity is a characteristic expansion velocity. In detail,
the implosion velocity is somewhat larger than we have estimated
(since the overdensity during contraction is less than p./py), and
the expansion velocity is somewhat smaller (due to radiative losses).
However, the estimate Vexpand ™~ Cs.c is TObUSL.
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All these estimates suggests that vex ~ ¢s for all geometries,
regardless of the initial conditions (see Appendix A for a detailed
derivation of v for sheet geometries).

In Fig. 2, we demonstrate the key features of the implosion and
explosion processes in each of our three geometries. From top to
bottom, we show radial profiles of density, temperature, pressure,
and radial velocity, taken from simulations with r,; = 3 kpc, n = 10,
and xy = 100 (first row of Table 1). The density and pressure
profiles are volume-weighted averages within each radial bin, while
the temperature and velocity profiles are mass-weighted. We show
the profiles at four times, from left to right these are at the initial
condition, during the implosion, at the central shock collision, and
near the end of the explosion phase when pressure equilibrium has
been re-established and the explosion velocity has reached its peak
value. Different colour lines mark the different geometries, while
black dashed and dotted lines show results for cold and hot gas
respectively (separated at T = 10° K) in stream geometry. Separating
cold and hot gas for spheres yields similar results as for streams
and is not shown, while the results for sheets are presented in
Appendix A.

Initially, the cold gas is in pressure equilibrium with the hot
background, with a density contrast of x; = 10, and the fluid velocity
is zero everywhere. Note that the density and temperature profiles
exhibit a smooth transition between the cloud and the background.
This is due to the shape perturbations we include (Section 2.6) and not
to any explicit smoothing or ramp function in the initial conditions.

The initial cloud properties yield 7. < f, so the cold gas
loses sonic contact as soon as it starts cooling, meaning r* = ry ;.
Consequently, the central pressure rapidly drops, within a cooling
time, forming a pressure gradient between the cold cloud and the hot
background. This results in an isothermal shock propagating inwards
and a rarefaction wave outwards. The shock is visible in panel (c2) of
Fig. 2 as a jump in pressure. Note that the contact discontinuity (CD),
where the gas temperature begins rising in panel (b2), is outside the
implosion shock, while cold gas both inside and outside the shock
has T ~ T.. In sheets, the implosion shock propagates inwards with a
roughly constant Mach number of ~ 2, reaching the centre in roughly
0.5t (see Appendix A). However, in streams and spheres, the Mach
number increases as the shock radius decreases due to geometrical
effects (Guderley 1942; Modelevsky & Sari 2021). The implosion
shocks thus reach the centre faster in these geometries, as can be
seen by the shock positions in panels (a2) and (c2).

This also causes the density and velocity in the post-shock region,
between the shock radius and the CD, to increase from sheets to
streams to spheres due to geometrical effects. At the CD, hot gas
mixes with cold gas through a turbulent mixing layer, causing an
entrainment flow to develop in the hot gas outside the cloud. This
is why the hot gas inflow velocity is roughly twice as large as that
of the cold gas. The mass flux of the entrainment flow, M Pnnr",
is constant, with n = 0, 1, and 2 for sheets, streams, and spheres,
respectively. Since the density in the hot gas is roughly constant
with radius (panel a2), this implies that the hot gas velocity scales as
vy o« r ", which is broadly consistent with the hot gas velocities seen
in panel (d2), which increase in magnitude from spheres to streams
to sheets. Finally, we note that the density, temperature, and pressure
in the hot gas at r > ry; all decrease during the implosion phase, due
to the outward propagating rarefaction wave.

At t < 0.5, the implosion shock reaches the cloud centre. As
this occurs, the central density and pressure reach very large values,
though the central temperature remains at 7.. We note that the boost
in central pressure and density is much larger in streams compared to
sheets, and much larger still in spheres (panels a3 and c3). Formally,
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one can show that for self-similar collapse the central pressure in
spheres and streams diverges (Guderley 1942), while it reaches a
finite value in sheets (Toro 2013, see also Appendix A). In practice,
however, the maximal pressure has a finite value due to the finite
thickness of the shock, which in our simulations is further limited by
grid resolution. The peak pressure occurs once the implosion shock
reaches the centre, while the explosion phase begins after this, once
the reflected shock reaches the cold-hot interface. In between these
two times, the inner regions are expanding while the outer regions
are still contracting. We are thus never in a situation where all the
initial cold gas is condensed into a single cell, explaining why the
peak pressure is smaller than ~ (rg i/ A)? Py = 322 P, for streams and
323 P, for spheres.

The rightmost column shows the situation once pressure equi-
librium between the hot and cold phases has been re-established,
and the outward velocity of the post-shock cold-gas, ve, has reach
its peak value. In both spheres and streams, we find vex ~ ¢ as
expected from equation (10) (panel d4). However, in sheets we find
Vex ~ 0.4 ¢, due to the relatively small peak central pressure in
sheets (~ 3 times larger than the equilibrium pressure) compared to
streams and spheres (~ 30 — 200 times larger than the equilibrium
pressure). This implies that only a small fraction of the peak internal
energy in sheets goes into kinetic energy before the system regains
pressure balance, leading to an explosion velocity smaller than cg .
At the same time, the central temperature in spheres and streams
is ~ 0.3 7, due to the adiabatic expansion phase described above,
while it is ~ T; for sheets implying no adiabatic expansion of the
cold phase (panel b4). As discussed in Appendix A2.3, this seems
to be due to some fragmentation occurring in the sheet already
during the implosion, thus decreasing the central overpressure and
strength of the collision shock. For cylinders and spheres, even
if such fragmentation occurs during the implosion, geometrical
focusing will still enhance the collision shock and the corresponding
central overpressure. We note that this result does not appear to
be an artefact of limited resolution, as we obtain the same result
for sheet simulations with cell sizes 2 and 4 times smaller (see
Appendix B1).

3.1.2 The number of clumps

As the reflected shock sweeps over density inhomogeneities at the
interface of the two phases created during the contraction, the local
density and pressure gradients become misaligned leading to RMI
which, in conjunction with radiative cooling, drives the fragmen-
tation of cold gas (see additional discussion in Section 6.1 and
Appendix A2.3). In the weak shock limit, RMI can be modelled as a
form of Rayleigh—Taylor instability in which the gravitational force
is impulsive, i.e. g ~ AvS(f — tshock), Where 8(7) is the Kronicker
delta function, fgo iS the time when the shock overtakes the
interface, and Av denotes the interface velocity jump (Zhou 2017a).
We assume Av ~ v ~ ¢ ¢, and further assume that due to density
inhomogeneities and shape perturbations throughout the cold gas and
across the interface, the effective gravitational acceleration is better
modelled as g ~ AV/fcross, Where feross ~ £/Av with £ ~ rgy, the
characteristic cloud size after cooling and contraction, and likely the
dominant perturbation wavelength. The growth time-scale of the RMI
is thus try ~ (£/€)"/? ~ rg¢/cs.c, comparable to the sound crossing
time of the collapsed cloud. However, the constant of proportionality
can deviate from unity and depends on the initial cloud geometry, as
discussed in Section 6.1. The fragmentation time-scale, over which
the number of clumps/cloudlets rapidly increases, is proportional to
trm. However, we stress that fragmentation into discrete cloudlets
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Figure 4. The number of clumps identified in simulations as a function of time, normalized by the initial sound crossing time, 7. Different colours show
different geometries, spheres (red), streams (orange), and sheets (blue). The line thickness represents the final overdensity, with thicker lines having larger x.
On the left, we show the absolute number of clumps, N, while on the right, we normalize this by the maximal possible number of clumps given the initial
cold-gas mass, Ny, to better highlight the differences in the degree of fragmentation between different geometries, which we see increases from sheets to streams
to spheres. All cases show coagulation at late times for xf = 100, with N, decreasing to 1 for spheres, a few for streams, and a few tens for sheets, due to
coagulation being suppressed along the stream axis and in the sheet plane. At larger overdensities, N. monotonically increases or saturates for spheres, while it
reaches a peak and decreases for streams and sheets, due to stronger radial coagulation in these geometries.

occurs is not expected during the linear growth of RMI, or even
in non-linear RMI for adiabatic gas. Rather, this seems to be a
consequence of non-linear RMI together with strong cooling and
the generation of vorticity due to the initial shape perturbations (see
Appendix A2.3). A deeper analysis of the detailed microphysics
behind the initial formation of the clumps is beyond the scope of
the current work, where we mostly focus on the evolution of these
cloudlets after the initial fragmentation.

The left-hand panel of Fig. 4 shows the number of clumps as
a function of time, normalized by the initial cold cloud sound
crossing time, ;. = r i /¢, . Different colour lines represent different
geometries, while the line thickness grows with increasing final
overdensity, x;. In streams and spheres, the number of clumps
peaks at N ~ 100 immediately after the simulation starts, due to a
combination of RMI and thermal instabilities during the implosion.
The number of clumps then decreases due to coagulation enhanced
by further contraction, before rapidly rising again to values of a few
10* — 10* during the explosion. In sheets, the coagulation during the
implosion is much weaker due to the lack of geometrical focusing,
so the number of clumps monotonically increases until the end of the
explosion phase. In all cases, N, stops growing rapidly by t ~ 4,
when fragmentation stops and/or coagulation begins.

While the peak number of clumps increases from spheres to
streams to sheets, this is proportional to the total amount of cold
material. To factor this out, we present in the right-hand panel of
Fig. 4 the evolution of N./Ny, where Ny = my;/mcn With mg; the
initial cold-gas mass in the analysis region (more than 10r,; from
any boundary, Section 2.4) and mq = ps tA3 the mass of a cell
at the equilibrium density of cold gas at Tyer. No thus represents
the maximal number of cold-gas clumps possible if the cold-gas
mass does not increase due to entrainment. With this normalization,
we see that the efficiency of fragmentation increases from sheets to
streams to spheres. The rate of fragmentation and clump formation
is similar in all three geometries, while the time-scale for N, to

reach its peak and saturate increases from sheets to streams to
spheres. This will be further discussed Section 3.2 in the context of
coagulation.

The number of clumps increases with y; for all geometries, though
ittends to converge at x¢ 2 600 for streams and spheres.* In spherical
geometry, the case of x; = 100 recoagulates into a single large cloud
after roughly 1017, while cases with x; > 200 remain fragmented
with N, either continuing to grow or saturating at N, ~ 3000. This
is qualitatively similar to the results found in Gronke & Oh (2020b),
only with a lower threshold in x; for sustained fragmentation. This
will be discussed further in Section 6.1. Streams exhibit qualitatively
similar behaviour, with N, decreasing to order unity for xf = 100
and remaining at large values for x; > 200. However, unlike the
spherical case, streams with x; > 200 do exhibit some coagulation,
with N, decreasing after an initial peak. This is particularly noticeable
for x; =200, which we consider a borderline case (Table 1).
Furthermore, unlike the spherical case which coagulated into a single
cloud for xf = 100, streams with y; = 100 maintain several distinct
clumps along the stream axis. The coagulation along the stream
axis is suppressed compared to the radial direction due to opposing
forces pulling clumps in either direction.’ At late times, the number
of clumps fluctuates between N, ~ (1 —4) due to centres of large
clumps along the stream axis moving in and out of our analysis
region, |z| < 67y (see Section 2.4).

4This convergence may be numerical, due to our resolution decreasing away
from the initial cloud, suppressing further fragmentation and causing clumps
to artificially disrupt once they move too far from the centre. This is discussed
further in Section 3.1.3. Regardless, it does not affect our main conclusions
regarding whether a cloud remains fragmented or recoagulates.

SThis is not true near the edges of a finite stream, which contract along the
stream axis towards the centre as described in Section 2.4
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Figure 5. Density maps in sheets. Face-on (top) and edge-on (bottom) projections at ¢+ = 10z, for sheet simulations with different overdensities, as marked.
The colour represents the maximal density along the line of sight, over the full length of the analysis region, |x| < 1671, |y, |z] < 67 ;. While significant
radial coagulation is always present, even for xf = 1000, the number of small clumps at larger radial distances increases with xr. We further see that coagulation
within the plane of the sheet is strongly suppressed relative to the radial direction, even for xf = 100 (see also Fig. C1).
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Figure 6. Density maps in streams. Edge-on (top) and face-on (bottom) projections at t = 10, for stream simulations with different overdensities, as marked.
The colour bar is the same as in Fig. 5. While some radial coagulation is always present, even for x; = 1000, both the number of small clumps and their radial
distances noticeably increase with increasing xr, especially for yr > 400. Along its axis, the stream is broken into several large clumps (see also Fig. C2).

Sheets exhibit even stronger coagulation than streams for y; >
200, with N, decreasing by more than ~ 50 per cent between its
peak and 10z, even for x; = 1000. However, similar to streams, the
coagulation is primarily in the radial direction and is suppressed in
the plane of the sheet. As a result, several tens of clumps remain at
the end of the xy = 100 simulation.

‘We show density maps at t = 107, in two orthogonal projections
and for different values of x¢, for sheets, streams, and spheres in
Figs 5, 6, and 7, respectively. For sheets and streams, the projections
correspond to face-on and edge-on, while for the spheres we simply
show two orthogonal orientations. These maps show the maximal
density along the line of sight, which highlights the small clumps
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resulting from fragmentation. Complementary to these, we show
in Figs C1-C3 the average density along the line of sight for
the same projections, which better highlights coagulation and the
geometry of large clouds. Qualitatively, one sees radial coagulation
grow stronger from spheres to streams to sheets, with the edge-
on projection revealing strong coagulation in sheets even when
xr = 1000 (bottom-right panel of Figs 5 and C1). While some
radial coagulation is always apparent in each geometry, we find
more small clumps at larger radial distances as y; increases. On
the other hand, coagulation is suppressed along the stream axis and
within the plane of the sheet even for xy = 100, where N, = 1 for
spheres, a few for streams, and a few tens for sheets. While this is
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Figure 7. Density maps in spheres. Two orthogonal projections at t = 101, for sphere simulations with different overdensities, as marked. The colour bar is
the same as in Figs 5 and 6. While some radial coagulation is always present, even for xr = 1000, both the number of small clumps and their radial distances

noticeably increase with increasing xr, especially for xy > 400 (see also Fig. C3).

hard to see in Figs 5 and 6, it becomes clear when examining Figs C1
and C2.

3.1.3 The distance of clump propagation

One of the key features of thermal fragmentation is that cold-gas
clumps get spread over an area which grows larger with time as
the cloudlets spread out and fragmentation continues, whereas if
coagulation is important the region occupied by cold gas reaches a
maximum and then begins to shrink. In Fig. 8, we show the time
evolution of dy,.x, the maximal radial distance of any clump whose
mass is at least 8 mee = 8 p. A3, where A is the minimal cell size
(valid in the region |x;| < 37y, Section 2.4) and p. is the equilibrium
density in the cold phase. We implement this threshold to reduce our
sensitivity to resolution effects by removing small clumps at the
grid scale. Using a threshold of 16 cells gives very similar results,
while taking all clumps gives qualitatively similar results. dpax is
measured as the radial distance from the centre of simulation domain
for spheres, the radial distance from the z- axis for streams, and the
vertical distance from the yz-plane for sheets, and is normalized by
the initial cloud radius, ry ;.

Initially, dimax = 0 because there is only one ‘clump’ whose centre
is at the centre of the simulation volume. However, immediately
following that we get dmax ~ 75 i for all cases, as fragmentation begins
near the initially perturbed cloud interface. dn.x then proceeds to
shrink during the implosion before rapidly rising during the explosion
phase. The growth rates during the explosion are similar for all cases,
peaking at (d/d#)dmax ~ (0.5 — 2.0)cs c ~ vex (Section 3.1.1).

