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The growth of the geospatial services industry is increasing the demand for a workforce with training at the intersection
of geography and computing (i.e., geocomputation) in terms of skills, knowledge, and disciplinary background. To be
more effective at increasing the supply of geocomputational professionals, we need to better understand the existing educa-
tional pathways that are available to acquire knowledge and skills in geography, computing, or both. In this article, we
aimed to enhance our understanding of the current standing of geocomputational career pathways by (1) articulating the
existing curriculum pathways from school to career and identifying broadening participation challenges associated with
training opportunities; and (2) identifying specific gaps in knowledge, skills, and training needs and opportunities between
geographers, computer scientists, and the geospatial technology industry. Our analysis of a survey of geocomputational
professionals identified significant differences in knowledge, skills, and access to training between different educational
pathways and between different demographic groups. Key Words: computational thinking, diversity, inclusion, skills,

spatial thinking.

here is a growing demand for a workforce that

can support solving geospatial problems rap-
idly. For example, when a disaster hits, time is of
the essence and a swift informed response benefits
from the use of large or interlinked geospatial data,
which increasingly require computational resources.
The growth of the geospatial services industry
(AlphaBeta 2017) is increasing the demand for job
candidates with geocomputational proficiencies. A
2020 survey of global enterprise leaders across all
sectors found that 97 percent say it is either
“difficult,” “quite difficult,” or “very difficult” to
find and hire data scientists with expertise in spatial
data analysis (Carto 2020). The same survey was
conducted again in 2023, and 92 percent of respond-
ents shared the same difficulty in hiring data scien-
tists with this expertise (Carto 2023). Although there
is a decreasing trend in hiring difficulty, we argue
that the deficit of geospatially trained data scientists
is not being addressed quickly enough.

Throughout this article, we refer to the intersec-
tion of geography and computing as geocomputation,
whether it be in reference to skills, knowledge, or
disciplinary backgrounds. The usage of this termi-
nology is not ubiquitous, and workers that we qual-
ify as geocomputational professionals might instead
qualify themselves as geospatial analysts, environ-
mental scientists, data scientists, cartographers,
product engineers, urban planners, solutions engi-
neers, and so forth. We are particularly interested in

understanding where geocomputational professio-
nals acquire their proficiencies. The Carto (2023)
survey found that nearly 50 percent of respondents
learned their spatial data science skills at work, and
another 18 percent received training through online
tutorials. This finding raises the question of whether
formal educational pathways (K-12 and higher edu-
cation) offer sufficient opportunities for career prep-
aration in this growing industry.

To be more effective at increasing the supply of
geocomputational professionals, we need to better
understand the existing educational pathways that
are available to acquire knowledge and skills in
geography and computing, either separately or in
combination. This article focuses on the context of
the United States where a number of studies looked
at ways to integrate geography and computing at
different levels of education (Dony et al. 2019;
Hammond, Oltman, and Manfra 2019; Shook et al.
2019; Bowlick et al. 2020; Bowlick et al. 2022,
Shook et al. 2021). In the United States, formal edu-
cational pathways that integrate or intersect geogra-
phy and computing (e.g., degree programs in
GIScience, spatial data science, or spatial comput-
ing) are available but typically offered in either a
geography or a computing department. Efforts to
offer courses that engage faculty from both are still
extremely limited because faculty often face adminis-
trative challenges that come with coordinating
across different colleges. More important, however,
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any of these pathways have struggled to attract
diverse student populations (Nelson, Goodchild, and
Wright 2022).

Availability of Geocomputational
Pathways

One of the main reasons for the difficulty of creat-
ing formal educational pathways at the intersection
of two disciplines is that we still rely on a disciplin-
ary way of training the workforce. Most students
take courses that cover one subject and acquire a
certificate or degree in one discipline (e.g., geogra-
phy, geographic information systems [GIS], com-
puter science, or computing) rather than a
combination of fields.

Another challenge to the establishment of geo-
computational educational pathways is that whereas
the availability of K-12 learning pathways in com-
puting is increasing, the number of learning path-
ways in geography is decreasing (Dlony 2023).
Spatial thinking, a crucial element of geocomputa-
tion, has typically been taught in geography courses
as part of the social studies curriculum, but only a
few states still require geography for high school
graduation (Zadrozny 2021). According to a 2015
report by the U.S. Government Accountability
Office, “throughout the country ... K-12 students
may not be acquiring adequate skills in and exposure
to geography, which are needed to meet workforce
needs in geospatial and other geography-related
industries” (U.S. Government Accountability Office
2015, 1). A more recent study of nationwide K-12
student-achievement trends in geography over the
past 25years (1994-2018) concluded that “schools

. made no progress in bolstering overall achieve-
ment levels in geography” (Solem 2022, 150).
Although this is a challenge specific to the United
States, there is significant diversity in geography
education globally (Solem and Tani 2017), and
trends vary widely by country and their respective
educational frameworks and backgrounds (e.g.,
Fortuijn et al. 2020).

Efforts to introduce geocomputation into single-
discipline computing and geography college pro-
grams can be problematic. Computing programs are
starting to offer courses that involve the use of loca-
tion data. These courses, however, often lack the
conceptual geographic knowledge (Sinton 2019) that
supports understanding of spatial data quality stand-
ards that are required to avoid the risks of misused
or mishandled spatial information, misinterpreted
spatial analyses, and misinformed decision-making.
On the other hand, geography departments are
starting to offer courses that involve computational
thinking (Bowlick, Goldberg, and Bednarz 2017),
but course offerings are limited and the absence of
related degree requirements can generate the

misleading impression that combined training in
geography and computing is not needed.

Interestingly, schools are starting to leverage geo-
spatial technologies across several science, technol-
ogy, engineering, and mathematics (STEM) subjects
to support learning because they offer hands-on
strategies to teach the concepts of data collection,
data analysis, and science communication with geovi-
sualizations (Hammond, Oltman, and Manfra 2019;
Jant et al. 2020; Rubino-Hare et al. 2024). Plus, the
use of geospatial technologies has shown added
advantages to K-12 STEM learning overall. In a pro-
gram funded by the National Science Foundation
called the geospatial semester, fifty-three high school
seniors were recruited for a course that emphasized
the use of geospatial technologies for problem solv-
ing. Over the school year, students enrolled in the
program saw more improvement in their ability to
solve STEM-relevant problems than students
enrolled in Advanced Placement Physics or
Advanced Placement History (Jant et al. 2020). This
example demonstrates how combined instruction can
be advantageous to student learning.

