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A B S T R A C T 
Theory and observations reveal that the circumgalactic medium (CGM) and the cosmic web at high redshifts are multiphase, with 
small clouds of cold gas embedded in a hot, diffuse medium. We study the ‘shattering’ of large, thermally unstable clouds into 
tiny cloudlets of size ! shatter ∼ min ( c s t cool ) using idealized numerical simulations. We expand upon previous works by exploring 
the effects of cloud geometry (spheres, streams, and sheets), metallicity, and an ionizing ultraviolet background. We find that 
‘shattering’ is mainly triggered by clouds losing sonic contact and rapidly imploding, leading to a reflected shock that causes 
the cloud to re-expand and induces Richtmyer–Meshkov instabilities at its interface. The fragmented cloudlets experience a 
drag force from the surrounding hot gas, leading to recoagulation into larger clouds. We distinguish between ‘fast’ and ‘slow’ 
coagulation regimes. Sheets are al w ays in the ‘fast’ coagulation regime, while streams and spheres transition to ‘slow’ coagulation 
abo v e a critical o v erdensity, which is smallest for spheres. Surprisingly, ! shatter does not appear to be a characteristic clump size 
even if it is well resolved. Rather, fragmentation continues until the grid scale with a mass distribution of N ( > m ) ∝ m −1 . We 
apply our results to cold streams feeding massive ( M v > ∼ 10 12 M $) galaxies at z > ∼ 2 from the cosmic web, finding that streams 
likely shatter upon entering the hot CGM through the virial shock. This could explain the large clumping factors and co v ering 
fractions of cold gas around such galaxies, and may be related to galaxy quenching by preventing cold streams from reaching 
the central galaxy. 
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1  I N T RO D U C T I O N  
Only a small fraction of the Universe’s baryons are found in galaxies, 
including both stars and interstellar gas (e.g. Peeples et al. 2014 ; 
Tumlinson, Peeples & Werk 2017 ; Wechsler & Tinker 2018 ). The 
majority of baryons, and also the majority of metals, reside in the 
circumgalactic medium (CGM, gas outside galaxies but within dark 
matter, DM haloes), and the intergalactic medium (IGM, gas outside 
DM haloes). Besides their importance for the cosmic baryon budget, 
the physical properties and chemical composition of the C/IGM offer 
valuable insight into galaxy evolution, since they supply galaxies 
with fresh gas and also act as a reservoir for their ejected, enriched gas 
(the cosmic baryon cycle, e.g. Putman, Peek & Joung 2012 ; McQuinn 
2016 ; Tumlinson et al. 2017 ). Moreo v er, the distribution of neutral 
hydrogen (H I ) in the high- z IGM can be used to constrain cosmic 
reionization, structure formation, and the nature of DM through the 
L yman- α (L y α) forest (e.g. Rauch 1998 ; Viel et al. 2013 ; Lidz & 
Malloy 2014 ; McQuinn 2016 ; Eilers, Davies & Hennawi 2018 ). 

Gas in the C/IGM is highly diffuse and difficult to directly observe. 
It has traditionally been traced using absorption line spectroscopy 
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along lines of sight to distant quasi-stellar objects (QSOs) or galaxies 
(e.g. Bergeron 1986 ; Hennawi et al. 2006 ; Steidel et al. 2010 ; 
Lehner et al. 2022 ). In recent years, the advent of new integral 
field unit spectographs such as Keck Cosmic Web Imager (KCWI) 
on Keck and Multi Unit Spectroscopic Explorer (MUSE) on the 
Very Large Telescope (VLT) have enabled emission-line studies 
of the CGM and IGM around galaxies at z > ∼ 3 (Steidel et al. 
2000 ; Cantalupo et al. 2014 ; Martin et al. 2014a , b ; Umehata 
et al. 2019 ). Both emission- and absorption-line studies reveal that 
the gas in and around galaxy haloes has a complex multiphase 
structure (Tumlinson et al. 2017 ). Surprisingly, large amounts of 
cold ( ∼ 10 4 K) gas have been observed in the outskirts of galaxy 
haloes, which cannot be in hydrostatic equilibrium with the halo 
gravitational potential. During cosmic noon, at z ∼ (2 − 6) near the 
peak of cosmic galaxy formation, this cold gas is inferred to be 
denser than the ambient hot gas within which it is embedded by a 
factor χ ≡ ρc /ρh ∼ 10 2 − 10 3 , and to be composed of tiny clouds 
with sizes of l ∼ N H /n H < ∼ 50 pc (Cantalupo et al. 2014 ; Hennawi 
et al. 2015 ; Borisova et al. 2016 ). The cold gas has order unity area 
co v ering fractions, f C ∼ O(1), and mass fractions with respect to 
the hot CGM mass, f M ∼ M cold /M hot ∼ O(1) (Pezzulli & Cantalupo 
2019 ). Ho we ver, its volume filling factor is tiny, f V ∼ f M /χ ∼ 10 −3 , 
making it extremely clumpy (Cantalupo et al. 2019 ) and its apparent 
abundance difficult to explain (Faucher-Gigu ̀ere & Oh 2023 ). 

© 2024 The Author(s). 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/536/3/3053/7926971 by guest on 11 April 2025

http://orcid.org/0000-0003-1604-1272
http://orcid.org/0000-0001-8057-5880
http://orcid.org/0000-0002-2153-6096
mailto:zhiyuan.yao@mail.huji.ac.il
mailto:nir.mandelker@mail.huji.ac.il
https://creativecommons.org/licenses/by/4.0/


3054 Z. Yao et al. 

MNRAS 536, 3053–3089 (2025) 

Recent theoretical advances have shed new light on these issues. 
A major new insight (McCourt et al. 2018 ) is that when the cooling 
time of a gas cloud is much less than its sound crossing time such 
that it cannot cool isobarically, it does not cool isochorically as had 
been presumed (Field 1965 ; Burkert & Lin 2000 ). Rather, the cloud 
‘shatters’ into many small fragments that lose sonic contact, causing 
them to contract independently and subsequently disperse, similar 
to a terrestrial fog (McCourt et al. 2018 ; Gronke & Oh 2020b ). 
The typical size of the resulting cloudlets is expected to be of order 
the minimal cooling length, ! shatter ∼ min ( c s t cool ), with c s and t cool 
the sound speed and cooling time, and the minimal value obtained 
at T ∼ 10 4 K. For typical CGM conditions at z ∼ (2 − 3), this is 
> ∼ 10 pc , consistent with inferred cloud sizes. This would explain 

the vastly different area co v ering and volume filling factors, since 
for N droplets of size l dispersed throughout a system of size R, 
f C /f V ∼ R/l & 1 (Faucher-Gigu ̀ere & Oh 2023 ). A ‘fog’ can also 
explain a host of additional observations in the CGM, high velocity 
clouds, quasar broad-line regions, and the interstellar medium (ISM, 
Gronke et al. 2017 ; McCourt et al. 2018 ; Stanimirovi ́c & Zweibel 
2018 ; Faucher-Gigu ̀ere & Oh 2023 ; Sameer et al. 2024 ). 

Despite the many appealing features of the shattering model, 
numerous puzzles remain. It is unclear under what conditions a large 
cooling cloud will shatter, with some suggesting this depends on the 
final o v erdensity between the cold and hot gas (Gronke & Oh 2020b ) 
and others that it depends on the thermal stability conditions in the 
initial cloud (Waters & Proga 2019a ; Das, Choudhury & Sharma 
2021 ). Even when clouds do shatter in 3D simulations, they do not 
appear to do so hierarchically as was initially proposed by McCourt 
et al. ( 2018 ). Rather, if the initial cloud is large ( r cl & ! shater ) and 
highly non-linear ( δρ/ρ & 1) when it loses sonic contact it initially 
cools isochorically, then becomes strongly compressed by its sur- 
roundings until its central pressure o v ershoots, and finally it explodes 
into many small fragments (Gronke & Oh 2020b ). This process is 
sometimes referred to as ‘splattering’ (Waters & Proga 2019a , 2023 ), 
and seems to be due to vorticity generated by Richtmyer–Meshkov 
instabilities (RMI; Richtmyer 1960 ; Meshkov 1969 ; Zhou 2017a , b ), 
which explains why it is not seen in 1D simulations (Waters & Proga 
2019a ; Das et al. 2021 ). Additional fragmentation mechanisms have 
been proposed, such as shredding by collisions with larger fragments 
(Jennings & Li 2021 ), or rapid rotation of clumps (‘splintering’; 
Farber & Gronke 2023 ). We will hereafter use the term ‘thermal 
fragmentation’ to refer to the general process of cold-gas fragmenta- 
tion into numerous small clouds, as the process may be very different 
than that originally proposed by McCourt et al. ( 2018 ). 

Even if a cloud initially fragments, the resulting cloudlets may 
recoagulate to form larger clouds. Gronke & Oh ( 2020b ) found that 
a cloud remained fragmented if its final o v erdensity 
χf ≡ ρs , f /ρbg , (1) 
where ρs , f 1 is the cloud density at the temperature floor and ρbg is 
the background density, was abo v e a critical value of χf, crit ∼ 300 
with a weak dependence on cloud size of ( r cl /! shatter ) 1 / 6 . The origin of 
this threshold remains unclear. Several coagulation mechanisms have 
been discussed in the literature (see summary in Faucher-Gigu ̀ere & 
Oh 2023 ). These include direct collisions, similar to dust grain growth 
in protoplanetary discs, and coagulation due to the adv ectiv e flow 
generated by hot gas condensing onto a cold cloud. In the latter, 
the inflow velocity can be set by thermal conduction (or numerical 
dif fusion; Elphick, Rege v & Spiegel 1991 ; Elphick, Regev & Shaviv 
1 The subscript’s’ refers to’spheres’,’streams’, or’sheets’. 

1992 ; Koyama & Inutsuka 2004 ; Waters & Proga 2019b ) or, more 
rele v ant for our purposes, by the so-called mixing velocities through 
turbulent mixing layers (Gronke & Oh 2023 ). Of particular interest 
is that in the case of turbulent mixing layers, the coagulation can 
be modelled as an ef fecti ve force between two clouds, which scales 
as r −n , with r the distance between the clouds and n = 2, 1, or 0 
for clouds in 3, 2, or 1 dimensions, similar to the gravitational force 
(Gronke & Oh 2023 ). 

Studying this process in a cosmological context is extremely chal- 
lenging, since even in the most advanced cosmological simulations 
employing no v el methods to enhance the resolution in the CGM 
(Hummels et al. 2019 ; Peeples et al. 2019 ; Suresh et al. 2019 ; 
van de Voort et al. 2019 ) or the IGM (Mandelker et al. 2019b , 
2021 ), cell sizes are still significantly larger than ! shatter . As a result, 
the amount and extent of cold, dense, low-ionization gas in the 
CGM increases with resolution and is not converged. Furthermore, 
different simulations disagree on the magnitude of the effect of 
enhanced CGM refinement, at least in part due to the different subgrid 
models employed for galaxy formation physics, such as stellar and 
active galactic nucleus (AGN) feedback, galactic winds, and gas 
photoheating and photoionization. This has obscured the details of 
why higher resolution leads to more cold gas in the CGM, where this 
cold gas comes from, and what a meaningful convergence criterion 
for the formation of multiphase gas might be. Numerically, it seems 
that the formation of multiphase gas requires resolving the cooling 
length at T ∼ 10 5 K where isochoric cooling modes are stable (Das 
et al. 2021 ; Mandelker et al. 2021 ), though it is unclear how generic 
this is and other convergence criteria have been proposed (Hummels 
et al. 2019 ; Gronke et al. 2022 ). 

For these reasons, thermal fragmentation and coagulation are 
most commonly studied using idealized simulations and numerical 
models. In the vast majority of cases, such models assume a spherical 
or quasi-spherical cloud or distribution of clouds. Ho we v er, man y 
systems in the C/IGM where these processes are important are 
filamentary (cylindrical) or planar in nature. Modern cosmological 
simulations reveal strong accretion shocks around intergalactic fila- 
ments (Ramsøy et al. 2021 ; Lu et al. 2024 ) and sheets (Mandelker 
et al. 2019b , 2021 ) that make up the ‘cosmic web’ of matter on Mpc- 
scales, similar to virial accretion shocks around massive DM haloes 
(Rees & Ostriker 1977 ; White & Rees 1978 ; Birnboim & Dekel 2003 ; 
Stern et al. 2021 ). The post-shock gas in the high- z cosmic web can 
fragment (Mandelker et al. 2019b , 2021 ; Lu et al. 2024 ), with the 
resulting cold cloudlets in intergalactic sheets potentially explaining 
observations of extremely metal-poor Lyman-limit systems (e.g. 
Robert et al. 2019 ; Lehner et al. 2022 ). The small-scale structure of 
cosmic filaments and sheets have additional important consequences 
for a wide variety of issues, including how gas is accreted onto DM 
haloes, interpretations of Ly α forest statistics, measured dispersions 
of Fast radio bursts (FRBs), radiative transfer and the self-shielding 
of photoionized gas, and the o v erall cosmic census of baryons (see 
discussion in Mandelker et al. 2021 ). On smaller scales, gas accretion 
onto massive galaxies at high- z is thought to be dominated by cold 
streams flowing along cosmic-web filaments, which penetrate the 
halo virial shock and flow freely towards the central galaxy (e.g. 
Dekel & Birnboim 2006 ; Dekel et al. 2009 ). The interaction of these 
cold streams with the hot CGM can lead to fragmentation and the 
formation of small-scale cold clouds (Mandelker et al. 2020a ; Lu 
et al. 2024 ). Finally, filamentary structures are expected around both 
inflo wing and outflo wing gas clouds in the CGM due to cloud–wind 
interactions (e.g. Banda-Barrag ́an et al. 2016 , 2019 ; Gronke & Oh 
2018 ; Li et al. 2020 ; Sparre, Pfrommer & Ehlert 2020 ; Gronke & Oh 
2020a ; Tan, Oh & Gronke 2023 ; Tan & Fielding 2024 ). 
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An additional complication arises due to the metallicity of the gas, 
which affects the cooling rates and therefore ! shatter and the resulting 
cloud sizes, as well as the strength of coagulation forces. While 
most studies in the literature assume solar metallicity gas (though 
see Das et al. 2021 ), gas in the high- z cosmic web is expected 
to have much lower metallicity, Z ∼ (10 −4 − 0 . 1) Z $ (Mandelker 
et al. 2021 ). Similarly, the presence of a ultraviolet (UV) background 
(UVB) is typically not included in studies of thermal fragmentation 
although it too can influence cooling rates and cloud sizes. 

In this paper, we explore the effects of geometry and metallicity 
on thermal fragmentation and coagulation using idealized 3D sim- 
ulations of spherical clouds, cylindrical filaments, and planar sheets 
with metallicity values in the range (0 . 03 − 1 . 0) Z $. In Section 2 , we 
introduce our numerical tools and simulation methods. In Section 3 , 
we compare the evolution of fragmentation and coagulation pro- 
cesses among planar, cylindrical, and spherical geometries at solar 
metallicity. In Section 4 , we extend the cylindrical geometry to lower 
metallicity and include a UVB. In Section 5 , we discuss the size 
distribution of cloudlets formed through thermal fragmentation. We 
present a model for the coagulation criteria in both streams and 
spheres in Section 6 , and tentatively apply this to the case of cold 
streams penetrating the halo virial shock in Section 7 . In Section 8 , we 
address caveats caused by additional physical processes not included 
in our analysis, before concluding in Section 9 . 
2  N U M E R I C A L  M E T H O D S  
In this section, we describe the details of our simulation setup. 
2.1 Simulation code 
We use Eulerian adaptive mesh refinement (AMR) code RAMSES 2 
(Teyssier 2002 ) to perform 3D idealized numerical simulations. We 
adopt the multidimensional MonCen limiter (van Leer 1977 ) for the 
piecewise linear reconstruction, the Harten–Lax–van Leer–Contact 
(HLLC) approximate Riemann hydro solver (Toro, Spruce & Speares 
1994 ) for calculating fluxes at cell interfaces, and the Monotone 
Upstream-centered Schemes for Conservation Laws (MUSCL)–
Hanchock scheme (van Leer 1984 ) for the Godunov integrator. The 
adiabatic index is γ = 5 / 3, and the Courant factor is 0.6. 
2.2 Radiati v e cooling 
We utilize the standard RAMSES cooling module, which accounts 
for atomic and fine-structure cooling for our assumed metallicity 
values. When comparing the three geometries in Section 3 , we 
assume solar metallicity for both cold and hot phases and set a 
temperature floor at T floor = 1 . 68 × 10 4 K. When focusing on cold 
streams in Section 4 , we follow Mandelker et al. ( 2020a ) and 
assume metallicity values of Z bg = 0 . 1 Z $ for the background CGM 
and Z s = 0 . 03 Z $ for the streams, and include photoheating and 
photoionization from a z = 2 (Haardt & Madau 1996 ) UVB. At our 
assumed densities, the equilibrium temperature between the radiative 
cooling and the UV heating is roughly at T floor which we adopt in 
Section 3 . In all cases, we shut-off cooling abo v e 0 . 8 T bg to prevent 
the cooling of background (e.g. Gronke & Oh 2018 ; Mandelker 
et al. 2020a ). 
2 Git commit hash: ebcb676 

2.3 Clump finder 
To quantify the degree of cold-gas fragmentation, we utilize the 
built-in RAMSES clump finder module PHEW (Bleuler et al. 2015 ), 
which is a parallel segmentation algorithm for 3D AMR data sets. It 
detects connected regions above a certain density threshold based on 
a ‘watershed’ segmentation of the computational volume into dense 
regions, followed by a merging of the segmented patches based 
on the saddle point density . Basically , each clump is centred on a 
local density peak (whose density is abo v e the density threshold) 
and includes all surrounding gas with densities abo v e both the 
density threshold and any local saddle points or density minima. 
Two neighbouring peaks separated by a saddle point whose density 
is abo v e the secondary saddle density threshold are then ‘merged’ 
into a single clump. If the saddle density is below this secondary 
threshold, the two peaks represent two distinct clumps. We choose 
the clump density threshold to be the initial density of warm gas 
(see Section 2.5 below), while the saddle density threshold is the 
geometric mean of the initial warm gas density and the final cold-gas 
density. 

2.4 Grid structure and boundary conditions 
The coordinates can be generalized by ( x 1 , x 2 , x 3 ), which represents 
( x , y , z ), ( r, φ, z ), and ( r, θ, φ) in sheets, streams, and spheres, 
respectively. The sheets are aligned with the yz plane, while the 
stream axis is aligned with the z-axis. Sheets are initially confined to 
the region | x| ≤ r s , i , while streams and spheres are initially confined 
to r ≤ r s , i . Here, r s , i represents the initial sheet half-thickness, cylin- 
drical radius, and spherical radius for the three different geometries, 
with cold gas al w ays occup ying the region | x 1 | ≤ r s , i . 

The simulation region is a cubic box with size L = 32 r s , i . We 
use a statically refined mesh with higher resolution around the 
cold gas. In our fiducial setup, the maximal refinement level is 10 
corresponding to a minimal cell size * = L/ 1024 = r s , i / 32 valid 
in the region | x 1 | < 3 r s , i . The cell size increases by a factor of 
2 at | x 1 | = [3 , 6 , 9 , 12] r s , i , reaching a maximal value of r s , i / 2 at 
| x 1 | > 12 r s , i . Our fiducial grid structure for stream geometry is 
illustrated in Fig. 1 . 

We adopt outflow conditions for all boundaries, such that the 
gradients of all hydrodynamic variables are set to zero. We note 
that while periodic boundary conditions along the stream axis and 
within the plane of the sheet would have been preferable to model 
the idealized cases of infinitely long streams and sheets, for technical 
reasons to do with our clump finder we were forced to adopt the same 
boundary conditions on all six boundaries. We opted to implement 
outflow boundary conditions everywhere as these are necessary to 
allow correct entrainment flows to develop perpendicular to the sheet 
plane and the stream axis, which are necessary for properly modelling 
coagulation. While this has no impact on our analysis of spheres, we 
find that streams contract along their axis and sheets within the plane 
due to coagulation along these axes induced by entrainment flows 
that develop after the initial fragmentation. To a v oid any potential 
effects of these boundary conditions on our analysis in streams and 
sheets, we restrict our analysis of these geometries to a narrower 
box, excluding gas within 10 r s , i of the boundaries along the stream 
axis ( x 3 ) and within the sheet plane ( x 2 , x 3). We find this narrower 
box to be unaffected by this contraction o v er the run time of our 
simulations, ∼ (10 − 20) t sc , where 
t sc ≡ r s , i /c s , c (2) 
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Figure 1. The grid structure for our fiducial setup in stream geometry, within 
the central 16 r s , i (i.e. half the box), for illustrative purposes. The smallest 
cells have size * = r s , i / 32 within | x| < 3 r s , i , and the cell size doubles at 
| x| = [3 , 6 , 9 , 12] r s , i . The initial stream configuration is depicted in blue, 
o v erlaid on the grid. 
is the sound crossing time of the initial cloud radius at the sound 
speed of cold gas, c s , c , with a temperature of T c ∼ T floor > ∼ 10 4 K. 
2.5 Initial conditions 
We initialize the simulations with a static, warm component 
(sheet/stream/sphere) of density ρs , i in pressure equilibrium with a 
static, hot background of density ρbg . The initial o v erdensity is thus 
χi ≡ ρs , i /ρbg . The temperature of the warm gas, T s , i , is lower than 
that of the hot background, T bg , but higher than the temperature floor 
T floor . As the warm component cools towards thermal equilibrium at 
T floor , a pressure contrast is generated between the cold gas and the 
hot background. We define η ≡ ρs , f /ρs , i = ( T s , i /µs , i ) / ( T floor /µs , f ), 
where ρs , f denotes the final density of cold gas once pressure 
equilibrium has been re-established at T floor , and µs , i and µs , f are 
the mean molecular weight in the initial warm and final cold gas, 
respectively. Consequently the final overdensity between the cold 
and hot gas is χf ≡ ρs , f /ρbg = ηχi , which is expected to be the 
key parameter determining whether cold gas remains fragmented 
or coagulates (Gronke & Oh 2020b ). We fix ρs , f = 0 . 01 m p for all 
simulations and vary χf by changing ρbg . 

Table 1 summarizes the parameters of the simulations analysed 
throughout this work, and the sections where they are discussed. 
2.6 Perturbations 
We introduce density perturbations in the initial warm gas compo- 
nent. In units of the initial mean density of warm gas, the density 
follows a Gaussian distribution with ( µ, , ) = (1 , 0 . 01), truncated 
at 3 , , similar to Gronke & Oh ( 2020b ). We further introduce 
shape perturbations at the interface between the warm and hot 
components, as described below. Such interface perturbations have 
been shown to suppress the carbuncle instability (Quirk 1994 ), which 

is a numerical instability affecting strong shock fronts on the grid 
scale in multidimensional simulations, by misaligning the interface 
and the grid, and by generating additional vorticity and turbulence 
when the shock o v ertakes the interface. 