For sheets with x; = 100, dax never exceeds ry ; due to very strong
coagulation. In all other cases, d,x peaks at values several times the
initial cloud radius. For sheets with x; > 200, dax peaks at ~ (2 —
3)rs; att ~ 41, and then noticeably decreases, indicative of strong
coagulation and consistent with the decline in N, seen in Fig. 4. The
same is true for streams and spheres with xy = 100. In all coagulating
cases, dyax appears to oscillate at late times, consistent with the
pulsations observed at relatively low values of x; in previous work
(Gronke & Oh 2020b, 2023). On the other hand, streams and spheres

101 L

1%
5
S 10° | Xr=100 ]
(W x=200
—— xf=400
—— %=600
= ¥r = 1000, Sheet
wee ¥ = 1000, Stream
L ‘ = ¥: = 1000, Sphere
- I L i i
107 5 10 15 20 25 30
t/tsc

Figure 8. The distance of the farthest clump as a function of time, limited
to clumps with mass at least eight times the mass of a high-resolution cell
at the equilibrium density of the cold phase, m, > 80c A3, diax represents
the distance to the central plane/line/point for sheets/streams/spheres, respec-
tively. As in Fig. 4, different colours represent different geometries, while line
thickness increases for increasing x¢. For spheres and streams with xy = 100,
and for sheets regardless of xf, dmax reaches a maximum at ~ (1 — 3) r ; after
the explosion phase and then decreases, indicative of strong coagulation.
In streams and spheres with higher overdensities, dmax continues rising or
saturates at a finite value of order ~ 107y ;.

with x¢ > 200 exhibit dy,.x values that either continue to rise or
saturate until the end of the simulation. This suggests a critical x; ~
200 for sustained fragmentation in streams and spheres, consistent
with Fig. 4. In the stream simulation with y; = 200, d,y slightly
decreases at ¢t > 101, consistent with this being more of a borderline
case as noted above. We note that the strong saturation observed
at dmax ~ 107g; is likely numerical, because the cell size at d >
9rs; grows to 8A, causing even large clumps to artificially disrupt.
However, this does not change the qualitative distinction between
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cases where d,,,x decreases due to strong coagulation and cases where
it does not.

3.2 Cold-gas coagulation

In the previous section, we saw that sheets were prone to strong
coagulation at all overdensities, while spheres and streams were
prone to coagulation for x¢ < 200. This was found to be the case
based on the number of clumps (Fig. 4), their morphology (Figs 5—
7) and their radial extent (Fig. 8). In this section, we study the
coagulation process in detail.

3.2.1 Theoretical overview

We first review the theoretical model described in Gronke & Oh
(2023), based on their analysis of quasi-spherical systems of clouds.
Consider a cold clump, hereafter clump 1, embedded in a hot gaseous
medium. Any perturbations at the interface of the cold and hot phases
will induce a turbulent mixing layer, where efficient radiative cooling
will drive an entrainment flow of hot background gas onto the clump
with velocity

el \ 2
o = Uit an
r
for radii r > r ;. Here,

Umix, 1 ~ 0-4'Cs,c([sc,1/1‘0001,c)1/4 (12)

is the entrainment velocity at the surface of the clump (Gronke & Oh
2018,2020a, 2023; Fielding et al. 2020; Sparre et al. 2020; Mandelker
et al. 2020a; Tan, Oh & Gronke 2021; see also Appendix A2.2 and
Fig. A4).

Now consider a static clump, hereafter clump 2, at a distance d
from the central clump 1. The force acting on clump 2 is

Fr1 = py = maAvy + my Ay, (13)

where Av; is the velocity of clump 2 relative to the hot background.
The first term on the right-hand side represents an effective force due
to condensation, which causes the mass of the cold cloud to increase
and thus its velocity to decrease due to momentum conservation,

Feona = 1y Avy = PhUmix,247TV621,2AU2~ 14)

The second term on the right-hand-side of equation (13) is the drag
force at fixed cloud mass which is given by

Farg = Capn AV 713 5, (15)
where Cq &~ 0.47 is the drag coefficient for a sphere. The ratio of
these two forces is thus

Fcond _ 4 Unmix,2
Fdrag Cd AUZ

(16)

Initially, clump 2 is at rest, while the hot gas moves at velocity
Upot(r = d). Over time, clump 2 becomes entrained in the flow and the
relative velocity decreases. We thus have in general Av, < v (r =
d), yielding

2 1/4 2
Fcond >ivmix,2 < d ) Ni(rcl,Z) ! ( d ) (17)
Fiag — Cd Umix,1 \Tel1 Cq \ a1 rap)

where in the final equation we have used equation (12) and the fact
that the two clouds have similar temperatures and densities, though
not necessarily similar sizes. We conclude that Fiong >> Fyrae unless

Tei/fan > 10* and d is not much larger than r ;. This is true
regardless of the details of the cooling function, and in particular
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regardless of the gas metallicity, so long as the two clumps are
initially static with respect to the background.

So long as the velocity of clump 2 with respect to clump 1 is
negligible compared to the entrainment velocity of hot gas onto
clump 1, we have Av, ~ vho. The condensation force then becomes

2 1/4
PhUnix. 1 (”cl‘z) Ad1Aa2

4 I (15

F. cond ™
Fel,1
where A, = 47r? is the cloud surface area. Neglecting the weak
dependence on the ratio r /7.1, this force is similar to gravity if
we make the analogy that G — pyv2,, /47 and m — A, with both
forces proportional to d 2. '

If the central region is occupied by a collection of similar
sized clumps each with r¢ ~ rq 1, the entrainment velocity of the
background flow towards the centre becomes

Aao(< 1)
e = A, (19)
Tr

where A oi(< 1) is the total combined surface area of all cold clouds
interior to 7, and fA(r) = Aq(< r)/47r? is the area modulation
factor. This factor can be greater or less than unity, as discussed in
Section 3.2.2. Consequently, the total force acting on a test clump 2
at a distance d from the centre of clumps is

Vhot ™ Vmix, 1

thrznix Acl,lol(< d)Acl,Z
4 d? ’
where we have approximated Umix ™~ Umix.1 ™~ Umix.2- 1he accelera-
tion of clump 2 is thus
3vﬁjifo(d)
XTel2 ’

(20)

Fy ~ puUmix2Ac12 fA(d)Vmix,1 ~

a, = Fy/mqp ~ 21
We can use this to derive a characteristic time-scale for coagulation,
analogous to the gravitational free-fall time. Assuming that the
acceleration is roughly constant, namely that fa(d) ~ const., we
have®

24\ 2% \"? (raad)'?
tcoag ~ - ~ ] . (22)
a 3 fald) Umix

We can similarly derive the coagulation force and time-scale for
stream and sheet geometries. It turns out that the only difference’ is
the factor f», which can be defined as

Aw(< d)/4md? sphere,
Awi(< d)/2nd stream, 23)
Yot(< d) sheet

fald) =

A 18 the total area of all cold clouds per unit length, proportional to
the cloud diameter, and X is the total area of cold clouds per unit
area, proportional to the number of clouds. Note the different scaling
with d in different geometries, similar to the gravitational force from
a spherical, cylindrical, and planar distribution of mass.

The above considerations, based on Gronke & Oh (2023), are valid
for a ‘test clump’ (clump 2) initially at rest with respect to the central
collection of cold clouds (clump 1). Now let us consider the case
where clump 2 is escaping the central region, while at the same time,
there is an entrainment flow of hot gas towards the centre. This is
the situation immediately after the explosion phase described in the
previous section, where fragmented clumps were escaping the central

OIf we assume instead that Acltot(< d) ~ const. during the collapse, so ay o
d=2, fcoag 18 multiplied by a factor of 77 /4 ~ 0.8 compared to equation (22).
"Note that regardless of the large-scale geometry of Ay, the test clump 2 is
always assumed to be spherical.
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Figure 9. Left: time evolution of the total surface area of cold gas within dpax, normalized to its initial value. Right: the area modulation factor, fa, as a function
of dmax. The shaded region, at dmax < 75, is not relevant to our discussion but is shown for completeness. As in previous figures, different colours represent
different geometries, while the line thickness is proportional to x¢. For coagulating cases, namely all sheets, streams with x; < 200 and spheres with x¢ = 100,
the cold-gas surface area declines towards values < Ap after an initial peak at the end of the explosion phase. For these cases, there is no explicit trend of fa
with dp,x. For streams and spheres with larger overdensities which remain fragmented, the total surface area saturates at values of (2 — 3)Ag. During this phase,

fa o d~! for streams and d~2 for spheres.

region with a velocity vex ~ ¢s . The total time-scale for the escaping
clumps to recoagulate is the sum of the deceleration time-scale, when
the interaction of the clumps and the entrainment flow causes the
clumps to decelerate and turn around, and the coagulation time-scale
from equation (22) which measures the coagulation time of static
clumps in the hot entrainment flow. The turnaround/deceleration
process can be due either to the condensation force or the drag force,
depending the ratio in equation (16). By combining equations (12)
and (16), we have

Foona 5 4 5o ( fe.2 )1/4.
Fdrag Avy teool,c
Considering . 2 /feool X Te1,2/Lshaer =, 1, and Avy ~ ¢ ¢ (see Fig. 2),
we conclude that regardless of geometry and metallicity Feong
dominates over Fg,, in the deceleration process, as well as in the
coagulation process discussed above.

The deceleration time-scale is thus determined by the condensation
time-scale, which is the time-scale for cloud growth by condensation

—1/4
~ XFel,2 ( tsc,2 ) !
1-2Cs,c teool,c

The ratio of the deceleration and coagulation time-scales is thus

tdecel ~ X fA (d)rcl,z 172
6d '

24

nmy XTel2
Tdecel ™~ fcond ™~ —— "~
my 3Umix,2

(25)

(26)
tcoag
Since t4ece1 has no explicit dependence on d while #.,,, increases with
d, we obtain that fgecel > feong at small d where fj is large (equation
23). However, if a clump finds itself at large d with small fa, then
fcoag Will dominate the remaining recoagulation time-scale even if
the clump is still in the process of decelerating.

Before significantly decelerating, clumps can reach a maximal
distance Of dmax ™~ &ECs claecel, Where vex ~ ¢ is the explosion
velocity and & ~ 0.4 or 1.0 for sheets or streams and spheres,
respectively (Section 3.1.1). The maximum value of 7., along the

clump’s orbit is reached at d = dpyyx,

1/2
~ Xtlcl,2 ( 2$Cs,c ) /
3 Umix fA (dmax)vmix
Reaching d,,x and turning around is a necessary condition for the

clump to coagulate. The question of whether the final coagulation is
efficient is determined by the ratio in equation (26),

Tdecel ~ (fA(dmax)vmix> 172 ~ (fA(dmax)) 172 ( tsc,2 ) 1/8
Tcoag, max ZECS,C 55 teool,c '

(28)

@7

lcoag,max

Neglecting the second term with the 1/8-power, we see that larger
values of fa(dmay) result in more efficient coagulation. We now turn
to quantify fa as a function of d in different geometries, to gain a
better understanding of the geometrical effects on coagulation.

3.2.2 Cold-gas area

We can crudely estimate the efficiency of coagulation by measuring
the coagulation forces on the outermost clump. To this end, we
estimate fa dmax = fa(dmax), With dmax as in Fig. 8. At early times,
when dy,ay s still small and the fragmentation process is still ongoing,
we expect A to increase with d and therefore fa to either increase
or decrease depending on the details. However, at later times, once
dmax grows beyond the central concentration of cold gas, both the
number of clumps (Fig. 4) and their radial extent (Fig. 8) are roughly
constant, consistent with the fragmentation process ending and/or
coagulation affecting the inner region. At this stage, we expect A
to be roughly constant and f oc d), withn = 0, 1, or 2 for sheets,
streams, and spheres (equation 23).

In Fig. 9, we show the total surface area of cold gas, Ai(< dmax)s
on the left, and the area modulation factor, fa, on the right. Here, Ay
refers to the total surface area of cold gas, regardless of the size of the
clumps, since this is the relevant quantity governing coagulation. To
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measure this in the simulations, we first interpolate the gas density
onto a uniform grid at the highest resolution of our refined grid using
YT (Turk et al. 2011), and then extract a 2D surface mesh from
a 3D volume using the PYTHON package scikit-image (van der Walt
etal. 2014). We extract the density isosurface corresponding to pis, =
0s.i/1.05, where the factor 1.05 is to ensure that this captures all of the
initial cloud including any density fluctuations present in the initial
conditions (Section 2.5). We then normalize A by its initial value,
Ay, which lacks an analytical form due to the shape perturbations on
the initial cloud interface. As noted in Fig. 8, d,.x = 0 at the initial
condition, and is only self-consistently defined once fragmentation
begins near the cloud interface. Therefore, Ay = A (f = 0) simply
represents the total surface area of the initial cloud, and A is only
limited by dpn,x from the second snapshot.

During the implosion phase, A, decreases rapidly for spheres
and streams due to contraction, which reduces the surface area of the
cloud. This effect is stronger for spheres than for streams because of
the different scaling of cloud area with radius. However, for sheets
A,y actually increases during the implosion phase, because the over-
all area of the central sheet is independent of its ‘radius’ (thickness),
while fragmentation increases the total cold-gas surface area.

Following the explosion phase, Ay reaches values of ~ (2 — 4)Ag

att ~ (2 — 4) t,.. In cases with strong coagulation (based on Figs 4
and 8), namely spheres with y; = 100, streams with x; < 200, and
all sheet simulations, A,y proceeds to decrease towards values of
< Ay at late times. On the other hand, in cases which show strong
fragmentation, namely spheres with xy > 200 and streams with ¢ >
400, Ay saturates following the explosion phase at values of Ay ~
(2 — 3)Ap. We note that the borderline nature of the stream simulation
with xy = 200 is particularly evident here. While a boost in the
surface area by a factor of ~ 3 may not seem like much, we recall
that without fragmentation the final equilibrium configuration has
a radius rg¢, which is ~ 10, 3, and 2 times smaller than ry; for
sheets, streams, and spheres, respectively (Table 1), yielding a final
equilibrium surface area which is ~ 1, 3, and 5 times smaller than
Ay. The actual increase in cold-gas surface area with respect to the
equilibrium configuration due to thermal fragmentation is thus a
factor of ~ 6 for streams and 10 for spheres.

The precise late-time value of A,y is somewhat sensitive to the
late-time value of d, (Fig. 8) and therefore to our threshold of
me > 8mee. Likewise, the decrease in the late-time value of Ay
with increasing x; for spheres seems to also be an artefact of our
refinement strategy which causes even large clumps to artificially
disrupt at distances of d > 9r,; thus decreasing the cold-gas surface
area. Nevertheless, there is a real qualitative distinction between Ay
saturating at ~ (2 — 3)A, for fragmenting cases, versus decreasing
to < Ay for coagulating cases.

On the right, we show fa dmax by combining Ai(< dmax) shown
on the left with equation (23). We show this as a function of dpax /75,
itself, so each point on this plot represents the situation of the
farthest clump at the corresponding time, and can be inserted into
equation (22) or (26). Note that initially, when d.x = 75 prior to
the implosion, fa amax = 1 for spheres and streams without shape
perturbations, though fa gmax = 2 for sheets with no perturbations,
because of the definition of X in equation (23) and the fact that a sheet
has two surfaces. The initial perturbations increase this value, such
that spheres and streams begin at fa amax ~ 1.6 While sheets begin
at fa.amax ~ 3.2, which is consistent with each surface adding ~ 0.6
to fa.dmax- During the implosion phase d.x decreases, while Ay
increases for sheets and decreases for streams and spheres. This leads
to fairly chaotic behaviour in the the plane of dyax/7si and fa dmax
(grey shaded region). However, the value of f, during the implosion

MNRAS 536, 3053-3089 (2025)

UVB, nulcm3], Lepatter[pc]
True, 0.01, 293 E
True, 0.01, 40
False, 0.01, 4.0
.0, False, 0.01, 3.7

, True, 0.001, 293
True, 0.001, 40

103 104 10° 108 107
temperature [K]

Figure 10. Net cooling rates as a function of temperature. We show results
for gas with metallicity Z = Zg and 0.03 Zg, with and without the z =2
(Haardt & Madau 1996) UVB. The values of €gaer for each case are written
in the legend. For cases with a UVB, solid lines represent gas with density
nyg = 0.01 cm~3, similar to the cold phase in our simulations, while dashed
lines represent gas with ny = 10~3 cm™3, similar to the initial warm gas for
our fiducial n = 10 and xf = 100. The purple line (Z = Zg, no UVB) is
relevant for the simulations analysed in Section 3, while the blue lines (Z =
0.03Z, with UVB) are relevant for the simulations analysed in Section 4.

phase is uninteresting, since the distinction between coagulation and
fragmentation is only meaningful after the explosion phase, once
dmax > Ty

For sheets, as well as for streams with y; < 200 and spheres with
xt = 100, coagulation is important and dy,.x decreases back towards
rs;i after peaking at somewhat larger values (Fig. 8). This is also
seen in the right-hand panel of Fig. 9, where the curves turn around
towards lower dp,y after first reaching values dp,x/ 75 > 1. For these
cases, while the value of f is smaller during the coagulation then
during the initial expansion, there is no clear trend of fy with d
during either phase. On the other hand, for cases which fragment,
namely spheres with y; > 200 and streams with x¢ > 400, dp,.x never
decreases (Fig. 8), while A,y is roughly constant at late times. This
results in fy oc d~! for streams and f o< d~2 for spheres (equation
23), as highlighted in the figure. Overall, fa 4max atlate times is largest
in sheets and smallest in spheres, as is the coagulation efficiency
(equation 28), as demonstrated in previous sections. We will discuss
this further in Section 6.1.