Accessibility of Geocomputational
Pathways

A few training programs are starting to bridge
together geography and computing proficiencies
(e.g., data science, spatial sciences, or spatial comput-
ing programs), but these efforts take time and money
and have been too limited to meet nationwide work-
force needs (Carto 2023). Additionally, these efforts
do not focus on addressing challenges of student
inclusion and belonging, which have been persistent
issues in geography and computing programs.

The underrepresentation of women in computer
science has been widely reported. A recent analysis
of nearly 12 million papers revealed that “[bJased on
recent trends over the last 50years, the proportion
of female authors in Computer Science is forecast
not to reach parity beyond the end of this century”
(Wang et al. 2021, 84). This underrepresentation is
also visible in geography. According to 2020-2021
data from the U.S. Department of Education’s
National Center for Education Statistics, only 39.9
percent of bachelor’s degree recipients in geography
were women, as compared to 58.4 percent of all
degree recipients (National Center on Education
Statistics 2021; Raphael 2023).

Studies have shown the far-reaching consequences
of the underrepresentation of these groups in terms
of innovation, bias, and workplace culture. In the first
substantial piece of empirical research on women in
the GIS profession, Betancourt-Mazur and Albrecht
(2016) concluded that although women are not as
grossly underrepresented in GIS as in the overall
technology industry, they are likely underrepresented
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in certain sectors and positions. For example, the
authors found that women are underrepresented in
the private sector of the GIS industry, perform more
analysis than computer programming tasks, and are
underrepresented in positions that require manage-
rial or highly technical skills (Betancourt-Mazur and
Albrecht 2016). Because geography programs are the
main pipeline to GIS jobs (Wikle and Fagin 2015),
these findings suggest that diversity in undergraduate
geography directly affects the diversity of the STEM
workforce.

Study Objective

This study was conducted by a collaborative
research practice partnership (RPP) that includes
researchers and educators from different educational
institutions (i.e., K-12, community colleges, and
universities; Solem et al. 2021). Whereas a few of
the partners in the RPP already consider themselves
to be geocomputational researchers or educators,
most consider themselves either geographers or
computer scientists.

To facilitate a better understanding of the cur-
rent standing of geocomputational career pathways
in the United States and their capacity to address
the aforementioned challenges, the RPP conducted
a survey of professionals in the geospatial technol-
ogy industry. In this article, we evaluate the accessi-
bility of existing educational pathways and their
effectiveness in recruiting professionals to the geo-
computational workforce. Specifically, we focused
on two research objectives: (1) articulating the exist-
ing curriculum pathways from school to career and
identifying broadening participation challenges asso-
ciated with each learning opportunity; and (2) iden-
tifying the specific gaps in knowledge, skills, and
training needs and opportunities between geogra-
phers, computer scientists, and the geospatial tech-
nology industry.

Method

In 2021, we designed an online survey to ask profes-
sionals about their careers and usage of geography
and computing to analyze and solve problems in
their everyday work. To recruit survey participants,
we adopted two outreach strategies that were
deployed between January and November 2022.
First, we contacted the chairs of university programs
and institutes with degrees in geography, comput-
ing, or other disciplines that provide training in geo-
computational proficiencies; we asked program
chairs to distribute the survey to their program
alumni. Second, we directly invited professionals to
participate in the survey by posting messages on list-
servs and mailing lists of GIS-related organizations
and affinity groups (e.g., San Diego Regional GIS

Council), as well as by contacting them individually.
Participation in the survey was voluntary and anony-
mous, and participants were able to opt out of any
questions. We obtained ethical clearance for the
survey from the San Diego State University
Institutional Review Board for Human Subject
Research (Protocol Number HS-2021-0258).

We designed the survey as part of a bigger
research project to better understand how to create
inclusive educational pathways toward geocomputa-
tional careers. For this article, we focused on forty-
one questions that facilitate our understanding of
respondents’ educational pathways; their demo-
graphic information; their interest in or need for
additional training in geography, computing, or
both; and how they apply geography or computing
to solve problems in their everyday work.

Inclusion Criteria

The survey targeted professionals who were at least
eighteen years old and had experience and knowl-
edge related to the geocomputational industry, edu-
cation, or both. Although anyone with the valid
link could access the survey, we stated the inclusion
criteria on the survey consent form and participants
provided consent to continue to the survey
questions.

Survey Instrument

The forty-one questions included three demo-
graphic questions, ten educational and professional
background questions, and twenty-eight questions
relating to professional experience, knowledge, and
employment situation. Some questions were only
asked to respondents once they selected specific
choices to prior questions (i.e., survey flow and
branching), so the total number of questions asked
to each respondent depended on their own answers.

The twenty-eight questions about professional
experience, knowledge and employment situation
included six multiple-choice, thirteen Likert scale, and
nine open-ended questions. The first five questions
(Q1-QS5) asked respondents about their familiarity
with the terms “computational thinking,” “geographic
or spatial thinking,” “GIS,” “geocomputation,” and
“spatial data science.” The next eighteen questions
(Q6-Q23) consisted of three sets of six questions
related to the use of each of three critical thinking
skills (computational, geographic, and geocomputa-
tional) in practice, and the need for and access to train-
ing opportunities for those skills. The last five
questions (Q24-Q28) focused on the level of agree-
ment or disagreement between work-related state-
ments and respondents’ current or most recent
employment situations. Appendix A provides a full list
of questions, their respective question types, and any
predetermined answer choices.
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Educational and Demographic Category Grouping

To address the two research objectives, we catego-
rized respondents into groups based on their educa-
tional pathway and demographic characteristics.
Using the responses to the educational background
questions, we grouped the respondents into four
educational pathways: geography only (Geog), com-
puting only (Comp), combined geography and com-
puting (Geocomp), and other disciplinary pathways
that are unrelated directly to geography or comput-
ing (Other). For example, respondents in the
Geocomp group had at least one major, minor, or
special emphasis in geography and at least one in
computing as part of their undergraduate and/or
graduate course work. Using the responses to the
demographic questions, we grouped the respondents
into three gender categories (Male, Female, NAyc,
[prefer not to answer]), three ethnicity categories
(Hispanic [i.e., Hispanic, Latino, or Spanish origin],
non-Hispanic, NA., [prefer not to answer]), and
two race categories (White, non-White).

Limitations of the Educational and Demograpbic
Groupings. Our article shares differences between
respondents across the described educational pathway
and demographic groups. The intent of these particu-
lar groupings is to detect and better understand dif-
ferences in the responses from groups that are
typically underrepresented in the industry so that we
can start to address identified challenges. These
groupings, however, do not correspond tightly with
definitions of “underrepresented” professionals in the
industry. If we look at the gender categories used in
this study, we might equate the categories “female,”
“other gender identities,” and “prefer not to answer”
with the groups that include professionals who are
typically underrepresented in the industry, as com-
pared to the category “male.” Yet, many professionals
who identify as male might still be underrepresented
in the industry due to the intersectionality of their
identities. Furthermore, we categorized respondents
with an educational background in geography only as
Geog; however, some within this group might have
learned substantial geocomputational skills and
knowledge (e.g., programming, database management,
and tools/web-map development) within their geogra-
phy curriculums.