For the stream geometry, we adopt the same interface perturbations 
as implemented in Mandelker et al. ( 2019a , 2020a ), 
r = r s , i 

 
 1 + √ 

2 
N pert, str δr 

N pert, str ∑ 
j= 1 cos ( k j z + m j ϕ + φj ) 

 
 . (3) 

Here, δr = 0 . 1 r s , i is the rms amplitude of perturbations, and 
k j = 2 .n j where n j is an integer corresponding to a wavelength 
/j = 1 /n j . We include all wavenumbers in the range n j = 16 − 64, 
corresponding to wavelengths in the range from r s , i / 2 to 2 r s , i . m j 
is the azimuthal mode number of the perturbation, with m = 0 
corresponding to axisymmetric modes, m = 1 to helical modes, and 
m ≥ 2 to high-order fluting modes (Mandelker et al. 2016 , 2019a ). 
For each longitudinal wavenumber, n j , we include two azimuthal 
modes, m j = 0 , 1. This results in a total of N pert, str = 2 × 49 = 98 
modes. Each mode has a random phase, φj ∈ [0 , 2 . ). 

For sheets, we use analogous interface perturbations 
r = r s , i 

 
 1 + √ 

2 
N pert, sht δr 

N pert, sht ∑ 
j= 1 cos ( k x,j x + k y,j y + φj ) 

 
 , (4) 

where k x,j = 2 .n x,j , k y,j = 2 .n y,j . n x,j , and n y,j are the wavenum- 
bers along the x- and y-directions, chosen from 16 to 64 with 
an interval of 6, i.e. [16 , 22 , ..., 58 , 64]. This corresponds a total 
of N pert, sht = 9 × 9 = 81 modes, each with a random phase φj ∈ 
[0 , 2 . ). 

For spheres, we use spherical harmonics to perturb the interface: 
r = r s , i 

[ 
1 + √ 

4 .
N pert, sph δr 

l max ∑ 
l= 0 

l ∑ 
m = 0 Y m 

l ( θ, φ) ] 
, (5) 

where Y m 
l is the spherical harmonic given by 

Y m 
l ( θ, φ) = 

√ 
2 l + 1 

4 . ( l − m )! 
( l + m )! P m 

l ( cos θ) cos ( mφ) , (6) 
with P m 

l the associated Legendre polynomial. We choose l max = 13, 
yielding N pert, sph = 1 / 2 × 14 × 15 = 105 modes. 
3  G E O M E T R I C A L  EFFECTS  O N  T H E R M A L  
FRAGMENTATI ON  A N D  C OAG U L AT I O N  
In this section, we present our results comparing thermal fragmenta- 
tion and coagulation in the three geometries at solar metallicity. We 
begin in Section 3.1 by addressing the initial implosion and explosion 
phases of the fragmentation process. Then, in Section 3.2 , we discuss 
the subsequent coagulation of the resulting cloudlets. 
3.1 Cold-gas fragmentation 
3.1.1 The implosion and explosion of cold gas 
We begin with a detailed physical description of the implosion of the 
initial cloud, triggered by a lack of pressure support due to cooling, 
and the subsequent explosion triggered by a reverse shock reflected 
off the cloud centre. While this process is interesting in its own right, 
the main outcome rele v ant for our discussion of coagulation which 
follows is the ‘explosion velocity’, v ex , the characteristic velocity of 
the cold gas once the reverse shock reaches scales of order the final 
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Table 1. Summary of simulations analysed throughout this work. From left to right, we list the initial cloud geometry (sheet, stream, or sphere); the ratio of the 
equilibrium cloud density to its initial density, η ≡ ρs , f /ρs , i ; the initial density contrast between the cloud and the background, χi ≡ ρs , i /ρbg ; the final density 
contrast between the cloud and the background, χf ≡ ρs , f /ρbg = ηχi ; the initial cloud radius, r s , i , in kpc ; the cloud radius where it loses sonic contact, r +, in 
kpc ; the final equilibrium cloud radius, r s , f , in kpc ; the sound crossing time of the initial cloud radius at the sound speed of cold gas, t sc ≡ r s , i /c s , c , in Gyr; the 
shattering length-scale at the initial cloud metallicity, ! shatter ≡ min ( c s t cool ), in pc ; the initial cloud metallicity, Z s , in solar units; the background metallicity, 
Z bg , in solar units; the number of cells per initial cloud radius, r s , i /* ; whether or not a Haardt & Madau ( 1996 ) UVB is assumed; whether or not the end result 
is a fragmented cloud; and the section where the simulation is discussed. 
Geometry η χi χf r s , i r + r s , f t sc ! shatter Z s Z b r s , i /* UVB Fragmentation Section 

[kpc] [kpc] [kpc] [Gyr] [pc] [ Z $] [ Z $] 
Sheet 10 10 100 3 3 0 .30 0 .15 3.7 1.0 1.0 32 Off False 3 
Sheet 10 20 200 3 3 0 .30 0 .15 3.7 1.0 1.0 32 Off False 3 
Sheet 10 40 400 3 3 0 .30 0 .15 3.7 1.0 1.0 32 Off False 3 
Sheet 10 60 600 3 3 0 .30 0 .15 3.7 1.0 1.0 32 Off False 3 
Sheet 10 100 1000 3 3 0 .30 0 .15 3.7 1.0 1.0 32 Off False 3 
Stream 10 10 100 3 3 0 .95 0 .15 3.7 1.0 1.0 32 Off False 3 , 4 , 6 
Stream 10 20 200 3 3 0 .95 0 .15 3.7 1.0 1.0 32 Off True/Borderline 3 , 4 , 6 
Stream 10 40 400 3 3 0 .95 0 .15 3.7 1.0 1.0 32 Off True 3 , 4 , 6 
Stream 10 60 600 3 3 0 .95 0 .15 3.7 1.0 1.0 32 Off True 3 , 4 , 6 
Stream 10 100 1000 3 3 0 .95 0 .15 3.7 1.0 1.0 32 Off True 3 , 4 , 6 
Stream 5 80 400 3 3 1 .34 0 .15 3.7 1.0 1.0 32 Off True 6 
Stream 30 10 300 3 2.66 0 .55 0 .15 3.7 1.0 1.0 32 Off True 6 
Stream 10 10 100 30 30 9 .49 1 .5 3.7 1.0 1.0 32 Off False 6 
Stream 40 10 400 30 30 4 .74 1 .5 3.7 1.0 1.0 32 Off True 6 
Sphere 10 10 100 3 3 1 .39 0 .15 3.7 1.0 1.0 32 Off False 3 , 6 
Sphere 10 20 200 3 3 1 .39 0 .15 3.7 1.0 1.0 32 Off True 3 , 6 
Sphere 10 40 400 3 3 1 .39 0 .15 3.7 1.0 1.0 32 Off True 3 , 6 
Sphere 10 60 600 3 3 1 .39 0 .15 3.7 1.0 1.0 32 Off True 3 , 6 
Sphere 10 100 1000 3 3 1 .39 0 .15 3.7 1.0 1.0 32 Off True 3 , 6 
Sphere 30 6 180 3 3 0 .97 0 .15 3.7 1.0 1.0 32 Off True 6 
Sphere 30 10 300 3 3 0 .97 0 .15 3.7 1.0 1.0 32 Off True 6 
Sphere 10 11 110 3 3 1 .39 0 .15 3.7 1.0 1.0 32 Off False 6 
Sphere 10 12 120 3 3 1 .39 0 .15 3.7 1.0 1.0 32 Off True 6 
Sphere 10 13 130 3 3 1 .39 0 .15 3.7 1.0 1.0 32 Off True 6 
Sphere 10 21 210 30 30 13 .92 1 .5 3.7 1.0 1.0 32 Off False 6 
Sphere 10 22 220 30 30 13 .92 1 .5 3.7 1.0 1.0 32 Off False 6 
Sphere 10 23 230 30 30 13 .92 1 .5 3.7 1.0 1.0 32 Off True 6 
Sphere 10 24 240 90 90 41 .77 4 .5 3.7 1.0 1.0 32 Off False 6 
Sphere 10 26 260 90 90 41 .77 4 .5 3.7 1.0 1.0 32 Off False 6 
Sphere 10 28 280 90 90 41 .77 4 .5 3.7 1.0 1.0 32 Off False 6 
Sphere 10 30 300 90 90 41 .77 4 .5 3.7 1.0 1.0 32 Off True 6 
Stream 10 3 30 3 2.44 0 .95 0 .15 293 0.03 0.1 32 On False 4 , 5 , 6 
Stream 10 6 60 3 2.44 0 .95 0 .15 293 0.03 0.1 32 On True/Borderline 4 , 5 , 6 
Stream 10 10 100 3 2.44 0 .95 0 .15 293 0.03 0.1 32 On True 4 , 5 , 6 
Stream 10 40 400 3 2.44 0 .95 0 .15 293 0.03 0.1 32 On True 4 , 5 , 6 
Stream 10 100 1000 3 2.44 0 .95 0 .15 293 0.03 0.1 32 On True 4 , 5 , 6 
Stream 10 10 100 1 0.49 0 .32 0 .05 293 0.03 0.1 32 On True 5 , 6 
Stream 10 10 100 1 0.49 0 .32 0 .05 293 0.03 0.1 64 On True 5 
Stream 10 10 100 1 0.49 0 .32 0 .05 293 0.03 0.1 128 On True 5 
Stream 10 6 60 30 30 9 .49 1 .5 293 0.03 0.1 32 On False 5 , 6 
Stream 10 10 100 30 30 9 .49 1 .5 293 0.03 0.1 32 On False 5 , 6 
Stream 10 20 200 30 30 9 .49 1 .5 293 0.03 0.1 32 On True 5 , 6 
Stream 10 100 1000 30 30 9 .49 1 .5 293 0.03 0.1 32 On True 5 , 6 
cloud radius. In Appendix A , we present a detailed mathematical 
discussion of these processes and a deri v ation of v ex for sheets. In 
this section, we offer more general considerations valid for all three 
geometries, and demonstrate these using results from one simulation 
for each geometry (Fig. 2 ). 

Consider a warm gas cloud with cooling time, 
t cool = kT 

( γ − 1) n0 , (7) 
with n the gas number density, k the Boltzmann constant, γ = 5 / 3 
the adiabatic index of the gas, and 0 the cooling function. The sound 

crossing time is 
t sc = r s 

c s = r s ( ρ

γP 
)1 / 2 

, (8) 
with P the gas pressure. Mass conservation during the collapse tells 
us that r s ∝ ρ−1 / ( n + 1) with n = 2, 1, and 0 for spheres, streams, and 
sheets, respectively. Thus, t cool /t sc ∝ ρ−(3 n + 1) / (2 n + 2) , which decreases 
as the density rises. A cloud for which t cool > t sc initially will cool 
isobarically, contracting, and growing denser as it cools, until it 
reaches a radius r + where t cool becomes shorter than t sc . At this stage, 
the cloud loses sonic contact and proceeds to cool isochorically 
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Figure 2. Radial profiles during the implosion and explosion of clouds. From top to bottom, we show radial profiles of density, temperature, pressure, and radial 
velocity, in simulations with r s , i = 3 kpc , η = 10, and χf = 100 (top row of Table 1 ). Different colour lines mark different geometries, sheets in blue, streams 
in orange, and spheres in red. Black dashed and dotted lines show respectively the cold ( T < 10 5 K) and hot ( T > 10 5 K) components of the stream case. 
The density and pressure profiles are volume-weighted while temperature and velocity are mass-averaged. The four columns represent four different stages of 
evolution. From left to right, these are the initial conditions, the implosion, the shock collision and peak central pressure, and the end of the explosion phase when 
pressure equilibrium is re-established and the cold-gas e xplosion v elocity, v ex , is at its peak. The time of each phase in the sphere simulation is shown in each 
column in units of the cold-gas sound crossing time of the initial cloud, t sc ≡ r s , i /c s , c . For streams and sheets, the time in the last two columns is shifted slightly 
to correspond to the peak central pressure and peak v ex , respectively. During the implosion phase, an isothermal shock propagates into the cloud more rapidly 
than the CD between cold and hot gas, while a raref action w ave propagates into the hot medium, adiabatically lowering the pressure there. The implosion shock 
is faster in streams than in sheets and faster still in spheres, as are the post-shock density and velocity. The peak in central density and pressure is only ∼ (2 − 3) 
times greater than the equilibrium values for sheets, but 1 and 2 orders of magnitude larger than that for streams spheres, respectively . Correspondingly , the peak 
e xplosion v elocity for streams and spheres is v ex ∼ c s , c while it is only ∼ 0 . 4 c s , c for sheets. 
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(Burkert & Lin 2000 ; Gronke & Oh 2020b ; Waters & Proga 2023 ). 
From this point, the pressure within the cloud drops as it cools, driving 
it further away from equilibrium with the surrounding background. 
The resulting pressure gradient causes the cold gas to implode, with 
an isothermal shock (due to strong cooling) propagating inwards 
and a rarefaction wave outwards. This implosion decelerates and 
e ventually re verses when the shock nears the centre and the central 
pressure becomes large compared to the background pressure, 
causing the cold gas to e xplode outwards. Ev entually, the cold 
g as reg ains pressure equilibrium with its surroundings such that 
ρs , f T floor /µs , f = ρs , i T s , i /µs , i , or ρs , f = ηρs , i (Section 2.5 ). Assuming 
that most of the cold-gas mass in this final state is in a single cloud, 
mass conservation yields ρs , f r n + 1 

s , f = ρs , i r n + 1 
s , i , with r s , f the final radius 

of the cold cloud. We thus obtain r s , f = r s , i η−1 / ( n + 1) , showing that 
at a given η, the final contraction radius decreases from spheres to 
streams to sheets. 

If the peak central pressure is sufficiently large compared to the 
background pressure (see Fig. 2 , panel c3, discussed below), a strong 
reflected shock propagates outwards from the cold to the hot gas, 
and a rarefaction wave propagates inwards causing the cold gas to 
expand. The post-shock cold gas is accelerated outward by the shock, 
and the peak cold-gas e xpansion v elocity occurs when the central 
pressure subsides and pressure equilibrium between the cold and 
hot gas has been regained. Below, we provide three explanations 
for why this peak velocity, v ex , is of order the cold-gas sound 
speed, c s , c . 

We first consider energy conservation as the thermal energy after 
the implosion gets converted into kinetic energy of the expanding 
gas. The total internal energy after the implosion is 
E = P V 

γ − 1 = m s , i kT c 
µm p ( γ − 1) , (9) 

where m s , i is the initial mass in the cooling cloud, and T c is the final 
equilibrium cloud temperature. 3 When the shock propagation time is 
shorter than the cooling time of post-shock gas, we can assume that 
most of this internal energy becomes the kinetic energy of cold gas, 
E ∼ 1 / 2 m s , i v 2 ex . We thus obtain 
v ex ∼ (

2 
γ ( γ − 1) 

)1 / 2 
c s , c ∼ 1 . 34 c s , c . (10) 

Note that once thermal and pressure equilibrium have been re- 
established at the very end of the fragmentation process, the internal 
energy of the cold gas is the same as it is after the implosion since the 
same mass of gas is at the same temperature, T c . It would thus seem 
that one cannot convert the internal energy in equation ( 9 ) to kinetic 
energy. Ho we ver, the peak pressure at the end of the implosion phase 
initially causes the cloud to adiabatically expand, with the central 
temperature dropping to as low as < ∼ 0 . 3 T c before rising back up 
to T c due to mixing and compression of the hot gas. This drop in 
temperature seen in our simulations cannot be due to cooling, since 
we do not allow cooling below T c . While energy is not conserved 
throughout the implosion–explosion process due to strong cooling, 
the radiative losses primarily come at the expense of the kinetic 
energy of imploding gas, which declines without a corresponding 
increase in thermal energy due to strong cooling keeping the cold 
gas roughly isothermal during the implosion (Fig. 2 , panels b2 and 
b3, and Fig. 3 , dashed and dot–dashed blue lines). On the other hand, 
3 We hereafter use T c and T floor interchangeably, as in our simulations the two 
are nearly identical. 

Figur e 3. Ener gy and velocity evolution of the cloud during the implosion 
and explosion phases in the stream simulation with r s , i = 3 kpc, η = 10, and 
χf = 100. Dashed, dash–dotted, and solid blue lines show the thermal, kinetic, 
and total energy of the cold gas (defined as T < 10 5 K), respectively. The 
dotted blue line represents the kinetic energy of outflowing gas specifically. 
The orange line represents the radial velocity of the cold-gas interface 
normalized by the sound speed of cold gas (shown on the right y -axis). 
The time is normalized by the cold-gas sound crossing time of the initial 
stream radius, t sc ≡ r s , i /c s , c , and the energy is normalized by the initial 
thermal energy of the stream, E 0 , with initial temperature T 0 ∼ 2 × 10 5 K. 
After t cool , the internal energy drops to approximately 0 . 1 E 0 corresponding 
to η = 10. It remains constant until the expansion phase, where roughly half 
of it is converted to outflowing kinetic energy. Following the explosion (grey 
region), the internal energy slowly increases again after the explosion velocity 
peaks around c s , c . The total energy is not conserved during the expansion due 
to efficient radiative cooling in the post-reflected shock gas. Ho we ver, most of 
the energy loss comes from the kinetic energy of gas which is still imploding, 
while the sum of the internal energy and the outflowing kinetic energy remains 
roughly constant. 
after the end of the implosion phase, the internal energy of post- 
implosion gas is converted to kinetic energy of exploding gas (Fig. 
3 ). It is during this adiabatic expansion phase that the cold gas is 
accelerated to v ex . The energy and velocity evolution of the cloud 
during the first t sc is illustrated in Fig. 3 . 

An alternative way to see that the explosion velocity must be 
of order the cold-gas sound speed is to consider the shock-jump 
conditions. For isothermal shocks, we know that v 1 v 2 ∼ c 2 s , c , where 
v 1 and v 2 are the pre- and post-shock velocities in the shock frame. v 1 
must be several times larger than c s , c due to the shock speed exceeding 
c s , c and the ne gativ e v elocity of the still imploding pre-shock cold 
gas. Thus, v 2 must remain small, indicating that the post-shock gas 
should have a velocity close to c s , c in the lab frame. 

Yet a third way to understand why v ex ∼ c s , c is as follows. One can 
think of the contracting cloud as a spring which is compressed and 
then released. Thus, from energy conservation, the explosion velocity 
cannot exceed the implosion velocity (in general, it will be smaller, 
because of radiative losses). The implosion v elocity, or v elocity of 
the cloud-crushing shock v s , is given by ρc v 2 s ∼ δP ∼ P ∼ ρh c 2 s , h , 
or v s ∼ c s , h / √ 

χ ∼ c s , c (Klein, McKee & Colella 1994 ). Hence, the 
cold-gas velocity is a characteristic expansion velocity. In detail, 
the implosion velocity is somewhat larger than we have estimated 
(since the o v erdensity during contraction is less than ρc /ρh ), and 
the expansion velocity is somewhat smaller (due to radiative losses). 
Ho we ver, the estimate v expand ∼ c s , c is robust. 
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All these estimates suggests that v ex ∼ c s , c for all geometries, 
regardless of the initial conditions (see Appendix A for a detailed 
deri v ation of v ex for sheet geometries). 

In Fig. 2 , we demonstrate the key features of the implosion and 
explosion processes in each of our three geometries. From top to 
bottom, we show radial profiles of density, temperature, pressure, 
and radial velocity, taken from simulations with r s , i = 3 kpc , η = 10, 
and χf = 100 (first row of Table 1 ). The density and pressure 
profiles are volume-weighted averages within each radial bin, while 
the temperature and velocity profiles are mass-weighted. We show 
the profiles at four times, from left to right these are at the initial 
condition, during the implosion, at the central shock collision, and 
near the end of the explosion phase when pressure equilibrium has 
been re-established and the explosion velocity has reached its peak 
v alue. Dif ferent colour lines mark the different geometries, while 
black dashed and dotted lines show results for cold and hot gas 
respectively (separated at T = 10 5 K) in stream geometry. Separating 
cold and hot gas for spheres yields similar results as for streams 
and is not shown, while the results for sheets are presented in 
Appendix A . 

Initially, the cold gas is in pressure equilibrium with the hot 
background, with a density contrast of χi = 10, and the fluid velocity 
is zero everywhere. Note that the density and temperature profiles 
exhibit a smooth transition between the cloud and the background. 
This is due to the shape perturbations we include (Section 2.6 ) and not 
to any explicit smoothing or ramp function in the initial conditions. 

The initial cloud properties yield t cool < t sc , so the cold gas 
loses sonic contact as soon as it starts cooling, meaning r + = r s , i . 
Consequently, the central pressure rapidly drops, within a cooling 
time, forming a pressure gradient between the cold cloud and the hot 
background. This results in an isothermal shock propagating inwards 
and a rarefaction wave outwards. The shock is visible in panel (c2) of 
Fig. 2 as a jump in pressure. Note that the contact discontinuity (CD), 
where the gas temperature begins rising in panel (b2), is outside the 
implosion shock, while cold gas both inside and outside the shock 
has T ∼ T c . In sheets, the implosion shock propagates inwards with a 
roughly constant Mach number of ∼ 2, reaching the centre in roughly 
0 . 5 t sc (see Appendix A ). Ho we ver, in streams and spheres, the Mach 
number increases as the shock radius decreases due to geometrical 
ef fects (Guderley 1942 ; Modele vsky & Sari 2021 ). The implosion 
shocks thus reach the centre faster in these geometries, as can be 
seen by the shock positions in panels (a2) and (c2). 

This also causes the density and velocity in the post-shock region, 
between the shock radius and the CD, to increase from sheets to 
streams to spheres due to geometrical effects. At the CD, hot gas 
mixes with cold gas through a turbulent mixing layer, causing an 
entrainment flow to develop in the hot gas outside the cloud. This 
is why the hot gas inflow velocity is roughly twice as large as that 
of the cold gas. The mass flux of the entrainment flow, Ṁ ∝ ρh v h r n , 
is constant, with n = 0, 1, and 2 for sheets, streams, and spheres, 
respectively. Since the density in the hot gas is roughly constant 
with radius (panel a2), this implies that the hot gas velocity scales as 
v h ∝ r −n , which is broadly consistent with the hot gas velocities seen 
in panel (d2), which increase in magnitude from spheres to streams 
to sheets. Finally, we note that the density, temperature, and pressure 
in the hot gas at r > r s , i all decrease during the implosion phase, due 
to the outward propagating rarefaction wave. 