4 METALLICITY AND UVB EFFECTS ON
THERMAL FRAGMENTATION AND
COAGULATION

Our analysis in the previous section focused on solar metallicity gas
in collisional ionization equilibrium, similar to previous studies of
thermal fragmentation versus coagulation in quasi-spherical clouds
(Gronke & Oh 2020b, 2023). While solar metallicity may be
reasonable for gas in the inner CGM at z ~ 0, the metallicity in
the high-z cosmic web which is our primary focus is much lower.
This lowers the cooling rates for intermediate temperature gas in the
turbulent mixing layers between the cold clouds and hot background,
thus lowering the efficiency of phase mixing and entrainment
(Fig. 10). Moreover, intergalactic gas is affected by the ionizing UVB,
and photoionization is more important than collisional ionization
over a wide temperature range (e.g. Strawn et al. 2021; Strawn,
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Figure 11. Similar to Fig. 6, but for low-metallicity streams with a UVB (Table 1). Low-Z streams with xf = 60 exhibit fragmentation, compared to xf < 200

for solar metallicity streams without a UVB. See also Fig. C4.

Roca-Fabrega & Primack 2023). This lowers the cooling rates near
the cold phase, T % 10*K (Fig. 10). These changes to the cooling
curve affect both the shattering length-scale, £gaer, and the strength
of coagulation forces. Therefore, in this section, we revisit some of
our previous analysis focusing on low-metallicity gas exposed to a
UVB. We focus here specifically on stream geometry and in Section 7
below we apply these results to cosmic-web filaments at high-z.

As stated in Section 2, we assume metallicity values of Z,, =
0.1Z for the background and Z; = 0.03Z, for the initial stream,
and apply the ionizing UVB of Haardt & Madau (1996) at z = 2. We
do not include self-shielding of dense gas. At our fiducial densities
and metallicities, the equilibrium temperature of the cold stream is
1.68 x 10* K, which was our chosen Tjoo in the previous section.
In this section, we do not use an artificial temperature floor since
the UVB sets an effective cooling floor. Hereafter, when we refer to
simulations of low-metallicity (low-Z) streams, it is understood that
these are also exposed to a UVB, while high-metallicity (high-Z)
streams are not.

While our initial conditions are the same as in Section 3 in
terms of stream size, density, and temperature, the initial cooling
rates are much lower (Fig. 10). Therefore, unlike our simulations in
Section 3 where the streams immediately cool isochorically, in our
current simulations, the streams initially contract isobarically and
only loose sonic contact when they reach a radius of r* ~ 2.5kpc
(see Table 1). After this point, the implosion and explosion processes
occur similarly at low- and high-Z. We note that despite the weaker
radiative cooling, the explosion velocities are still roughly vex ~ ¢s.c,
and the dominant deceleration force as clumps escape outward is still
Feona (equation 24). However, the corresponding f4ece; at a fixed x is
longer for low-Z streams, due to vy,;x being smaller (equation 25).

Fig. 11 shows maps of the maximal density along the line of
sight in two orthogonal projections for low-Z streams with different
values of xy, similar to Fig. 6. Complementary to this, we show
in Fig. C4, the average density along the line of sight in the same
projections. These simulations exhibit sustained fragmentation at
x¢ ~ 60, in contrast to xf < 200 at solar metallicity with no UVB,
with x; = 60 at low-Z being similarly borderline to x; = 200 at
high-Z. This is further demonstrated in Fig. 12, which shows the
number of clumps, N, on the left and the maximal clump distance,

dmax, on the right for different x; values. Solid lines show results for
low-Z streams, while dashed lines show the same high-Z simulations
as Figs 4 and 8. Note that the low-Z runs extend to lower x; values.
In general, the explosion phase and subsequent rapid rise of both N,
and dp, takes ~ 21, longer for the low-Z streams because of the
longer cooling times and the initial phase of isobaric cooling. We
find a lower xr i for fragmentation in these simulations, with the
x¢ = 60 run demonstrating weak to no coagulation, and the x¢ = 100
run displaying strong fragmentation. We will discuss this further in
Section 6.1.

The shattering length-scale in the low-Z runs is ~ 80 times larger
than in the high-Z runs, as is the cooling time near the cold phase.
From equation (25), we thus expect low-Z clumps to propagate
to distances ~ 3 times greater than high-Z clumps. This is indeed
the case for y; = 100, as can be seen by comparing the solid and
dashed red lines in the right-hand panel of Fig. 12. However, this
is not evident in streams with higher xy where dp,x > 107, due
to artificial clump disruption in low-resolution regions, as discussed
in the context of Fig. 8. We also note the similarity between the
evolution of y; = 30 (60) at low-Z and x; = 100 (200) at high-Z.
These simulations have a similar ratio of xf/vmix (equation 12) and
a similar distribution of clump sizes (Section 5) yielding a similar
deceleration time-scale (equation 25).

Fig. 13 shows the total surface area of cold gas, Au(< dmax) ON
the left, and the area modulation factor fa amax (€quation 23) on the
right, as in Fig. 9. We compare simulations with different y; at both
low (solid) and high (dashed) metallicity. Despite some differences
during the initial isobaric contraction phase, the overall behaviour of
the cold-gas surface area is similar at low- and high-Z. Following the
explosion, the area increases rapidly, saturating at Ay ~ (2 — 3)Ap
for fragmented streams, and at Ay, < Ao for coagulated streams. As
discussed following Fig. 9, this corresponds to a cold-gas surface
area ~ 6 times larger than the expected surface area in the final
equilibrium state without fragmentation, namely a single stream of
radius ry .

Note that A, does not grow monotonically with x; at low-Z, but
rather reaches a maximum around y; ~ (100 — 400). This is due to
the disruption of cold-gas clumps with large x¢ by hydrodynamic
instabilities caused by the interaction with the surrounding hot wind

MNRAS 536, 3053-3089 (2025)

Gz0z Iudy || uo3senb Aq | 16926//£50E/E/9EG/R101E/SEIUW/WOD ANO"DdIWSPEDE//:SARY WO} PEPEOJUMO(



3068 Z. Yao et al.

104 L

103
=102
10!
10° ‘ TTr4=2o
0 5 10 15 20 25 30
t/tsc

Figure 12. Time evolution of the number of clumps, N; (left, compare to Fig.
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4), and dmax (right, compare to Fig. 8). Different colours represent different xr,

while solid (dashed) lines represent low (high)-metallicity streams with (without) a UVB. Low-Z streams have a smaller critical xr for fragmentation, xf ~ 60
compared to ~ 200 for high-metallicity streams. Due to an initial stage of isobaric cooling, the explosion is delayed by ~ 2t in low-Z streams compared to
high-Z streams. Following the explosion, fragmented low-Z streams produce fewer clumps and have slightly lower dpax values than high-Z streams, though at

late times, the values are comparable.

o
< 100 _ ]
: Xxr=30
° X¢ =60
\Y xr=100
3 Xr =200
< Xr =400
] X¢ =600
H X¢=1000
! Z=0.03Z
—1(11 ° |
10 : R Z=Zo
0 5 10 15 20 25 30
t/tsc

100

fa( < dmax)

10°

dmax/rs, i

Figure 13. Time evolution of the total surface area of cold gas within dpax, normalized to its initial value (left), and the area modulation factor, fa, as a function
of dmax (right). This is similar to Fig. 9, but here we compare high- and low-metallicity streams. Line styles and colours are as in Fig. 12. Despite certain
differences in detail, the overall evolution of the cold-gas area is similar in low- and high-Z streams, saturating at values of A ~ (2 — 3)A( for fragmenting
streams and A < Aq for coagulating streams. The behaviour of f is similar between the different metallicities, with fragmented streams having f oc d~!

at late times and large distances.

(i.e. cloud crushing). Radiatively cooling clouds can survive these
instabilities and grow in mass by entrainment if their overdensity
obeys (Gronke & Oh 2018)

Py3Amix,—224 Ta .

a,
ToisMoy 560pc

xe S 1000 (29)

where P,3 = P/(200cm™ K) is the thermal pressure of the hot
gas, Taaz = Tu/(2 x 10*K) is the temperature of the cold cloud,
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Amix—22.4 = Amix/(10724ergs~! cm?) is the cooling rate of gas
in the mixing layer with Ty ~ (T.Ty)"/? and np ~ (neny)'/?,
My = va/(0.1csp) is the cloud Mach number with respect to the
hot gas, r is the cloud radius normalized to 560 pc which is roughly
six high-resolution cells, and & ~ 1 in the ‘wind-tunnel’ setup. To
demonstrate this, we show the evolution of the total cold-gas mass in
Fig. 14. The cold mass increases with time for low-Z streams with
xt ~ 1000, while it decreases for larger y; as clouds move into the
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Figure 14. Time evolution of cold-gas mass normalized by the initial stream
mass. The cold gas is defined by p > pj i/1.05. Line styles and colours are as
in Fig. 12. High-Z streams are always in the growth regime, where the cold
clumps grow in mass due to entrainment, thus increasing the total cold-gas
mass. Low-Z streams, on the other hand, are in the disruption regime for
xf < 400, causing the total cold-gas mass to decrease, at least initially.

disruption regime.® For high-Z streams, the cold mass increases for
all values of x; due to the order of magnitude larger cooling rates.’
Both low- and high-Z streams exhibit M, ; ~ (1 — 3) for all cases,
with lower ¢ corresponding to slightly lower values of M ; but no
systematic difference between low- and high-Z. The increased cold-
gas disruption in low-Z streams is thus only due to the lower cooling
rates in these simulations.

The area modulation factor, fa (right-hand panel of Fig. 13),
behaves similarly in the low- and high-Z runs, and is as expected
based on Fig. 9. At early times when dy.x < 7s; (grey region), fa
displays chaotic behaviour, stemming from a competition between
a decrease in cold-gas surface area due to the contraction and
an increase due to fragmentation. Sustained fragmentation and
coagulation are easily distinguishable by the behaviour of fa at
later times, once dmax > 75i. Coagulation manifests as a turnaround
or saturation in the distance at dpax ~ (1 —2)rg; with no clear
trend of f with d. Sustained fragmentation, on the other hand,
has fx oc d~! in the range diax ~ (3 — 10) r ;. Similar to Ay, fa in
low-Z streams decreases at overdensities x; > 100 due to cold-gas
disruption. However, fa for xy = 100 at low-Z is as large as it is for
fragmented high-Z streams.

One of the key observational indicators of thermal fragmentation,
and an important parameter in estimating the cold-gas content of
the CGM/cosmic web, is the area covering fraction of cold gas, fc.
In fragmented gas, this can be very large even if the volume filling
fraction of the cold gas is small (McCourt et al. 2018; Faucher-
Giguere & Oh 2023). While f overall behaves similarly to Ay, two
clumps aligned along the same line of sight would both contribute

8 xf = 400 seems to be a borderline case between survival and disruption.

9We note that the amount by which the cold mass increases or decreases
depends on the shape of the cooling curve, and in particular on the UVB.
Changing this, or including self-shielding, will modify the details of the cold
mass evolution. For instance, we find that in runs with y; = 400 and 1000,
with Z = 0.03Z¢ but no UVB, the mass loss is slower than in our fiducial
runs shown in Fig. 14. A more detailed discussion of cold mass evolution
with different assumptions about the UVB is beyond the scope of this paper.
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to Ay but not to fc, which can cause large differences if there are
many small clumps in the background/foreground of large clumps.
Nevertheless, we crudely estimated fc perpendicular to the stream
axis in a square region of side 10 r ;, and found similar enhancements
as seen in Fig. 13 for A. Namely, typical values at late times roughly
~ 2 times larger than the covering fraction of the initial stream, and
~ 6 times larger than the covering fraction of a stream with radius
7s.r in thermal and pressure equilibrium. This was found to be true
for both low- and high-Z fragmented streams. We defer a more
detailed study of the cold-gas covering fraction and clumping factor,
particularly in the context of cold streams feeding massive haloes at
high-z (see Section 7), to future work with more realistic simulation
setups and additional physical processes, as discussed in Section 8.

5 CLUMP SIZES AND MASSES

Our estimate of the coagulation time (equation 22) and the deceler-
ation time (equation 25), as well as their ratio (equation 28, which
determines the efficiency of coagulation in our model) all depend on
the radii of clumps resulting from the initial fragmentation process.
It therefore behooves us to quantify the distribution of clump sizes.
In the initial formulation of the ‘shattering’ model, the final scale
of cold-gas clouds was predicted to be r. ~ shater = Min(Csteool)
(McCourt et al. 2018). The emergence of this as a characteristic
length-scale for cold gas was also discussed in previous analytic
models of non-linear thermal instability (Burkert & Lin 2000;
Waters & Proga 2019a). Motivated by these insights, some cosmolog-
ical simulations have implemented cooling-length-based refinement
models in order to resolve cold gas in the CGM (Peeples et al. 2019),
while others have implemented subgrid models for the existence
of unresolved cold-gas clouds of size €g,er (Butsky et al. 2024).
Numerical simulations of non-linear thermal instability in 1D find
that while the minimum cloud size was of order £y, larger clouds
were common due to merging of smaller clouds (Das et al. 2021).
However, the size distribution of post-fragmentation cloudlets has
not been constrained in 3D simulations of thermal instability which
resolve Cgnaster-

Several works have studied the size distribution of cold clumps
in multiphase gas in other contexts. Gronke et al. (2022) studied the
mass distribution of cloudlets forming not through an implosion—
explosion process as in this work, but rather by placing large clouds
that are only slightly out of thermal equilibrium (by a factor of ~ 2)
in a (driven) turbulent box. They found that when the clouds were
in the growth regime (see equation 29), the clump mass function
in their simulations converged to dN /dm o m~2 over a wide range
of simulation parameters. This implies roughly constant mass per
logarithmic mass bin, and was found to extend down to the resolution
limit of the simulation. Similar results were found in larger scale
simulations of AGN jets in cool-core clusters (Li & Bryan 2014) and
in magnetohydrodynamic (MHD) simulations of a multiphase ISM
(Fielding et al. 2023). However, these works did not resolve £gaer
so they could not comment on whether this would serve as a minimal
or characteristic size of cold-gas cloudlets (see also Jennings et al.
2023). Cloud-crushing simulations of large, thermally stable cold
clouds interacting with a hot wind that marginally resolve £gaer
find that the size distribution of cold clumps forming in turbulent
mixing layers downstream does not appear converged, with clouds
smaller than {4, common (Sparre, Pfrommer & Vogelsberger
2019; Gronke & Oh 2020a). On the other hand, Liang & Remming
(2020) performed 2D cloud crushing simulations where the initial
cloud was thermally unstable with a fractal structure consisting of
gas with temperatures ranging from (10** — 10%%) K and a median

MNRAS 536, 3053-3089 (2025)

Gz0z Iudy || uo3senb Aq | 16926//£50E/E/9EG/R101E/SEIUW/WOD ANO"DdIWSPEDE//:SARY WO} PEPEOJUMO(



3070 Z. Yao et al.

(xf, rs,ilkpcl, rs,i/A, shatter)