Survey Respondents

In total, 147 survey participants accepted the con-
sent form. Of the 147, we excluded twenty-nine
respondents who did not answer any of the profes-
sional background, experience, knowledge, or
employment situation questions; therefore, a total of
118 respondents were included in the analysis.
Table 1 shows the number of respondents by educa-
tional pathways, academic degrees, and demographic
characteristics. Because there were no respondents

Table 1 The number of respondents by educational
pathways, academic degrees, and demographic
characteristics

Geog Geocomp Comp Other
(n=77) (n=11) (n=4) (n=26)
n % n % n % n %
Degree
Associate® 0 00 O 00 O 00 1 3.9
Bachelor 33 429 2 182 1 25,0 11 423
Master 30 390 6 545 3 75.0 11 423
Doctoral 14 182 3 273 0 00 3 1156
Gender
Male 45 584 6 545 4 100.0 16 615
Female 30 390 4 364 0 00 9 346
NAgen® 2 26 1 91 0 00 1 38
Ethnicity
Hispanic 9 1.7 2 182 0 00 6 231
Non-Hispanic 66 85.7 8 727 4 100.0 19 731
NAgtn® 2 26 1 91 0 00 1 38
Race
White 62 805 7 63.6 4 1000 19 73.1

Non-White® 15 195 4 364 0 00 7 269

8Associate degree or vocational certificate.

PPrefer not to answer.

°Biracial White respondents (n=4) were classified as non-
White.

in the category of “other gender identities,” we
excluded it from the gender groups in the analysis.

Method of Analysis for Multiple-Choice Questions

We employed nonparametric statistical tests to eval-
uate the differences between educational pathway
groups and between demographic groups. For the
ordinal Likert-type questions (Q1-Q6, Q12, QI8,
Q24-Q28), we used the pairwise Mann-Whitney U
test to determine the significant differences between
two groups, and Box-Whisker plots to visualize the
data distribution. We selected the Mann—Whitney
U test because it can be used when the data are not
normally distributed, when the sample sizes are
small, or when the variances are heterogeneous
(Leon 1998). For the categorical questions (Q10,
Ql11, Q16, Q17, Q22, Q23), we applied the pairwise
chi-square (3%) test and then analyzed the standard-
ized residuals (¢,) to measure the significant differ-
ences and patterns between the groups. We also
conducted the Fisher’s exact test (FET), supple-
menting the chi-square tests, to deal with the small
sample sizes.

Method of Analysis for Open-Ended Questions

Additionally, we analyzed the responses to two
open-ended questions (Q20, Q21) asking respond-
ents to describe the geocomputational tools and
knowledge they used in the last two years for their
work. For this analysis, we first identified common
themes and key terms across all responses using text
frequency analysis. Then we confirmed the validity
of those themes through a quick scan of the
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responses and a closer reading of selected ones to
understand the context of term usage. From the
final themes, we developed a coding structure and
code book. Our code book has seven major themes
for the tools and knowledge used during profes-
sional work: (1) geospatial, (2) geocomputational, (3)
computing/programming, (4) math/statistics, (5)
data model/management, (6) subject matter, and (7)
other. Here are a few examples that show how we
categorized responses under three key themes.

e Tools
1. Geospatial: ArcGIS, QGIS, GeoDa
2. Geocomputational: ArcPy, GeoPandas,
Rasterio, PostGIS

3. Computing/programming: Python,
C++ R
e Knowledge

1. Geospatial: cartography, geovisualiza-
tion, modifiable areal unit problem

2. Geocomputational: “integrating Python
code and GIS systems,” “combining spa-
tial relationships with coding logic to
aggregate results at an appropriate scale,”
“automating spatiotemporal forecasting
tasks on scale,” “parallel computation for
working with large geospatial data”

3. Computing/programming: coding, high-
performance computation

Appendix B provides a detailed description of the
types of responses we coded under each category and
more examples for each theme. Guided by the devel-
oped code book, coders manually assigned codes to
specific responses. To ensure interrater reliability
and quality control, multiple coders coded each
response. As a result, two coders achieved an inter-
rater reliability of Cohen’s kappa score, k£=0.78,
indicating a substantial level of agreement. In instan-
ces of a coding disagreement, coders discussed the
discrepancies until reaching a resolution and, if nec-
essary, they revised the code book. For the analysis, if
a response included themes and terms that fit within
two or more codes in the code book, the response
would be assigned with multiple codes. In this case,
we weighted each code by dividing one by the total
number of theme categories assigned to the response
so that the total value of each response equaled one.

Results

Findings for Groupings by Educational Pathways

Term Familiarity and Use of Critical Thinking
Skills. 'Table 2 (Q1-Q5) provides p values of the
pairwise Mann-Whitney U tests and Figure 1
describes the data distribution of responses in
Box-Whisker plots to examine significant differences

between the four educational pathway groups (Geog,
Geocomp, Comp, and Other) on term familiarity
related to geocomputation. The results show that
Comp and Geocomp groups were more familiar with
“computational thinking” than the Geog or Other
groups (Table 2, QI; Figure 1, top). The Geog
respondents were more familiar with “geographic
thinking” than respondents in the Other group (Table
2, Q2; Figure 1, second from the top). All four groups
were familiar with GIS and there were no significant
differences among them (Table 2, Q3; Figure 1, third
from the top). The Comp group was more familiar
with geocomputation than the Geog or Other groups
(Table 2, Q4; Figure 1, fourth from the top). It is note-
worthy that the mean response value for familiarity
with the term geocomputation was higher among
Comp respondents (4.75) than among Geocomp
respondents (3.73); however, the difference was not
statistically significant (Table 2, Q4, fourth column).
We believe the primary reason for this result is the
small sample size (Comp: n=4, Geocomp: n=11),
which results in insufficient statistical power to detect
a true difference between the groups. The Geocomp
group was more familiar with “spatial data science”
than the Other group (Table 2, Q5; Figure 1, bottom).