At t < ∼ 0 . 5 t sc , the implosion shock reaches the cloud centre. As 
this occurs, the central density and pressure reach very large values, 
though the central temperature remains at T c . We note that the boost 
in central pressure and density is much larger in streams compared to 
sheets, and much larger still in spheres (panels a3 and c3). Formally, 

one can show that for self-similar collapse the central pressure in 
spheres and streams diverges (Guderley 1942 ), while it reaches a 
finite value in sheets (Toro 2013 , see also Appendix A ). In practice, 
ho we ver, the maximal pressure has a finite value due to the finite 
thickness of the shock, which in our simulations is further limited by 
grid resolution. The peak pressure occurs once the implosion shock 
reaches the centre, while the explosion phase begins after this, once 
the reflected shock reaches the cold–hot interface. In between these 
two times, the inner regions are expanding while the outer regions 
are still contracting. We are thus never in a situation where all the 
initial cold gas is condensed into a single cell, explaining why the 
peak pressure is smaller than ∼ ( r s , i /* ) 2 P 0 = 32 2 P 0 for streams and 
32 3 P 0 for spheres. 

The rightmost column shows the situation once pressure equi- 
librium between the hot and cold phases has been re-established, 
and the outward velocity of the post-shock cold-gas, v ex , has reach 
its peak value. In both spheres and streams, we find v ex ∼ c s , c as 
expected from equation ( 10 ) (panel d4). Ho we ver, in sheets we find 
v ex ∼ 0 . 4 c s , c , due to the relatively small peak central pressure in 
sheets ( ∼ 3 times larger than the equilibrium pressure) compared to 
streams and spheres ( ∼ 30 − 200 times larger than the equilibrium 
pressure). This implies that only a small fraction of the peak internal 
energy in sheets goes into kinetic energy before the system regains 
pressure balance, leading to an explosion velocity smaller than c s , c . 
At the same time, the central temperature in spheres and streams 
is ∼ 0 . 3 T c due to the adiabatic expansion phase described abo v e, 
while it is ∼ T c for sheets implying no adiabatic expansion of the 
cold phase (panel b4). As discussed in Appendix A2.3 , this seems 
to be due to some fragmentation occurring in the sheet already 
during the implosion, thus decreasing the central o v erpressure and 
strength of the collision shock. F or c ylinders and spheres, ev en 
if such fragmentation occurs during the implosion, geometrical 
focusing will still enhance the collision shock and the corresponding 
central o v erpressure. We note that this result does not appear to 
be an artefact of limited resolution, as we obtain the same result 
for sheet simulations with cell sizes 2 and 4 times smaller (see 
Appendix B1 ). 
3.1.2 The number of clumps 
As the reflected shock sweeps o v er density inhomogeneities at the 
interface of the two phases created during the contraction, the local 
density and pressure gradients become misaligned leading to RMI 
which, in conjunction with radiative cooling, drives the fragmen- 
tation of cold gas (see additional discussion in Section 6.1 and 
Appendix A2.3 ). In the weak shock limit, RMI can be modelled as a 
form of Rayleigh–Taylor instability in which the gravitational force 
is impulsive, i.e. g ∼ *v δ( t − t shock ), where δ( t) is the Kronicker 
delta function, t shock is the time when the shock o v ertakes the 
interface, and *v denotes the interface velocity jump (Zhou 2017a ). 
We assume *v ∼ v ex ∼ c s , c , and further assume that due to density 
inhomogeneities and shape perturbations throughout the cold gas and 
across the interface, the ef fecti ve gravitational acceleration is better 
modelled as g ∼ *v/t cross , where t cross ∼ !/*v with ! ∼ r s , f , the 
characteristic cloud size after cooling and contraction, and likely the 
dominant perturbation wavelength. The growth time-scale of the RMI 
is thus t RM ∼ ( !/g) 1 / 2 ∼ r s , f /c s , c , comparable to the sound crossing 
time of the collapsed cloud. Ho we ver, the constant of proportionality 
can deviate from unity and depends on the initial cloud geometry, as 
discussed in Section 6.1 . The fragmentation time-scale, o v er which 
the number of clumps/cloudlets rapidly increases, is proportional to 
t RM . Ho we ver, we stress that fragmentation into discrete cloudlets 
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Figure 4. The number of clumps identified in simulations as a function of time, normalized by the initial sound crossing time, t sc . Different colours show 
different geometries, spheres (red), streams (orange), and sheets (blue). The line thickness represents the final o v erdensity, with thicker lines having larger χf . 
On the left, we show the absolute number of clumps, N c , while on the right, we normalize this by the maximal possible number of clumps given the initial 
cold-gas mass, N 0 , to better highlight the differences in the degree of fragmentation between different geometries, which we see increases from sheets to streams 
to spheres. All cases show coagulation at late times for χf = 100, with N c decreasing to 1 for spheres, a few for streams, and a few tens for sheets, due to 
coagulation being suppressed along the stream axis and in the sheet plane. At larger o v erdensities, N c monotonically increases or saturates for spheres, while it 
reaches a peak and decreases for streams and sheets, due to stronger radial coagulation in these geometries. 
occurs is not expected during the linear growth of RMI, or even 
in non-linear RMI for adiabatic gas. Rather, this seems to be a 
consequence of non-linear RMI together with strong cooling and 
the generation of vorticity due to the initial shape perturbations (see 
Appendix A2.3 ). A deeper analysis of the detailed microphysics 
behind the initial formation of the clumps is beyond the scope of 
the current work, where we mostly focus on the evolution of these 
cloudlets after the initial fragmentation. 

The left-hand panel of Fig. 4 shows the number of clumps as 
a function of time, normalized by the initial cold cloud sound 
crossing time, t sc ≡ r s , i /c s , c . Different colour lines represent different 
geometries, while the line thickness grows with increasing final 
o v erdensity, χf . In streams and spheres, the number of clumps 
peaks at N c ∼ 100 immediately after the simulation starts, due to a 
combination of RMI and thermal instabilities during the implosion. 
The number of clumps then decreases due to coagulation enhanced 
by further contraction, before rapidly rising again to values of a few 
10 3 − 10 4 during the explosion. In sheets, the coagulation during the 
implosion is much weaker due to the lack of geometrical focusing, 
so the number of clumps monotonically increases until the end of the 
explosion phase. In all cases, N c stops growing rapidly by t ∼ 4 t sc , 
when fragmentation stops and/or coagulation begins. 

While the peak number of clumps increases from spheres to 
streams to sheets, this is proportional to the total amount of cold 
material. To factor this out, we present in the right-hand panel of 
Fig. 4 the evolution of N c /N 0 , where N 0 = m s , i /m cell with m s , i the 
initial cold-gas mass in the analysis region (more than 10 r s , i from 
any boundary, Section 2.4 ) and m cell = ρs , f * 3 the mass of a cell 
at the equilibrium density of cold gas at T floor . N 0 thus represents 
the maximal number of cold-gas clumps possible if the cold-gas 
mass does not increase due to entrainment. With this normalization, 
we see that the efficiency of fragmentation increases from sheets to 
streams to spheres. The rate of fragmentation and clump formation 
is similar in all three geometries, while the time-scale for N c to 

reach its peak and saturate increases from sheets to streams to 
spheres. This will be further discussed Section 3.2 in the context of 
coagulation. 

The number of clumps increases with χf for all geometries, though 
it tends to converge at χf > ∼ 600 for streams and spheres. 4 In spherical 
geometry, the case of χf = 100 recoagulates into a single large cloud 
after roughly 10 t sc , while cases with χf ≥ 200 remain fragmented 
with N c either continuing to grow or saturating at N c ∼ 3000. This 
is qualitatively similar to the results found in Gronke & Oh ( 2020b ), 
only with a lower threshold in χf for sustained fragmentation. This 
will be discussed further in Section 6.1 . Streams exhibit qualitatively 
similar behaviour, with N c decreasing to order unity for χf = 100 
and remaining at large values for χf ≥ 200. Ho we ver, unlike the 
spherical case, streams with χf ≥ 200 do exhibit some coagulation, 
with N c decreasing after an initial peak. This is particularly noticeable 
for χf = 200, which we consider a borderline case (Table 1 ). 
Furthermore, unlike the spherical case which coagulated into a single 
cloud for χf = 100, streams with χf = 100 maintain several distinct 
clumps along the stream axis. The coagulation along the stream 
axis is suppressed compared to the radial direction due to opposing 
forces pulling clumps in either direction. 5 At late times, the number 
of clumps fluctuates between N c ∼ (1 − 4) due to centres of large 
clumps along the stream axis moving in and out of our analysis 
region, | z| ≤ 6 r s , i (see Section 2.4 ). 

4 This convergence may be numerical, due to our resolution decreasing away 
from the initial cloud, suppressing further fragmentation and causing clumps 
to artificially disrupt once they move too far from the centre. This is discussed 
further in Section 3.1.3 . Regardless, it does not affect our main conclusions 
regarding whether a cloud remains fragmented or recoagulates. 
5 This is not true near the edges of a finite stream, which contract along the 
stream axis towards the centre as described in Section 2.4 
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Figure 5. Density maps in sheets. Face-on (top) and edge-on (bottom) projections at t = 10 t sc for sheet simulations with different o v erdensities, as marked. 
The colour represents the maximal density along the line of sight, o v er the full length of the analysis region, | x| ≤ 16 r s , i , | y| , | z| ≤ 6 r s , i . While significant 
radial coagulation is al w ays present, even for χf = 1000, the number of small clumps at larger radial distances increases with χf . We further see that coagulation 
within the plane of the sheet is strongly suppressed relative to the radial direction, even for χf = 100 (see also Fig. C1 ). 

Figure 6. Density maps in streams. Edge-on (top) and face-on (bottom) projections at t = 10 t sc for stream simulations with different o v erdensities, as marked. 
The colour bar is the same as in Fig. 5 . While some radial coagulation is al w ays present, even for χf = 1000, both the number of small clumps and their radial 
distances noticeably increase with increasing χf , especially for χf ≥ 400. Along its axis, the stream is broken into several large clumps (see also Fig. C2 ). 

Sheets e xhibit ev en stronger coagulation than streams for χf ≥
200, with N c decreasing by more than ∼ 50 per cent between its 
peak and 10 t sc even for χf = 1000. However, similar to streams, the 
coagulation is primarily in the radial direction and is suppressed in 
the plane of the sheet. As a result, several tens of clumps remain at 
the end of the χf = 100 simulation. 

We show density maps at t = 10 t sc in two orthogonal projections 
and for different values of χf , for sheets, streams, and spheres in 
Figs 5 , 6 , and 7 , respectiv ely. F or sheets and streams, the projections 
correspond to face-on and edge-on, while for the spheres we simply 
show two orthogonal orientations. These maps show the maximal 
density along the line of sight, which highlights the small clumps 

resulting from fragmentation. Complementary to these, we show 
in Figs C1 –C3 the average density along the line of sight for 
the same projections, which better highlights coagulation and the 
geometry of large clouds. Qualitatively, one sees radial coagulation 
grow stronger from spheres to streams to sheets, with the edge- 
on projection revealing strong coagulation in sheets even when 
χf = 1000 (bottom-right panel of Figs 5 and C1 ). While some 
radial coagulation is al w ays apparent in each geometry, we find 
more small clumps at larger radial distances as χf increases. On 
the other hand, coagulation is suppressed along the stream axis and 
within the plane of the sheet even for χf = 100, where N c = 1 for 
spheres, a few for streams, and a few tens for sheets. While this is 
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Figure 7. Density maps in spheres. Two orthogonal projections at t = 10 t sc for sphere simulations with different o v erdensities, as marked. The colour bar is 
the same as in Figs 5 and 6 . While some radial coagulation is al w ays present, even for χf = 1000, both the number of small clumps and their radial distances 
noticeably increase with increasing χf , especially for χf ≥ 400 (see also Fig. C3 ). 
hard to see in Figs 5 and 6 , it becomes clear when examining Figs C1 
and C2 . 
3.1.3 The distance of clump propagation 
One of the key features of thermal fragmentation is that cold-gas 
clumps get spread o v er an area which grows larger with time as 
the cloudlets spread out and fragmentation continues, whereas if 
coagulation is important the region occupied by cold gas reaches a 
maximum and then begins to shrink. In Fig. 8 , we show the time 
evolution of d max , the maximal radial distance of any clump whose 
mass is at least 8 m cell ≡ 8 ρc * 3 , where * is the minimal cell size 
(valid in the region | x 1 | < 3 r s , i , Section 2.4 ) and ρc is the equilibrium 
density in the cold phase. We implement this threshold to reduce our 
sensitivity to resolution effects by removing small clumps at the 
grid scale. Using a threshold of 16 cells gives very similar results, 
while taking all clumps gives qualitatively similar results. d max is 
measured as the radial distance from the centre of simulation domain 
for spheres, the radial distance from the z- axis for streams, and the 
vertical distance from the yz-plane for sheets, and is normalized by 
the initial cloud radius, r s , i . 

Initially, d max = 0 because there is only one ‘clump’ whose centre 
is at the centre of the simulation volume. Ho we ver, immediately 
following that we get d max ∼ r s , i for all cases, as fragmentation begins 
near the initially perturbed cloud interface. d max then proceeds to 
shrink during the implosion before rapidly rising during the explosion 
phase. The growth rates during the explosion are similar for all cases, 
peaking at (d / d t) d max ∼ (0 . 5 − 2 . 0) c s , c ∼ v ex (Section 3.1.1 ). 

For sheets with χf = 100, d max never exceeds r s , i due to very strong 
coagulation. In all other cases, d max peaks at values several times the 
initial cloud radius. For sheets with χf ≥ 200, d max peaks at ∼ (2 −
3) r s , i at t ∼ 4 t sc and then noticeably decreases, indicative of strong 
coagulation and consistent with the decline in N c seen in Fig. 4 . The 
same is true for streams and spheres with χf = 100. In all coagulating 
cases, d max appears to oscillate at late times, consistent with the 
pulsations observed at relatively lo w v alues of χf in previous work 
(Gronke & Oh 2020b , 2023 ). On the other hand, streams and spheres 

Figure 8. The distance of the farthest clump as a function of time, limited 
to clumps with mass at least eight times the mass of a high-resolution cell 
at the equilibrium density of the cold phase, m c ≥ 8 ρc * 3 . d max represents 
the distance to the central plane/line/point for sheets/streams/spheres, respec- 
tively. As in Fig. 4 , different colours represent different geometries, while line 
thickness increases for increasing χf . For spheres and streams with χf = 100, 
and for sheets regardless of χf , d max reaches a maximum at ∼ (1 − 3) r s , i after 
the explosion phase and then decreases, indicative of strong coagulation. 
In streams and spheres with higher o v erdensities, d max continues rising or 
saturates at a finite value of order ∼ 10 r s , i . 
with χf ≥ 200 exhibit d max values that either continue to rise or 
saturate until the end of the simulation. This suggests a critical χf ∼
200 for sustained fragmentation in streams and spheres, consistent 
with Fig. 4 . In the stream simulation with χf = 200, d max slightly 
decreases at t > 10 t sc consistent with this being more of a borderline 
case as noted abo v e. We note that the strong saturation observed 
at d max ∼ 10 r s , i is likely numerical, because the cell size at d > 
9 r s , i grows to 8 * , causing even large clumps to artificially disrupt. 
Ho we ver, this does not change the qualitative distinction between 
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cases where d max decreases due to strong coagulation and cases where 
it does not. 
3.2 Cold-gas coagulation 
In the previous section, we saw that sheets were prone to strong 
coagulation at all o v erdensities, while spheres and streams were 
prone to coagulation for χf < ∼ 200. This was found to be the case 
based on the number of clumps (Fig. 4 ), their morphology (Figs 5 –
7 ) and their radial extent (Fig. 8 ). In this section, we study the 
coagulation process in detail. 
3.2.1 Theoretical overview 
We first re vie w the theoretical model described in Gronke & Oh 
( 2023 ), based on their analysis of quasi-spherical systems of clouds. 
Consider a cold clump, hereafter clump 1, embedded in a hot gaseous 
medium. Any perturbations at the interface of the cold and hot phases 
will induce a turbulent mixing layer, where ef ficient radiati ve cooling 
will drive an entrainment flow of hot background gas onto the clump 
with velocity 
v hot = v mix , 1 ( r cl , 1 

r 
)2 

(11) 
for radii r ≥ r cl , 1 . Here, 
v mix , 1 ≈ 0 . 4 c s , c ( t sc , 1 /t cool , c ) 1 / 4 (12) 
is the entrainment velocity at the surface of the clump (Gronke & Oh 
2018 , 2020a , 2023 ; Fielding et al. 2020 ; Sparre et al. 2020 ; Mandelker 
et al. 2020a ; Tan, Oh & Gronke 2021 ; see also Appendix A2.2 and 
Fig. A4 ). 

Now consider a static clump, hereafter clump 2, at a distance d 
from the central clump 1. The force acting on clump 2 is 
F 2 , 1 = ṗ 2 = ṁ 2 *v 2 + m 2 * ̇v 2 , (13) 
where *v 2 is the velocity of clump 2 relative to the hot background. 
The first term on the right-hand side represents an ef fecti ve force due 
to condensation, which causes the mass of the cold cloud to increase 
and thus its velocity to decrease due to momentum conservation, 
F cond = ṁ 2 *v 2 = ρh v mix , 2 4 .r 2 cl , 2 *v 2 . (14) 
The second term on the right-hand-side of equation ( 13 ) is the drag 
force at fixed cloud mass which is given by 
F drag = C d ρh *v 2 2 .r 2 cl , 2 , (15) 
where C d ≈ 0 . 47 is the drag coefficient for a sphere. The ratio of 
these two forces is thus 
F cond 
F drag = 4 

C d v mix , 2 
*v 2 . (16) 

Initially, clump 2 is at rest, while the hot gas mo v es at v elocity 
v hot ( r = d). Over time, clump 2 becomes entrained in the flow and the 
relativ e v elocity decreases. We thus hav e in general *v 2 ≤ v hot ( r = 
d), yielding 
F cond 
F drag ≥ 4 

C d v mix , 2 
v mix , 1 

(
d 

r cl , 1 
)2 

≈ 4 
C d 

(
r cl , 2 
r cl , 1 

)1 / 4 (
d 

r cl , 1 
)2 

, (17) 
where in the final equation we have used equation ( 12 ) and the fact 
that the two clouds have similar temperatures and densities, though 
not necessarily similar sizes. We conclude that F cond & F drag unless 
r cl , 1 /r cl , 2 > 10 4 and d is not much larger than r cl , 1 . This is true 
regardless of the details of the cooling function, and in particular 

regardless of the gas metallicity, so long as the two clumps are 
initially static with respect to the background. 

So long as the velocity of clump 2 with respect to clump 1 is 
negligible compared to the entrainment velocity of hot gas onto 
clump 1, we have *v 2 ∼ v hot . The condensation force then becomes 
F cond ∼ ρh v 2 mix , 1 

4 .
(

r cl , 2 
r cl , 1 

)1 / 4 
A cl , 1 A cl , 2 

d 2 , (18) 
where A cl = 4 .r 2 cl is the cloud surface area. Neglecting the weak 
dependence on the ratio r cl , 2 /r cl , 1 , this force is similar to gravity if 
we make the analogy that G → ρh v 2 mix , 1 / 4 . and m → A , with both 
forces proportional to d −2 . 

If the central region is occupied by a collection of similar 
sized clumps each with r cl ∼ r cl , 1 , the entrainment velocity of the 
background flow towards the centre becomes 
v hot ∼ v mix , 1 A cl , tot ( < r) 

4 .r 2 ≡ f A ( r) v mix , 1 , (19) 
where A cl , tot ( < r) is the total combined surface area of all cold clouds 
interior to r , and f A ( r) ≡ A cl , tot ( < r) / 4 .r 2 is the area modulation 
f actor. This f actor can be greater or less than unity, as discussed in 
Section 3.2.2 . Consequently, the total force acting on a test clump 2 
at a distance d from the centre of clumps is 
F 2 ∼ ρh v mix , 2 A cl , 2 f A ( d) v mix , 1 ∼ ρh v 2 mix 

4 . A cl , tot ( < d) A cl , 2 
d 2 , (20) 

where we have approximated v mix ∼ v mix , 1 ∼ v mix , 2 . The accelera- 
tion of clump 2 is thus 
a 2 = F 2 /m cl , 2 ∼ 3 v 2 mix f A ( d) 

χr cl , 2 . (21) 
We can use this to derive a characteristic time-scale for coagulation, 
analogous to the gravitational free-fall time. Assuming that the 
acceleration is roughly constant, namely that f A ( d) ∼ const. , we 
have 6 
t coag ∼ (

2 d 
a 2 

)1 / 2 
∼

(
2 χ

3 f A ( d) 
)1 / 2 ( r cl , 2 d) 1 / 2 

v mix . (22) 
We can similarly derive the coagulation force and time-scale for 

stream and sheet geometries. It turns out that the only difference 7 is 
the factor f A , which can be defined as 
f A ( d) = 

 
 
 

A tot ( < d) / 4 .d 2 sphere , 
0 tot ( < d) / 2 .d stream , 
1 tot ( < d) sheet (23) 

0 tot is the total area of all cold clouds per unit length, proportional to 
the cloud diameter, and 1 tot is the total area of cold clouds per unit 
area, proportional to the number of clouds. Note the different scaling 
with d in different geometries, similar to the gravitational force from 
a spherical, cylindrical, and planar distribution of mass. 

The abo v e considerations, based on Gronke & Oh ( 2023 ), are valid 
for a ‘test clump’ (clump 2) initially at rest with respect to the central 
collection of cold clouds (clump 1). Now let us consider the case 
where clump 2 is escaping the central region, while at the same time, 
there is an entrainment flow of hot gas towards the centre. This is 
the situation immediately after the explosion phase described in the 
previous section, where fragmented clumps were escaping the central 
6 If we assume instead that A cl , tot ( < d) ∼ const. during the collapse, so a 2 ∝ 
d −2 , t coag is multiplied by a factor of ./ 4 ∼ 0 . 8 compared to equation ( 22 ). 
7 Note that regardless of the large-scale geometry of A tot , the test clump 2 is 
al w ays assumed to be spherical. 
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Figure 9. Left: time evolution of the total surface area of cold gas within d max , normalized to its initial value. Right: the area modulation factor, f A , as a function 
of d max . The shaded region, at d max < r s , i , is not rele v ant to our discussion but is shown for completeness. As in previous figures, different colours represent 
different geometries, while the line thickness is proportional to χf . For coagulating cases, namely all sheets, streams with χf < ∼ 200 and spheres with χf = 100, 
the cold-gas surface area declines towards values < A 0 after an initial peak at the end of the e xplosion phase. F or these cases, there is no explicit trend of f A 
with d max . For streams and spheres with larger overdensities which remain fragmented, the total surface area saturates at values of (2 − 3) A 0 . During this phase, 
f A ∝ d −1 for streams and d −2 for spheres. 
region with a velocity v ex ∼ c s , c . The total time-scale for the escaping 
clumps to recoagulate is the sum of the deceleration time-scale, when 
the interaction of the clumps and the entrainment flow causes the 
clumps to decelerate and turn around, and the coagulation time-scale 
from equation ( 22 ) which measures the coagulation time of static 
clumps in the hot entrainment flow. The turnaround/deceleration 
process can be due either to the condensation force or the drag force, 
depending the ratio in equation ( 16 ). By combining equations ( 12 ) 
and ( 16 ), we have 
F cond 
F drag ≈ 3 . 4 c s , c 

*v 2 
(

t sc , 2 
t cool , c 

)1 / 4 
. (24) 

Considering t sc , 2 /t cool ≈ r cl , 2 /! shatter ! 1, and *v 2 ∼ c s , c (see Fig. 2 ), 
we conclude that regardless of geometry and metallicity F cond 
dominates o v er F drag in the deceleration process, as well as in the 
coagulation process discussed abo v e. 