- 100 ,1 ,32 ,True
= 100 ,1 ,64 ,True
= 100 ,1 ,128,True

100 ,3 ,32 ,True

100 ,3 ,64 ,True m— 200 ,30,64 ,True
100 ,3 ,128,True === 200 ,30,128,True

S o m—l

104

10~7 107 105 102 103 102 10T 10°
Mei/Miot

200 ,30,32 ,True 30 ,3 ,32 ,False - 1000,3 ,32 ,True
— 60 ,3 ,32 ,True 100 ,30,32 ,False
— 400 ,3 ,32 ,True —— 1000,30,32 ,True
f r ! — T
-3
: U
10%¢ i N 3
! 10%¢ Ny 1

rcI/rs,i

Figure 15. Cumulative distribution functions of clump masses (left, normalized to the total cold-gas mass at the relevant snapshot) and sizes (right, normalized
to the initial cloud radius) in simulations of low-metallicity streams with different values of x, s i, and 75 ;/A as shown in the legend. The main panels show
convergence tests for three different initial radii, s ; = 1, 3, and 30 kpc, while the insets show all simulations with ¢ ;/ A = 32 (cumulative distribution functions
on the top and the logarithmic slope on the bottom, with the value of —1 marked by a dotted line). For cases demonstrating sustained fragmentation, we show
the distributions at t ~ 10 fs, while for coagulated cases, we show the distributions at # ~ 5 i, when N, is at its peak. The sizes of clumps are derived assuming
spherical geometry, r¢; = [3mc1/(4mpcr)] 173 where m. and pg are obtained from the clump finder. For fragmented streams, the clump mass function follows a
Zipf’s law-like distribution, N(> m) ox m~! (Gronke et al. 2022; Fielding, Ripperda & Philippov 2023), over ~ 2 — 3 dex in clump mass, though the relation
is shallower at both low and high clump masses. The size function is slightly steeper than rj 3, due to a broader scatter of clump density for small clumps. The
vertical lines in the right-hand panel show the values of Cgpaer/7s.i for rs; = 1, 3, and 30 kpc from right to left, respectively. Even when £gpqer 1s resolved, the
size distribution remains a power law down to the resolution scale without a feature at £ghager-

of ~ 10°K. They found that the resulting cold-gas clouds had
a characteristic column density of Ny ~ 10'7% cm™2, consistent
with predictions for a characteristic cloud size of £g,uer (McCourt
et al. 2018). However, £ghager Was only marginally resolved in their
simulations and the characteristic scale they discovered may have in
fact been tied to the grid scale. Moreover, the cloud crushing setup
is in general quite different from our own, and its relevance for the
pure thermal instability picture discussed in McCourt et al. (2018)
is unclear. To summarize, while it appears clear that in order for
thermally unstable clouds to fragment they must be much larger than
Lshaer McCourt et al. 2018; Sparre et al. 2019; Gronke & Oh 2020b;
Farber & Gronke 2023), and that both the total mass and clumpiness
of cold gas in multiphase media increase as the resolution approaches
Lshaer (Peeples et al. 2019; Mandelker et al. 2021), it remains unclear
whether this is indeed a lower limit or a characteristic value of the
cloud size distribution.

Our simulations offer a unique opportunity to study this issue,
since unlike most previous works we focus on low-metallicity gas at
relatively low pressures of P /kg ~ 100 K cm™ exposed to a strong
z =2 UVB (Section 4). These result in €gpauer ~ 300 pc (Table 1),
a factor of ~ (100 — 1000) larger than typical in most other works.
For instance, in our simulations with solar metallicity presented in
Section 3, £gharer ~ 4 pc. InFig. 15, we study the distribution of clump
sizes in simulations of low-Z streams with n = 10 exposedtoaz = 2
UVB, as in Section 4. All these simulations have £gauer ~ 300 pe.
We present results for streams with initial radii r; = 1 and 3 kpc
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(these are the simulations presented in Section 4), and 30 kpc. At our
fiducial resolution of A = r,;/32, these correspond to cell sizes of
~ 31, 94, and 938 pc in the high-resolution region, corresponding
to A /Lgparer ~ 0.1, 0.32, and 3.2, respectively. The simulations with
rsi = 30kpc thus do not quite resolve fsauer, While our fiducial
simulations with r ; = 3 kpc marginally resolve it. In the simulations
with r; = 1kpc, Ceparer 15 Well resolved, though these simulations
have r* ~ 2{auer (Table 1) due to the initial phase of isobaric cooling
discussed in Section 4, so fragmentation is expected to be weak
(Gronke & Oh 2020b).

For each value of r,;, we perform additional higher resolution
simulations with A =r,;/64 and r,;/128, to test convergence.
In these simulations, g,y 1s Well resolved for rg; = 3kpc and
marginally resolved even for ry; = 30kpc. We note that in these
high-resolution simulations, we simulate a smaller portion of the
stream with uniform resolution throughout the entire box. The stream
radius here is only 1/4 of the box size as opposed to 1/32 in
our fiducial simulations. The total number of clumps is thus not
directly comparable between our fiducial resolution and the two
higher resolution runs. However, we have verified that this change
does not affect the physics of fragmentation versus coagulation nor
the distribution of clump properties.

In the left-hand panel of Fig. 15, we show the cumulative clump
mass distribution for these simulations, obtained directly from the
clump finder. The main panel shows results from simulations with
varying resolution, while the inset displays results from all simula-
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tions with r,;/A = 32listed in the legend. We show the distributions
att = 101¢, for fragmented streams, and at ¢ ~ 5 t,. for coagulating
streams which is when N, is at its peak. In all cases, the number of
clumps is clearly dominated by low-mass clumps, though a single
massive clump contains anywhere from ~ (15 per cent — 95 per cent)
of the total mass, with more strongly fragmented cases having a
smaller maximal clump mass. Recall, however, that the total cold-
gas mass can be a factor of < 2 larger or smaller than the original
cloud, depending on its size and overdensity (Fig. 14). In fragmented
streams, a power-law distribution of N (> m,) « m;ll develops over
~ (2 —3) orders of magnitude in clump mass, consistent with
previous studies (Gronke et al. 2022; Fielding et al. 2023). Such
a scale-free distribution is emblematic of a much more general
phenomenon known as Zipf’s law (Gronke et al. 2022). It requires a
large dynamic range of clump sizes to develop, and has been argued to
stem from the fact that for a highly fragmented cold-gas distribution,
the cold-gas mass grows as #icold ot X Mecold, ot While the growth of the
lowest mass clumps is dominated by mergers (Gronke et al. 2022).

At the high-mass end, we see deviations from the power-law
behaviour as the distribution becomes dominated by a few large
clumps along the stream axis onto which many of the intermediate-
mass clumps have coagulated. The turnover at low masses is simply
due to the resolution limit which sets a minimal mass for clumps.
It may be affected in part by artificial disruption of small clumps in
low-resolution regions far from the stream, though the same feature is
present in simulations with uniform resolution as well, namely those
with rs;/A = 64 and 128. Even in cases which coagulate, (7, xt) =
(3kpe, 30), (30kpc, 100), this power-law holds over a narrow range
of intermediate masses where fragmentation is important. However,
the global distribution in these cases is not well described by Zipf’s
law since they are not highly fragmented and their distribution is
predominanly shaped by coagulation.

Larger streams, with larger r*/£€g,qer, €xhibit more violent frag-
mentation with many more clumps (compare the runs with x; = 1000
and r,; = 3and30kpc in the insets). Comparing the curves with
different resolutions in the main panels, we find that higher resolution
runs produce more low-mass clumps indicative of stronger fragmen-
tation. This is consistent with previous studies of the formation of
multiphase media in other contexts (Sparre et al. 2019; Mandelker
et al. 2021). However, the shape of the distribution is quite similar
in all cases, developing a power law of N(> m) oc m~! over a wide
range of clump masses, which turns over at the resolution scale, and
not at some fixed scale despite £ qer being resolved.

However, whether the clump mass distribution is truly an example
of Zipf’s law is not completely clear. We note that the full distribution
down to the minimal clump mass is much better described by a
lognormal distribution, rather than a power law with a turnover (see
Appendix D). The mode of the distribution is always at a clump mass
slightly larger than the mass of a single cell at the cold density, even
when £y 18 Well resolved, supporting our conclusion that £gaer
does not set a characteristic size for clumps.

The right-hand panel of Fig. 15 shows the cumulative distribution
of clump radii. These are estimated as'®ry = [3mq/(@dmpa)]'/3,
where p. is the mean density in the clump, provided by the
clump finder. The vertical dashed lines mark Lgnaper/7s,i for rgi =
1, 3, and 30 kpc, from right to left. Focusing on simulations with
rsi = 1 and 3kpc where Lhaer is resolved, we see that there is no
feature in the distribution of clump sizes at £g,yer for fragmented

10Njote that this implies that at our fiducial resolution of A = ry;/32 a clump
consisting of a single cell has a radius of r¢ ~ 0.02ry ;.
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streams. Rather, the distribution is a power law with N(> rq) o< ry b
with 8 ~ (3 — 4), which breaks at the resolution limit. Considering
that N o< m ! this indicates a mild size-dependence of clump density
of pg rCﬁrS, which is driven by smaller clumps containing more
mixed gas at intermediate densities. As we increase the resolution,
the break in the power law and the minimal clump size tend towards
smaller sizes, rather than being tied to g, This suggests that clump
sizes are not set by a hierarchical process where clumps continuously
fragment to the local cooling-length, l.o01 ~ Csteool, Until they reach
Lsharer = min(leo) as was originally proposed by McCourt et al.
(2018, see also Das et al. 2021). Rather, while rg; > €gauer may be
a necessary condition for thermally unstable clouds to fragment, the
actual formation of clumps is not itself driven by thermal instability.
Rather, these are formed by a combination of RMI during the
initial implosion and explosion processes (Gronke & Oh 2020b),
and shredding (Jennings & Li 2021) and/or rotational fragmentation
(‘splintering’) at late times (Farber & Gronke 2023). The clump sizes
are thus determined by these processes and clumps can always exist
at the smallest possible scales in a highly perturbed environment.
Without additional processes such as thermal conduction (Koyama &
Inutsuka 2004; Sharma, Parrish & Quataert 2010) or strong external
turbulence (Tan et al. 2021; Gronke et al. 2022), we will always have
clumps down to the grid scale when thermal fragmentation is present.

Consistent with the fact that £, 1S Not a characteristic size for
clumps, we also find that n €y, is not a characteristic column
density for clumps, where n. is the number density in the cold
phase. Rather, the distribution of column densities always peaks
at the grid scale, N ~ n A (see Fig. D3). While this may seem to
contradict the results of Liang & Remming (2020), we again note
that £ghaer Was only marginally resolved in their simulations, so it
is difficult to disentangle this from the grid scale, and moreover
their simulation setup is sufficiently different from ours to render a
detailed comparison difficult and beyond the scope of this paper.

Finally, we note that the power law describing the clump size
distribution seems to break at r¢ ~ ryi/3 ~ rs . This seems to be
the characteristic size of large clumps along the stream axis onto
which many intermediate sized clumps have coagulated (Figs 6, 12,
C2 and C4). A similar feature is seen in the cumulative distribution
of clump sizes in sheets, where a power law is present from the
resolution scale up to rq ~ 7, s above which it flattens, decreasing
again at r¢ X rg;. The small clumps are visible in the plane of the
sheet, within islands of hot gas in between large cold clumps (Figs 5
and C1). The large cold clumps surrounding these hot regions have
typical sizes of order 7 ; rather than r,¢. In both streams and sheets,
the size of the largest clumps seems rather constant in time, and
is not merely a consequence of clump growth due to coagulation.
The reasons for this are unclear, though further investigation of it is
beyond the scope of this paper and is left for future work.

6 THE COAGULATION CRITERIA FOR
STREAMS AND SPHERES

6.1 Fast versus slow coagulation

Our results in Sections 3 and 4 revealed a critical overdensity for
sustained fragmentation in streams and spheres, Xt qit, based on both
the number of clumps, N, and their radial extent, dy,,x. Similar to
previous work (Gronke & Oh 2020a; Farber & Gronke 2023), we
find that x¢ it depends on the initial cloud size, or more specifically
on r*/lghaer- In Fig. 16, we present a wide range of simulations
with different initial sizes and metallicities and different values
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Figure 16. Fragmentation versus coagulation in the plane of cloud size and
overdensity, (r* /€shatter, Xt ), for simulations in spherical (red) and cylindrical
(orange) geometries, with different initial sizes and metallicities and different
values of n and y¢ (see Table 1). Squares represent those simulations with
strong fragmentation, indicated by both a large number of clumps and a
non-decreasing dmax, While triangles mark simulations that coagulate. We
introduce a small horizontal offset for those overlapping with each other. The
orange/red solid line denotes the transition of coagulation for streams/spheres.
The dashed line represents the criterion in Gronke & Oh (2020b).

of n and yy, in both spherical and stream geometries (Table 1),
in the plane of (r*/lshaner, X£). We distinguish those cases which
remained fragmented from those that coagulated as in previous
sections, and in Appendix B3, we show that this distinction is
converged with resolution. We find that for both streams and spheres,
Kreric O (F* /Lspaer)'/*, and that the normalization for streams is
~ 1.5 times larger than for spheres. Below, we attempt to explain
these trends and derive expressions for i i in different geometries.

We recall that following the explosion (Section 3.1), the reflected
shock reaches the interface between the cold and hot gas when
the cloud radius is roughly » ~ rgs. At this point, linear RMI
begins growing at the interface, seeded by perturbations in the
collapsed cloud and at its interface, while on larger scales, the cloud
continues expanding isotropically with its surface area growing as
d}.» with n = 1 and 2 for streams and spheres, respectively. Thus,
fa remains roughly constant during this phase, or may even increase
due to perturbations and some fragmentation further increasing
the surface area. Eventually, RMI grows to non-linear amplitudes
characterized by familiar mushroom-shaped plumes and other non-
isotropic features which, in the presence of cooling, quickly fragment
into small clumps. The surface area then quickly becomes dominated
by small clumps which do not further expand as they flow out,
and the tight correlation between the total cloud surface area and
dmax breaks down. Once the gas has sufficiently fragmented, the
total cold-gas surface area saturates and f, decreases as the frag-
mented clumps escape outwards, asymptotically approaching d_7 .
Consequently, the coagulation time-scale increases significantly
teong X (dmax/ fa)'/* o dWED/2 (equation 22).

We can now formulate a condition for slow, inefficient, coagulation
as follows. We assume that the fragmentation of the initial cloud
into small clumps occurs at » ~ rga, the radius where fa begins
monotonically declining following the explosion. If the cloud reaches
this radius before significantly decelerating, then the clumps will
continue expanding outwards with a velocity of ~ ¢ . and will not
coagulate, following the arguments presented in Section 3.2.1. If the
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cloud has significantly decelerated prior to fragmentation, then the
resulting clumps will coagulate. In other words, for coagulation to
become inefficient we demand

Tdecel,s > rfA/CS,Cv (30)

where #4ecel s 18 the deceleration time-scale of the expanding cloud. If
there is a turbulent mixing layer at the surface of the cloud, which is
always the case in the presence of shape and/or density perturbations
and in the absence of thermal conduction, then the cloud deceleration
is dominated by condensation rather than ram pressure because the
expansion velocity is vex ~ ¢s (equation 16). We therefore have
tdecel,s = My i/H1, Where n = 47rrfvgphvmix,s for spheres and m =
27 Favg L P Umix,s for streams, with vpyix s ~ O.4csyc(ravg/€shamr)1/4 and
Tavg ™ T'tA-

All that remains is to estimate r¢a . In Fig. 17, we show fa(< diax),
similar to Figs 9 and 13, for a large number of simulations with
a wide range of different properties in both spherical and stream
geometries (see Table 1). Unlike previous figures, we here plot f
as a function of r/re¢ in order to distinguish cases with different
7. For this wide range of simulation parameters, we find that rga ~
ars ¢, where o ~ 6 for streams and o ~ 2 for spheres. This can be
more easily seen by examining the median profiles of f,, which
are shown with thick black lines. The larger « for streams may
be due in part to the Bell-Plesset effect (Bell 1951; Plesset 1954),
which is a geometrical factor in the linear growth rate of RMI for
converging or expanding shock waves, which can be < 2 times
faster in spherical compared to cylindrical geometry. Additionally,
if the total surface area saturates during the non-linear phase of
RMI in both geometries, then f) o< d,}. declines faster in spherical
geometry than in cylindrical geometry, yielding a larger r¢s for the
latter.

Inserting our expressions for #gece1 s and g4 into the equation (30),
we obtain a critical overdensity for sustained fragmentation,

o 13/4 77* - r*/lshaner 1/4
> 190 (—) n I /shatter 31
= 2.6 <10> 5000 ©h
for spheres, and
a4 TI* s r*/lﬂhatter 1/4
280 ( — — —_— 32
At = (6) (10) ( 5000 G2

for streams, where n* = ps¢/p(r =r*) and we have chosen a
characteristic value of « to set the normalization. These two relations
are plotted in Fig. 16, ignoring the weak dependence on n*, and are in
very good agreement with the fragmentation thresholds for spheres
and streams seen in the simulations. In fact, the characteristic values
of « in equations (31) and (32) were determined based on a fit to the
threshold seen in Fig. 16, but are also nicely consistent with Fig. 17.