Regarding the use of geographic or spatial think-
ing and computational thinking for professional
work, there were no significant differences between
the educational pathway groups (Table 2, Q6 and
Q12; Figure 2, first and second plots). Regarding
the use of computational thinking, however, it is
worth noting that there were marginally significant
differences between the Geocomp and Geog groups
(p=0.075) and between the Geocomp and Other
groups (p=0.051), where Geocomp respondents
needed to use “computational thinking” for their
work more frequently than respondents in the Geog
or Other groups (Table 2, QI12; Figure 2, second
plot). In terms of their use of geocomputational
thinking, those in the Geocomp group needed to
integrate geographic and spatial thinking and com-
putational thinking for their work more than those
in the Geog group (Table 2, QI18; Figure 2, third
plot).

Training Needs and Opportunities Related to
Critical Thinking. Tables 3 and 4 present the
results of the pairwise chi-square tests and pairwise
FETs regarding critical thinking training needs and
opportunities, by educational pathway group. The
analyses identified that respondents in the Geocomp
group were more likely to say they had “no access to
training or professional development opportunities
related to geographic/spatial thinking” than those in
the Geog (¢,: Geog = -2.49, Geocomp =2.49) and
Other (¢,: Geocomp =2.69, Other = -2.69) groups
(Table 3, Q11). In addition, Geocomp respondents
were less likely to say they had “some access to
training or professional development opportunities
related to geographic/spatial thinking,” as compared
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Table 2 Results of pairwise Mann-Whitney U tests (p values), indicating differences in geocomputational term

familiarity between educational pathway groups

Questions

. How familiar are you with the term “computational thinking”?

1
2. How familiar are you with the term “geographic or spatial thinking”?

3. How familiar are you with the term “geographic information systems or GIS"?
4

5

. How familiar are you with the term “geocomputation”?
. How familiar are you with the term “spatial data science"”?

6. In the past 2years, how frequently did you need to use geographic/spatial thinking for your professional work?
12. In the past 2 years, how frequently did you need to use computational thinking for your professional work?
18. In the past 2 years, how frequently did you need to integrate geographic/spatial thinking and computational thinking for your

professional work?

24. [My current employment] is a good fit with my academic background.

25. | am/was interested in learning new skills.

26. This employer supports professional development and continuing education.

27. My coworkers reflect a healthy mix of racial and ethnic diversity.

28. My coworkers reflect a healthy mix of gender identities (male, female, nonbinary, other).

Educational pathways

[Geog, [Geog, [Geog, [Geocomp, [Geocomp, [Comp,
Q No. Geocomp] Comp] Other] Comp] Other] Other]
1 0.002** 0.013* 0.106 0.694 0.001** 0.007**
2 0.695 0.545 0.007*** 0.851 0.100 0.386
3 0.731 0.864 0.098 1.000 0.373 0.621
4 0.104 0.028* 0.328 0.533 0.083 0.026*
5 0.079 0.613 0.260 0.507 0.043* 0.406
6 0.502 0.181 0.260 0.552 0.930 0.529
12 0.075 0.260 0.454 0.869 0.051 0.228
18 0.019* 0.309 0.749 0.808 0.099 0.475
24 0.522 0.108 0.026* 0.429 0.416 0.838
25 0.780 0.718 0.036* 0.928 0.112 0.226
26 0.455 0.328 0.840 0.752 0.619 0.433
27 0.145 0.014* 0.442 0.344 0.071 0.008**
28 0.061 0.096 0.939 0.561 0.094 0.110

Note: Geog = geography; Geocomp =combined geography and computer science; Comp =computer science; Other = other disciplin-

ary pathways.
*p<0.05.
**p<0.01.
***p<0.001.

to respondents in the Other (¢,: Geocomp = -2.05,
Other =2.05) group. There were no other signifi-
cant differences observed. The FETSs supported
all significant results of the chi-square tests
(Table 4, Q11).

Level of Agreement or Disagreement with
Statements Related to Current or Most Recent
Employment  Situations. Table 2 (Q24-Q28)
shows that the different educational pathway groups
exhibit significant differences related to employment
situations, specifically in terms of career fit (Q24),
interest in learning new skills (Q25), access to pro-
fessional development opportunities (Q26), racial
and ethnic diversity (Q27), and gender diversity
(Q28). Geog respondents were more likely to agree
with the statements, “my current (or most recent)
career is a good fit with my academic background,”
and “I am/was interested in learning new skills,”
than those in the Other group (Table 2, Q24 and
Q25; Figure 3, first and second plots). The Comp
group was more likely to disagree with the state-
ment, “my coworkers reflect a healthy mix of racial
and ethnic diversity” than the Geog or Other groups
(Table 2, Q27; Figure 3, third plot).

Use of Tools and Essential Knowledge to Support
Geocomputational ~ Tasks and  Thinking in
Professional Work. Figure 4 illustrates the percent-
age of responses coded under each theme in our code
book by educational pathway group for the questions
that asked respondents to describe the geocomputa-
tional tools and knowledge they used in the last two
years for their work. Although the findings were lim-
ited by the number of responses, the results imply that
tools and knowledge used in practice generally match
the educational background of professionals. For
example, respondents in the Comp group used more
computational and programming tools and knowledge
compared to respondents in the other three groups
(Geog, Geocomp, Other), who used a range of tools
and knowledge related to geocomputation.

Findings for Groupings by Demographic
Characteristic

Term Familiarity and Use of Critical Thinking
Skills. Table 5 (Q1-Q6, Q12, Q18) presents
the p values of the pairwise Mann-Whitney U
test results and Figure 5 describes the data
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Figure 1 Box-Whisker plots showing the data distribution for Q1-Q5, indicating geocomputational term familiarity, by

educational pathway group.

distribution of responses in Box-Whisker plots to
examine significant differences between groups in
three demographic categories (gender, ethnicity,
and race) on geocomputational term familiarity
and use of critical thinking skill related to
geocomputation.

With respect to geocomputational term familiar-
ity, respondents in the NA.y, group were less famil-
iar with geocomputation than respondents in the
Hispanic and non-Hispanic groups (Table 5, Q4;
Figure 5, top). As for the use of critical thinking for
professional work, White respondents indicated
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QO6: In the past 2 years, how frequently did you need to use
geographic/spatial thinking for your professional work?

4 - ——
(N ©3.70 5 365 —— median
34 o

® mean
5 ° < outlier
1A <
0 T T T T

Q12: In the past 2 years, how frequently did you need to use
computational thinking for your professional work?

4 —|—
3] 3.10 3.00

0227
2 550
1A <
0 l 7
Q18: In the past 2 years, how frequently did you need to integrate
geographic/spatial thinking and computational thinking for your professional work?
4 <
st
31 < ®
®2.65 2.77
B L
14 <
O T T T
Geog Geocomp Comp Other

Figure 2 Use of three critical thinking skills, by educational pathway group.