The deceleration time-scale is thus determined by the condensation 
time-scale, which is the time-scale for cloud growth by condensation 
t decel ∼ t cond ∼ m 2 

ṁ 2 ∼ χr cl , 2 
3 v mix , 2 ∼ χr cl , 2 

1 . 2 c s , c 
(

t sc , 2 
t cool , c 

)−1 / 4 
. (25) 

The ratio of the deceleration and coagulation time-scales is thus 
t decel 
t coag ∼

(
χf A ( d) r cl , 2 

6 d 
)1 / 2 

. (26) 
Since t decel has no explicit dependence on d while t coag increases with 
d , we obtain that t decel > t coag at small d where f A is large (equation 
23 ). Ho we ver, if a clump finds itself at large d with small f A , then 
t coag will dominate the remaining recoagulation time-scale even if 
the clump is still in the process of decelerating. 

Before significantly decelerating, clumps can reach a maximal 
distance of d max ∼ ξc s , c t decel , where v ex ∼ ξc s , c is the explosion 
velocity and ξ ∼ 0 . 4 or 1.0 for sheets or streams and spheres, 
respectively (Section 3.1.1 ). The maximum value of t coag along the 

clump’s orbit is reached at d = d max , 
t coag , max ∼ χf r cl , 2 

3 v mix 
(

2 ξc s , c 
f A ( d max ) v mix 

)1 / 2 
. (27) 

Reaching d max and turning around is a necessary condition for the 
clump to coagulate. The question of whether the final coagulation is 
efficient is determined by the ratio in equation ( 26 ), 

t decel 
t coag , max ∼

(
f A ( d max ) v mix 

2 ξc s , c 
)1 / 2 

∼
(

f A ( d max ) 
5 ξ

)1 / 2 (
t sc , 2 
t cool , c 

)1 / 8 
. 
(28) 

Neglecting the second term with the 1 / 8-power, we see that larger 
values of f A ( d max ) result in more efficient coagulation. We now turn 
to quantify f A as a function of d in different geometries, to gain a 
better understanding of the geometrical effects on coagulation. 
3.2.2 Cold-gas area 
We can crudely estimate the efficiency of coagulation by measuring 
the coagulation forces on the outermost clump. To this end, we 
estimate f A , dmax ≡ f A ( d max ), with d max as in Fig. 8 . At early times, 
when d max is still small and the fragmentation process is still ongoing, 
we expect A tot to increase with d and therefore f A to either increase 
or decrease depending on the details. Ho we ver, at later times, once 
d max grows beyond the central concentration of cold gas, both the 
number of clumps (Fig. 4 ) and their radial extent (Fig. 8 ) are roughly 
constant, consistent with the fragmentation process ending and/or 
coagulation affecting the inner region. At this stage, we expect A tot 
to be roughly constant and f A ∝ d −n 

max , with n = 0, 1, or 2 for sheets, 
streams, and spheres (equation 23 ). 

In Fig. 9 , we show the total surface area of cold gas, A tot ( < d max ), 
on the left, and the area modulation factor, f A , on the right. Here, A tot 
refers to the total surface area of cold g as, reg ardless of the size of the 
clumps, since this is the rele v ant quantity go v erning coagulation. To 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/536/3/3053/7926971 by guest on 11 April 2025



3066 Z. Yao et al. 

MNRAS 536, 3053–3089 (2025) 

measure this in the simulations, we first interpolate the gas density 
onto a uniform grid at the highest resolution of our refined grid using 
YT (Turk et al. 2011 ), and then extract a 2D surface mesh from 
a 3D volume using the PYTHON package scikit-ima g e (van der Walt 
et al. 2014 ). We extract the density isosurface corresponding to ρiso = 
ρs , i / 1 . 05, where the factor 1.05 is to ensure that this captures all of the 
initial cloud including any density fluctuations present in the initial 
conditions (Section 2.5 ). We then normalize A tot by its initial value, 
A 0 , which lacks an analytical form due to the shape perturbations on 
the initial cloud interface. As noted in Fig. 8 , d max = 0 at the initial 
condition, and is only self-consistently defined once fragmentation 
begins near the cloud interface. Therefore, A 0 = A tot ( t = 0) simply 
represents the total surface area of the initial cloud, and A tot is only 
limited by d max from the second snapshot. 

During the implosion phase, A tot decreases rapidly for spheres 
and streams due to contraction, which reduces the surface area of the 
cloud. This effect is stronger for spheres than for streams because of 
the different scaling of cloud area with radius. Ho we ver, for sheets 
A tot actually increases during the implosion phase, because the o v er- 
all area of the central sheet is independent of its ‘radius’ (thickness), 
while fragmentation increases the total cold-gas surface area. 

F ollowing the e xplosion phase, A tot reaches values of ∼ (2 − 4) A 0 
at t ∼ (2 − 4) t sc . In cases with strong coagulation (based on Figs 4 
and 8 ), namely spheres with χf = 100, streams with χf < ∼ 200, and 
all sheet simulations, A tot proceeds to decrease towards values of 
< ∼ A 0 at late times. On the other hand, in cases which show strong 

fragmentation, namely spheres with χf ≥ 200 and streams with χf ≥
400, A tot saturates following the explosion phase at values of A tot ∼
(2 − 3) A 0 . We note that the borderline nature of the stream simulation 
with χf = 200 is particularly evident here. While a boost in the 
surface area by a factor of ∼ 3 may not seem like much, we recall 
that without fragmentation the final equilibrium configuration has 
a radius r s , f , which is ∼ 10, 3, and 2 times smaller than r s , i for 
sheets, streams, and spheres, respectively (Table 1 ), yielding a final 
equilibrium surface area which is ∼ 1, 3, and 5 times smaller than 
A 0 . The actual increase in cold-gas surface area with respect to the 
equilibrium configuration due to thermal fragmentation is thus a 
factor of ∼ 6 for streams and 10 for spheres. 

The precise late-time value of A tot is somewhat sensitive to the 
late-time value of d max (Fig. 8 ) and therefore to our threshold of 
m cl ≥ 8 m cell . Likewise, the decrease in the late-time value of A tot 
with increasing χf for spheres seems to also be an artefact of our 
refinement strategy which causes even large clumps to artificially 
disrupt at distances of d > 9 r s , i thus decreasing the cold-gas surface 
area. Nevertheless, there is a real qualitative distinction between A tot 
saturating at ∼ (2 − 3) A 0 for fragmenting cases, versus decreasing 
to < ∼ A 0 for coagulating cases. 

On the right, we show f A , dmax by combining A tot ( < d max ) shown 
on the left with equation ( 23 ). We show this as a function of d max /r s , i 
itself, so each point on this plot represents the situation of the 
farthest clump at the corresponding time, and can be inserted into 
equation ( 22 ) or ( 26 ). Note that initially, when d max = r s , i prior to 
the implosion, f A , dmax = 1 for spheres and streams without shape 
perturbations, though f A , dmax = 2 for sheets with no perturbations, 
because of the definition of 1 in equation ( 23 ) and the fact that a sheet 
has tw o surf aces. The initial perturbations increase this value, such 
that spheres and streams begin at f A , dmax ∼ 1 . 6 while sheets begin 
at f A , dmax ∼ 3 . 2, which is consistent with each surface adding ∼ 0 . 6 
to f A , dmax . During the implosion phase d max decreases, while A tot 
increases for sheets and decreases for streams and spheres. This leads 
to fairly chaotic behaviour in the the plane of d max /r s , i and f A , dmax 
(gre y shaded re gion). Ho we ver, the v alue of f A during the implosion 

Figure 10. Net cooling rates as a function of temperature. We show results 
for gas with metallicity Z = Z $ and 0 . 03 Z $, with and without the z = 2 
(Haardt & Madau 1996 ) UVB. The values of ! shatter for each case are written 
in the le gend. F or cases with a UVB, solid lines represent gas with density 
n H = 0 . 01 cm −3 , similar to the cold phase in our simulations, while dashed 
lines represent gas with n H = 10 −3 cm −3 , similar to the initial warm gas for 
our fiducial η = 10 and χf = 100. The purple line ( Z = Z $, no UVB) is 
rele v ant for the simulations analysed in Section 3 , while the blue lines ( Z = 
0 . 03 Z $, with UVB) are rele v ant for the simulations analysed in Section 4 . 
phase is uninteresting, since the distinction between coagulation and 
fragmentation is only meaningful after the explosion phase, once 
d max > r s , i . 

For sheets, as well as for streams with χf ≤ 200 and spheres with 
χf = 100, coagulation is important and d max decreases back towards 
r s , i after peaking at somewhat larger values (Fig. 8 ). This is also 
seen in the right-hand panel of Fig. 9 , where the curves turn around 
to wards lo wer d max after first reaching v alues d max / r s , i > 1. For these 
cases, while the value of f A is smaller during the coagulation then 
during the initial expansion, there is no clear trend of f A with d 
during either phase. On the other hand, for cases which fragment, 
namely spheres with χf ≥ 200 and streams with χf ≥ 400, d max never 
decreases (Fig. 8 ), while A tot is roughly constant at late times. This 
results in f A ∝ d −1 for streams and f A ∝ d −2 for spheres (equation 
23 ), as highlighted in the figure. Overall, f A , dmax at late times is largest 
in sheets and smallest in spheres, as is the coagulation efficiency 
(equation 28), as demonstrated in previous sections. We will discuss 
this further in Section 6.1 . 
4  METALLICITY  A N D  U V B  EFFECTS  O N  
T H E R M A L  FRAGMENTATI ON  A N D  
C OAG U L AT I O N  
Our analysis in the previous section focused on solar metallicity gas 
in collisional ionization equilibrium, similar to previous studies of 
thermal fragmentation versus coagulation in quasi-spherical clouds 
(Gronke & Oh 2020b , 2023 ). While solar metallicity may be 
reasonable for gas in the inner CGM at z ∼ 0, the metallicity in 
the high- z cosmic web which is our primary focus is much lower. 
This lowers the cooling rates for intermediate temperature gas in the 
turbulent mixing layers between the cold clouds and hot background, 
thus lowering the efficiency of phase mixing and entrainment 
(Fig. 10 ). Moreo v er, interg alactic g as is affected by the ionizing UVB, 
and photoionization is more important than collisional ionization 
o v er a wide temperature range (e.g. Strawn et al. 2021 ; Strawn, 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/536/3/3053/7926971 by guest on 11 April 2025



Geometrical and metallicity effects 3067 

MNRAS 536, 3053–3089 (2025) 

Figure 11. Similar to Fig. 6 , but for low-metallicity streams with a UVB (Table 1 ). Low- Z streams with χf = 60 exhibit fragmentation, compared to χf > ∼ 200 
for solar metallicity streams without a UVB. See also Fig. C4 . 
Roca-F ̀abrega & Primack 2023 ). This lowers the cooling rates near 
the cold phase, T > ∼ 10 4 K (Fig. 10 ). These changes to the cooling 
curve affect both the shattering length-scale, ! shatter , and the strength 
of coagulation forces. Therefore, in this section, we revisit some of 
our previous analysis focusing on low-metallicity gas exposed to a 
UVB. We focus here specifically on stream geometry and in Section 7 
below we apply these results to cosmic-web filaments at high- z. 

As stated in Section 2 , we assume metallicity values of Z bg = 
0 . 1 Z $ for the background and Z s = 0 . 03 Z $ for the initial stream, 
and apply the ionizing UVB of Haardt & Madau ( 1996 ) at z = 2. We 
do not include self-shielding of dense gas. At our fiducial densities 
and metallicities, the equilibrium temperature of the cold stream is 
1 . 68 × 10 4 K, which was our chosen T floor in the previous section. 
In this section, we do not use an artificial temperature floor since 
the UVB sets an ef fecti ve cooling floor. Hereafter, when we refer to 
simulations of low-metallicity (low- Z) streams, it is understood that 
these are also exposed to a UVB, while high-metallicity (high- Z) 
streams are not. 

While our initial conditions are the same as in Section 3 in 
terms of stream size, density, and temperature, the initial cooling 
rates are much lower (Fig. 10 ). Therefore, unlike our simulations in 
Section 3 where the streams immediately cool isochorically, in our 
current simulations, the streams initially contract isobarically and 
only loose sonic contact when they reach a radius of r + ∼ 2 . 5 kpc 
(see Table 1 ). After this point, the implosion and explosion processes 
occur similarly at low- and high- Z. We note that despite the weaker 
radiative cooling, the explosion velocities are still roughly v ex ∼ c s , c , 
and the dominant deceleration force as clumps escape outward is still 
F cond (equation 24 ). Ho we ver, the corresponding t decel at a fixed χf is 
longer for low- Z streams, due to v mix being smaller (equation 25 ). 

Fig. 11 shows maps of the maximal density along the line of 
sight in two orthogonal projections for low- Z streams with different 
values of χf , similar to Fig. 6 . Complementary to this, we show 
in Fig. C4 , the average density along the line of sight in the same 
projections. These simulations exhibit sustained fragmentation at 
χf > ∼ 60, in contrast to χf > ∼ 200 at solar metallicity with no UVB, 
with χf = 60 at low- Z being similarly borderline to χf = 200 at 
high- Z. This is further demonstrated in Fig. 12 , which shows the 
number of clumps, N c , on the left and the maximal clump distance, 

d max , on the right for dif ferent χf v alues. Solid lines sho w results for 
low- Z streams, while dashed lines show the same high- Z simulations 
as Figs 4 and 8 . Note that the low- Z runs extend to lower χf values. 
In general, the explosion phase and subsequent rapid rise of both N c 
and d max takes ∼ 2 t sc longer for the low- Z streams because of the 
longer cooling times and the initial phase of isobaric cooling. We 
find a lower χf, crit for fragmentation in these simulations, with the 
χf = 60 run demonstrating weak to no coagulation, and the χf = 100 
run displaying strong fragmentation. We will discuss this further in 
Section 6.1 . 

The shattering length-scale in the low- Z runs is ∼ 80 times larger 
than in the high- Z runs, as is the cooling time near the cold phase. 
From equation ( 25 ), we thus expect low- Z clumps to propagate 
to distances ∼ 3 times greater than high- Z clumps. This is indeed 
the case for χf = 100, as can be seen by comparing the solid and 
dashed red lines in the right-hand panel of Fig. 12 . Ho we ver, this 
is not evident in streams with higher χf where d max > 10 r s , i , due 
to artificial clump disruption in low-resolution regions, as discussed 
in the context of Fig. 8 . We also note the similarity between the 
evolution of χf = 30 (60) at low- Z and χf = 100 (200) at high- Z. 
These simulations have a similar ratio of χf /v mix (equation 12 ) and 
a similar distribution of clump sizes (Section 5 ) yielding a similar 
deceleration time-scale (equation 25 ). 

Fig. 13 shows the total surface area of cold gas, A tot ( < d max ) on 
the left, and the area modulation factor f A , dmax (equation 23 ) on the 
right, as in Fig. 9 . We compare simulations with different χf at both 
low (solid) and high (dashed) metallicity. Despite some differences 
during the initial isobaric contraction phase, the o v erall behaviour of 
the cold-gas surface area is similar at low- and high- Z. Following the 
explosion, the area increases rapidly, saturating at A tot ∼ (2 − 3) A 0 
for fragmented streams, and at A tot < ∼ A 0 for coagulated streams. As 
discussed following Fig. 9 , this corresponds to a cold-gas surface 
area ∼ 6 times larger than the expected surface area in the final 
equilibrium state without fragmentation, namely a single stream of 
radius r s , f . 

Note that A tot does not grow monotonically with χf at low- Z, but 
rather reaches a maximum around χf ∼ (100 − 400). This is due to 
the disruption of cold-gas clumps with large χf by hydrodynamic 
instabilities caused by the interaction with the surrounding hot wind 
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Figure 12. Time evolution of the number of clumps, N c (left, compare to Fig. 4 ), and d max (right, compare to Fig. 8 ). Different colours represent different χf , 
while solid (dashed) lines represent low (high)-metallicity streams with (without) a UVB. Low- Z streams have a smaller critical χf for fragmentation, χf ∼ 60 
compared to ∼ 200 for high-metallicity streams. Due to an initial stage of isobaric cooling, the explosion is delayed by ∼ 2 t sc in low- Z streams compared to 
high- Z streams. F ollowing the e xplosion, fragmented lo w- Z streams produce fe wer clumps and have slightly lo wer d max v alues than high- Z streams, though at 
late times, the values are comparable. 

Figure 13. Time evolution of the total surface area of cold gas within d max , normalized to its initial value (left), and the area modulation factor, f A , as a function 
of d max (right). This is similar to Fig. 9 , but here we compare high- and low-metallicity streams. Line styles and colours are as in Fig. 12 . Despite certain 
differences in detail, the o v erall evolution of the cold-gas area is similar in low- and high- Z streams, saturating at values of A tot ∼ (2 − 3) A 0 for fragmenting 
streams and A tot < ∼ A 0 for coagulating streams. The behaviour of f A is similar between the different metallicities, with fragmented streams having f A ∝ d −1 
at late times and large distances. 
(i.e. cloud crushing). Radiatively cooling clouds can survive these 
instabilities and grow in mass by entrainment if their o v erdensity 
obeys (Gronke & Oh 2018 ) 
χf " 1000 P 2 . 3 0 mix , −22 . 4 

T 5 / 2 cl , 4 . 3 M 0 . 1 r cl 
560 pc ˜ α, (29) 

where P 2 . 3 = P / (200 cm −3 K ) is the thermal pressure of the hot 
gas, T cl , 4 . 3 = T cl / (2 × 10 4 K) is the temperature of the cold cloud, 

0 mix , −22 . 4 = 0 mix / (10 −22 . 4 erg s −1 cm 3 ) is the cooling rate of gas 
in the mixing layer with T mix ∼ ( T c T h ) 1 / 2 and n mix ∼ ( n c n h ) 1 / 2 , 
M 0 . 1 = v cl / (0 . 1 c s , h ) is the cloud Mach number with respect to the 
hot gas, r cl is the cloud radius normalized to 560 pc which is roughly 
six high-resolution cells, and ˜ α ∼ 1 in the ‘wind-tunnel’ setup. To 
demonstrate this, we show the evolution of the total cold-gas mass in 
Fig. 14 . The cold mass increases with time for low- Z streams with 
χf < ∼ 1000, while it decreases for larger χf as clouds mo v e into the 
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Figure 14. Time evolution of cold-gas mass normalized by the initial stream 
mass. The cold gas is defined by ρ > ρs , i / 1 . 05. Line styles and colours are as 
in Fig. 12 . High- Z streams are al w ays in the growth regime, where the cold 
clumps grow in mass due to entrainment, thus increasing the total cold-gas 
mass. Low- Z streams, on the other hand, are in the disruption regime for 
χf > ∼ 400, causing the total cold-gas mass to decrease, at least initially. 
disruption regime. 8 For high- Z streams, the cold mass increases for 
all values of χf due to the order of magnitude larger cooling rates. 9 
Both low- and high- Z streams exhibit M 0 . 1 ∼ (1 − 3) for all cases, 
with lower χf corresponding to slightly lower values of M 0 . 1 but no 
systematic difference between low- and high- Z. The increased cold- 
gas disruption in low- Z streams is thus only due to the lower cooling 
rates in these simulations. 

The area modulation factor, f A (right-hand panel of Fig. 13 ), 
behaves similarly in the low- and high- Z runs, and is as expected 
based on Fig. 9 . At early times when d max < ∼ r s , i (grey region), f A 
displays chaotic behaviour, stemming from a competition between 
a decrease in cold-gas surface area due to the contraction and 
an increase due to fragmentation. Sustained fragmentation and 
coagulation are easily distinguishable by the behaviour of f A at 
later times, once d max > r s , i . Coagulation manifests as a turnaround 
or saturation in the distance at d max ∼ (1 − 2) r s , i with no clear 
trend of f A with d . Sustained fragmentation, on the other hand, 
has f A ∝ d −1 in the range d max ∼ (3 − 10) r s , i . Similar to A tot , f A in 
low- Z streams decreases at o v erdensities χf > 100 due to cold-gas 
disruption. Ho we ver, f A for χf = 100 at lo w- Z is as large as it is for 
fragmented high- Z streams. 

One of the key observational indicators of thermal fragmentation, 
and an important parameter in estimating the cold-gas content of 
the CGM/cosmic web, is the area co v ering fraction of cold gas, f C . 
In fragmented gas, this can be very large even if the volume filling 
fraction of the cold gas is small (McCourt et al. 2018 ; Faucher- 
Gigu ̀ere & Oh 2023 ). While f C o v erall behav es similarly to A tot , two 
clumps aligned along the same line of sight would both contribute 
8 χf = 400 seems to be a borderline case between survi v al and disruption. 
9 We note that the amount by which the cold mass increases or decreases 
depends on the shape of the cooling curve, and in particular on the UVB. 
Changing this, or including self-shielding, will modify the details of the cold 
mass evolution. For instance, we find that in runs with χf = 400 and 1000, 
with Z = 0 . 03 Z $ but no UVB, the mass loss is slower than in our fiducial 
runs shown in Fig. 14 . A more detailed discussion of cold mass evolution 
with different assumptions about the UVB is beyond the scope of this paper. 

to A tot but not to f C , which can cause large differences if there are 
many small clumps in the background/foreground of large clumps. 
Nevertheless, we crudely estimated f C perpendicular to the stream 
axis in a square region of side 10 r s , i , and found similar enhancements 
as seen in Fig. 13 for A tot . Namely, typical values at late times roughly 
∼ 2 times larger than the co v ering fraction of the initial stream, and 
∼ 6 times larger than the co v ering fraction of a stream with radius 
r s , f in thermal and pressure equilibrium. This was found to be true 
for both low- and high- Z fragmented streams. We defer a more 
detailed study of the cold-gas co v ering fraction and clumping factor, 
particularly in the context of cold streams feeding massive haloes at 
high- z (see Section 7 ), to future work with more realistic simulation 
setups and additional physical processes, as discussed in Section 8 . 
5  C L U M P  SIZES  A N D  MASSES  
Our estimate of the coagulation time (equation 22 ) and the deceler- 
ation time (equation 25 ), as well as their ratio (equation 28, which 
determines the efficiency of coagulation in our model) all depend on 
the radii of clumps resulting from the initial fragmentation process. 
It therefore behoo v es us to quantify the distribution of clump sizes. 
In the initial formulation of the ‘shattering’ model, the final scale 
of cold-gas clouds was predicted to be r c ∼ ! shatter ≡ min ( c s t cool ) 
(McCourt et al. 2018 ). The emergence of this as a characteristic 
length-scale for cold gas was also discussed in previous analytic 
models of non-linear thermal instability (Burkert & Lin 2000 ; 
Waters & Proga 2019a ). Moti v ated by these insights, some cosmolog- 
ical simulations have implemented cooling-length-based refinement 
models in order to resolve cold gas in the CGM (Peeples et al. 2019 ), 
while others have implemented subgrid models for the existence 
of unresolved cold-gas clouds of size ! shatter (Butsky et al. 2024 ). 
Numerical simulations of non-linear thermal instability in 1D find 
that while the minimum cloud size was of order ! shatter , larger clouds 
were common due to merging of smaller clouds (Das et al. 2021 ). 
Ho we ver, the size distribution of post-fragmentation cloudlets has 
not been constrained in 3D simulations of thermal instability which 
resolve ! shatter . 