For our fiducial parameters presented in both Section 3 and
the convergence tests in Appendix B3, namely r,; = r* = 3kpc,
n=n*=10, Z = Zy, and no UVB, the critical overdensities for
sustained fragmentation are xf i ~ 120 for spheres and ~ 180 for
streams, consistent with our detailed results presented in those sec-
tions. We stress that the condition derived above for rapid coagulation
does not explicitly depend on metallicity, or on the cooling rate
more generally. This is because, as highlighted in Section 3.2.1, the
condensation force dominates the deceleration process for all relevant
parameters, including low-metallicity clouds/streams exposed to a
UVB. However, the slower cooling for lower metallicity and/or in
the presence of a UVB, and corresponding larger £ e yield a lower
critical overdensity for a given cloud/stream size.

To emphasize the transition between fast and slow coagulation, we
plot in Fig. 18 the total time for outgoing clumps to turn around and
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Figure 17. The area modulation factor fa as a function of dp,x normalized by g ¢ for all stream simulations (left) and sphere simulations (right). Different
colours represent different parameters as shown in the legend. The thick black lines in each panel show the median profiles, considering fragmented cases only.
We define r¢a to be the radius where fa dmax starts declining, which is X 6r s for streams and X 2 rg ¢ for spheres.
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Figure 18. We show the total time for clumps to turnaround and coagulate,
Idecel,s T feoag> as @ function of their maximal distance, dmax. fdecel,s 1S the
deceleration time-scale for a uniformly expanding cloud (equation 30), while
feoag 1 computed from equation (22) assuming a clump radius of ¢ ~ 0.1ry ;.
Red (orange) lines represent spheres (streams) with n = 10, r; = 3 kpc,
Z = Zg, and no UVB (as in Section 3). Thicker lines denote hi%her xt- The
total time is dominated by #gecel at small dipax and by Zeoag X d,'fqai“ at large
radii.

coagulate, namely fgecel,s + fcoag, @S @ function of diy,y, for high-Z
spheres and streams with n = 10 and ry; = 3 kpc (as in Section 3).
These are all measured directly from the simulation, but dp,, here
can be interpreted as the hypothetical maximal distance reached
by a clump prior to turnaround, with the y-axis showing the total
time to coagulation given this dp,,. At small distances, this time-
scale is dominated by 74e.e) Which is independent of d (equation 25).
However, once the maximal distance exceeds rya.x ~ rra, the time-
scale quickly becomes dominated by fcose o¢ d{XV/? and coagulation
becomes inefficient. Sheets only have a fast coagulation regime since
fa never systematically decreases. Note that in this estimate of time-
scales we neglect the continuous evolution of the clump velocity,
which may slightly alter the actual time to turnaround.

As a final note, we stress that our distinction between ‘fast’ and
‘slow’ coagulation implies that given a long enough time and a large
enough simulation volume, all cases should eventually coagulate.
However, this is an artificial conclusion based on our highly idealized
numerical setup. For example, external turbulence in the surrounding
hot gas would drive the small clouds further away from the central
cloud and/or outright disrupt them (Gronke et al. 2022). We thus
expect that cases which are in our ‘slow coagulation’ regime will in
practice not coagulate in realistic scenarios.

6.2 Comparison to previous work

Gronke & Oh (2020b) studied fragmentation versus coagulation
of thermally unstable clouds using simulations similar to ours.
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Their initial conditions consisted of four identical spherical clouds,
with radius ry;, overdensity x;, thermal imbalance factor 7, and
solar metallicity (without a UVB). They found a critical final
overdensity for fragmentation of x; > 300(r* /£hatter/5000)'/6, while
in our spherical simulations, we find x; = 190(* /£spauer/5000) /4
(equation 31, assuming a fixed o and ignoring the weak de-
pendence on n*). These two criteria are compared in Fig. 16,
where it is clear that our data are not well fitted by the
Gronke & Oh (2020b) criterion. We predict a slightly lower xf cie
for r*/Lgaier < 10%, and a slightly steeper dependence on cloud
sizes. Furthermore, their criterion depends only on the cloud ra-
dius when it loses sonic contact, r*, while ours has an addi-
tional dependence on the pressure contrast at this time, n*. In
practice, our criterion depends on the final cloud radius, 7y =
(7’]*)_1/27'*.

We suspect that the lower normalization is primarily due to our
adopting a temperature floor of Tjeo = 1.68 x 10* K compared
to 4 x 10*K in their simulations. Consequently, our £gager 1S a
factor of ~ 14 smaller at the same density and metallicity, which
results in a very similar normalization of x; . given the same
initial cloud parameters. Moreover, since Gronke & Oh (2020b)
initialized their simulations with four clouds compared to our one,
they have four times the cold-gas mass given the same initial cloud
parameters, which makes coagulation more likely. More difficult to
explain is the different dependence of xg i on cloud size. We note
that in fig. 5 of Farber & Gronke (2023), who performed similar
experiments to Gronke & Oh (2020b), the slope of their atomic
criterion is closer to 1/4 than 1/6. Regardless, these scalings are very
weak, and other complications we have ignored (e.g. non-spherical
geometry and background turbulence) could have a stronger impact
on xs.

Gronke & Oh (2023) described an analogy between coagulation
forces and gravity, summarized in Section 3.2.1 above (see equation
18). They used this to calculate the effective binding energy of
a collection of clumps, and then evaluated a coagulation criterion
by comparing this to the clumps’ kinetic energy, in analogy to the
virial parameter of a self-gravitating system. While this analogy is
compelling and has intriguing implications, it is intended to provide
physical intuition rather than a precise quantitative criterion, as
acknowledged in their paper. First, their model does not easily lend
itself to calculating the dependence of xf it On 7*/€eparer Without
knowing the number of clumps, which is very difficult to model.
Secondly, the analogy between coagulation forces and simple point-
mass gravity may not strictly hold in our case. This analogy is
expected to be valid when the velocities of clumps with respect
to the central cloud are negligible compared to the hot background
velocity, so that Avy ~ vpe & d™" in equation (14). However, in the
case of imploding/exploding thermally unstable clouds as studied
in this work, the clumps escape at a velocity ~ ¢, which can be
much larger than the hot gas velocity at large radii. Fig. 19 shows the
radial velocities of cold clumps and hot gas near dy,,x as a function of
dmax, for high-Z spheres with n = 10 and r, ; = 3 kpc. For all x, hot
gas velocities exhibit similar profiles of o« 2, while the velocities
of cold clumps are roughly constant at ¢ . during their escape. The
larger relative velocity means that clumps feel a stronger coagulation
force than if they were static, F = mv, facilitating ‘turnaround’ and
eventual coagulation. Nevertheless, we agree with the qualitative
conclusion of the Gronke & Oh (2023) energy argument that the
coagulation efficiency increases from spheres to streams to sheets. A
more detailed analysis of the effective virial parameter argument
in fragmented systems would be interesting to pursue in future
work.
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Figure 19. Radial velocities of the outermost cold clump (at d = dmax) and
the surrounding hot gas as a function of distance to the centre for simulations
of high-Z spherical clouds with r* =rg; = 3kpc and 5 = 10. Different
colours denote different x¢. Solid lines represent hot background velocities
and dashed lines represent cold-gas velocities. We show the absolute values
of the velocities, though note that the hot gas is flowing in, while the cold
clumps are flowing out. At d > ry j, the relative velocity between the clumps
and the hot background is Av ~ veold ~ Csc-

7 COLD STREAMS PENETRATING VIRIAL
SHOCKS

As described in Introduction, one of our main motivations for
studying thermal fragmentation in low-Z streams is the application
to cold streams feeding massive DM haloes at high-z from the
cosmic web. In this section, we attempt to apply our results from
previous sections to such streams, by constructing a toy model for
how their interaction with virial shocks around DM haloes may cause
them to fragment. The basic picture is that even though the cold
streams themselves are not expected to shock as they enter the virial
radius (Dekel & Birnboim 2006; Dekel et al. 2009), their confining
pressure can increase by a large factor (Aung et al. 2024; Lu et al.
2024), and the resulting pressure contrast that develops between
the hot CGM and the cold streams can cause streams to fragment.
While this pressure contrast is not caused by radiative cooling of
an intermediate-temperature stream as assumed in previous sections,
we show in Appendix A2 below (Fig. AS) that, at least in sheets, the
implosion and explosion processes are similar in cases with initially
cold and underpressureized gas. In any event, this section serves as a
proof of concept and a prelude to a more in depth study where we will
explore this interaction using simulations (Yao et al., in preparation).

Cosmological simulations show that at high-z, cosmic-web fil-
aments in the IGM have a three-zone structure (Lu et al. 2024).
Their outer regions contain hot, diffuse gas in virial equilibrium
within the potential well set by the DM filament. Interior to this
is a zone of multiphase gas with high turbulence and vorticity.
The innermost region is a dense, isothermal core. Lu et al. (2024)
dubbed the outer two zones the circumfilamentary medium (CFM),
while the innermost region is the cold stream that penetrates the
hot CGM around massive galaxies. The relative size of each zone,
and in particular how much of the CFM mass is hot at the virial
temperature, depend on the profiles of the cooling and free-fall
times within the filament (Birnboim, Padnos & Zinger 2016; Stern
et al. 2021; Aung et al. 2024). Important for our purposes is
that cosmological simulations suggest that these three zones are
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Figure 20. A schematic cartoon showing a cold stream penetrating the virial
shock around a massive halo (M, 2 10'> M) at high-z (z X 2). In the IGM,
the cold stream is the dense, isothermal core at the centre of a cosmic-web
filament filled with hot gas at the filament virial temperature and density, 7y ¢
and py ¢. The cold stream is initially in pressure equilibrium with this CFM.
However, as it penetrates the virial shock, the stream becomes confined by
CGM gas at the halo virial temperature and density, 7y, and py j,. This results
in a pressure imbalance of n = Py 1/ Py.r = (ov.nTv.n)/(pv.tTv.£). If pressure
equilibrium in the CGM is established the stream will be narrower and denser,
though it may instead fragment.

in approximate pressure equilibrium, with gas cooling isobarically
from the hot CFM towards the cold stream (Ramsgy et al. 2021;
Lu et al. 2024). Therefore, the pressure in cold streams prior to
their entering the halo is roughly the virial pressure of cosmic-web
filaments, while after entering the halo they become confined by the
halo virial pressure. A schematic cartoon of this setup is presented
in Fig. 20. We can thus estimate the pressure contrast between the
cold stream and the hot CGM by comparing the virial pressure in
cosmic-web filaments versus DM haloes.!!
The virial temperature and density of hot CGM gas are given by

Ton ~ 1.5 x 105 M7 (1 4 2)3, (33)

Pv,h ™ Av.h X fbpu(z) (34)

(e.g. Dekel et al. 2013), where M|, = M, /10'2> My, is the halo virial
mass, (1 + z); = (1 4 z)/3 is the redshift, fi, ~ 0.17 is the Universal
baryon fraction, p,(z) is the mean matter density in the Universe
at redshift z, and A, ~ 200 is the halo virial overdensity in the
spherical collapse model. In practice, the post-shock values of the
temperature and density at the virial radius will differ from these
values, which represent averages over the whole halo and neglect

"'We assume here that the streams are fully pressure confined, ignoring their
self-gravity. While self-gravity may be important in setting the structure of
cold streams (Mandelker et al. 2018; Aung et al. 2019), this seems to be
subdominant in the IGM (Lu et al. 2024) and we neglect it here for simplicity
and consistency with other models of filament properties (Mandelker et al.
2020b). In future work, we will relax this assumption and account for the
effect of self-gravity on stream fragmentation and evolution more generally.
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non-thermal pressure support of hot CGM gas (Komatsu & Seljak
2001; Lochhaas et al. 2021). Nevertheless, Py & pyh Tyn using
equations (33) and (34) is a good representation of the characteristic
thermal pressure of hot CGM gas.

The corresponding values for filaments are (Lu et al. 2024),

Tog ~ 0.4 x 10 MY (1 + 2)3 face sM 1, (35)

Pyt ™ Ay X fbpu(z)~ (36)

Here, facc3 = face/(1/3) is the fraction of total accretion onto the
halo flowing along the given filament normalized to the typical
value for a halo fed by three prominant streams (Dekel et al. 2009;
Danovich et al. 2012), M, = V,/ V. is the inflow velocity along the
stream normalized by the halo virial velocity, and A, ¢ ~ (15 — 35)
is the virial overdensity assuming cylindrical collapse (Mandelker
et al. 2018; Lu et al. 2024).'2 We adopt A, ¢ ~ 20 as our fiducial
value.

For completeness, we note that equation (35) stems from the fact
that

Tv,f X GAlol,f’ (37)
where A s is the total line mass of the DM filament,
Aorf ~ ﬂRs,fpv,f ~ Mf/Vs ~ fach;l Mv/vv,h, (38)

where the specific accretion rate onto haloes is roughly (Neistein &
Dekel 2008; Fakhouri, Ma & Boylan-Kolchin 2010; Dekel et al.
2013)

M,/ M, ~ 0.45Gyr™' M%'*(1 + 2)3°. (39)
Combining equations (33)—(36), we obtain the pressure contrast
between the hot CGM and the cold stream,

Av.h —1

loAv‘f facc

Pv.h ~ pv,th,h
Pv,f IOV‘fTv,f

" ~35 MM A+ 2)5! M. (40)
At z = 4 this results in n ~ 20, which seems consistent with some
cosmological simulations (Lu et al. 2024). In practice, neither the
CGM nor the CFEM are perfectly isobaric. The cold stream at the
centre of the filament will have pressures slightly larger than P, ,
while the hot CGM near the outskirts of the halo will have pressures
slightly smaller than P, . Lu et al. (2024) find the pressure to increase
by a factor of ~ 2 from the outer filament to the cold stream at the
centre. Assuming a similar variation in the CGM pressure, 1 in
equation (40) can be overestimated by a factor of X 4.

Gronke & Oh (2020b) found that clouds can thermally fragment
if n > 2, while for smaller values, they simply pulsate. Even if
n is overestimated as described above, it is thus still expected to
be large enough to cause cold streams to fragment upon entering
the CGM of massive haloes, and this tendency is expected to
increase towards lower redshifts. This may explain the large observed
covering factions and clumping factors of cold gas in the CGM
of M, 2 1023 My, haloes at z 2 3 (Cantalupo et al. 2014, 2019;
Borisova et al. 2016). It can also have important implications for gas
accretion onto the central galaxy, and may lead to galaxy quenching
by shutting off the cold-gas supply if the stream remains fragmented.
Whether the stream remains fragmented or recoagulates depends
on its size and overdensity compared to the critical overdensity for
fragmentation.

12While Mandelker et al. (2018) estimated Ay ~ 36 based on the self-
similar collapse models of Fillmore & Goldreich (1984), Lu et al. (2024)
found values of Ay ¢ ~ (15 — 20) in their simulations.
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Assuming pressure equilibrium between the cold stream and the
hot CGM, their density ratio is (Mandelker et al. 2020b)

2o~ 100 M2L(1 4+ 205 S0 @1
CN
where ©p = T,/T, is the hot CGM temperature in units of the
halo virial temperature, and ®; = T;/1.5 x 10*K is the stream
temperature normalized to approximate thermal equilibrium with
the UVB. For M, > 102 M, haloes with a hot CGM, the radius of
the stream in pressure equilibrium with the CGM is (Mandelker et al.
2020b)

1/2
facc,3fc,s®s ) ) (42)

Sho3M®p
with no explicit dependence on halo mass. Here, f.  is the cold-gas
mass fraction in the filament and f o 3 is the hot gas mass fraction in
the halo normalized to 0.3. Inserting equation (42) into equation (32),
we obtain the critical overdensity for coagulation of cold streams,

— eS atter 71/4 ace. fC S®S 1/8

R ~ 16kpe(l + 2)3" (

where we have used (n*)~!/2r* = rg;. Comparing this to equation

(41), we find for cold streams

¢ 1/4 JYRNL
Xt ~ 0.85 M1243 (1+ Z)§/4 < shatter ) (fh,043 . V>
Xf,crit 300 pc .lecc.ﬁ%fc,s

O 9/8
(a) . (44)

We thus find that cold streams can marginally sustain fragmentation
for haloes with mass M, 2 10'2M,, at redshifts z < 2, more so
in more massive haloes and higher redshift. Coagulation becomes
more likely towards lower redshift, which is further enhanced as
the streams become more metal enriched thus decreasing Cgpager-
On the other hand, £geer X p~' o (1 4 z)~> (McCourt et al. 2018;
Mandelker et al. 2020b), which mitigates this effect somewhat.