Table 3 Results of pairwise chi-square tests (p values) on critical thinking training needs and opportunities, by edu-
cational pathway group

Questions

10. Do you need additional training in geographic/spatial thinking to fulfill your current professional responsibilities?
11. Do you have access to training or professional development opportunities related to geographic/spatial thinking?
16. Do you need additional training in computational thinking to fulfill your current professional responsibilities?

17. Do you have access to training or professional development opportunities related to computational thinking?
22. Do you need additional training in geocomputational thinking to fulfill your current professional responsibilities?
23. Do you have access to training or professional development opportunities related to geocomputational thinking?

Educational pathways

[Geog, [Geog, [Geog, [Geocomp, [Geocomp, [Comp,
Q No. Geocomp] Comp] Other] Comp] Other] Other]
10 0.399 0.120 0.086 0.466 0.283 0.451
11 0.028* 0.537 0.384 0.133 0.011* 0.966
16 0.804 0.642 0.299 0.513 0.451 0.712
17 0.360 0.404 1.000 0.240 0.571 0.432
22 0.606 0.604 0.470 1.000 1.000 0.872
23 0.690 0.341 0.603 0.513 0.454 0.372

Note: Geog = geography; Geocomp =combined geography and computer science; Comp =computer science; Other = other disciplin-
ary pathways.

*p<0.05.

#p <001,

% 0,001,

needing to use geographic or spatial thinking more more frequently, compared to female respondents
frequently than non-White respondents. (Table 5, (Table 5, Q12 and Q18; Figure 5, bottom).

Q6; Figure 5, second from the top). Male respond- Training Needs and Opportunities Related to
ents indicated needing to use computational think- Critical Thinking. Tables 6 and 7 show the results

ing and geocomputational thinking for their work  of the pairwise chi-square tests and pairwise FET's
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Table 4 Results of pairwise Fisher’s exact test (p values) on critical thinking training needs

and opportunities, by educational pathway group

Educational pathways

[Geog, [Geog, [Geog, [Geocomp, [Geocomp, [Comp,
Q No. Geocomp] Comp] Other] Compl] Other] Other]
10 0.533 0.218 0.074 1.000 0.358 0.294
1 0.040* 0.695 0.538 0.256 0.012* 1.000
16 0.556 1.000 0.378 1.000 0.605 0.529
17 0.293 0.637 1.000 0.332 0.716 0.607
22 1.000 1.000 0.535 1.000 1.000 1.000
23 0.686 0.231 0.725 0.755 0.573 0.411

Note: Questions are listed in Table 3. Geog = geography; Geocomp =combined geography and computer
science; Comp =computer science; Other = other disciplinary pathways.

*p<0.05.
**p<0.01.
%D < 0.001.

on critical thinking training needs and opportunities
by different demographic groups, respectively.
Respondents in the NA.y, group were more likely to
say they had “no access to training or professional
development opportunities related to geographic/
spatial thinking,” as compared to non-Hispanic
respondents (¢, NH = —2.192, NA = 2.192; Table
6, QI11). Similarly, non-White respondents were
more likely to say they had “no access to training or
professional development opportunities” related to
geographic and spatial thinking and computational
thinking than their White counterparts (¢, gepy: W =
—3.144, NW = 3.144; €, ;pp: W = =2.639, NW =
2.639; Table 6, Q11 & Q17). The FET's supported
all significant results of the chi-square tests (Table
7, Q11 & Q17).

Level of Agreement or Disagreement with
Statements Related to the Current or Most Recent
Employment  Situations. Table 5 (Q24-Q28)
depicts significant differences in the levels of agree-
ment with statements related to employment situa-
tions reported by demographic groups. Female
respondents were more likely to agree with the
statement, “I am/was interested in learning new
skills” than male respondents (Table 5, Q25; Figure
6, top). Hispanic respondents were more likely to
agree with the statement, “my coworkers reflect a
healthy mix of racial and ethnic diversity” than
respondents in the non-Hispanic group (Table 5,
Q27; Figure 6, bottom).

Use of Tools and Essential Knowledge to Support
Geocomputational Tasks and Thinking in
Professional Work. Figure 7 presents the percent-
age of coded responses by demographic group for
the questions about the usage of geocomputational
tools and knowledge for respondents’ professional
work. The different demographic groups had similar
compositions of coded categories, with two notable
differences. First, male respondents reported using
more computational and programming tools, geo-
computational tools, and geocomputational knowl-
edge, compared to female respondents. Second,
respondents in the Hispanic group mentioned more

subject matter and other themes (not directly related
to geocomputational tools and knowledge) than
those in the non-Hispanic group.

Discussion

We surveyed professionals who consider themselves
to be in positions that are at the intersection of
geography and computing (i.e., geocomputation).
Based on the educational background each respon-
dent shared, the most common pathway these pro-
fessionals took to a geocomputational career was a
geography degree. The second most common path
was a degree in a discipline unrelated to either geog-
raphy or computing. The third most common path-
way was a combination of geography and computing
degrees. Finally, the smallest group of respondents,
indicating the least frequently used pathway, were
professionals with a computing degree. We were
surprised that the second most common pathway to
a geocomputation career was a degree in higher
education unrelated to either geography or comput-
ing. Looking in more detail at this group, we found
that they had educational backgrounds in engineer-
ing and earth sciences rather than in geography or
computer science specifically. These fields are still
closely related to what is required for a geocomputa-
tional career, however. Additionally, for 47 percent
of this group, their higher education degree predates
2010, a time when GIScience and geocomputation
were not as available as they are today.

When we presented the geocomputational pro-
fessionals with five geocomputation-related terms,
they were least familiar with the terms
“computational thinking” and “geocomputation.”
Unsurprisingly, respondents having the least famil-
iarity with those two terms were those with a degree
in another discipline, unrelated to either geography
or computing, and those with a geography degree
but no computing education. On the other hand,
respondents were most familiar with the term
“GIS.” In fact, all respondents rated their familiarity
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Figure 3 Box-Whisker plots showing the data distribution of Q24-Q28, indicating the level of agreement with state-
ments related to different employment situations, by educational pathway group.

with “GIS” very highly, which confirms the preva-
lence of “GIS.”

Respondents were also very familiar with the terms
“geographic/spatial thinking” and “spatial data scien-
ce,” although White respondents indicated a higher
familiarity with “geographic/spatial thinking” than
their non-White counterparts. Terms containing

“spatial” seemed to be more familiar across educational
pathways than terms that contained variants of
“computing.” In spite of this finding, our survey indi-
cates a lack of access to training or professional devel-
opment opportunities related to geographic and spatial
thinking. This result aligns with a reported decline in
geography requirements for high school graduation
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Q20: What tools would say were essential to support
your geo-computational thinking for the task or
project answered in Q19 (up to 3 keywords)?
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Figure 4 The percentage of coded responses related to the geocomputational tools (left) and knowledge (right) used

during everyday work, by educational pathway group.