Sev eral works hav e studied the size distribution of cold clumps 
in multiphase gas in other contexts. Gronke et al. ( 2022 ) studied the 
mass distribution of cloudlets forming not through an implosion–
explosion process as in this work, but rather by placing large clouds 
that are only slightly out of thermal equilibrium (by a factor of ∼ 2) 
in a (driven) turbulent box. They found that when the clouds were 
in the growth regime (see equation 29 ), the clump mass function 
in their simulations converged to d N/ d m ∝ m −2 o v er a wide range 
of simulation parameters. This implies roughly constant mass per 
logarithmic mass bin, and was found to extend down to the resolution 
limit of the simulation. Similar results were found in larger scale 
simulations of AGN jets in cool-core clusters (Li & Bryan 2014 ) and 
in magnetohydrodynamic (MHD) simulations of a multiphase ISM 
(Fielding et al. 2023 ). Ho we ver, these works did not resolve ! shatter 
so they could not comment on whether this would serve as a minimal 
or characteristic size of cold-gas cloudlets (see also Jennings et al. 
2023 ). Cloud-crushing simulations of large, thermally stable cold 
clouds interacting with a hot wind that marginally resolve ! shatter 
find that the size distribution of cold clumps forming in turbulent 
mixing layers downstream does not appear converged, with clouds 
smaller than ! shatter common (Sparre, Pfrommer & Vogelsberger 
2019 ; Gronke & Oh 2020a ). On the other hand, Liang & Remming 
( 2020 ) performed 2D cloud crushing simulations where the initial 
cloud was thermally unstable with a fractal structure consisting of 
gas with temperatures ranging from (10 4 . 3 − 10 6 . 5 ) K and a median 
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Figure 15. Cumulative distribution functions of clump masses (left, normalized to the total cold-gas mass at the rele v ant snapshot) and sizes (right, normalized 
to the initial cloud radius) in simulations of low-metallicity streams with different values of χf , r s , i , and r s , i /* as shown in the legend. The main panels show 
convergence tests for three different initial radii, r s , i = 1 , 3 , and 30 kpc , while the insets show all simulations with r s , i /* = 32 (cumulative distribution functions 
on the top and the logarithmic slope on the bottom, with the value of −1 marked by a dotted line). For cases demonstrating sustained fragmentation, we show 
the distributions at t ∼ 10 t sc , while for coagulated cases, we show the distributions at t ∼ 5 t sc , when N c is at its peak. The sizes of clumps are derived assuming 
spherical geometry, r cl = [3 m cl / (4 .ρcl )] 1 / 3 , where m cl and ρcl are obtained from the clump finder. For fragmented streams, the clump mass function follows a 
Zipf’s law-like distribution, N ( > m ) ∝ m −1 (Gronke et al. 2022 ; Fielding, Ripperda & Philippov 2023 ), over ∼ 2 − 3 dex in clump mass, though the relation 
is shallower at both low and high clump masses. The size function is slightly steeper than r −3 

cl , due to a broader scatter of clump density for small clumps. The 
vertical lines in the right-hand panel show the values of ! shatter /r s , i for r s , i = 1 , 3 , and 30 kpc from right to left, respectively. Even when ! shatter is resolved, the 
size distribution remains a power law down to the resolution scale without a feature at ! shatter . 
of ∼ 10 5 K. They found that the resulting cold-gas clouds had 
a characteristic column density of N H ∼ 10 17 . 5 cm −2 , consistent 
with predictions for a characteristic cloud size of ! shatter (McCourt 
et al. 2018 ). Ho we v er, ! shatter was only marginally resolv ed in their 
simulations and the characteristic scale the y disco v ered may hav e in 
fact been tied to the grid scale. Moreo v er, the cloud crushing setup 
is in general quite different from our own, and its relevance for the 
pure thermal instability picture discussed in McCourt et al. ( 2018 ) 
is unclear. To summarize, while it appears clear that in order for 
thermally unstable clouds to fragment they must be much larger than 
! shatter (McCourt et al. 2018 ; Sparre et al. 2019 ; Gronke & Oh 2020b ; 
Farber & Gronke 2023 ), and that both the total mass and clumpiness 
of cold gas in multiphase media increase as the resolution approaches 
! shatter (Peeples et al. 2019 ; Mandelker et al. 2021 ), it remains unclear 
whether this is indeed a lower limit or a characteristic value of the 
cloud size distribution. 

Our simulations offer a unique opportunity to study this issue, 
since unlike most previous works we focus on low-metallicity gas at 
relati vely lo w pressures of P /k B ∼ 100 K cm −3 exposed to a strong 
z = 2 UVB (Section 4 ). These result in ! shatter ∼ 300 pc (Table 1 ), 
a factor of ∼ (100 − 1000) larger than typical in most other works. 
For instance, in our simulations with solar metallicity presented in 
Section 3 , ! shatter ∼ 4 pc . In Fig. 15 , we study the distribution of clump 
sizes in simulations of low- Z streams with η = 10 exposed to a z = 2 
UVB, as in Section 4 . All these simulations have ! shatter ∼ 300 pc . 
We present results for streams with initial radii r s , i = 1 and 3 kpc 

(these are the simulations presented in Section 4 ), and 30 kpc . At our 
fiducial resolution of * = r s , i / 32, these correspond to cell sizes of 
∼ 31 , 94 , and 938 pc in the high-resolution region, corresponding 
to */! shatter ∼ 0 . 1, 0.32, and 3.2, respectively. The simulations with 
r s , i = 30 kpc thus do not quite resolve ! shatter , while our fiducial 
simulations with r s , i = 3 kpc marginally resolve it. In the simulations 
with r s , i = 1 kpc , ! shatter is well resolved, though these simulations 
have r + ∼ 2 ! shatter (Table 1 ) due to the initial phase of isobaric cooling 
discussed in Section 4 , so fragmentation is expected to be weak 
(Gronke & Oh 2020b ). 

For each value of r s , i , we perform additional higher resolution 
simulations with * = r s , i / 64 and r s , i / 128, to test convergence. 
In these simulations, ! shatter is well resolved for r s , i = 3 kpc and 
marginally resolved even for r s , i = 30 kpc . We note that in these 
high-resolution simulations, we simulate a smaller portion of the 
stream with uniform resolution throughout the entire box. The stream 
radius here is only 1 / 4 of the box size as opposed to 1 / 32 in 
our fiducial simulations. The total number of clumps is thus not 
directly comparable between our fiducial resolution and the two 
higher resolution runs. Ho we v er, we hav e v erified that this change 
does not affect the physics of fragmentation versus coagulation nor 
the distribution of clump properties. 

In the left-hand panel of Fig. 15 , we show the cumulative clump 
mass distribution for these simulations, obtained directly from the 
clump finder. The main panel shows results from simulations with 
varying resolution, while the inset displays results from all simula- 
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tions with r s , i /* = 32 listed in the legend. We show the distributions 
at t = 10 t sc for fragmented streams, and at t ∼ 5 t sc for coagulating 
streams which is when N c is at its peak. In all cases, the number of 
clumps is clearly dominated by low-mass clumps, though a single 
massive clump contains anywhere from ∼ (15 per cent − 95 per cent ) 
of the total mass, with more strongly fragmented cases having a 
smaller maximal clump mass. Recall, ho we ver, that the total cold- 
gas mass can be a factor of < ∼ 2 larger or smaller than the original 
cloud, depending on its size and o v erdensity (Fig. 14 ). In fragmented 
streams, a power-law distribution of N ( > m cl ) ∝ m −1 

cl dev elops o v er 
∼ (2 − 3) orders of magnitude in clump mass, consistent with 
previous studies (Gronke et al. 2022 ; Fielding et al. 2023 ). Such 
a scale-free distribution is emblematic of a much more general 
phenomenon known as Zipf’s law (Gronke et al. 2022 ). It requires a 
large dynamic range of clump sizes to develop, and has been argued to 
stem from the fact that for a highly fragmented cold-gas distribution, 
the cold-gas mass grows as ṁ cold , tot ∝ m cold , tot while the growth of the 
lowest mass clumps is dominated by mergers (Gronke et al. 2022 ). 

At the high-mass end, we see deviations from the power-law 
behaviour as the distribution becomes dominated by a few large 
clumps along the stream axis onto which many of the intermediate- 
mass clumps have coagulated. The turno v er at low masses is simply 
due to the resolution limit which sets a minimal mass for clumps. 
It may be affected in part by artificial disruption of small clumps in 
low-resolution regions far from the stream, though the same feature is 
present in simulations with uniform resolution as well, namely those 
with r s , i /* = 64 and 128. Even in cases which coagulate, ( r s , i , χf ) = 
(3 kpc , 30) , (30 kpc , 100), this power-law holds over a narrow range 
of intermediate masses where fragmentation is important. Ho we ver, 
the global distribution in these cases is not well described by Zipf’s 
la w since the y are not highly fragmented and their distribution is 
predominanly shaped by coagulation. 

Larger streams, with larger r +/! shatter , exhibit more violent frag- 
mentation with many more clumps (compare the runs with χf = 1000 
and r s , i = 3 and 30 kpc in the insets). Comparing the curves with 
different resolutions in the main panels, we find that higher resolution 
runs produce more low-mass clumps indicative of stronger fragmen- 
tation. This is consistent with previous studies of the formation of 
multiphase media in other contexts (Sparre et al. 2019 ; Mandelker 
et al. 2021 ). Ho we ver, the shape of the distribution is quite similar 
in all cases, developing a power law of N ( > m ) ∝ m −1 over a wide 
range of clump masses, which turns o v er at the resolution scale, and 
not at some fixed scale despite ! shatter being resolved. 

Ho we ver, whether the clump mass distribution is truly an example 
of Zipf’s law is not completely clear. We note that the full distribution 
down to the minimal clump mass is much better described by a 
lognormal distribution, rather than a power law with a turno v er (see 
Appendix D ). The mode of the distribution is al w ays at a clump mass 
slightly larger than the mass of a single cell at the cold density, even 
when ! shatter is well resolved, supporting our conclusion that ! shatter 
does not set a characteristic size for clumps. 

The right-hand panel of Fig. 15 shows the cumulative distribution 
of clump radii. These are estimated as 10 r cl = [3 m cl / (4 .ρcl )] 1 / 3 , 
where ρcl is the mean density in the clump, provided by the 
clump finder. The vertical dashed lines mark ! shatter /r s , i for r s , i = 
1 , 3 , and 30 kpc , from right to left. Focusing on simulations with 
r s , i = 1 and 3 kpc where ! shatter is resolved, we see that there is no 
feature in the distribution of clump sizes at ! shatter for fragmented 
10 Note that this implies that at our fiducial resolution of * = r s , i / 32 a clump 
consisting of a single cell has a radius of r cl ∼ 0 . 02 r s , i . 

streams. Rather, the distribution is a power law with N ( > r cl ) ∝ r −β
cl 

with β ∼ (3 − 4), which breaks at the resolution limit. Considering 
that N ∝ m −1 

cl , this indicates a mild size-dependence of clump density 
of ρcl ∝ r β−3 

cl , which is driven by smaller clumps containing more 
mixed gas at intermediate densities. As we increase the resolution, 
the break in the power law and the minimal clump size tend towards 
smaller sizes, rather than being tied to ! shatter . This suggests that clump 
sizes are not set by a hierarchical process where clumps continuously 
fragment to the local cooling-length, l cool ∼ c s t cool , until they reach 
! shatter = min ( l cool ) as was originally proposed by McCourt et al. 
( 2018 , see also Das et al. 2021 ). Rather, while r s , i > ! shatter may be 
a necessary condition for thermally unstable clouds to fragment, the 
actual formation of clumps is not itself driven by thermal instability. 
Rather, these are formed by a combination of RMI during the 
initial implosion and explosion processes (Gronke & Oh 2020b ), 
and shredding (Jennings & Li 2021 ) and/or rotational fragmentation 
(‘splintering’) at late times (Farber & Gronke 2023 ). The clump sizes 
are thus determined by these processes and clumps can al w ays exist 
at the smallest possible scales in a highly perturbed environment. 
Without additional processes such as thermal conduction (Koyama & 
Inutsuka 2004 ; Sharma, Parrish & Quataert 2010 ) or strong external 
turbulence (Tan et al. 2021 ; Gronke et al. 2022 ), we will al w ays have 
clumps down to the grid scale when thermal fragmentation is present. 

Consistent with the fact that ! shatter is not a characteristic size for 
clumps, we also find that n c ! shatter is not a characteristic column 
density for clumps, where n c is the number density in the cold 
phase. Rather, the distribution of column densities al w ays peaks 
at the grid scale, N ∼ n c * (see Fig. D3 ). While this may seem to 
contradict the results of Liang & Remming ( 2020 ), we again note 
that ! shatter was only marginally resolved in their simulations, so it 
is difficult to disentangle this from the grid scale, and moreo v er 
their simulation setup is sufficiently different from ours to render a 
detailed comparison difficult and beyond the scope of this paper. 

Finally, we note that the power law describing the clump size 
distribution seems to break at r cl ∼ r s , i / 3 ∼ r s , f . This seems to be 
the characteristic size of large clumps along the stream axis onto 
which many intermediate sized clumps have coagulated (Figs 6 , 12 , 
C2 and C4 ). A similar feature is seen in the cumulative distribution 
of clump sizes in sheets, where a power law is present from the 
resolution scale up to r cl ∼ r s , f abo v e which it flattens, decreasing 
again at r cl > ∼ r s , i . The small clumps are visible in the plane of the 
sheet, within islands of hot gas in between large cold clumps (Figs 5 
and C1 ). The large cold clumps surrounding these hot regions have 
typical sizes of order r s , i rather than r s , f . In both streams and sheets, 
the size of the largest clumps seems rather constant in time, and 
is not merely a consequence of clump growth due to coagulation. 
The reasons for this are unclear, though further investigation of it is 
beyond the scope of this paper and is left for future work. 
6  T H E  C OAG U L AT I O N  CRI TERI A  F O R  
STREAMS  A N D  SPHERES  
6.1 Fast versus slow coagulation 
Our results in Sections 3 and 4 revealed a critical o v erdensity for 
sustained fragmentation in streams and spheres, χf, crit , based on both 
the number of clumps, N c , and their radial extent, d max . Similar to 
previous work (Gronke & Oh 2020a ; Farber & Gronke 2023 ), we 
find that χf, crit depends on the initial cloud size, or more specifically 
on r +/! shatter . In Fig. 16 , we present a wide range of simulations 
with different initial sizes and metallicities and different values 
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Figure 16. Fragmentation versus coagulation in the plane of cloud size and 
o v erdensity, ( r +/! shatter , χf ), for simulations in spherical (red) and cylindrical 
(orange) geometries, with different initial sizes and metallicities and different 
values of η and χf (see Table 1 ). Squares represent those simulations with 
strong fragmentation, indicated by both a large number of clumps and a 
non-decreasing d max , while triangles mark simulations that coagulate. We 
introduce a small horizontal offset for those o v erlapping with each other. The 
orange/red solid line denotes the transition of coagulation for streams/spheres. 
The dashed line represents the criterion in Gronke & Oh ( 2020b ). 
of η and χf , in both spherical and stream geometries (Table 1 ), 
in the plane of ( r +/! shatter , χf ). We distinguish those cases which 
remained fragmented from those that coagulated as in previous 
sections, and in Appendix B3 , we show that this distinction is 
converged with resolution. We find that for both streams and spheres, 
χf, crit ∝ ( r +/! shatter ) 1 / 4 , and that the normalization for streams is 
∼ 1 . 5 times larger than for spheres. Below, we attempt to explain 
these trends and derive expressions for χf, crit in different geometries. 

We recall that following the explosion (Section 3.1 ), the reflected 
shock reaches the interface between the cold and hot gas when 
the cloud radius is roughly r ∼ r s , f . At this point, linear RMI 
begins growing at the interface, seeded by perturbations in the 
collapsed cloud and at its interface, while on larger scales, the cloud 
continues expanding isotropically with its surface area growing as 
d n max , with n = 1 and 2 for streams and spheres, respectively. Thus, 
f A remains roughly constant during this phase, or may even increase 
due to perturbations and some fragmentation further increasing 
the surface area. Eventually, RMI grows to non-linear amplitudes 
characterized by familiar mushroom-shaped plumes and other non- 
isotropic features which, in the presence of cooling, quickly fragment 
into small clumps. The surface area then quickly becomes dominated 
by small clumps which do not further expand as they flow out, 
and the tight correlation between the total cloud surface area and 
d max breaks down. Once the gas has sufficiently fragmented, the 
total cold-gas surface area saturates and f A decreases as the frag- 
mented clumps escape outwards, asymptotically approaching d −n 

max . 
Consequently, the coagulation time-scale increases significantly 
t coag ∝ ( d max /f A ) 1 / 2 ∝ d ( n + 1) / 2 

max (equation 22 ). 
We can now formulate a condition for slo w, inef ficient, coagulation 

as follows. We assume that the fragmentation of the initial cloud 
into small clumps occurs at r ∼ r fA , the radius where f A begins 
monotonically declining following the explosion. If the cloud reaches 
this radius before significantly decelerating, then the clumps will 
continue expanding outwards with a velocity of ∼ c s , c and will not 
coagulate, following the arguments presented in Section 3.2.1 . If the 

cloud has significantly decelerated prior to fragmentation, then the 
resulting clumps will coagulate. In other words, for coagulation to 
become inefficient we demand 
t decel , s > r fA /c s , c , (30) 
where t decel , s is the deceleration time-scale of the expanding cloud. If 
there is a turbulent mixing layer at the surface of the cloud, which is 
al w ays the case in the presence of shape and/or density perturbations 
and in the absence of thermal conduction, then the cloud deceleration 
is dominated by condensation rather than ram pressure because the 
e xpansion v elocity is v ex ∼ c s , c (equation 16 ). We therefore hav e 
t decel , s = m s , i / ̇m , where ṁ = 4 .r 2 avg ρh v mix , s for spheres and ṁ = 
2 .r avg Lρh v mix , s for streams, with v mix , s ∼ 0 . 4 c s , c ( r avg /! shatter ) 1 / 4 and 
r avg ∼ r fA . 

All that remains is to estimate r fA . In Fig. 17 , we show f A ( < d max ), 
similar to Figs 9 and 13 , for a large number of simulations with 
a wide range of different properties in both spherical and stream 
geometries (see Table 1 ). Unlike previous figures, we here plot f A 
as a function of r/r s , f in order to distinguish cases with different 
η. For this wide range of simulation parameters, we find that r fA ∼
αr s , f , where α ∼ 6 for streams and α ∼ 2 for spheres. This can be 
more easily seen by examining the median profiles of f A , which 
are shown with thick black lines. The larger α for streams may 
be due in part to the Bell–Plesset effect (Bell 1951 ; Plesset 1954 ), 
which is a geometrical factor in the linear growth rate of RMI for 
conv erging or e xpanding shock wav es, which can be < ∼ 2 times 
faster in spherical compared to cylindrical geometry . Additionally , 
if the total surface area saturates during the non-linear phase of 
RMI in both geometries, then f A ∝ d −n 

max declines faster in spherical 
geometry than in cylindrical geometry, yielding a larger r fA for the 
latter. 

Inserting our expressions for t decel , s and r fA into the equation ( 30 ), 
we obtain a critical o v erdensity for sustained fragmentation, 
χf > 190 ( α

2 . 6 
)13 / 4 ( η+

10 
)−1 / 12 (

r +/l shatter 
5000 

)1 / 4 
(31) 

for spheres, and 
χf > 280 (α

6 
)9 / 4 ( η+

10 
)−1 / 8 (

r +/l shatter 
5000 

)1 / 4 
(32) 

for streams, where η+ ≡ ρs , f /ρ( r = r +) and we have chosen a 
characteristic value of α to set the normalization. These two relations 
are plotted in Fig. 16 , ignoring the weak dependence on η+, and are in 
very good agreement with the fragmentation thresholds for spheres 
and streams seen in the simulations. In fact, the characteristic values 
of α in equations ( 31 ) and ( 32 ) were determined based on a fit to the 
threshold seen in Fig. 16 , but are also nicely consistent with Fig. 17 . 

For our fiducial parameters presented in both Section 3 and 
the convergence tests in Appendix B3 , namely r s , i = r + = 3 kpc , 
η = η+ = 10, Z = Z $, and no UVB, the critical o v erdensities for 
sustained fragmentation are χf, crit ∼ 120 for spheres and ∼ 180 for 
streams, consistent with our detailed results presented in those sec- 
tions. We stress that the condition derived above for rapid coagulation 
does not explicitly depend on metallicity, or on the cooling rate 
more generally. This is because, as highlighted in Section 3.2.1 , the 
condensation force dominates the deceleration process for all rele v ant 
parameters, including low-metallicity clouds/streams exposed to a 
UVB. Ho we ver, the slo wer cooling for lo wer metallicity and/or in 
the presence of a UVB, and corresponding larger ! shatter yield a lower 
critical o v erdensity for a giv en cloud/stream size. 

To emphasize the transition between fast and slow coagulation, we 
plot in Fig. 18 the total time for outgoing clumps to turn around and 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/536/3/3053/7926971 by guest on 11 April 2025



Geometrical and metallicity effects 3073 

MNRAS 536, 3053–3089 (2025) 

Figure 17. The area modulation factor f A as a function of d max normalized by r s , f for all stream simulations (left) and sphere simulations (right). Different 
colours represent different parameters as shown in the legend. The thick black lines in each panel show the median profiles, considering fragmented cases only. 
We define r fA to be the radius where f A , dmax starts declining, which is > ∼ 6 r s , f for streams and > ∼ 2 r s , f for spheres. 