We note that in more massive filaments, f; can be significantly
lower than unity as larger virial temperatures and longer cooling
times in the CFM increase the hot component of cosmic-web
filaments at the expense of the cold streams (Aung et al. 2024; Lu
et al. 2024). This becomes important in more massive haloes at a
given redshift, and higher redshift for a given halo mass, and will
increase xr/xr.crit Making fragmentation even more likely in these
cases.

The final question we ask is whether sustained fragmentation will
have time to manifest before streams reach the central galaxy. In our
simulations, the full process consisting of the implosion, explosion,
and fragmentation, takes ~ (1 — 2)z,. to manifest, where ;. is the
sound crossing time of the initial stream radius (see Figs 4 and 12).
The stream sound speed is (Mandelker et al. 2020b)

Ce = 18.5kms ™10 2u 2, (45)
where (s 06 = 4s/0.6 is the mean molecular weight. The uncertain-
ties in n from equation (40), as well as our having ignored self-gravity
and stream rotation, both of which are important for setting the size
of streams in the IGM (Lu et al. 2024), make the initial stream radius
prior to contraction difficult to constrain. We thus take as a strict
lower limit the final stream radius, R,y from equation (42), to obtain
a lower limit for the stream sound crossing time near R, and thus the
time-scale for fragmentation,

1/2
facc,}fc.sﬂs.(}ﬁ) /!

46
Sn03 M, 0y (46)

fiew = 900 Myr(1 + 2);! (
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The streams reach the central galaxy in roughly a virial crossing
time, t, ~ R,/V,, which is given by (e.g. Mandelker et al. 2020b)

ty =~ 500 Myr(1 + z); /% (47)
‘We thus have

ty _
-~ 0.6(1 +2);

sc,v

1/2 <facc,3fc,sﬂs,0.6) iz ) (48)

fh.OASMv ®h

This ratio decreases with an increasing z making stream fragmenta-
tion more likely to manifest in the CGM at lower redshift, though still
at z X 2 due to equation (44). However, since the ratio is typically
less than 1 it is unclear if streams will have time to fragment prior
to reaching the central galaxy. Before we neglect this possibility, we
list several issues that may help. First, the stream sound crossing
time decreases rapidly as it flows towards the central galaxy due
to its shrinking radius, while the stream velocity increases by a
factor of < 2 from R, to 0.1 R, (Aung et al. 2024). As a result,
the sound crossing time decreases faster than the inflow time, and at
some point they should become comparable. Furthermore, the virial
shock can extend up to ~ 2 R, (Zinger et al. 2018; Aung, Nagai &
Lau 2021). Finally, as shown in fig. 1 of Mandelker et al. (2020b),
there is an order of magnitude uncertainty in R, ¢ due to the various
additional parameters in the equations. Thinner streams, which also
tend to be denser, will be more prone to fragmentation and disruption.
Considering other physical mechanism neglected here, such as the
halo potential, a stratified CGM, turbulence and shear, the dynamics
of fragmentation and the fate of streams as they penetrate the CGM
remain unclear. This will be explored in detail in future work.

8 CAVEATS AND ADDITIONAL PHYSICS

While our analysis has been thorough in terms of the impact of cloud
geometry and metallicity on thermal fragmentation and coagulation,
we have neglected a number of important physical processes which
can impact these issues, as well as our application to cold streams
penetrating the hot CGM. We briefly discuss these here, leaving more
in depth analysis to future work.

(1) Turbulent environments. In all our simulations, the background
was initially static. However, the CGM and the high-z cosmic web
are both highly turbulent environments, driven by inflows, outflows,
and galaxy interactions. Turbulence plays a critical role in the
dynamics of multiphase gas, sustaining turbulent radiative mixing
layers around clumps that facilitate condensation and coagulation,
while also contributing to shattering of large clouds and disruption
of small clumps. The latter one is particularly significant because
the clump velocities in our simulations, ~ ¢, are much smaller
than the expected turbulent velocities (e.g. Mandelker et al. 2021;
Gronke et al. 2022; Fielding et al. 2023; Das & Gronke 2024).
Momentum coupling between the cold clumps and the turbulent hot
environment quickly entrains the clumps in the turbulent flows, if it
does not first destroy them due to mixing. This supports our claim
from Section 6.1 that our ‘slow coagulation’ regime is likely an
idealization. Such clouds will likely either remain fragmented with
the resulting clumps highly dispersed and with a minimal size set by
the turbulence (Gronke et al. 2022), or else the resulting small clumps
will all be destroyed making it a matter of definition whether we
consider this cloud fragmented or not. Turbulence may also impact
the critical overdensity for fragmentation, reducing the efficiency of
coagulation.

(ii) Magnetic fields. Most astrophysical plasma is magnetized.
While the outer CGM and cosmic web at high-z are not expected to
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be highly magnetized, the magnetic fields can amplify during cloud
contraction and fragmentation, and small-scale cloudlets resulting
from thermal fragmentation can therefore be magnetically dominated
and out of thermal pressure equilibrium with their surroundings
(Nelson et al. 2020). This non-thermal pressure support leads to
streaming motions along field lines and filamentary clumps, as the
total pressure gradient becomes unbalanced along the field direction
(Wang, Oh & Jiang, in preparation). Magnetic draping affects the
kinematics and morphology of clumps (Hidalgo-Pineda, Farber &
Gronke 2024; Ramesh et al. 2024). Magnetic fields also suppress
mixing in the turbulent mixing layer, reducing the entrainment rate
(Ji, Oh & Masterson 2019; Sparre et al. 2020; Gronke & Oh 2020a;
Grgnnow et al. 2022). However, if turbulence is externally driven,
then for a given rms turbulent velocity hydrodynamic and MHD
mixing rates are similar (Das & Gronke 2024).

(iii) Cosmic rays. Similar to magnetic field, cosmic rays are
ubiquitous and play a crucial role in the CGM. Their relatively long
cooling times and strong dynamical coupling to the gas make them
a significant factor in galaxy formation processes (Ruszkowski &
Pfrommer 2023). Cosmic rays provide substantial non-thermal
pressure in the CGM, helping to counteract gravity and prolong
the retention of cold gas. This, in turn, supports the survival of
fragmented clumps and increases the cold mass fraction in the CGM
(Butsky et al. 2020; Ji et al. 2020).

(iv) Thermal conduction. Thermal conduction is a universal dis-
sipation process that smooths temperature gradients along magnetic
field lines, leading to the evaporation of clouds smaller than the
field length when competing with radiative cooling (Briiggen &
Scannapieco 2016; Armillotta et al. 2017; Li et al. 2020). As a
result, the field length can act as a lower limit for clump size, similar
to turbulence, and may change the extent of small-scale clumps
resulting from thermal fragmentation.

(v) Self-gravity. Self-gravity affects the dynamics of cold clouds
in hot gas only when the cloud mass exceed the Jeans mass (Li
et al. 2020), which can occur in large-scale cosmic-web structures. It
increases the binding energy of explosive clouds, thereby potentially
inhibiting sustained fragmentation and promoting coagulation in
these larger clouds. More over, strong implosions like those we see
prior to fragmentation, could directly trigger star formation, offering
insights into star formation processes far from galaxies. Self-gravity
is also important for cold streams (Mandelker et al. 2018; Lu et al.
2024), and contributes to their radial structure as well as to their
interactions with the CGM (Aung et al. 2019).

(vi) Shear. Shear plays a critical role in cold streams penetrating
virial shocks. The shear between the cold stream and the hot back-
ground gas can drive Kelvin—Helmholtz instabilities and enhance
mixing. This will either promote stream growth through entrainment
of hot gas in the mixing layer, or lead to stream disruption, depending
on the ambient conditions (Mandelker et al. 2020a; Aung et al.
2024; Ledos, Takasao & Nagamine 2024). Additionally, shear can
induce streaming motions in explosive clumps, as well as induce
additional fragmentation within the turbulent mixing layer, leading
to the formation of filamentary clump structures. However, the effect
of shear on the fragmentation and coagulation processes, particularly
in a stratified medium as found in the hot CGM in galaxy haloes, is
unknown.

9 SUMMARY AND CONCLUSIONS

We studied the effects of cloud geometry and metallicity on the
thermal fragmentation and coagulation of cold-gas clouds in the
CGM or the high-z cosmic web by utilizing 3D idealized hydro
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simulations. We initialized a thermally unstable warm cloud embed-
ded in a hot medium in pressure equilibrium. We explored three
different cloud geometries (planar sheets, cylindrical streams, and
spherical clouds), varying the final overdensity of the cloud with
respect to the background after thermal and pressure equilibrium
have been reestablished, x; = ps¢/popg, With pgr the final density
of the cold cloud (sheet, stream, or sphere) and py, the density
of hot background. We also varied the size of the initial cloud,
7si, and the ratio of the initial (warm) cloud density to the final
(cold) cloud density after thermal and pressure equilibrium have
been re-established, n = ps ¢/ ps.i,» Which also represents the ratio of
the background pressure to the pressure in the cloud after thermal
equilibrium. Initially, we explored a setup where both the cloud
and background have solar metallicity and there is no ionizing UV
background (our ‘high-Z’ case, Section 3). We then extended our
study of streams specifically to the low-metallicity regime where the
streams and background have metallicities Z; = 0.03Z; and Z,; =
0.1Zg, respectively, and both are exposed to a z =2 (Haardt &
Madau 1996) UVB (our ‘low-Z’ case, Section 4). We examine
the distribution of clump sizes in a regime where the shattering
length-scale, Cgaer = min(cgleoor), 18 Well resolved to explore its
importance as a characteristic size for cold gas (Section 5) and
derived analytical criteria for the fragmented cloudlets to recoagulate
(Section 6). Finally, we applied our results for low-Z streams to the
case of cold streams feeding massive haloes (M, % 10'> My,) at high
redshift (z X 2) from the cosmic web through virial accretion shocks
(Section 7).

The general evolution of such thermally unstable clouds consists
of two stages: (1) the initial implosion and explosion processes,
triggered by a rapid loss of thermal pressure in the cloud followed by
a converging and subsequent reflected shock that induces fragmenta-
tion of cold gas through a combination of RMI, strong cooling, and
vorticity induced by surface perturbations; and (2) the deceleration
and recoagulation processes as escaping clumps begin comoving with
the entrainment flow of hot gas converging onto the central cloud.
We schematically summarize our main results and key insights into
these two stages in the cartoon presented in Fig. 21. In detail, our
results can be summarized as follows:

(i) The explosion velocity, which determines the growth time-
scale of RMI, the fragmentation time-scale of the initial cloud, and
(eventually) the spatial distribution of fragmented clumps, is close
to the sound speed of cold gas for spheres and streams, regardless of
metallicity, while for sheets it is ~ 0.4 ¢, . (Figs 2 and AS).

(i1) Due to this relatively low explosion velocity (vex ~ ¢s.c), the
dominant deceleration mechanism for escaping clumps is always
momentum exchange with the hot gas through condensation rather
than drag or ram pressure. This is true regardless of initial cloud
geometry and metallicity (equation 16).

(iii) We distinguish cases where clouds remain fragmented from
cases where they recoagulate based on both the number of clumps and
their maximal radial distance from the centre, d.x. Based on these
metrics, both streams and spheres display sustained fragmentation
only above a critical final overdensity (xs < 200 at high-Z). Sheets,
on the other hand, show coagulation at all x; (Figs 4 and 8).

(iv) At the end of their evolution, spherical clouds either remain
fragmented into many small clumps or else coagulate into a single
cloud at the centre. This is not the case for streams and sheets. Rather,
even if such clouds coagulate radially, coagulation is suppressed
along the stream axis and within the plane of the sheet. The final
number of clumps thus increases with ¢, even if the farthest clump
falls back to the central plane/line (Figs 5—7 and C1-C3).
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Fast Coagulation

Slow Coagulation Slow Coagulation

Fast Coagulation

Fast Coagulation

Figure 21. A diagram showing the effects of geometry and metallicity on thermal fragmentation and coagulation. From left to right, we show the fragmentation
of sheets, streams, and spheres. After the initial implosion caused by a strong pressure gradient, cold gas bounces back with an explosion velocity vex < ¢ ¢ for
sheets (e.g. ~ 0.4 c5 ¢ at an overdensity of y; = 100), and vex ~ ¢; ¢ for streams and spheres. Radial coagulation is always efficient for sheets, while it becomes
less efficient at large distance for streams and spheres. The corresponding xr it shown in the diagram suggests a 1/4-power dependence on r* /£ghatter, Where r*
is the cloud radius where sonic contact is lost and the implosion phase begins, and £gpater ~ min(csfcool) 18 sensitive to metallicity. As x increases, fragmented
clumps may enter the disruption regime, which leads to cold-gas mass loss during the fragmentation process.

(v) The coagulation time-scale is longest for spheres and shortest
for sheets. This is determined primarily by the area modulation factor,
fa, which is the ratio of the total surface area of cold gas to the
area of the cloud-centric shell at the distance of the furthest clump
(equation 23). This decreases with the distance of escaping clumps as
d™", where n = 0, 1, 2 for sheets, streams, and spheres, respectively
(Fig. 9).

(vi) Low-Z streams behave similarly to high-Z streams with a
similar ratio of x¢/vpmix, Which determines the deceleration time-scale
(equation 25). For our chosen metallicities and UVB, this translates
into a factor ~ 3 increase in ¢ from low-Z to high-Z. This similar
behaviour is seen in the morphology, number of clumps, maximum
clump distance, and total cold-gas area (Figs 11-13).

(vii) As yxr increases, the fragmented clumps can enter the ‘dis-
ruption’ regime and proceed to mix with the hot background, thus
decreasing the total cold-gas mass. For our low-Z runs, this occurs
at x¢ ~ 1000, though for our high-Z runs clumps survive at all
simulated values of y; (Fig. 14 and equation 29).

(viii) For fragmented clouds, the cumulative clump mass distribu-
tion, N(> m), closely follows a power law with an index of ~ (—1),
in accordance with Zipf’s law, over ~ (2 — 3) dex in clump mass
(Fig. 15, left). However, the full distribution of clump masses down to
the smallest and largest scales is better fit by a lognormal distribution
(Appendix D).

(ix) This power law extends from roughly the resolution scale,
even if this is much smaller than £y, until 7 ¢, the size the initial
cloud would have had assuming monolithic collapse to thermal and
pressure equilibrium. The distribution of clump radii is a power
law over the same range, showing that £, 1S nOt a characteristic
size for cold-gas clumps resulting from thermal-instability-induced
fragmentation (Fig. 15, right).

(x) Exploring a wide range of simulations in both spherical
and stream geometries, we find a critical overdensity for sus-
tained fragmentation in streams and spheres that scales as xf crit
(ro.t/Lshaer)/* (Fig. 16). For x; < xr.cre the fragmented cloudlets
recoagulate. The normalization of i for streams is larger than
for spheres by a factor of ~ 1.5 (Fig. 16), while sheets always
recoagulate.
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(xi) Our model for sustained fragmentation differs from previous
models (e.g. Gronke & Oh 2020b), where xr it depends on the radius
where the cloud loses sonic contact, *, rather than ry .

(xii) We propose a model for ‘slow’ versus ‘fast’ coagulation,
based on the competition between fragmentation of the initial cloud
and deceleration and entrainment of the clumps, which agrees well
with our empirical coagulation criterion. Sheets are always in the fast
coagulation regime (Section 6.1).

(xiii) Many of these conclusions may change when additional
physics are included, such as externally driven turbulence, magnetic
fields, thermal conduction, self-gravity, or shear between the initial
cloud and the background. These effects should be explored in future
work.