Table 5 Results of pairwise Mann-Whitney U tests (p values) indicating differences in geocomputational term famil-

iarity between demographic groups

Questions

. How familiar are you with the term “computational thinking"”?
. How familiar are you with the term
. How familiar are you with the term
. How familiar are you with the term
. How familiar are you with the term

"“geocomputation”?
“spatial data science”?

DO~ WN —

“geographic or spatial thinking”?
“geographic information systems or GIS"?

. In the past 2years, how frequently did you need to use geographic/spatial thinking for your professional work?

12. In the past 2 years, how frequently did you need to use computational thinking for your professional work?
18. In the past 2years, how frequently did you need to integrate geographic/spatial thinking and computational thinking for your

professional work?

24. [My current employment] is a good fit with my academic background.

25. | am/was interested in learning new skills.

26. This employer supports professional development and continuing education.
27. My coworkers reflect a healthy mix of racial and ethnic diversity.
28. My coworkers reflect a healthy mix of gender identities (male, female, nonbinary, other).

Gender Ethnicity

Race
Q No. [M, F] [M, NAg,] [F, NAgen] [H, NH] [H, NA.4.] [NH, NA.,] [W, Nw]
1 0.784 0.100 0.130 0.160 0.408 0.192 0.403
2 0.686 0.193 0.315 0.389 0.132 0.261 0.395
3 0.883 0.767 0.819 0.473 1.000 0.745 0.359
4 0.197 0.100 0.259 0.337 0.027 0.040* 0.363
5 0.633 0.229 0.327 0.848 0.284* 0.260 0.352
6 0.243 0.312 0.214 0.094 0.143 0.302 0.011%*
12 0.027* 0.387 0.096 0.696 0.491 0.518 0.368
18 0.026* 0.742 0.176 0.795 1.000 0.847 0.638
24 0.791 0.5617 0.577 0.083 0.681 0.687 0.778
25 0.011* 0.347 0.950 0.986 0.223 0.197 0.346
26 0.561 0.737 0.561 0.121 0.584 0.819 0.890
27 0.691 0.807 0.901 0.021* 0.707 0.518 0.122
28 0.717 0.230 0.321 0.431 0.749 0.443 0.252

Note: M=male; F=female; NAs., = prefer not to answer gender identity; H=Hispanic; NH =non-Hispanic; NAe = prefer not to

answer ethnicity identity; W =White; NW = non-White.
*p < 0.05.

**p<0.01.

***p<0.001.

(Zadrozny 2021) and declines in geography degree
enrollments, whereas there is an increase in computing
pathways, both in K-12 and college. Respondents with
an educational pathway that included geography and

computing (Geocomp) were more likely to indicate
having no access to this kind of training, although they
used tools and knowledge related to geospatal topics
in their professional work. This showcases that
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Figure 5 Box-Whisker plots showing the data distribution for questions with significant Mann-\Whitney U test results,
indicating geocomputational term familiarity and use of critical thinking skills, by demographic group.

professionals see the benefits of using geospatial tools
and are willing to learn to use them, despite a lack of
formal training. Yet, the use of geospatial data and
tools without knowledge and training in spatial tools
and thinking is a concern that should be addressed
through the wider availability of geography training
and educational pathways. Further, we find a racial
bias in terms of access to training and professional
development, where non-White respondents were
more likely to report a lack of access to training for
either geographic and spatial thinking or computa-
tional thinking.

Some findings align with the reported gender
and racial bias in the technology industry. For exam-
ple, respondents with an educational pathway that
only included computing (Comp) were more likely
to indicate that their coworkers do not reflect a

healthy mix of racial and ethnic diversity. Further,
male respondents indicated using computational and
geocomputational thinking more frequently at work
than female respondents. That gender gap, however,
is smaller if we look at the use of geocomputational
thinking, rather than the use of computational
thinking, at work.

Although it would be a stretch to infer this
directly, could it be that job positions requiring the
combination of geography and computing create
better opportunities for women than positions that
only require computing? To support further explo-
ration of this idea, female respondents were more
likely to indicate interest in learning new skills than
male respondents. Considering the reported lack of
training and professional development for geocom-
putation, these positions might require people who
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Table 6 Results of pairwise chi-square tests (p values) on critical thinking training needs and opportunities by demo-
graphic groups
Questions

10. Do you need additional training in geographic/spatial thinking to fulfill your current professional responsibilities?
11. Do you have access to training or professional development opportunities related to geographic/spatial thinking?
16. Do you need additional training in computational thinking to fulfill your current professional responsibilities?

17. Do you have access to training or professional development opportunities related to computational thinking?

22. Do you need additional training in geocomputational thinking to fulfill your current professional responsibilities?
23. Do you have access to training or professional development opportunities related to geocomputational thinking?

Gender Ethnicity

Race
Q No. [M, Fl [M, NAge,] [F, NAge,] [H, NH] [H, NAg] [NH, NAgh] [W, NW]
10 0.455 0.692 0.581 0.231 0.479 0.781 0.075
1" 0.251 0.104 0.636 0.959 0.090 0.002** 0.007**
16 0.658 0.450 0.617 0.136 0.052 0.537 0.185
17 0.219 0.391 0.730 0.972 0.420 0.219 0.018*
22 0.298 0.542 1.000 0.633 1.000 0.590 0.062
23 0.241 0.383 0.320 0.293 0.106 0.420 0.688

Note: M=male; F=female; NAs., = prefer not to answer gender identity; H=Hispanic; NH =non-Hispanic; NAc = prefer not to
answer ethnicity identity; W =White; NW = non-White.

*p<0.05.

**p<0.01.

*#%p<0.001.

Table 7 Results of pairwise Fisher’s exact test (p values) on critical thinking training needs and opportunities by
demographic groups

Gender Ethnicity

Race
Q No. [M, F] [M, NAge,] [F, NAge,] [H, NH] [H, NAg] [NH, NAgh] [W, NW]
10 0.501 1.000 1.000 0.322 0.493 0.615 0.089
11 0.250 0.139 0.596 1.000 0.163 0.022* 0.016*
16 0.758 0.688 1.000 0.254 0.163 1.000 0.280
17 0.237 0.321 0.789 1.000 0.706 0.273 0.022*
22 0.450 1.000 1.000 1.000 1.000 1.000 0.068
23 0.214 0.463 0.365 0.409 0.299 0.271 0.696

Note: Questions are listed in Table 6. Note: M=male; F=female; NA,,, = prefer not to answer gender identity; H=Hispanic;
NH = non-Hispanic; NAey, = prefer not to answer ethnicity identity; W =White; NW = non-White.