Figure 18. We show the total time for clumps to turnaround and coagulate, 
t decel , s + t coag , as a function of their maximal distance, d max . t decel , s is the 
deceleration time-scale for a uniformly expanding cloud (equation 30 ), while 
t coag is computed from equation ( 22 ) assuming a clump radius of r cl ∼ 0 . 1 r s , i . 
Red (orange) lines represent spheres (streams) with η = 10, r s , i = 3 kpc , 
Z = Z $, and no UVB (as in Section 3 ). Thicker lines denote higher χf . The 
total time is dominated by t decel at small d max and by t coag ∝ d n/ 2 + 1 

max at large 
radii. 

coagulate, namely t decel , s + t coag , as a function of d max , for high- Z 
spheres and streams with η = 10 and r s , i = 3 kpc (as in Section 3 ). 
These are all measured directly from the simulation, but d max here 
can be interpreted as the hypothetical maximal distance reached 
by a clump prior to turnaround, with the y-axis showing the total 
time to coagulation given this d max . At small distances, this time- 
scale is dominated by t decel which is independent of d (equation 25 ). 
Ho we ver, once the maximal distance exceeds r max ∼ r fA , the time- 
scale quickly becomes dominated by t coag ∝ d ( n + 1) / 2 

max and coagulation 
becomes inefficient. Sheets only have a fast coagulation regime since 
f A never systematically decreases. Note that in this estimate of time- 
scales we neglect the continuous evolution of the clump velocity, 
which may slightly alter the actual time to turnaround. 

As a final note, we stress that our distinction between ‘fast’ and 
‘slow’ coagulation implies that given a long enough time and a large 
enough simulation volume, all cases should eventually coagulate. 
Ho we ver, this is an artificial conclusion based on our highly idealized 
numerical setup. F or e xample, e xternal turbulence in the surrounding 
hot gas would drive the small clouds further away from the central 
cloud and/or outright disrupt them (Gronke et al. 2022 ). We thus 
expect that cases which are in our ‘slow coagulation’ regime will in 
practice not coagulate in realistic scenarios. 
6.2 Comparison to previous work 
Gronke & Oh ( 2020b ) studied fragmentation versus coagulation 
of thermally unstable clouds using simulations similar to ours. 
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Their initial conditions consisted of four identical spherical clouds, 
with radius r s , i , o v erdensity χi , thermal imbalance factor η, and 
solar metallicity (without a UVB). They found a critical final 
o v erdensity for fragmentation of χf ! 300( r +/! shatter / 5000) 1 / 6 , while 
in our spherical simulations, we find χf ! 190( r +/! shatter / 5000) 1 / 4 
(equation 31 , assuming a fixed α and ignoring the weak de- 
pendence on η+). These two criteria are compared in Fig. 16 , 
where it is clear that our data are not well fitted by the 
Gronke & Oh ( 2020b ) criterion. We predict a slightly lower χf, crit 
for r +/! shatter " 10 4 , and a slightly steeper dependence on cloud 
sizes. Furthermore, their criterion depends only on the cloud ra- 
dius when it loses sonic contact, r +, while ours has an addi- 
tional dependence on the pressure contrast at this time, η+. In 
practice, our criterion depends on the final cloud radius, r s , f = 
( η+) −1 / 2 r +. 

We suspect that the lower normalization is primarily due to our 
adopting a temperature floor of T floor = 1 . 68 × 10 4 K compared 
to 4 × 10 4 K in their simulations. Consequently, our ! shatter is a 
factor of ∼ 14 smaller at the same density and metallicity, which 
results in a very similar normalization of χf, crit given the same 
initial cloud parameters. Moreo v er, since Gronke & Oh ( 2020b ) 
initialized their simulations with four clouds compared to our one, 
the y hav e four times the cold-gas mass given the same initial cloud 
parameters, which makes coagulation more likely. More difficult to 
explain is the different dependence of χf, crit on cloud size. We note 
that in fig. 5 of Farber & Gronke ( 2023 ), who performed similar 
experiments to Gronke & Oh ( 2020b ), the slope of their atomic 
criterion is closer to 1 / 4 than 1 / 6. Regardless, these scalings are very 
weak, and other complications we have ignored (e.g. non-spherical 
geometry and background turbulence) could have a stronger impact 
on χf . 

Gronke & Oh ( 2023 ) described an analogy between coagulation 
forces and gravity, summarized in Section 3.2.1 abo v e (see equation 
18 ). They used this to calculate the ef fecti ve binding energy of 
a collection of clumps, and then e v aluated a coagulation criterion 
by comparing this to the clumps’ kinetic energy, in analogy to the 
virial parameter of a self-gravitating system. While this analogy is 
compelling and has intriguing implications, it is intended to provide 
physical intuition rather than a precise quantitative criterion, as 
acknowledged in their paper. First, their model does not easily lend 
itself to calculating the dependence of χf, crit on r +/! shatter without 
knowing the number of clumps, which is very difficult to model. 
Secondly, the analogy between coagulation forces and simple point- 
mass gravity may not strictly hold in our case. This analogy is 
expected to be valid when the velocities of clumps with respect 
to the central cloud are negligible compared to the hot background 
velocity, so that *v 2 ∼ v hot ∝ d −n in equation ( 14 ). Ho we ver, in the 
case of imploding/exploding thermally unstable clouds as studied 
in this work, the clumps escape at a velocity ∼ c s , c , which can be 
much larger than the hot gas velocity at large radii. Fig. 19 shows the 
radial velocities of cold clumps and hot gas near d max as a function of 
d max , for high- Z spheres with η = 10 and r s , i = 3 kpc . For all χf , hot 
gas v elocities e xhibit similar profiles of ∝ d −2 , while the velocities 
of cold clumps are roughly constant at c s , c during their escape. The 
larger relative velocity means that clumps feel a stronger coagulation 
force than if they were static, F = ṁ v, facilitating ‘turnaround’ and 
e ventual coagulation. Ne vertheless, we agree with the qualitative 
conclusion of the Gronke & Oh ( 2023 ) ener gy ar gument that the 
coagulation efficiency increases from spheres to streams to sheets. A 
more detailed analysis of the ef fecti ve virial parameter argument 
in fragmented systems would be interesting to pursue in future 
work. 

Figure 19. Radial velocities of the outermost cold clump (at d = d max ) and 
the surrounding hot gas as a function of distance to the centre for simulations 
of high- Z spherical clouds with r + = r s , i = 3 kpc and η = 10. Different 
colours denote different χf . Solid lines represent hot background velocities 
and dashed lines represent cold-gas velocities. We show the absolute values 
of the velocities, though note that the hot gas is flowing in, while the cold 
clumps are flowing out. At d > r s , i , the relativ e v elocity between the clumps 
and the hot background is *v ∼ v cold ∼ c s , c . 
7  C O L D  STREAMS  PENETRATI NG  V I R I A L  
S H O C K S  
As described in Introduction, one of our main moti v ations for 
studying thermal fragmentation in low- Z streams is the application 
to cold streams feeding massive DM haloes at high- z from the 
cosmic web. In this section, we attempt to apply our results from 
previous sections to such streams, by constructing a toy model for 
how their interaction with virial shocks around DM haloes may cause 
them to fragment. The basic picture is that even though the cold 
streams themselves are not expected to shock as they enter the virial 
radius (Dekel & Birnboim 2006 ; Dekel et al. 2009 ), their confining 
pressure can increase by a large factor (Aung et al. 2024 ; Lu et al. 
2024 ), and the resulting pressure contrast that develops between 
the hot CGM and the cold streams can cause streams to fragment. 
While this pressure contrast is not caused by radiative cooling of 
an intermediate-temperature stream as assumed in previous sections, 
we show in Appendix A2 below (Fig. A5 ) that, at least in sheets, the 
implosion and explosion processes are similar in cases with initially 
cold and underpressureized gas. In an y ev ent, this section serv es as a 
proof of concept and a prelude to a more in depth study where we will 
explore this interaction using simulations (Yao et al., in preparation). 

Cosmological simulations show that at high- z, cosmic-web fil- 
aments in the IGM have a three-zone structure (Lu et al. 2024 ). 
Their outer regions contain hot, diffuse gas in virial equilibrium 
within the potential well set by the DM filament. Interior to this 
is a zone of multiphase gas with high turbulence and vorticity. 
The innermost region is a dense, isothermal core. Lu et al. ( 2024 ) 
dubbed the outer two zones the circumfilamentary medium (CFM), 
while the innermost region is the cold stream that penetrates the 
hot CGM around massive galaxies. The relative size of each zone, 
and in particular how much of the CFM mass is hot at the virial 
temperature, depend on the profiles of the cooling and free-fall 
times within the filament (Birnboim, Padnos & Zinger 2016 ; Stern 
et al. 2021 ; Aung et al. 2024 ). Important for our purposes is 
that cosmological simulations suggest that these three zones are 
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Figure 20. A schematic cartoon showing a cold stream penetrating the virial 
shock around a massive halo ( M v > ∼ 10 12 M $) at high- z ( z > ∼ 2). In the IGM, 
the cold stream is the dense, isothermal core at the centre of a cosmic-web 
filament filled with hot gas at the filament virial temperature and density, T v , f 
and ρv , f . The cold stream is initially in pressure equilibrium with this CFM. 
Ho we ver, as it penetrates the virial shock, the stream becomes confined by 
CGM gas at the halo virial temperature and density, T v , h and ρv , h . This results 
in a pressure imbalance of η = P v , h /P v , f = ( ρv , h T v , h ) / ( ρv , f T v , f ). If pressure 
equilibrium in the CGM is established the stream will be narrower and denser, 
though it may instead fragment. 
in approximate pressure equilibrium, with gas cooling isobarically 
from the hot CFM towards the cold stream (Ramsøy et al. 2021 ; 
Lu et al. 2024 ). Therefore, the pressure in cold streams prior to 
their entering the halo is roughly the virial pressure of cosmic-web 
filaments, while after entering the halo they become confined by the 
halo virial pressure. A schematic cartoon of this setup is presented 
in Fig. 20 . We can thus estimate the pressure contrast between the 
cold stream and the hot CGM by comparing the virial pressure in 
cosmic-web filaments versus DM haloes. 11 

The virial temperature and density of hot CGM gas are given by 
T v , h ∼ 1 . 5 × 10 6 M 2 / 3 12 (1 + z) 3 , (33) 
ρv , h ∼ * v , h × f b ρu ( z) (34) 
(e.g. Dekel et al. 2013 ), where M 12 = M v / 10 12 M $ is the halo virial 
mass, (1 + z) 3 = (1 + z) / 3 is the redshift, f b ∼ 0 . 17 is the Universal 
baryon fraction, ρu ( z) is the mean matter density in the Universe 
at redshift z, and * v , h ∼ 200 is the halo virial o v erdensity in the 
spherical collapse model. In practice, the post-shock values of the 
temperature and density at the virial radius will differ from these 
values, which represent averages over the whole halo and neglect 
11 We assume here that the streams are fully pressure confined, ignoring their 
self-gra vity. While self-gra vity may be important in setting the structure of 
cold streams (Mandelker et al. 2018 ; Aung et al. 2019 ), this seems to be 
subdominant in the IGM (Lu et al. 2024 ) and we neglect it here for simplicity 
and consistency with other models of filament properties (Mandelker et al. 
2020b ). In future work, we will relax this assumption and account for the 
effect of self-gravity on stream fragmentation and evolution more generally. 

non-thermal pressure support of hot CGM gas (Komatsu & Seljak 
2001 ; Lochhaas et al. 2021 ). Nevertheless, P v , h ∝ ρv , h T v , h using 
equations ( 33 ) and ( 34 ) is a good representation of the characteristic 
thermal pressure of hot CGM gas. 

The corresponding values for filaments are (Lu et al. 2024 ), 
T v , f ∼ 0 . 4 × 10 6 M 0 . 77 

12 (1 + z) 2 3 f acc , 3 M −1 
v , (35) 

ρv , f ∼ * v , f × f b ρu ( z) . (36) 
Here, f acc , 3 = f acc / (1 / 3) is the fraction of total accretion onto the 
halo flowing along the given filament normalized to the typical 
value for a halo fed by three prominant streams (Dekel et al. 2009 ; 
Danovich et al. 2012 ), M v = V s /V v , h is the inflow velocity along the 
stream normalized by the halo virial velocity, and * v , f ∼ (15 − 35) 
is the virial o v erdensity assuming c ylindrical collapse (Mandelker 
et al. 2018 ; Lu et al. 2024 ). 12 We adopt * v , f ∼ 20 as our fiducial 
value. 

For completeness, we note that equation ( 35 ) stems from the fact 
that 
T v , f ∝ G0 tot, f , (37) 
where 0 tot, f is the total line mass of the DM filament, 
0 tot, f ∼ .R 2 v , f ρv , f ∼ Ṁ f /V s ∼ f acc M −1 

v Ṁ v /V v , h , (38) 
where the specific accretion rate onto haloes is roughly (Neistein & 
Dekel 2008 ; Fakhouri, Ma & Boylan-Kolchin 2010 ; Dekel et al. 
2013 ) 
Ṁ v /M v ∼ 0 . 45 Gyr −1 M 0 . 14 

12 (1 + z) 2 . 5 3 . (39) 
Combining equations ( 33 )–( 36 ), we obtain the pressure contrast 
between the hot CGM and the cold stream, 
η ≡ P v , h 

P v , f / ρv , h T v , h 
ρv , f T v , f ∼ 35 M −0 . 11 

12 (1 + z) −1 
3 * v , h 

10 * v , f f −1 
acc , 3 M v . (40) 

At z = 4 this results in η ∼ 20, which seems consistent with some 
cosmological simulations (Lu et al. 2024 ). In practice, neither the 
CGM nor the CFM are perfectly isobaric. The cold stream at the 
centre of the filament will have pressures slightly larger than P v , f , 
while the hot CGM near the outskirts of the halo will have pressures 
slightly smaller than P v , h . Lu et al. ( 2024 ) find the pressure to increase 
by a factor of ∼ 2 from the outer filament to the cold stream at the 
centre. Assuming a similar variation in the CGM pressure, η in 
equation ( 40 ) can be o v erestimated by a factor of > ∼ 4. 

Gronke & Oh ( 2020b ) found that clouds can thermally fragment 
if η > 2, while for smaller values, they simply pulsate. Even if 
η is o v erestimated as described abo v e, it is thus still e xpected to 
be large enough to cause cold streams to fragment upon entering 
the CGM of massive haloes, and this tendency is expected to 
increase to wards lo wer redshifts. This may explain the large observed 
co v ering factions and clumping factors of cold gas in the CGM 
of M v > ∼ 10 12 . 5 M $ haloes at z > ∼ 3 (Cantalupo et al. 2014 , 2019 ; 
Borisova et al. 2016 ). It can also have important implications for gas 
accretion onto the central galaxy, and may lead to galaxy quenching 
by shutting off the cold-gas supply if the stream remains fragmented. 
Whether the stream remains fragmented or recoagulates depends 
on its size and o v erdensity compared to the critical o v erdensity for 
fragmentation. 
12 While Mandelker et al. ( 2018 ) estimated * v , f ∼ 36 based on the self- 
similar collapse models of Fillmore & Goldreich ( 1984 ), Lu et al. ( 2024 ) 
found values of * v , f ∼ (15 − 20) in their simulations. 
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Assuming pressure equilibrium between the cold stream and the 
hot CGM, their density ratio is (Mandelker et al. 2020b ) 
χf / 100 M 2 / 3 12 (1 + z) 3 4 h 

4 s , (41) 
where 4 h = T h /T v is the hot CGM temperature in units of the 
halo virial temperature, and 4 s = T s / 1 . 5 × 10 4 K is the stream 
temperature normalized to approximate thermal equilibrium with 
the UVB. For M v > 10 12 M $ haloes with a hot CGM, the radius of 
the stream in pressure equilibrium with the CGM is (Mandelker et al. 
2020b ) 
R s , f / 16 kpc (1 + z) −1 

3 (
f acc , 3 f c , s 4 s 
f h , 0 . 3 M v 4 h 

)1 / 2 
, (42) 

with no explicit dependence on halo mass. Here, f c , s is the cold-gas 
mass fraction in the filament and f h , 0 . 3 is the hot gas mass fraction in 
the halo normalized to 0.3. Inserting equation ( 42 ) into equation ( 32 ), 
we obtain the critical o v erdensity for coagulation of cold streams, 
χf, crit / 120 (1 + z) −1 / 4 

3 (
! shatter 
300 pc 

)−1 / 4 (
f acc , 3 f c , s 4 s 
f h , 0 . 3 M v 4 h 

)1 / 8 
, (43) 

where we have used ( η+) −1 / 2 r + = r s , f . Comparing this to equation 
( 41 ), we find for cold streams 

χf 
χf, crit / 0 . 85 M 2 / 3 12 (1 + z) 5 / 4 3 (

! shatter 
300 pc 

)1 / 4 (
f h , 0 . 3 M v 
f acc , 3 f c , s 

)1 / 8 
(

4 h 
4 s 

)9 / 8 
. (44) 

We thus find that cold streams can marginally sustain fragmentation 
for haloes with mass M v > ∼ 10 12 M $ at redshifts z > ∼ 2, more so 
in more massive haloes and higher redshift. Coagulation becomes 
more likely towards lower redshift, which is further enhanced as 
the streams become more metal enriched thus decreasing ! shatter . 
On the other hand, ! shatter ∝ ρ−1 ∝ (1 + z) −3 (McCourt et al. 2018 ; 
Mandelker et al. 2020b ), which mitigates this effect somewhat. 

We note that in more massive filaments, f c , s can be significantly 
lower than unity as larger virial temperatures and longer cooling 
times in the CFM increase the hot component of cosmic-web 
filaments at the expense of the cold streams (Aung et al. 2024 ; Lu 
et al. 2024 ). This becomes important in more massive haloes at a 
given redshift, and higher redshift for a given halo mass, and will 
increase χf /χf, crit making fragmentation even more likely in these 
cases. 

The final question we ask is whether sustained fragmentation will 
have time to manifest before streams reach the central galaxy. In our 
simulations, the full process consisting of the implosion, explosion, 
and fragmentation, takes ∼ (1 − 2) t sc to manifest, where t sc is the 
sound crossing time of the initial stream radius (see Figs 4 and 12 ). 
The stream sound speed is (Mandelker et al. 2020b ) 
c s , c / 18 . 5 kms −1 4 1 / 2 s µ

−1 / 2 
s , 0 . 6 , (45) 

where µs , 0 . 6 = µs / 0 . 6 is the mean molecular weight. The uncertain- 
ties in η from equation ( 40 ), as well as our having ignored self-gravity 
and stream rotation, both of which are important for setting the size 
of streams in the IGM (Lu et al. 2024 ), make the initial stream radius 
prior to contraction difficult to constrain. We thus take as a strict 
lower limit the final stream radius, R s , f from equation ( 42 ), to obtain 
a lower limit for the stream sound crossing time near R v and thus the 
time-scale for fragmentation, 
t sc , v / 900 Myr (1 + z) −1 

3 (
f acc , 3 f c , s µs , 0 . 6 
f h , 0 . 3 M v 4 h 

)1 / 2 
. (46) 

The streams reach the central galaxy in roughly a virial crossing 
time, t v ∼ R v /V v , which is given by (e.g. Mandelker et al. 2020b ) 
t v / 500 Myr (1 + z) −3 / 2 

3 . (47) 
We thus have 
t v 

t sc , v / 0 . 6(1 + z) −1 / 2 
3 (

f acc , 3 f c , s µs , 0 . 6 
f h , 0 . 3 M v 4 h 

)−1 / 2 
. (48) 

This ratio decreases with an increasing z making stream fragmenta- 
tion more likely to manifest in the CGM at lower redshift, though still 
at z > ∼ 2 due to equation ( 44 ). Ho we ver, since the ratio is typically 
less than 1 it is unclear if streams will have time to fragment prior 
to reaching the central galaxy. Before we neglect this possibility, we 
list several issues that may help. First, the stream sound crossing 
time decreases rapidly as it flows towards the central galaxy due 
to its shrinking radius, while the stream velocity increases by a 
factor of < ∼ 2 from R v to 0 . 1 R v (Aung et al. 2024 ). As a result, 
the sound crossing time decreases faster than the inflow time, and at 
some point they should become comparable. Furthermore, the virial 
shock can extend up to ∼ 2 R v (Zinger et al. 2018 ; Aung, Nagai & 
Lau 2021 ). Finally, as shown in fig. 1 of Mandelker et al. ( 2020b ), 
there is an order of magnitude uncertainty in R s , f due to the various 
additional parameters in the equations. Thinner streams, which also 
tend to be denser, will be more prone to fragmentation and disruption. 
Considering other physical mechanism neglected here, such as the 
halo potential, a stratified CGM, turbulence and shear, the dynamics 
of fragmentation and the fate of streams as they penetrate the CGM 
remain unclear. This will be explored in detail in future work. 
8  C AV E AT S  A N D  A D D I T I O NA L  PHYSI CS  
While our analysis has been thorough in terms of the impact of cloud 
geometry and metallicity on thermal fragmentation and coagulation, 
we have neglected a number of important physical processes which 
can impact these issues, as well as our application to cold streams 
penetrating the hot CGM. We briefly discuss these here, leaving more 
in depth analysis to future work. 

(i) Turbulent environments. In all our simulations, the background 
was initially static. Ho we ver, the CGM and the high- z cosmic web 
are both highly turbulent environments, driven by inflows, outflows, 
and galaxy interactions. Turbulence plays a critical role in the 
dynamics of multiphase gas, sustaining turbulent radiative mixing 
layers around clumps that facilitate condensation and coagulation, 
while also contributing to shattering of large clouds and disruption 
of small clumps. The latter one is particularly significant because 
the clump velocities in our simulations, ∼ c s , c , are much smaller 
than the expected turbulent velocities (e.g. Mandelker et al. 2021 ; 
Gronke et al. 2022 ; Fielding et al. 2023 ; Das & Gronke 2024 ). 
Momentum coupling between the cold clumps and the turbulent hot 
environment quickly entrains the clumps in the turbulent flows, if it 
does not first destroy them due to mixing. This supports our claim 
from Section 6.1 that our ‘slow coagulation’ regime is likely an 
idealization. Such clouds will likely either remain fragmented with 
the resulting clumps highly dispersed and with a minimal size set by 
the turbulence (Gronke et al. 2022 ), or else the resulting small clumps 
will all be destroyed making it a matter of definition whether we 
consider this cloud fragmented or not. Turbulence may also impact 
the critical o v erdensity for fragmentation, reducing the efficienc y of 
coagulation. 

(ii) Magnetic fields. Most astrophysical plasma is magnetized. 
While the outer CGM and cosmic web at high- z are not expected to 
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be highly magnetized, the magnetic fields can amplify during cloud 
contraction and fragmentation, and small-scale cloudlets resulting 
from thermal fragmentation can therefore be magnetically dominated 
and out of thermal pressure equilibrium with their surroundings 
(Nelson et al. 2020 ). This non-thermal pressure support leads to 
streaming motions along field lines and filamentary clumps, as the 
total pressure gradient becomes unbalanced along the field direction 
(Wang, Oh & Jiang, in preparation). Magnetic draping affects the 
kinematics and morphology of clumps (Hidalgo-Pineda, Farber & 
Gronke 2024 ; Ramesh et al. 2024 ). Magnetic fields also suppress 
mixing in the turbulent mixing layer, reducing the entrainment rate 
(Ji, Oh & Masterson 2019 ; Sparre et al. 2020 ; Gronke & Oh 2020a ; 
Grønnow et al. 2022 ). However, if turbulence is externally driven, 
then for a given rms turbulent velocity hydrodynamic and MHD 
mixing rates are similar (Das & Gronke 2024 ). 