The application of our model to cold streams penetrating the hot
CGM of massive haloes at high-z from the cosmic web (Section 7)
rests on the realization that the confining pressure of these streams
in intergalactic filaments is lower than their confining pressure in
the CGM (Lu et al. 2024). This could cause streams to fragment as
they enter the virial shock, in much the same way as clouds which
are underpressurized due to cooling fragment in our simulations. We
evaluate this pressure contrast (1), the final density contrast between
the cold streams and hot CGM (x¢), and the critical overdensity
for fragmentation () i) as a function of halo mass and redshift,
based on previous models for the properties of cold streams in
the CGM (Mandelker et al. 2020b). We find that fragmentation
can be important for haloes with M, > 102My at z > 2. By
comparing the fragmentation time-scale to the inflow time of the
streams, we find that fragmentation is more likely to manifest
towards the lower end of this redshift range. This offers a possible
explanation for the large clumping factors and covering fractions of
cold gas in the CGM around such galaxies, and may be related
to galaxy quenching by providing a mechanism to prevent cold
streams from reaching the central galaxy. These issues will be
explored using direct simulations in upcoming work (Yao et al., in
preparation).
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APPENDIX A: THE IMPLOSION AND
EXPLOSION PROCESSES IN SHEETS

Complementary to the qualitative discussion regarding the implo-
sion and explosion processes in all three geometries presented in
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Section 3.1.1, we here offer a rigorous mathematical description of
these processes in sheets.

A1l Adiabatic underpressurized sheets

Consider a cold, underpressurized sheet of density p. and pressure
P, surrounded by hot gas with density p, = p./x; and pressure
P, = nP.. This setup, shown by the black lines in Fig. Al for the
case x; = n = 10, is unstable, as the negative pressure gradient drives
the contraction of the sheet towards its centre. The evolution during
the contraction, shown in Fig. A1 by the blue lines, is similar to the
Sod shock tube.

Inside the sheet (the left-hand side of the profiles in Fig. Al), a
shock wave develops according to the Rankine—-Hugoniot conditions,
describing the conservation of mass, momentum, and energy across
the shock:

(UL - vsh) PL = (v* - Ush) Px,Ls (Al)
(v — va)? oL+ PL = (Vs — V)’ pur + Pi, (A2)
1 Pl P

S T = S P L (A)
2 y—1p, 2 Yy —1paL

Here vp. =0, pL = p., and P = P, are the physical quantities in
the sheet (on the left-hand side). The velocities in equations (A1l)-
(A3) are in the lab frame, so we subtract the shock velocity, vy,
to describe the equations in the comoving shock frame. The star
symbol, *, represents the region that develops between the initial cold
and hot media (between the left- and right-hand sides of the initial
condition). The density and temperature in the starred region have
sudden transitions across the CD, while the velocity and pressure are
constant. Therefore, p, 1, denotes the density on the left-hand side of
the starred region, while v, and P, represent the velocity and pressure
throughout the whole starred region. These three equations can be
combined to eliminate vy, and obtain expressions for v, and p, 1,

2 2 rp P, y—1\"
x = — G VTS 7*_1 7*4_7 4
Y W‘CL<ﬂy+D> (h )(ﬂ V+1>(A)

1)(P./P -1

G+ DHP/P)+y — 1 (AS)
(y=DP/P)+y+1
We find that if P,/P_ > 1 and v < ¢, then v, X co L/ Pi/PL
and p,.L ~ oLy + D/(y — 1)

In the background (the right-hand side of the profiles in Fig. A1),
adiabatic expansion produces a rarefaction wave that conserves
entropy and the generalized Riemann invariant:

Px,L = PL

P, P
r_n 80
PR PR
2 2
v, = SR - SO (A7)
y —1 y —1

Here vg = 0, pr = pn, and Pg = P, are the physical quantities in
the background (on the right-hand side). p, r and c; , are the density
and the sound speed on the right-hand side of the starred region,
respectively. These equations yield

2¢s R P, (y=1/Q2y)
U*ZUR'F)/”] (?) -1 s (A8)
- R
P* 1/y
PxR = PR (F) . (A9)
R

Equations (A4), (AS), (A8), and (A9) offer solutions for the
implosion quantities, v, = Vim <0, P, = Pim, PxL = Pimc. and
P« R = Pim.n. Furthermore, from equation (A7), we get
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Figure Al. Profiles of density, temperature, pressure, and radial velocity (perpendicular to the surface of the sheet) at four snapshots for an adiabatic
underpressured sheet with n = x; = 10 andxt = 100. The black, blue, orange, and red lines represent four phases of evolution: the initial condition, the
implosion, the peak collision of the shock in the centre, and the explosion of the sheet, respectively. All quantities are shown normalized by their initial values
in the cold sheet, rs i, pc, Tc, Pc, and ¢, ¢ are the properties of the initial cold sheet. The sound crossing time is defined as tsc = r5i/Cs c.

10 ; 7 : -

= A 102} ] 2f e ]
g 10% 1 N g of ]
S o | = 101 a 1 T ol
107 7 e ol Bl .
0 50 100 0 50 100 0 50 100 0 50 100
n n n n

Figure A2. Physical quantities (density, temperature, pressure, and radial velocity from left to right, respectively) in the starred region in an adiabatic
underpressured sheets as functions of the initial pressure contrast, 1, for a fixed final overdensity, xr = nx; = 100. Lines represent the model predictions, which
agree well with the simulation results shown by the dots. Colours are consistent with Fig. A1, with the faint lines and dots represent the density and temperature

of hot gas, and the darker lines and dots representing the cold gas.

Csx,R = Cs R + LA (Uim - UR) = Cs,im,h>» (A]O)
and subsequently
pimr \
Coel = Csimh < - ) = Coime (A11)
pim,c

Finally, the shock velocity vy, can be derived from equation (A1)

VLPAL — VimPim,c

Pim,c
= VUim
PL — Pim,c

Pim,c — POL '

Vg = (A12)
These solutions for the implosion quantities are shown by the blue
lines in Fig. A2. We show these as functions of 7, while fixing x; =
nxi = 100. The blue dots show results from 3D sheet simulations for
comparison. We find that they agree with each other very well.

The implosion shock propagates towards the centre of the sheet
where it collides with the shock from the other side at t.on = 75/ Vsh-
This head-on shock collision, shown in Fig. A1 by the orange lines,
is similar to the planer Noh problem. Applying the shock solutions
from equations (A4) and (AS) to both sides, and inserting v, = 0,
VR = —UL = Vim <0, oL = PR = Pimc,» PL = Pr = Pim, and ¢5L =
CsR = Csim,c from symmetry arguments, we can derive expressions
for P, = Peon, Px = Peoll and Cs,x = Cs coll- We obtain

Pcoll 2 )/()/ + 1) ( 16 )1/2
=1+M e (i ,
Pim me 4 (V + 1)2'/\/li2m,c
(A13)
P, —1 —1P -
Pcoll — ( coll + Y > (V coll + 1) i (A14)
Pim,c Pim V+1 )/+1 Pim

where My ¢ = Vim/Cs.im.c- For Mim > 1 and y = 5/3, we have
Peon/ Pim ~ Mizm,c and peoit/ pim,c ~ 4 as expected for strong shocks.
Together these imply that ¢s con ~ vim/2. The orange lines and points
in Fig. A2 compare these solutions with simulation results and find
excellent agreement.

Once all the cold gas has been shock-heated, the inflowing hot
gas is unable to prevent the expansion of shocked cold gas. At this
stage, a shock wave develops on the right-hand side, propagating
into the background, while a rarefaction waveforms on the left-hand
side, propagating into the cloud. This stage is shown by the red lines
in Fig. Al. Following similar steps to those applied above when
deriving the implosion quantities, but switching the left- and right-
hand sides and using the conditions of vy, = 0, Vg = Vim, Cs.. = Cs coll»
CsR = Csiimh» PL = Peoi, and Pr = Pip,, We can obtain expressions
for Py = Pex, Vs = Vex, Ps,L = Pex,c» and Px,R = Pex,h- Duriﬂg this
phase, the reversal of the direction of the rarefaction wave modifies
equation (A8) so that we have

o — 265 coll . ( P, )(V—l)/(2y)
N I 1 Peonn ’

This equation provides a maximum value for the explosion ve-
locity Of Vex.max = 2¢s.con/(y — 1). In practice, this is always an
overestimate because P, is bounded from below by P,,, and
furthermore the exponent (y —1)/(2y) = 0.2 is weak. The red
lines and points in Fig. A2 compare our model predictions for the
explosion quantities with simulation results, again finding excellent
agreement.

Overall, we find that our model for the implosion and explosion
properties predicts the simulation results quite well. Both the im-
plosion and explosion velocities increase with 7, while the latter

(A15)
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Figure A3. Similar to Fig. A1, but for a simulation with radiative cooling. Gas is assumed to have solar metallicity, with no UV background. We set a cooling

floor at 7 = T, ~ 10* K and also shut-off cooling at T > 0.87T;.

velocity is smaller than the former because part of the kinetic energy
is converted to internal energy when the shock heats the cold gas
during the central collision, increasing its temperature.

A2 Underpressurized sheets with radiative cooling

We expand upon the simple adiabatic problem explored above by
including radiative cooling, which clearly plays an important role in
the fragmentation process we study in the main text. We consider
identical initial conditions to those explored in Appendix Al, and
assume that both the cold and the hot gas have solar metallicity.
We set a temperature floor at the temperature of initial cold gas,
T. ~ 10* K, and prohibit radiative cooling above 0.8 7; as in the
main text. Similar to the adiabatic case, the initial implosion has
a shock solution on the left and a rarefaction wave on the right.
However, since radiative cooling is efficient in the cold and dense
in the sheet, the post-shock gas cools down immediately after being
heated up, effectively forming an isothermal shock, as shown by the
blue lines in Fig. A3.

A2.1 Isothermal shocks

In isothermal shocks, energy conservation (equation A3) is replaced
by

PL Pl

= =, (Al6)
PL Px,L Y

where ¢,1. is the adiabatic'® sound speed in the left-hand fluid.
Consequently, the velocity, density, and sound speed in the left-hand
starred region are given by

P12 P12
vy = —y e [(PL) — (E) . (A17)
—nl (A18)
Px,L = PL PL’
Csx, L. = Cs,L- (A]g)

Since radiative cooling is prohibited in the hot gas, the rarefaction
wave on the right-hand side has a similar solution to the adiabatic
case in equations (A8) and (A9). The four equations (AS8), (A9),
(A17), and (A18), thus provide the solutions for the implosion
quantities in the case of an isothermal shock v, = Vim s, Px =
Pim,ism Px,L = Pim,iso,c> Px,R = Pim,iso,h> and Css, L. = Cs floor- Compar'
ing vim iso i equation (A17) to v;y, in equation (A4), we find that for

13We take the adiabatic rather than the isothermal sound speed because we
are evaluating this at the cooling floor where the cooling time is infinite.

MNRAS 536, 3053-3089 (2025)

P./P. > 1, the isothermal implosion velocity is roughly a factor of
/(v +1)/2 ~ 1.15 larger than the adiabatic one.

The head-on shock collision is also isothermal, shown by the or-
ange lines in Fig. A3. By applying equations (A17) and (A18) on both
sides, we have Pcoll,iso/Pim,iso ~ pcoll,iso/)oim,iso,c ~ y(vim,iso/c.\',ﬁoor)2
and Cs,coll = Cs, floor-

However, the expansion phase is adiabatic for both the shock
propagating into the background on the right and the rarefaction
wave propagating into the cloud on the left, shown by the red lines
in Fig. A3. This is because the shock heats up the hot gas in the
background (on the right) to the regime where radiative cooling is
prohibited, while the cold gas in the cloud (on the left) is already
at the temperature floor and cannot cool, though its temperature can
decrease through adiabatic expansion. Therefore, we expect similar
solutions to the adiabatic case, and in particular the maximum explo-
sion velocity is predicted to be vexmax ~ 2 Cs.fioor/ (¥ — 1) ~ 3 € fioor
from equation (A15), larger by a factor of ~ 2 than our estimate
of vex ~ 1.34 ¢, from equation (10). However, as noted above,
the maximum limit provided by equation (A15) is necessarily an
overestimate, while the limit provided by equation (10) is not.

A2.2 Radiative cooling in mixing layers

In addition to isothermal shocks, radiative cooling also takes place
at the interfaces between cold and hot phases, where gas is at
intermediate temperatures and consequently has efficient cooling.
In the context of our shock model, we assume this occurs at the CD.
Radiative cooling causes enthalpy loss and pulls both cold and hot gas
into this transition region, inducing turbulent mixing that smooths the
CD. Therefore, we hereafter refer to this region as the ‘mixing layer’
instead of the CD. The effects of radiative cooling in the mixing layer
can be seen in the blues lines in the pressure and velocity panels of
Fig. A3. There is a small dip of pressure at the mixing layer due to
cooling. This pressure difference pulls both hot and cold gas into the
mixing layer, causing the hot gas to accelerate and the cold gas to
decelerate with respect to their implosion velocities in the lab frame.
During the explosion phase, the cold gas is accelerated and the hot
gas is decelerated near the mixing layer, as can be seen by the red
line in the velocity panel.

To study this process quantitatively, we begin with the momentum
and energy equations

0pv

o =—-V-(pv®v+ PI), (A20)
e 2

pa:—pv~V6—PV~v—n A + Eg, (A21)

where € is the specific internal energy. The terms on the right-hand
side of equation (A21) are (from left to right) the advection of
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thermal energy, adiabatic expansion/compression, radiative cooling,
and viscous dissipation (caused by turbulence, viscosity, etc.). In
steady state, the thermal pressure is roughly the same on either side
of the mixing layer so the ram pressure exerted by cold and hot gas
inflowing into the mixing layer should roughly balance,

Pe veznt,c = Ph v:nt,h' (A22)

This can also be deduced from equation (A20). Here, Vencc and vent n
are the entrainment velocities of cold and hot gas into the mixing
layer, respectively. Assuming that the advection of thermal energy
into the mixing layer from the hot phase is balanced by the advection
of thermal energy out of the mixing layer into the cold phase and
that viscous dissipation is negligible, then radiative cooling is only
balanced by adiabatic compression (equation A21),
P Vent,h — Vent,c - _ P ,
H (V - 1)tcool
where H is the width of the mixing layer. Combining equations
(A22) and (A23), we can derive the entrainment velocities of cold
and hot gas with respect to the mixing layer
1 H
= >
1+ ﬂ (J/ - l)l‘cool
SV H
1+ ﬁ (V - l)tcool
where x = p./pn is the density ratio between the cold and hot phases.

We can now evaluate the velocity of cold and hot gas in the lab
frame. Both phases share the same implosion velocity vin iso, and
we assume the mixing layer has a velocity vy relative to vip jso-
If radiative cooling is efficient, the mixing layer moves outwards
into the hot phase by accumulating cold gas due to the cooling of
intermediate-temperature gas in the mixing layer, vy > 0. On the
other hand, if radiative cooling is inefficient, the mixing layer moves
inwards into the cold phase due to the heating by mixing, vy, < 0.
Thus, in the lab frame, the cold-gas velocity during implosion is
Vim.c = Vim,iso T Uml + Vent.c» While the hot gas velocity iS vimn =
Vim,iso + Uml + Vent,n- Therefore, the velocity difference is

H
()’ - 1)tcool '
which only depends on the properties of the mixing layer.

In the simulation shown in Fig. A3, there is an initial pressure
jump at the boundary of cold and hot phases, limited by the grid
scale, A. The width of the mixing layer and the velocity difference
thus initially satisfy |vim.c — Vimn| & H ~ A. However, we find that
the velocity difference in this case is proportional to A!/? rather
than A (blue dots in Fig. A4). This is consistent with Tan et al.
(2021), who found that the surface brightness, which is proportional
to the entrainment velocity, scales as A'/? in the absence of thermal
conduction.