*p<0.05.
**p<0.01.
***p<0.001.
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Figure 6 Box-Whisker plots for questions related to agreement with statements about employment situations with sig-
nificant Mann-Whitney U test results, by demographic group. Only significant results are shown (see Appendix C,
Figures C.7-C.9, for the full results).
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Figure 7 The percentage of coded responses related to the geocomputational tools (left) and knowledge (right) used

during everyday work, by demographic group.

are more willing to “learn on the fly,” something
that women are reportedly more willing to do.

Some of the survey findings align with criticisms
about the lack of diversity in the geography discipline.
For example, geographic and spatial thinking was
reported to be used more frequently by White
respondents, and White respondents also indicated
having a greater familiarity with the term “geographic/
spatial thinking.”

We also found expected results that can confirm
soundness in the survey instrument and analysis. For
example, we expected those with any computing
education (Comp and Geocomp) to be more familiar
with the term “computational thinking” than those
without any computing education (Geog, Other).
Similarly, it makes sense for those who have a geog-
raphy education (Geog) to be more familiar with
geographic thinking than those who do not (Other).
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Also, respondents with a pathway that included both
geography and computing (Geocomp) were more
likely to say they use geocomputational thinking for
their work, as compared to those with a pathway
that only included geography (Geog).

Although this study has provided valuable
insights articulating the current standing of geocom-
putational career pathways, we acknowledge several
limitations that affect the interpretation and general-
ization of our findings. First, our results were based
on small sample sizes, especially for respondents in
the Comp, NA,.,, Hispanic, and NA.y, groups
(n<10). Therefore, our statistical analysis might
have lower statistical power. To address the small
sample sizes, we used nonparametric tests, the
Mann-Whitney U test and the FET, which are con-
sidered more robust with small samples than para-
metric tests. Moreover, the chi-square test results
were all supported by the FET. Regardless, the anal-
ysis results might not be generalizable because our
small sample data might not be representative of the
larger population.

Second, as previously mentioned, our groupings
might not precisely align with industry underrepre-
sentation definitions or educational background def-
initions, and certain categories might include
underrepresented individuals or respondents with
inaccurate educational backgrounds. Finally, we lev-
eraged the RPP for participant recruitment.
Although both geography and computer science
researchers and practitioners are involved in the
RPP, we have stronger connections to the geogra-
phy discipline than computer science, which could
have resulted in the low number of participants with
a computer science educational background and
biases in the study results.

Conclusion

There is a growing demand for a workforce with
training at the intersection of geography and com-
puting, in terms of skills, knowledge, and disciplin-
ary background. In this article, we aimed to enhance
our understanding of the accessibility and effective-
ness of educational pathways at the intersection of
these fields in supporting the current geocomputa-
tional workforce. Our survey findings illuminated
professionals’ perspectives on geocomputational
knowledge and skills, employment situations, and
access to or need for additional training in geogra-
phy and computing, both separately and combined.
Moving forward, our results reinforce the call to
establish inclusive and diverse geocomputational
training and degree programs, to ensure that tomor-
row’s workforce receives the best that the geography
and computing disciplines have to offer. In higher
education, geography and computing departments
should strive to integrate their degree programs to

enable state-of-the-art and cutting-edge knowledge
and skills to be taught more effectively by faculty in
each respective discipline. It is essential for healthy
workforce development that these efforts be rooted
in a commitment to enable students from diverse
identities and backgrounds to participate in these
opportunities. This level of integration and commit-
ment to engaging diverse perspectives pushes faculty
to model interdisciplinary collaboration for their
students, while making it more explicit and transpar-
ent to students that fully integrated and inclusive
training in both disciplines is essential to avoid
unethical or misinformed use of data, methods, soft-
ware, infrastructure, and human resources. To
enable that level of integration, however, there is a
level of collaboration that needs to happen between
colleges on U.S. campuses to enable students to
access courses or degree programs that combine dis-
ciplines (e.g., taking a degree concentration from a
different college, enrolling in a course cotaught by
faculty from different colleges that counts toward
their degree, etc.). Such exposure to different col-
leges is beneficial for students as it prepares them
for interdisciplinary professions or convergence
science.

Additionally, after graduation, there is a need for
continuous professional development opportunities.
This study identified a gap in postdegree opportuni-
ties to learn spatial thinking that are inclusive and
engage participants across diverse demographic
identities. To address this gap, higher education
institutions could play a crucial role by staying con-
nected to their alumni through inclusive continuing
education programs and providing professional
development for geocomputational professionals. H
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Appendix A. Survey Questionnaires

Q# Measure Response options Question wording

1 Term familiarity [0-5] (0 = | have never heard How familiar are you with the term “computational

this term, 5 = | am very thinking”?

2 familiar with this term) How familiar are you with the term “geographic or
spatial thinking”?

3 How familiar are you with the term “geographic
information systems or GIS"?

4 How familiar are you with the term “geocomputation”?

5 How familiar are you with the term “spatial data
science”?

6 Usage, task description, tools, [Never; < 5 times a year; 5-10 In the past 2 years, how frequently did you need to use
knowledge, need for times a year; almost every geographic/spatial thinking for your professional
training, and access to month; almost every week] work?

7 training related to Open-ended text In one sentence, describe a task or project you were
geographic and spatial involved with in the past 2 years that required you to
thinking use geographic/spatial thinking.

8 What tools would say were essential to support your
geographic/spatial thinking for that task or project (up
to 3 keywords)?

9 What factual or conceptual knowledge would you say
was essential to support your geographic/spatial
thinking for that task or project?

10 [I don't need; Yes, | need; | Do you need additional training in geographic/spatial

have sufficient training] thinking to fulfill your current professional
responsibilities?

11 [I do not have access; | have Do you have access to training or professional

some access; | have great development opportunities related to geographic/
access] spatial thinking?

12 Usage, task description, tools, [Never; < 5 times a year; 5-10 In the past 2 years, how frequently did you need to use
knowledge, need for times a year; almost every computational thinking for your professional work?
training, and access to month; almost every week]

13 training related to Open-ended text In one sentence, describe a task or project you were
computational thinking involved with in the past 2 years that required you to

use computational thinking.

14 What tools would say were essential to support your
computational thinking for that task or project (up to
3 keywords)?

15 What factual or conceptual knowledge would you say
was essential to support your computational thinking
for that task or project?

16 [I don't need; Yes, | need; | Do you need additional training in computational thinking

have sufficient training] to fulfill your current professional responsibilities?