(iii) Cosmic rays. Similar to magnetic field, cosmic rays are 
ubiquitous and play a crucial role in the CGM. Their relatively long 
cooling times and strong dynamical coupling to the gas make them 
a significant factor in galaxy formation processes (Ruszkowski & 
Pfrommer 2023 ). Cosmic rays provide substantial non-thermal 
pressure in the CGM, helping to counteract gravity and prolong 
the retention of cold gas. This, in turn, supports the survi v al of 
fragmented clumps and increases the cold mass fraction in the CGM 
(Butsky et al. 2020 ; Ji et al. 2020 ). 

(iv) Thermal conduction. Thermal conduction is a universal dis- 
sipation process that smooths temperature gradients along magnetic 
field lines, leading to the e v aporation of clouds smaller than the 
field length when competing with radiative cooling (Br ̈uggen & 
Scannapieco 2016 ; Armillotta et al. 2017 ; Li et al. 2020 ). As a 
result, the field length can act as a lower limit for clump size, similar 
to turbulence, and may change the extent of small-scale clumps 
resulting from thermal fragmentation. 

(v) Self-gravity. Self-gravity affects the dynamics of cold clouds 
in hot gas only when the cloud mass exceed the Jeans mass (Li 
et al. 2020 ), which can occur in large-scale cosmic-web structures. It 
increases the binding energy of e xplosiv e clouds, thereby potentially 
inhibiting sustained fragmentation and promoting coagulation in 
these larger clouds. More o v er, strong implosions like those we see 
prior to fragmentation, could directly trigger star formation, offering 
insights into star formation processes far from galaxies. Self-gravity 
is also important for cold streams (Mandelker et al. 2018 ; Lu et al. 
2024 ), and contributes to their radial structure as well as to their 
interactions with the CGM (Aung et al. 2019 ). 

(vi) Shear. Shear plays a critical role in cold streams penetrating 
virial shocks. The shear between the cold stream and the hot back- 
ground gas can dri ve K elvin–Helmholtz instabilities and enhance 
mixing. This will either promote stream growth through entrainment 
of hot gas in the mixing layer, or lead to stream disruption, depending 
on the ambient conditions (Mandelker et al. 2020a ; Aung et al. 
2024 ; Ledos, Takasao & Nagamine 2024 ). Additionally, shear can 
induce streaming motions in e xplosiv e clumps, as well as induce 
additional fragmentation within the turbulent mixing layer, leading 
to the formation of filamentary clump structures. Ho we ver, the ef fect 
of shear on the fragmentation and coagulation processes, particularly 
in a stratified medium as found in the hot CGM in galaxy haloes, is 
unknown. 
9  SU M M A RY  A N D  C O N C L U S I O N S  
We studied the effects of cloud geometry and metallicity on the 
thermal fragmentation and coagulation of cold-gas clouds in the 
CGM or the high- z cosmic web by utilizing 3D idealized hydro 

simulations. We initialized a thermally unstable warm cloud embed- 
ded in a hot medium in pressure equilibrium. We explored three 
different cloud geometries (planar sheets, cylindrical streams, and 
spherical clouds), varying the final o v erdensity of the cloud with 
respect to the background after thermal and pressure equilibrium 
have been reestablished, χf ≡ ρs , f /ρbg , with ρs , f the final density 
of the cold cloud (sheet, stream, or sphere) and ρbg the density 
of hot background. We also varied the size of the initial cloud, 
r s , i , and the ratio of the initial (warm) cloud density to the final 
(cold) cloud density after thermal and pressure equilibrium have 
been re-established, η ≡ ρs , f /ρs , i , which also represents the ratio of 
the background pressure to the pressure in the cloud after thermal 
equilibrium. Initially, we explored a setup where both the cloud 
and background have solar metallicity and there is no ionizing UV 
background (our ‘high- Z’ case, Section 3 ). We then extended our 
study of streams specifically to the low-metallicity regime where the 
streams and background have metallicities Z s = 0 . 03 Z $ and Z bg = 
0 . 1 Z $, respectively, and both are exposed to a z = 2 (Haardt & 
Madau 1996 ) UVB (our ‘low- Z’ case, Section 4 ). We examine 
the distribution of clump sizes in a regime where the shattering 
length-scale, ! shatter ≡ min ( c s t cool ), is well resolved to explore its 
importance as a characteristic size for cold gas (Section 5 ) and 
derived analytical criteria for the fragmented cloudlets to recoagulate 
(Section 6 ). Finally, we applied our results for low- Z streams to the 
case of cold streams feeding massive haloes ( M v > ∼ 10 12 M $) at high 
redshift ( z > ∼ 2) from the cosmic web through virial accretion shocks 
(Section 7 ). 

The general evolution of such thermally unstable clouds consists 
of two stages: (1) the initial implosion and explosion processes, 
triggered by a rapid loss of thermal pressure in the cloud followed by 
a converging and subsequent reflected shock that induces fragmenta- 
tion of cold gas through a combination of RMI, strong cooling, and 
vorticity induced by surface perturbations; and (2) the deceleration 
and recoagulation processes as escaping clumps begin comoving with 
the entrainment flow of hot gas converging onto the central cloud. 
We schematically summarize our main results and key insights into 
these two stages in the cartoon presented in Fig. 21 . In detail, our 
results can be summarized as follows: 

(i) The explosion velocity, which determines the growth time- 
scale of RMI, the fragmentation time-scale of the initial cloud, and 
(eventually) the spatial distribution of fragmented clumps, is close 
to the sound speed of cold gas for spheres and streams, regardless of 
metallicity, while for sheets it is ∼ 0 . 4 c s , c (Figs 2 and A5 ). 

(ii) Due to this relati vely lo w e xplosion v elocity ( v ex ∼ c s , c ), the 
dominant deceleration mechanism for escaping clumps is al w ays 
momentum exchange with the hot gas through condensation rather 
than drag or ram pressure. This is true regardless of initial cloud 
geometry and metallicity (equation 16 ). 

(iii) We distinguish cases where clouds remain fragmented from 
cases where they recoagulate based on both the number of clumps and 
their maximal radial distance from the centre, d max . Based on these 
metrics, both streams and spheres display sustained fragmentation 
only abo v e a critical final o v erdensity ( χf > ∼ 200 at high- Z). Sheets, 
on the other hand, show coagulation at all χf (Figs 4 and 8 ). 

(iv) At the end of their evolution, spherical clouds either remain 
fragmented into many small clumps or else coagulate into a single 
cloud at the centre. This is not the case for streams and sheets. Rather, 
even if such clouds coagulate radially, coagulation is suppressed 
along the stream axis and within the plane of the sheet. The final 
number of clumps thus increases with χf , even if the farthest clump 
falls back to the central plane/line (Figs 5 –7 and C1 –C3 ). 
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Figure 21. A diagram showing the effects of geometry and metallicity on thermal fragmentation and coagulation. From left to right, we show the fragmentation 
of sheets, streams, and spheres. After the initial implosion caused by a strong pressure gradient, cold gas bounces back with an explosion velocity v ex < ∼ c s , c for 
sheets (e.g. ∼ 0 . 4 c s , c at an o v erdensity of χf = 100), and v ex ∼ c s , c for streams and spheres. Radial coagulation is al w ays efficient for sheets, while it becomes 
less efficient at large distance for streams and spheres. The corresponding χf, crit shown in the diagram suggests a 1/4-power dependence on r +/! shatter , where r +
is the cloud radius where sonic contact is lost and the implosion phase begins, and ! shatter ∼ min ( c s t cool ) is sensitive to metallicity. As χf increases, fragmented 
clumps may enter the disruption regime, which leads to cold-gas mass loss during the fragmentation process. 

(v) The coagulation time-scale is longest for spheres and shortest 
for sheets. This is determined primarily by the area modulation factor, 
f A , which is the ratio of the total surface area of cold gas to the 
area of the cloud-centric shell at the distance of the furthest clump 
(equation 23 ). This decreases with the distance of escaping clumps as 
d −n , where n = 0 , 1 , 2 for sheets, streams, and spheres, respectively 
(Fig. 9 ). 

(vi) Low- Z streams behave similarly to high- Z streams with a 
similar ratio of χf /v mix , which determines the deceleration time-scale 
(equation 25 ). For our chosen metallicities and UVB, this translates 
into a factor ∼ 3 increase in χf from low- Z to high- Z. This similar 
behaviour is seen in the morphology, number of clumps, maximum 
clump distance, and total cold-gas area (Figs 11 –13 ). 

(vii) As χf increases, the fragmented clumps can enter the ‘dis- 
ruption’ regime and proceed to mix with the hot background, thus 
decreasing the total cold-gas mass. For our low- Z runs, this occurs 
at χf ∼ 1000, though for our high- Z runs clumps survive at all 
simulated values of χf (Fig. 14 and equation 29 ). 

(viii) For fragmented clouds, the cumulative clump mass distribu- 
tion, N ( > m ), closely follows a power law with an index of ∼ ( −1), 
in accordance with Zipf’s la w, o v er ∼ (2 − 3) dex in clump mass 
(Fig. 15 , left). Ho we ver, the full distribution of clump masses down to 
the smallest and largest scales is better fit by a lognormal distribution 
(Appendix D ). 

(ix) This power law extends from roughly the resolution scale, 
even if this is much smaller than ! shatter , until r s , f , the size the initial 
cloud would have had assuming monolithic collapse to thermal and 
pressure equilibrium. The distribution of clump radii is a power 
la w o v er the same range, showing that ! shatter is not a characteristic 
size for cold-gas clumps resulting from thermal-instability-induced 
fragmentation (Fig. 15 , right). 

(x) Exploring a wide range of simulations in both spherical 
and stream geometries, we find a critical o v erdensity for sus- 
tained fragmentation in streams and spheres that scales as χf, crit ∝ 
( r s , f /! shatter ) 1 / 4 (Fig. 16 ). For χf < χf, crit the fragmented cloudlets 
recoagulate. The normalization of χf, crit for streams is larger than 
for spheres by a factor of ∼ 1 . 5 (Fig. 16 ), while sheets al w ays 
recoagulate. 

(xi) Our model for sustained fragmentation differs from previous 
models (e.g. Gronke & Oh 2020b ), where χf, crit depends on the radius 
where the cloud loses sonic contact, r +, rather than r s , f . 

(xii) We propose a model for ‘slow’ versus ‘fast’ coagulation, 
based on the competition between fragmentation of the initial cloud 
and deceleration and entrainment of the clumps, which agrees well 
with our empirical coagulation criterion. Sheets are al w ays in the fast 
coagulation regime (Section 6.1 ). 

(xiii) Many of these conclusions may change when additional 
physics are included, such as externally driven turbulence, magnetic 
fields, thermal conduction, self-gravity, or shear between the initial 
cloud and the background. These effects should be explored in future 
work. 

The application of our model to cold streams penetrating the hot 
CGM of massive haloes at high- z from the cosmic web (Section 7 ) 
rests on the realization that the confining pressure of these streams 
in intergalactic filaments is lower than their confining pressure in 
the CGM (Lu et al. 2024 ). This could cause streams to fragment as 
they enter the virial shock, in much the same way as clouds which 
are underpressurized due to cooling fragment in our simulations. We 
e v aluate this pressure contrast ( η), the final density contrast between 
the cold streams and hot CGM ( χf ), and the critical o v erdensity 
for fragmentation ( χf, crit ) as a function of halo mass and redshift, 
based on previous models for the properties of cold streams in 
the CGM (Mandelker et al. 2020b ). We find that fragmentation 
can be important for haloes with M v > 10 12 M $ at z > 2. By 
comparing the fragmentation time-scale to the inflow time of the 
streams, we find that fragmentation is more likely to manifest 
towards the lower end of this redshift range. This offers a possible 
explanation for the large clumping factors and co v ering fractions of 
cold gas in the CGM around such galaxies, and may be related 
to galaxy quenching by providing a mechanism to prevent cold 
streams from reaching the central galaxy. These issues will be 
explored using direct simulations in upcoming work (Yao et al., in 
preparation). 
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APPENDIX  A :  T H E  IMPLOSION  A N D  
EXPLOSION  PROCESSES  IN  SHEETS  
Complementary to the qualitative discussion regarding the implo- 
sion and explosion processes in all three geometries presented in 

Section 3.1.1 , we here offer a rigorous mathematical description of 
these processes in sheets. 
A1 Adiabatic underpressurized sheets 
Consider a cold, underpressurized sheet of density ρc and pressure 
P c , surrounded by hot gas with density ρh = ρc /χi and pressure 
P h = ηP c . This setup, shown by the black lines in Fig. A1 for the 
case χi = η = 10, is unstable, as the ne gativ e pressure gradient driv es 
the contraction of the sheet towards its centre. The evolution during 
the contraction, shown in Fig. A1 by the blue lines, is similar to the 
Sod shock tube. 

Inside the sheet (the left-hand side of the profiles in Fig. A1 ), a 
shock wav e dev elops according to the Rankine–Hugoniot conditions, 
describing the conservation of mass, momentum, and energy across 
the shock: 
( v L − v sh ) ρL = ( v + − v sh ) ρ+, L , (A1) 
( v L − v sh ) 2 ρL + P L = ( v + − v sh ) 2 ρ+, L + P +, (A2) 
1 
2 ( v L − v sh ) 2 + γ

γ − 1 P L 
ρL = 1 

2 ( v + − v sh ) 2 + γ

γ − 1 P +
ρ+, L . (A3) 

Here v L = 0, ρL = ρc , and P L = P c are the physical quantities in 
the sheet (on the left-hand side). The velocities in equations ( A1 )–
( A3 ) are in the lab frame, so we subtract the shock velocity, v sh , 
to describe the equations in the comoving shock frame. The star 
symbol, +, represents the region that develops between the initial cold 
and hot media (between the left- and right-hand sides of the initial 
condition). The density and temperature in the starred region have 
sudden transitions across the CD, while the velocity and pressure are 
constant. Therefore, ρ+, L denotes the density on the left-hand side of 
the starred region, while v + and P + represent the velocity and pressure 
throughout the whole starred region. These three equations can be 
combined to eliminate v sh and obtain expressions for v + and ρ+, L , 
v + = v L − c s , L ( 2 

γ ( γ + 1) 
)1 / 2 (

P +
P L − 1 )(

P +
P L + γ − 1 

γ + 1 
)−1 / 2 

, (A4) 
ρ+, L = ρL ( γ + 1 ) ( P +/P L ) + γ − 1 

( γ − 1 ) ( P +/P L ) + γ + 1 . (A5) 
We find that if P +/P L & 1 and v L 0 c s , L , then v + ∝ c s , L √ 

P +/P L 
and ρ+, L ∼ ρL ( γ + 1) / ( γ − 1). 

In the background (the right-hand side of the profiles in Fig. A1 ), 
adiabatic expansion produces a rarefaction wave that conserves 
entropy and the generalized Riemann invariant: 
P +
ρ

γ
+, R = P R 

ρ
γ
R , (A6) 

v + − 2 c s +, R 
γ − 1 = v R − 2 c s , R 

γ − 1 . (A7) 
Here v R = 0, ρR = ρh , and P R = P h are the physical quantities in 
the background (on the right-hand side). ρ+, R and c s , + are the density 
and the sound speed on the right-hand side of the starred region, 
respectively. These equations yield 
v + = v R + 2 c s , R 

γ − 1 
[ (

P +
P R 

)( γ−1) / (2 γ ) 
− 1 ] 

, (A8) 
ρ+, R = ρR (P +

P R 
)1 /γ

. (A9) 
Equations ( A4 ), ( A5 ), ( A8 ), and ( A9 ) offer solutions for the 

implosion quantities, v + = v im < 0, P + = P im , ρ+, L = ρim , c , and 
ρ+, R = ρim , h . Furthermore, from equation ( A7 ), we get 
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Figure A1. Profiles of density, temperature, pressure, and radial velocity (perpendicular to the surface of the sheet) at four snapshots for an adiabatic 
underpressured sheet with η = χi = 10 and χf = 100. The black, blue, orange, and red lines represent four phases of evolution: the initial condition, the 
implosion, the peak collision of the shock in the centre, and the explosion of the sheet, respectively. All quantities are shown normalized by their initial values 
in the cold sheet, r s , i , ρc , T c , P c , and c s , c are the properties of the initial cold sheet. The sound crossing time is defined as t sc ≡ r s , i /c s , c . 

Figure A2. Physical quantities (density, temperature, pressure, and radial velocity from left to right, respectively) in the starred region in an adiabatic 
underpressured sheets as functions of the initial pressure contrast, η, for a fixed final overdensity, χf ≡ ηχi = 100. Lines represent the model predictions, which 
agree well with the simulation results shown by the dots. Colours are consistent with Fig. A1 , with the faint lines and dots represent the density and temperature 
of hot gas, and the darker lines and dots representing the cold gas. 
c s +, R = c s , R + γ − 1 

2 ( v im − v R ) = c s , im , h , (A10) 
and subsequently 
c s +, L = c s , im , h (ρim , R 

ρim , c 
)1 / 2 

= c s , im , c . (A11) 
Finally, the shock velocity v sh can be derived from equation ( A1 ) 
v sh = v L ρL − v im ρim , c 

ρL − ρim , c = v im ρim , c 
ρim , c − ρL . (A12) 

These solutions for the implosion quantities are shown by the blue 
lines in Fig. A2 . We show these as functions of η, while fixing χf ≡
ηχi = 100. The blue dots show results from 3D sheet simulations for 
comparison. We find that they agree with each other very well. 

The implosion shock propagates towards the centre of the sheet 
where it collides with the shock from the other side at t coll = r s , i /v sh . 
This head-on shock collision, shown in Fig. A1 by the orange lines, 
is similar to the planer Noh problem. Applying the shock solutions 
from equations ( A4 ) and ( A5 ) to both sides, and inserting v + = 0, 
v R = −v L = v im < 0, ρL = ρR = ρim , c , P L = P R = P im , and c s , L = 
c s , R = c s , im , c from symmetry arguments, we can derive expressions 
for P + = P coll , ρ+ = ρcoll , and c s , + = c s , coll . We obtain 
P coll 
P im = 1 + M 2 im , c γ ( γ + 1) 

4 
[ 

1 + (1 + 16 
( γ + 1) 2 M 2 im , c 

)1 / 2 ] 
, 

(A13) 
ρcoll 
ρim , c = (P coll 

P im + γ − 1 
γ + 1 

)(
γ − 1 
γ + 1 P coll 

P im + 1 )−1 
, (A14) 

where M im , c ≡ v im /c s , im , c . For M im , c & 1 and γ = 5 / 3, we have 
P coll /P im ∼ M 2 im , c and ρcoll /ρim , c ∼ 4 as expected for strong shocks. 
Together these imply that c s , coll ∼ v im / 2. The orange lines and points 
in Fig. A2 compare these solutions with simulation results and find 
excellent agreement. 

Once all the cold gas has been shock-heated, the inflowing hot 
gas is unable to prevent the expansion of shocked cold gas. At this 
stage, a shock wave develops on the right-hand side, propagating 
into the background, while a rarefaction waveforms on the left-hand 
side, propagating into the cloud. This stage is shown by the red lines 
in Fig. A1 . Following similar steps to those applied above when 
deriving the implosion quantities, but switching the left- and right- 
hand sides and using the conditions of v L = 0, v R = v im , c s , L = c s , coll , 
c s , R = c s , im , h , P L = P coll , and P R = P im , we can obtain expressions 
for P + = P ex , v + = v ex , ρ+, L = ρex , c , and ρ+, R = ρex , h . During this 
phase, the reversal of the direction of the rarefaction wave modifies 
equation ( A8 ) so that we have 
v ex = 2 c s , coll 

γ − 1 
[ 

1 − (
P +

P coll 
)( γ−1) / (2 γ ) ] 

. (A15) 
This equation provides a maximum value for the explosion ve- 
locity of v ex , max = 2 c s , coll / ( γ − 1). In practice, this is al w ays an 
o v erestimate because P + is bounded from below by P im , and 
furthermore the exponent ( γ − 1) / (2 γ ) = 0 . 2 is weak. The red 
lines and points in Fig. A2 compare our model predictions for the 
explosion quantities with simulation results, again finding excellent 
agreement. 

Overall, we find that our model for the implosion and explosion 
properties predicts the simulation results quite well. Both the im- 
plosion and explosion velocities increase with η, while the latter 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/536/3/3053/7926971 by guest on 11 April 2025



3082 Z. Yao et al. 

MNRAS 536, 3053–3089 (2025) 

Figure A3. Similar to Fig. A1 , but for a simulation with radiative cooling. Gas is assumed to have solar metallicity, with no UV background. We set a cooling 
floor at T = T c ∼ 10 4 K and also shut-off cooling at T > 0 . 8 T h . 
velocity is smaller than the former because part of the kinetic energy 
is converted to internal energy when the shock heats the cold gas 
during the central collision, increasing its temperature. 
A2 Underpressurized sheets with radiative cooling 
We expand upon the simple adiabatic problem explored above by 
including radiative cooling, which clearly plays an important role in 
the fragmentation process we study in the main text. We consider 
identical initial conditions to those explored in Appendix A1 , and 
assume that both the cold and the hot gas have solar metallicity. 
We set a temperature floor at the temperature of initial cold gas, 
T c ∼ 10 4 K, and prohibit radiative cooling abo v e 0 . 8 T h as in the 
main text. Similar to the adiabatic case, the initial implosion has 
a shock solution on the left and a rarefaction wave on the right. 
Ho we ver, since radiati ve cooling is efficient in the cold and dense 
in the sheet, the post-shock gas cools down immediately after being 
heated up, ef fecti vely forming an isothermal shock, as shown by the 
blue lines in Fig. A3 . 
A2.1 Isothermal shocks 
In isothermal shocks, energy conservation (equation A3 ) is replaced 
by 
P L 
ρL = P +

ρ+, L = c 2 s , L 
γ

, (A16) 
where c s , L is the adiabatic 13 sound speed in the left-hand fluid. 
Consequently , the velocity , density , and sound speed in the left-hand 
starred region are given by 
v + = v L − γ −1 / 2 c s , L 

[ (
P +
P L 

)1 / 2 
−

(
P +
P L 

)−1 / 2 ] 
, (A17) 

ρ+, L = ρL P +
P L , (A18) 

c s +, L = c s , L . (A19) 
Since radiative cooling is prohibited in the hot gas, the rarefaction 
wave on the right-hand side has a similar solution to the adiabatic 
case in equations ( A8 ) and ( A9 ). The four equations ( A8 ), ( A9 ), 
( A17 ), and ( A18 ), thus provide the solutions for the implosion 
quantities in the case of an isothermal shock v + = v im , iso , P + = 
P im , iso , ρ+, L = ρim , iso , c , ρ+, R = ρim , iso , h , and c s +, L = c s , floor . Compar- 
ing v im , iso in equation ( A17 ) to v im in equation ( A4 ), we find that for 
13 We take the adiabatic rather than the isothermal sound speed because we 
are e v aluating this at the cooling floor where the cooling time is infinite. 