The result vey o< H was first proposed by Begelman & Fabian
(1990), but was later found to not hold by recent 3D turbulent mixing
layer simulations (Ji et al. 2019; Tan et al. 2021). The fundamental
reason is that viscous dissipation cannot be neglected. In the absence
of strong turbulence, the dissipation on the grid scale (the scale
of the initial phase transition) is mainly numerical. According to
the Navier—Stokes equations, the viscous dissipation rate can be
described by

(A23)

0, (A24)

Vent,c

0, (A25)

Vent,h =

(A26)

|vim,h - vim,cl = |vent,h - venl,cl =

Eyis = 2pvS;;Sij, (A27)
where §;; = % g;"i + %) is the strain-rate tensor, which has a
j i

value of approximately |Vim n — Vim.c|/A across the mixing layer. The
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Figure A4. Implosion velocity differences between the hot and cold phases
in radiatively cooling sheets with n = 10 and x¢ = 100. Blue dots represent
simulations without any initial perturbations, where the velocity difference
depends on resolution (shown on the bottom x-axis) and is well fitted by
equation (A29) shown by the blue line. Dots with black edges fix the size of
sheets and change the number of cells across the sheet, while those without
edges fix the number of cells per sheet but change the sheet thickness. Orange
dots represent simulations with initial density and interface perturbations,
where the velocity difference does not depend on resolution, as shown by
those dots with black edges. Instead, it depends only on the sheet thickness
(shown on the top x-axis) and is well fitted by equation (A31) shown by the
orange line. This is true whether the pressure jump was present in the initial
conditions (circular points) or was generated due to strong cooling (triangles).

numerical kinetic viscosity v is estimated by v = ac A. Equating
the viscous dissipation term to the cooling term, we have
(vh - vc)z

2pacs A——F— = n’A.

N (A28)

Using n?A = P/[(y — 1)teoo1] and considering the cold phase yields

1 A N\
20{)’(3/ - 1) Cs,ctcool‘c> ’

where My n and My, . are the Mach numbers of hot and cold gas
with respect to ¢, ¢, respectively. As shown by the blue line in Fig. A4,
equation (A29) with a = 1.5 is an excellent fit to simulation results,
which use RAMSES with a MUSCL scheme and HLLC Riemann
solver. This is true whether we vary A by keeping the sheet thickness
fixed and varying the number of cells across the sheet (points with
a black boundary), or whether we keep the number of cells across
the sheet fixed and vary the sheet thickness (points without a black
boundary).

|Mim,h - Mim,c| = < (A29)

A2.3 The impact of turbulence

In more realistic cases, turbulence is ubiquitous and shapes the
properties of mixing layers along with radiative cooling. In this case,
the width of the mixing layer is comparable to the largest eddy,
which has a comparable size of the width of the sheet. According to
Gronke & Oh (2020a), the entrainment velocity of the hot phase is

Vent,h ~ ﬁcs,c(tsc/tcool,c)]/4, (A3O)

when cooling dominates over turbulent mixing, where § = 0.2 — 0.5
(Gronke & Oh 2020a, 2023). Combining this with equation (A22),
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Figure AS. Physical quantities (density, temperature, pressure, and radial velocity from left to right, respectively) in the starred region in simulations with
radiative cooling, shown as functions of the final overdensity xr at a fixed n = 10 and r; = 3 kpc. All simulations have initial surface and density perturbations
in the sheet. Circular points represent simulations with initial pressure discontinuities, while triangles represent simulations where the pressure jump was induced
by strong cooling in a sheet initially in pressure equilibrium with the background, as in the main text. Lines represent the model predictions, which agree
reasonably well with the simulation results for the density and temperature. For the pressure and velocity, the model agrees with the simulations during the
implosion phase, but overpredicts the peak pressure during the shock collision and the explosion velocity, especially at large x.

I/Ts,i

Figure A6. Normalized 2D density slices at four snapshots in the case of = 10, y; = 10*. Fragmentation occurs during implosion.

the velocity difference is

1 roi 1/4
|M-.—M'.|“ﬁ(1+*)<%‘l) '
im,h im,c ﬁ Cs,cleool.c

In order to develop turbulence during the implosion, we add inter-
face perturbations to the surfaces of sheets and density perturbations
inside the sheets, as described in Section 2. As shown by the orange
circular dots and orange line in Fig. A4, we find that the velocity
differences in simulations are well fitted by equation (A31) with
B = 0.4. This result is independent of resolution, measured by the
number cells across the sheet thickness, as shown by the orange
points with a black boundary, where we vary the number of cells by
factors of 2, 4, and 8 while keeping the sheet size fixed.

Until now, we have considered a case with an initial pressure
discontinuity between the cold and hot gas. We now consider a case
as in the main text where the sheet is initially in pressure equilibrium
with the hot background, but its temperature is a factor of » higher
than the temperature floor. Assuming 7o << fsc, Which is true in our
case, the sheet rapidly cools isochorically and induces the pressure
contrast. As shown by the orange triangles in Fig. A4, the properties
of the mixing layer in this case are similar to the case with an initial
pressure contrast.

If the movement of mixing layer with respect to the implosion
shock can be neglected, then the total implosion velocities for the cold
and hot gas are giVen by Vim,c = Vim,iso + Vent,c and Vim,h = Vim,iso +
Vent,h» Tespectively. Furthermore, the thermal pressure of imploding
gas decreases near the mixing layer, which drives the inflow into the
mixing layer. In other words, the pressure and density are modified
due to the entrainment flow

(A31)

MNRAS 536, 3053-3089 (2025)
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Pim = Pim,iso - pim,cvgmyc = Pim,iso - pimA,hvgm,h’ (A32)
I:Ji 1y
Pim,c = Pim,iso 5 (A33)
Pim,iso
P 1y
Pim,h = Pim,iso ( = ) s (A34)
Pim,iso

where we have assumed the density varies adiabatically because the
cold gas is at the cooling floor and the hot gas cannot cool (recall that
it is primarily intermediate gas that cools in the mixing layer). We
have thus obtained the properties of the implosion, accounting for the
effects of the radiatively cooling mixing layer. Similar modifications
are applicable to the explosion phase as well, where the entrainment
accelerates the cold gas and decelerates the hot gas.

We compared our model predictions with simulations in Fig. AS.
Here, we vary x; while fixing n = 10 and r,; = 3 kpc. Circles
represent simulations with an initial pressure contrast, while triangles
represent simulations where the pressure contrast was induced by
rapid cooling. Note that the triangles at y; = 100 correspond to the
sheet case shown in Fig. 2. For all values of y;, the model is a good
fit to the density and temperature values at all stages — implosion,
peak collision, and explosion — and a good fit to the pressure and
radial veloity during the implosion. However, we overpredicted the
peak collision pressure and the explosion velocity, especially at large
xr- We suspected that this discrepancy arises from the fragmentation
of the sheet during the implosion, as illustrated in Fig. A6. This
fragmentation seems to be due to the surface perturbations and a
combination of RMI and vorticity induced at the curved surface of
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the perturbations together with strong cooling. Clumps begin to form
and detach from the sheet very early on in the evolution, before the
outer cold-gas surface has gained much velocity. At high overdensity,
these detached clumps are unable to catch up to the implosion front
since the time-scale for clumps to become entrained in the flow
increases linearly with x (Section 3.2.1). These fragmented clumps
increase the cold-gas surface area, thereby driving stronger inflows
of hot background gas into the mixing layers. Furthermore, because
of this fragmentation the imploding gas that reaches the centre is
not fully collisional, with small-scale clumps ‘missing’ each other.
This leads to a lower collisional density and pressure than predicted,
ultimately resulting in a reduced explosion velocity.

Following the explosion, the cold gas escapes outwards at a
velocity of ~ ¢, while a mild shock propagates outwards into the
hot gas. In the adiabatic case (Fig. Al, red lines), the velocity of
the post-shock hot gas is also ~ ¢, .. However, radiative cooling at
the surface of the central cold-gas sheet induces an entrainment flow
through a turbulent mixing layer, as described in Section 3.2.1 of the
main text. This causes the hot gas to flow towards the centre in an
entrainment flow, while the cold clumps escape outwards.

APPENDIX B: CONVERGENCE TESTS

B1 The peak pressure and explosion velocity of sheets

In Fig. 2, we found that the peak pressure and the explosion velocity
in sheets are both much smaller than in streams and spheres. Since
the density and pressure in collapsing isothermal clouds increases
fastest for spheres and slowest for sheets, we wished to verify that
we would not see a more dramatic increase in the central pressure
(and therefore in explosion velocity) in sheets if the resolution were
increased allowing further collapse. To this end, we performed sheet
simulations with the same parameters as in Fig. 2, with three different
resolutions within » < 3 rg;. The results are shown in Fig. B1. We
found that the peak pressure and explosion velocity do not change
with resolution.

t= O'.62 tsc

Geometrical and metallicity effects ~ 3085

rs,ilA =32 within r=3r
rs,ilA =32 withinr=6rs;
10 L U ST ]
£
ke
\"
- Stream
<
. X71
-1 )
10 100 167
Amax/Ts, t

Figure B2. The convergence test of the effect of the size of the high-
resolution region on the area modulation factor, fa, and thus on r¢a, the radius
where fa first decreases and a critical element of our coagulation criterion.
Solid lines represent simulations with our fiducial grid structure, with the first
resolution drop at r = 3 r;, while dashed lines represent simulations with a
larger high-resolution region where the first resolution drop is at r = 67y ;.
Orange lines represent streams, while red lines represent spheres, each with
xf = 1000, n = 10, rs; = 3kpc, and high-Z. In all cases, we find that the
size of the high-resolution region has no impact on fa or rga.

B2 f\ and rgy

In Section 6.1, we derived a coagulation criterion that depends on
ria, the radius where f) began to decrease. In order to verify that
this is not sensitive to the artificial disruption of cold gas induced
by our statically refined mesh (Section 2, Fig. 1), we performed two
tests with a larger high-resolution region, such that the resolution first
decreases at r = 6 r; rather than 3 ry ;. In other words, we increased
the resolution by one refinement level (corresponding to cell sizes
half as large) for all cells outside the initial high-resolution region,
r > 3 r;, while keeping the same high-resolution interior to this
radius. As a result, the first drop in resolution now occurs at 6 r;

. . . 1
— I, i/A =32
—--- 1o i/A=64 ol |
........ rS’ I/A= 128
100 L
(&) _1 [ |
Q\__C k.......--_"_"_"—'T—"—"—"—"—:'—"—"—"ﬂ‘-“-luuul-lHuuuuuuu uuuuuuuu LT‘
N N
_2 L 4
1071} —3 |
0.0 0.5 1.0 1.5 20 400 0.5 1.0 15 2.0
r/rs,i r/rs,i

Figure B1. Convergence test of the effect of resolution at the centre of the sheet on the peak pressure during the implosion shock collision (left) and the
explosion velocity (right). We find that both of these quantities are converged at our fiducial resolution.
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Figure B3. Convergence test of the effect of resolution on the distinction
between fragmentation and coagulation in spheres. We choose four combi-
nations of xr and r ; as shown in the legend (with n = 10 and high-Z), and
vary the number of cells per initial cloud radius. While the number of clumps
depends on resolution, the distinction between fragmentation and coagulation
does not.

w/rs,i

’ -3
S420 2 4420 2 4-4-20 2 4-4-20 2 4-4-—20 2 4 10

y/rs,i y/rs,i

y/ Ts,i

instead of 3 r;, with subsequent drops occurring at [9, 12] r ;. We
did this for both streams and spheres with xy = 1000, as shown in
Fig. B2. We found that the size of the high-resolution region does
not affect f, significantly.

B3 The coagulation criterion

Our definition of fragmentation or coagulation rests primarily on
the evolution of the number of clumps. To verify that this is not
sensitive to resolution, we chose four simulations that are close to
the borderline and lowered their resolutions everywhere by factors of
2 and 4, as shown in Fig. B3. While the number of clumps obviously
depends on resolution, the distinction between fragmentation and
coagulation, namely whether N, decreases to order unity or remains
large until the end of the simulation, does not.

APPENDIX C: VOLUME-WEIGHTED AVERAGE
OF DENSITY PROJECTION MAPS

In Figs C1-C4, we presented maps of the volume-weighted average
density in sheets, streams, and spheres, with different x; and
metallicity values. These are meant to complement, respectively,
Figs 5-7 and 11 from the main text, which show the maximal density
along the line of sight. As described in the text, the maximal density

107!

y/rs,i y/rs,i

Figure C1. Same as Fig. 5, but showing the average density along the line of sight rather than the maximal density, to highlight coagulation and the geometry

of large clouds rather than small clouds which result from thermal fragmentation.
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Figure C2. Same as Fig. 6, but showing the average density along the line of sight rather than the maximal density, to highlight coagulation and the geometry
of large clouds rather than small clouds which result from thermal fragmentation.
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Figure C3. Same as Fig. 7, but showing the average density along the line of sight rather than the maximal density, to highlight coagulation and the geometry
of large clouds rather than small clouds which result from thermal fragmentation.
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Figure C4. Same as Fig. 11, but showing the average density along the line of sight rather than the maximal density, to highlight coagulation and the geometry

of large clouds rather than small clouds which result from thermal fragmentation.

better highlights thermal fragmentation and small clumps, while the
average density better highlights coagulation and large clumps. This
better shows how coagulation is suppressed along the stream axis and
in the plane of the sheet, and also how in general radial coagulation
is stronger in sheets compared to streams compared to spheres.

APPENDIX D: LOGNORMAL FITS TO THE
CLUMP MASS DISTRIBUTIONS

In Section 5 and Fig. 15, we discussed the distribution of clump sizes,
suggesting these are well described by a power law, N(> m) occ m™!.
However, many power laws are actually lognormal distributions in
disguise (Mitzenmacher 2004), and pure fragmentation, in particular,
is expected to produce a lognormal due to the central limit theorem
(Kolmogorov 1941). We compared these distributions using the
PYTHON package powerlaw (Alstott et al. 2014), which fits both
power laws and lognormals while estimating the p-values of the
significance via log-likelihood ratios. When we used all clumps down
to the minimal clump mass, a lognormal distribution is significantly
favoured over a power, law with a p-value less than 10-2°. However,
when allowing the minimal clump mass to vary as part of the fitting
procedure, the p-value can rise to as high as 0.3 when fitting over
the range m/mgy > 10~*. This suggests that while the lognormal
distribution is still favoured, a power law is also a good description
of the data over this mass range. In either case, the mode of the
lognormal distribution is sensitive to resolution even when £gpager 1S
resolved, consistent with our main conclusion that £y, does not
set a characteristic value for clump size in our simulations.

Fig. D1 shows the lognormal fits to the case of a low-Z stream with
rsi = 3 kpc, n = 10, and x¢ = 100 at different resolutions. Fig. D2
shows the PDF of all low-Z cases, which can be fit by lognormal
distributions similar to Fig. D1. Note that the peak of the distribution

MNRAS 536, 3053-3089 (2025)

tracks the numerical resolution. Fig. D3 shows the probability density
function (PDF) of column densities of all low-metallicity streams.
The peaks of the column densities are determined by the resolution
rather than by the column density at £gpayer-

i — rb=32
10%¢ - i re il =64 1
Y — rsi/A=128
104 7 T RS lognormal fitting 4
===~ Mcell, cold/Mo
30 mode of lognormal |
EU 10
2 107} ]
=
i)
10t 3
100 3
1071; 3

1077 10=5 10-5 10-% 10— 10-Z 1i0-
mal/mo

Figure D1. The PDF of clump masses for the low-metallicity stream case
with rgj =3 kpe, xr = 100 at different resolutions. The clump mass is
normalized by the initial mass of the stream, with colours representing
different resolutions. Higher resolution simulations capture smaller clump
masses, extending to lower values of m.j /mg. Dotted lines indicate lognormal
fits for each resolution, with the modes (dash—dotted lines) aligning with
the normalized cold masses in a single cell (dashed lines). Clump masses
can fall below this value due to lower densities and higher temperatures.
For m¢1/mg 2, 10~*, where resolution effects are minimal, the distributions
exhibit a power-law feature with an index of —2, consistent with the
cumulative power-law slope of —1 discussed in Section 5.
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Figure D2. The PDF of clump masses for all low-metallicity stream cases.
Line styles and colours are as in Fig. 15. The dashed lines represent the
normalized cold masses in a single cell, which appear to align with the peaks
of the mass distributions.
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Figure D3. The PDF of column densities in simulations of low-metallicity
streams. Line styles and colours are as in Fig. 15. The column densities are
calculated by Ny = 2pqrc1- The cloud sizes are derived assuming spherical
geometry, re; = [3mg /(4 pa)]'/3, where m¢ and p are obtained from the
clump finder. The black dashed line represents the column density of cold
clumps at the size of €sharer. This column density is higher than 107 cm™2
predicted by McCourt et al. (2018) due to our much larger £gpaer caused
by lower metallicity and the presence of a UVB. The peaks of the column
densities are determined by the resolution rather than by the column density
at Lshagter-
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