17 [I do not have access; | have Do you have access to training or professional

some access; | have great development opportunities related to computational
access] thinking?

18 Usage, task description, tools, [Never; < 5 times a year; 5-10 In the past 2 years, how frequently did you need to
knowledge, need for times a year; almost every integrate geographic/spatial thinking and
training, and access to month; almost every week] computational thinking for your professional work?

19 training related to Open-ended text In one sentence, describe a task or project you were
geocomputational thinking involved with in the past 2 years that required you to

use geocomputational thinking.

20 What tools would say were essential to support your
geocomputational thinking for that task or project (up
to 3 keywords)?

21 What factual or conceptual knowledge would you say
was essential to support your geocomputational
thinking for that task or project?

22 [ don't need; Yes, | need; | Do you need additional training in geocomputational

have sufficient training] thinking to fulfill your current professional
responsibilities?

23 [I do not have access; | have Do you have access to training or professional

some access; | have great development opportunities related to
access]| geocomputational thinking?

24 Level of agreement or [Disagree; Somewhat disagree; It is a good fit with my academic background.

25 disagreement related to No opinion/Don’t know; | am/was interested in learning new skills.

26 participant’s current (or Somewhat agree; Agree] This employer supports professional development and
most recent) employment continuing education.

27 My coworkers reflect a healthy mix of racial and ethnic

diversity.

28 My coworkers reflect a healthy mix of gender identities

(male, female, nonbinary, other).
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Appendix C: Box-Whisker Plots of Survey Questionnaires on Term Familiarity, Use of
Critical Thinking Skills, and Employment Situations by Three Demographic Groups (Full
Results)

Appendix C.1 Term familiarity by gender groups.

Q1: How familiar are you with the term, "Computational thinking"?
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Appendix C.2. Term familiarity by ethnicity groups.

Q1: How familiar are you with the term, "Computational thinking"?
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Appendix C.3. Term familiarity by racial groups.

Q1: How familiar are you with the term, "Computational thinking"?

1 1

@3.23

Q2: How familiar are you with the term, "Geographic or spatial thinking"?

i

<
v <
<o
v

N
T T

Q3: How familiar are you with the term, "Geographic information systems or GIS"?

Y497 7 5.00
23

Q4: How familiar are you with the term, "Geocomputation"?

—
@3.42
.3.04

Q5: How familiar are you with the term, "Spatial data science"?

0451 0438

White Non-White

= median
® mean
< outlier
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Appendix C.4. Use of critical thinking skills by gender

groups.
Q6: In the past 2 years, how frequently did you need to use
geographic/spatial thinking for your professional work?

44 —_— ——

®3.77 4.00 —— median
3 < @® mean
2 o < outlier
14 <&
0 T T T

Q12: In the past 2 years, how frequently did you need to use
computational thinking for your professional work?

4 -

34 ®325
@®2.55

A L

134

0 T T

Q18: In the past 2 years, how frequently did you need to integrate
geographic/spatial thinking and computational thinking for your professional work?

4 A —|—
3 4 _.m @325
] 9533

o T

Male Female NAgen
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Appendix C.5. Use of critical thinking skills by ethnicity

groups.
Q6: In the past 2 years, how frequently did you need to use
geographic/spatial thinking for your professional work?
4 —_— ——
@3.74 4.00
®3.53
ol s | s
2 <
1 <
0 T T T
Q12: In the past 2 years, how frequently did you need to use
computational thinking for your professional work?
4 .
_|_
3 -
24 8232 ®2.19
1 -
0 1 T
Q18: In the past 2 years, how frequently did you need to integrate
geographic/spatial thinking and computational thinking for your professional work?
4 .
i I o
3 [ JRE %750
2 -
1 = —_—
0
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Appendix C.6. Use of critical thinking skills by racial

groups.
Q6: In the past 2 years, how frequently did you need to use
geographic/spatial thinking for your professional work?
4 —————
®3.77 — :
@®3.52 median

3 < - ® mean
24 ° ¢ outlier
1A <
0 T T

Q12: In the past 2 years, how frequently did you need to use

computational thinking for your professional work?
4 -
3 .
| ©2.5 @2.57
1 =
0
Q18: In the past 2 years, how frequently did you need to integrate
geographic/spatial thinking and computational thinking for your professional work?

4 .
3 €275 %
2 .
1 = p——
0

White Non-White
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Appendix C.7. Level of agreement related to employ-
ment situations by gender groups.

What is your level of agreement or disagreement with each of the following statements?

Q24: It is a good fit with my academic background

4 o $
©3.40 @®3.53 3.75
3 <
2 4 —_—
1 < <
0 T T T
Q25: I am/was interested in learning new skills
41 375 —e =
@333 ’
3 < <
24 —| °
11 <&
0 T T T
Q26: This employer supports professional development and continuing education
4 - $
@348 @®3.50 3.75
3 <
2 = R R —
1A < <
0 II\ T T
Q27: My co-workers reflect a healthy mix of racial and ethnic diversity
4 -
®3.25
31 507 0294
N 1
14 <&
0 T T
Q28: My co-workers reflect a healthy mix of gender identities
] -
5 3.50
@278 s248 1
2 A <
1 .
0 T
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Appendix C.8. Level of agreement related to employ-
ment situations by ethnicity groups.

What is your level of agreement or disagreement with each of the following statements?

Q24: Tt is a good fit with my academic background

4 - —
9350 | @3.67
®3.39
3+ <
2 - —_—
1 <
0 T T T
Q25: I am/was interested in learning new skills
4 —
0348 0353 400
3 -
2 - —— —_l
14 <
0 T T T
Q26: This employer supports professional development and continuing education
4 - —
@3, S
—_ 313
3 .
24 —4 o
11 <
0 II\ T T
Q27: My co-workers reflect a healthy mix of racial and ethnic diversity
4 -
3 @333
2.83
2 1 o —1
1 .
0 T T
Q28: My co-workers reflect a healthy mix of gender identities
4 -
- 3.07 @333
®2.75
] T L
l -
0 7 T
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Appendix C.9. Level olf agreement related to employ-
ment situations by racial groups.

What is your level of agreement or disagreement with each of the following statements?

Q24: Tt is a good fit with my academic background

@ 3.49) ®3.36

Q25: I am/was interested in learning new skills

— o

<

Q26: This employer supports professional development and continuing education

©®3.54 ®3.36

< <

Q27: My co-workers reflect a healthy mix of racial and ethnic diversity

@332

<

Q28: My co-workers reflect a healthy mix of gender identities

@®3.05

9,75

White Non-White

=— median
@® mean
< outlier
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