P +/P L & 1, the isothermal implosion velocity is roughly a factor of √ 
( γ + 1) / 2 ∼ 1 . 15 larger than the adiabatic one. 
The head-on shock collision is also isothermal, shown by the or- 

ange lines in Fig. A3 . By applying equations ( A17 ) and ( A18 ) on both 
sides, we have P coll , iso /P im , iso ∼ ρcoll , iso /ρim , iso , c ∼ γ ( v im , iso /c s , floor ) 2 
and c s , coll = c s , floor . 

Ho we v er, the e xpansion phase is adiabatic for both the shock 
propagating into the background on the right and the rarefaction 
wave propagating into the cloud on the left, shown by the red lines 
in Fig. A3 . This is because the shock heats up the hot gas in the 
background (on the right) to the regime where radiative cooling is 
prohibited, while the cold gas in the cloud (on the left) is already 
at the temperature floor and cannot cool, though its temperature can 
decrease through adiabatic expansion. Therefore, we expect similar 
solutions to the adiabatic case, and in particular the maximum explo- 
sion velocity is predicted to be v ex , max ∼ 2 c s , floor / ( γ − 1) ∼ 3 c s , floor 
from equation ( A15 ), larger by a factor of ∼ 2 than our estimate 
of v ex ∼ 1 . 34 c s , c from equation ( 10 ). Ho we v er, as noted abo v e, 
the maximum limit provided by equation ( A15 ) is necessarily an 
o v erestimate, while the limit provided by equation ( 10 ) is not. 
A2.2 Radiative cooling in mixing layers 
In addition to isothermal shocks, radiative cooling also takes place 
at the interfaces between cold and hot phases, where gas is at 
intermediate temperatures and consequently has efficient cooling. 
In the context of our shock model, we assume this occurs at the CD. 
Radiative cooling causes enthalpy loss and pulls both cold and hot gas 
into this transition region, inducing turbulent mixing that smooths the 
CD. Therefore, we hereafter refer to this region as the ‘mixing layer’ 
instead of the CD. The effects of radiative cooling in the mixing layer 
can be seen in the blues lines in the pressure and velocity panels of 
Fig. A3 . There is a small dip of pressure at the mixing layer due to 
cooling. This pressure difference pulls both hot and cold gas into the 
mixing layer, causing the hot gas to accelerate and the cold gas to 
decelerate with respect to their implosion velocities in the lab frame. 
During the explosion phase, the cold gas is accelerated and the hot 
gas is decelerated near the mixing layer, as can be seen by the red 
line in the velocity panel. 

To study this process quantitatively, we begin with the momentum 
and energy equations 
∂ ρv 
∂ t = −∇ · ( ρv ⊗ v + P I ) , (A20) 

ρ
∂ ε
∂ t = −ρv · ∇ε − P ∇ · v − n 2 0 + E vis , (A21) 

where ε is the specific internal energy. The terms on the right-hand 
side of equation ( A21 ) are (from left to right) the advection of 
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thermal energy, adiabatic e xpansion/compression, radiativ e cooling, 
and viscous dissipation (caused by turbulence, viscosity, etc.). In 
steady state, the thermal pressure is roughly the same on either side 
of the mixing layer so the ram pressure e x erted by cold and hot gas 
inflowing into the mixing layer should roughly balance, 
ρc v 2 ent, c = ρh v 2 ent, h . (A22) 
This can also be deduced from equation (A20). Here, v ent, c and v ent, h 
are the entrainment velocities of cold and hot gas into the mixing 
layer, respectively. Assuming that the advection of thermal energy 
into the mixing layer from the hot phase is balanced by the advection 
of thermal energy out of the mixing layer into the cold phase and 
that viscous dissipation is negligible, then radiative cooling is only 
balanced by adiabatic compression (equation A21 ), 
P v ent, h − v ent, c 

H = − P 
( γ − 1) t cool , (A23) 

where H is the width of the mixing layer. Combining equations 
( A22 ) and ( A23 ), we can derive the entrainment velocities of cold 
and hot gas with respect to the mixing layer 
v ent, c = 1 

1 + √ 
χ

H 
( γ − 1) t cool > 0 , (A24) 

v ent, h = − √ 
χ

1 + √ 
χ

H 
( γ − 1) t cool < 0 , (A25) 

where χ = ρc /ρh is the density ratio between the cold and hot phases. 
We can now evaluate the velocity of cold and hot gas in the lab 

frame. Both phases share the same implosion velocity v im , iso , and 
we assume the mixing layer has a velocity v ml relative to v im , iso . 
If radiative cooling is efficient, the mixing layer mo v es outwards 
into the hot phase by accumulating cold gas due to the cooling of 
intermediate-temperature gas in the mixing layer, v ml > 0. On the 
other hand, if radiative cooling is inefficient, the mixing layer mo v es 
inwards into the cold phase due to the heating by mixing, v ml < 0. 
Thus, in the lab frame, the cold-gas velocity during implosion is 
v im , c = v im , iso + v ml + v ent, c , while the hot gas velocity is v im , h = 
v im , iso + v ml + v ent, h . Therefore, the velocity difference is 
| v im , h − v im , c | = | v ent, h − v ent, c | = H 

( γ − 1) t cool , (A26) 
which only depends on the properties of the mixing layer. 

In the simulation shown in Fig. A3 , there is an initial pressure 
jump at the boundary of cold and hot phases, limited by the grid 
scale, * . The width of the mixing layer and the velocity difference 
thus initially satisfy | v im , c − v im , h | ∝ H ∼ * . Ho we ver, we find that 
the velocity difference in this case is proportional to * 1 / 2 rather 
than * (blue dots in Fig. A4 ). This is consistent with Tan et al. 
( 2021 ), who found that the surface brightness, which is proportional 
to the entrainment velocity, scales as * 1 / 2 in the absence of thermal 
conduction. 

The result v ent ∝ H was first proposed by Begelman & Fabian 
( 1990 ), but was later found to not hold by recent 3D turbulent mixing 
layer simulations (Ji et al. 2019 ; Tan et al. 2021 ). The fundamental 
reason is that viscous dissipation cannot be neglected. In the absence 
of strong turbulence, the dissipation on the grid scale (the scale 
of the initial phase transition) is mainly numerical. According to 
the Navier–Stokes equations, the viscous dissipation rate can be 
described by 
E vis = 2 ρνS ij S ij , (A27) 
where S ij = 1 

2 ( ∂ v i ∂ x j + ∂ v j 
∂ x i ) is the strain-rate tensor, which has a 

value of approximately | v im , h − v im , c | /* across the mixing layer. The 

Figure A4. Implosion velocity differences between the hot and cold phases 
in radiatively cooling sheets with η = 10 and χf = 100. Blue dots represent 
simulations without any initial perturbations, where the velocity difference 
depends on resolution (shown on the bottom x -axis) and is well fitted by 
equation ( A29 ) shown by the blue line. Dots with black edges fix the size of 
sheets and change the number of cells across the sheet, while those without 
edges fix the number of cells per sheet but change the sheet thickness. Orange 
dots represent simulations with initial density and interface perturbations, 
where the velocity difference does not depend on resolution, as shown by 
those dots with black edges. Instead, it depends only on the sheet thickness 
(shown on the top x -axis) and is well fitted by equation ( A31 ) shown by the 
orange line. This is true whether the pressure jump was present in the initial 
conditions (circular points) or was generated due to strong cooling (triangles). 
numerical kinetic viscosity ν is estimated by ν = αc s , c * . Equating 
the viscous dissipation term to the cooling term, we have 
2 ραc s , c * ( v h − v c ) 2 

* 2 = n 2 0. (A28) 
Using n 2 0 = P / [( γ − 1) t cool ] and considering the cold phase yields 
| M im , h − M im , c | = ( 1 

2 αγ ( γ − 1) * 
c s , c t cool , c 

)1 / 2 
, (A29) 

where M im , h and M im , c are the Mach numbers of hot and cold gas 
with respect to c s , c , respectively. As shown by the blue line in Fig. A4 , 
equation ( A29 ) with α = 1 . 5 is an excellent fit to simulation results, 
which use RAMSES with a MUSCL scheme and HLLC Riemann 
solver. This is true whether we vary * by keeping the sheet thickness 
fixed and varying the number of cells across the sheet (points with 
a black boundary), or whether we keep the number of cells across 
the sheet fixed and vary the sheet thickness (points without a black 
boundary). 
A2.3 The impact of turbulence 
In more realistic cases, turbulence is ubiquitous and shapes the 
properties of mixing layers along with radiative cooling. In this case, 
the width of the mixing layer is comparable to the largest eddy, 
which has a comparable size of the width of the sheet. According to 
Gronke & Oh ( 2020a ), the entrainment velocity of the hot phase is 
v ent, h ≈ βc s , c ( t sc /t cool , c ) 1 / 4 , (A30) 
when cooling dominates o v er turbulent mixing, where β = 0 . 2 − 0 . 5 
(Gronke & Oh 2020a , 2023 ). Combining this with equation ( A22 ), 
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Figure A5. Physical quantities (density, temperature, pressure, and radial velocity from left to right, respectively) in the starred region in simulations with 
radiati ve cooling, sho wn as functions of the final o v erdensity χf at a fix ed η = 10 and r s , i = 3 kpc. All simulations have initial surface and density perturbations 
in the sheet. Circular points represent simulations with initial pressure discontinuities, while triangles represent simulations where the pressure jump was induced 
by strong cooling in a sheet initially in pressure equilibrium with the background, as in the main text. Lines represent the model predictions, which agree 
reasonably well with the simulation results for the density and temperature. For the pressure and velocity, the model agrees with the simulations during the 
implosion phase, but o v erpredicts the peak pressure during the shock collision and the explosion velocity, especially at large χf . 

Figure A6. Normalized 2D density slices at four snapshots in the case of η = 10, χf = 10 4 . Fragmentation occurs during implosion. 
the velocity difference is 
| M im , h − M im , c | ≈ β

(
1 + 1 

√ 
χ

)(
r s , i 

c s , c t cool , c 
)1 / 4 

. (A31) 
In order to develop turbulence during the implosion, we add inter- 

face perturbations to the surfaces of sheets and density perturbations 
inside the sheets, as described in Section 2 . As shown by the orange 
circular dots and orange line in Fig. A4 , we find that the velocity 
differences in simulations are well fitted by equation ( A31 ) with 
β = 0 . 4. This result is independent of resolution, measured by the 
number cells across the sheet thickness, as shown by the orange 
points with a black boundary, where we vary the number of cells by 
factors of 2, 4, and 8 while keeping the sheet size fixed. 

Until now, we have considered a case with an initial pressure 
discontinuity between the cold and hot gas. We now consider a case 
as in the main text where the sheet is initially in pressure equilibrium 
with the hot background, but its temperature is a factor of η higher 
than the temperature floor. Assuming t cool 0 t sc , which is true in our 
case, the sheet rapidly cools isochorically and induces the pressure 
contrast. As shown by the orange triangles in Fig. A4 , the properties 
of the mixing layer in this case are similar to the case with an initial 
pressure contrast. 

If the mo v ement of mixing layer with respect to the implosion 
shock can be neglected, then the total implosion velocities for the cold 
and hot gas are given by v im , c = v im , iso + v ent, c and v im , h = v im , iso + 
v ent, h , respectively. Furthermore, the thermal pressure of imploding 
gas decreases near the mixing layer, which drives the inflow into the 
mixing layer. In other words, the pressure and density are modified 
due to the entrainment flow 

P im = P im , iso − ρim , c v 2 ent, c = P im , iso − ρim , h v 2 ent, h , (A32) 
ρim , c = ρim , iso ( P im 

P im , iso 
)1 /γ

, (A33) 
ρim , h = ρim , iso ( P im 

P im , iso 
)1 /γ

, (A34) 
where we have assumed the density varies adiabatically because the 
cold gas is at the cooling floor and the hot gas cannot cool (recall that 
it is primarily intermediate gas that cools in the mixing layer). We 
have thus obtained the properties of the implosion, accounting for the 
effects of the radiatively cooling mixing layer. Similar modifications 
are applicable to the explosion phase as well, where the entrainment 
accelerates the cold gas and decelerates the hot gas. 

We compared our model predictions with simulations in Fig. A5 . 
Here, we vary χf while fixing η = 10 and r s , i = 3 kpc. Circles 
represent simulations with an initial pressure contrast, while triangles 
represent simulations where the pressure contrast was induced by 
rapid cooling. Note that the triangles at χf = 100 correspond to the 
sheet case shown in Fig. 2 . For all values of χf , the model is a good 
fit to the density and temperature values at all stages – implosion, 
peak collision, and explosion – and a good fit to the pressure and 
radial veloity during the implosion. Ho we ver, we overpredicted the 
peak collision pressure and the explosion velocity, especially at large 
χf . We suspected that this discrepancy arises from the fragmentation 
of the sheet during the implosion, as illustrated in Fig. A6 . This 
fragmentation seems to be due to the surface perturbations and a 
combination of RMI and vorticity induced at the curved surface of 
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the perturbations together with strong cooling. Clumps begin to form 
and detach from the sheet very early on in the evolution, before the 
outer cold-gas surface has gained much velocity. At high overdensity, 
these detached clumps are unable to catch up to the implosion front 
since the time-scale for clumps to become entrained in the flow 
increases linearly with χ (Section 3.2.1 ). These fragmented clumps 
increase the cold-gas surface area, thereby driving stronger inflows 
of hot background gas into the mixing layers. Furthermore, because 
of this fragmentation the imploding gas that reaches the centre is 
not fully collisional, with small-scale clumps ‘missing’ each other. 
This leads to a lower collisional density and pressure than predicted, 
ultimately resulting in a reduced explosion velocity. 

F ollowing the e xplosion, the cold gas escapes outwards at a 
velocity of ∼ c s , c , while a mild shock propagates outwards into the 
hot gas. In the adiabatic case (Fig. A1 , red lines), the velocity of 
the post-shock hot gas is also ∼ c s , c . Ho we ver, radiati ve cooling at 
the surface of the central cold-gas sheet induces an entrainment flow 
through a turbulent mixing layer, as described in Section 3.2.1 of the 
main text. This causes the hot gas to flow towards the centre in an 
entrainment flow, while the cold clumps escape outwards. 

APPEN D IX  B:  C O N V E R G E N C E  TESTS  
B1 The peak pr essur e and explosion velocity of sheets 
In Fig. 2 , we found that the peak pressure and the explosion velocity 
in sheets are both much smaller than in streams and spheres. Since 
the density and pressure in collapsing isothermal clouds increases 
fastest for spheres and slowest for sheets, we wished to verify that 
we would not see a more dramatic increase in the central pressure 
(and therefore in e xplosion v elocity) in sheets if the resolution were 
increased allowing further collapse. To this end, we performed sheet 
simulations with the same parameters as in Fig. 2 , with three different 
resolutions within r < 3 r s , i . The results are shown in Fig. B1 . We 
found that the peak pressure and explosion velocity do not change 
with resolution. 

Figur e B2. The conver gence test of the effect of the size of the high- 
resolution region on the area modulation factor, f A , and thus on r fA , the radius 
where f A first decreases and a critical element of our coagulation criterion. 
Solid lines represent simulations with our fiducial grid structure, with the first 
resolution drop at r = 3 r s , i , while dashed lines represent simulations with a 
larger high-resolution region where the first resolution drop is at r = 6 r s , i . 
Orange lines represent streams, while red lines represent spheres, each with 
χf = 1000, η = 10, r s , i = 3 kpc , and high- Z. In all cases, we find that the 
size of the high-resolution region has no impact on f A or r fA . 
B2 f A and r fA 
In Section 6.1 , we derived a coagulation criterion that depends on 
r fA , the radius where f A began to decrease. In order to verify that 
this is not sensitive to the artificial disruption of cold gas induced 
by our statically refined mesh (Section 2 , Fig. 1 ), we performed two 
tests with a larger high-resolution region, such that the resolution first 
decreases at r = 6 r s , i rather than 3 r s , i . In other words, we increased 
the resolution by one refinement level (corresponding to cell sizes 
half as large) for all cells outside the initial high-resolution region, 
r > 3 r s , i , while keeping the same high-resolution interior to this 
radius. As a result, the first drop in resolution now occurs at 6 r s , i 

Figur e B1. Conver gence test of the effect of resolution at the centre of the sheet on the peak pressure during the implosion shock collision (left) and the 
e xplosion v elocity (right). We find that both of these quantities are conv erged at our fiducial resolution. 
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Figur e B3. Conver gence test of the effect of resolution on the distinction 
between fragmentation and coagulation in spheres. We choose four combi- 
nations of χf and r s , i as shown in the legend (with η = 10 and high- Z), and 
vary the number of cells per initial cloud radius. While the number of clumps 
depends on resolution, the distinction between fragmentation and coagulation 
does not. 

instead of 3 r s , i , with subsequent drops occurring at [9 , 12] r s , i . We 
did this for both streams and spheres with χf = 1000, as shown in 
Fig. B2 . We found that the size of the high-resolution region does 
not affect f A significantly. 
B3 The coagulation criterion 
Our definition of fragmentation or coagulation rests primarily on 
the evolution of the number of clumps. To verify that this is not 
sensitive to resolution, we chose four simulations that are close to 
the borderline and lowered their resolutions everywhere by factors of 
2 and 4, as shown in Fig. B3 . While the number of clumps obviously 
depends on resolution, the distinction between fragmentation and 
coagulation, namely whether N c decreases to order unity or remains 
large until the end of the simulation, does not. 

APPENDI X  C :  VOLUME-WEIGHTED  AV ER AG E  
O F  DENSITY  PROJECTI ON  MAPS  
In Figs C1 –C4 , we presented maps of the volume-weighted average 
density in sheets, streams, and spheres, with different χf and 
metallicity values. These are meant to complement, respectively, 
Figs 5 –7 and 11 from the main text, which show the maximal density 
along the line of sight. As described in the text, the maximal density 

Figure C1. Same as Fig. 5 , but showing the average density along the line of sight rather than the maximal density, to highlight coagulation and the geometry 
of large clouds rather than small clouds which result from thermal fragmentation. 
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Figure C2. Same as Fig. 6 , but showing the average density along the line of sight rather than the maximal density, to highlight coagulation and the geometry 
of large clouds rather than small clouds which result from thermal fragmentation. 

Figure C3. Same as Fig. 7 , but showing the average density along the line of sight rather than the maximal density, to highlight coagulation and the geometry 
of large clouds rather than small clouds which result from thermal fragmentation. 
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Figure C4. Same as Fig. 11 , but showing the average density along the line of sight rather than the maximal density, to highlight coagulation and the geometry 
of large clouds rather than small clouds which result from thermal fragmentation. 
better highlights thermal fragmentation and small clumps, while the 
average density better highlights coagulation and large clumps. This 
better shows how coagulation is suppressed along the stream axis and 
in the plane of the sheet, and also how in general radial coagulation 
is stronger in sheets compared to streams compared to spheres. 
APPENDIX  D :  L O G N O R M A L  FITS  TO  T H E  
C L U M P  MASS  D ISTRIBUTIONS  
In Section 5 and Fig. 15 , we discussed the distribution of clump sizes, 
suggesting these are well described by a power law, N ( > m ) ∝ m −1 . 
Ho we v er, man y power la ws are actually lognormal distributions in 
disguise (Mitzenmacher 2004 ), and pure fragmentation, in particular, 
is expected to produce a lognormal due to the central limit theorem 
(Kolmogorov 1941 ). We compared these distributions using the 
PYTHON package powerlaw (Alstott et al. 2014 ), which fits both 
power laws and lognormals while estimating the p -values of the 
significance via log-likelihood ratios. When we used all clumps down 
to the minimal clump mass, a lognormal distribution is significantly 
fa v oured o v er a power, la w with a p -v alue less than 10 −20 . Ho we ver, 
when allowing the minimal clump mass to vary as part of the fitting 
procedure, the p -value can rise to as high as 0.3 when fitting o v er 
the range m cl /m 0 > 10 −4 . This suggests that while the lognormal 
distribution is still favoured, a power law is also a good description 
of the data o v er this mass range. In either case, the mode of the 
lognormal distribution is sensitive to resolution even when ! shatter is 
resolved, consistent with our main conclusion that ! shatter does not 
set a characteristic value for clump size in our simulations. 

Fig. D1 shows the lognormal fits to the case of a low- Z stream with 
r s , i = 3 kpc, η = 10, and χf = 100 at different resolutions. Fig. D2 
shows the PDF of all low- Z cases, which can be fit by lognormal 
distributions similar to Fig. D1 . Note that the peak of the distribution 

tracks the numerical resolution. Fig. D3 shows the probability density 
function (PDF) of column densities of all low-metallicity streams. 
The peaks of the column densities are determined by the resolution 
rather than by the column density at ! shatter . 

Figure D1. The PDF of clump masses for the low-metallicity stream case 
with r s , i = 3 kpc, χf = 100 at different resolutions. The clump mass is 
normalized by the initial mass of the stream, with colours representing 
different resolutions. Higher resolution simulations capture smaller clump 
masses, extending to lower values of m cl /m 0 . Dotted lines indicate lognormal 
fits for each resolution, with the modes (dash–dotted lines) aligning with 
the normalized cold masses in a single cell (dashed lines). Clump masses 
can fall below this value due to lower densities and higher temperatures. 
For m cl /m 0 ! 10 −4 , where resolution effects are minimal, the distributions 
e xhibit a power-la w feature with an inde x of −2, consistent with the 
cumulati ve po wer-law slope of −1 discussed in Section 5 . 
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Figure D2. The PDF of clump masses for all low-metallicity stream cases. 
Line styles and colours are as in Fig. 15 . The dashed lines represent the 
normalized cold masses in a single cell, which appear to align with the peaks 
of the mass distributions. 

Figure D3. The PDF of column densities in simulations of low-metallicity 
streams. Line styles and colours are as in Fig. 15 . The column densities are 
calculated by N H = 2 ρcl r cl . The cloud sizes are derived assuming spherical 
geometry, r cl = [3 m cl / (4 .ρcl )] 1 / 3 , where m cl and ρcl are obtained from the 
clump finder. The black dashed line represents the column density of cold 
clumps at the size of ! shatter . This column density is higher than 10 17 cm −2 
predicted by McCourt et al. ( 2018 ) due to our much larger ! shatter caused 
by lower metallicity and the presence of a UVB. The peaks of the column 
densities are determined by the resolution rather than by the column density 
at ! shatter . 
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