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Abstract—Releasing differentially private statistics about

social network data is challenging: one individual’s data

consists of a node and all of its connections, and typical

analyses are sensitive to the insertion of a single unusual

node in the network. This challenge is further complicated

in the continual release setting, where the network varies

over time and one wants to release information at many

time points as the network grows. Previous work addresses

node-private continual release by assuming an unenforced

promise on the maximum degree in a graph; indeed,

the algorithms from these works exhibit blatant privacy

violations when the degree bound is not met.

In this work, we describe the first algorithms that

satisfy the standard notion of node-differential privacy

in the continual release setting (i.e., without an assumed

promise on the input streams). These algorithms are

accurate on sparse graphs, for several fundamental graph

problems: counting edges, triangles, other subgraphs, and

connected components; and releasing degree histograms.

Our unconditionally private algorithms generally have

optimal error, up to polylogarithmic factors and lower-

order terms.

We provide general transformations that take a base

algorithm for the continual release setting, which need

only be private for streams satisfying a promised degree

bound, and produce an algorithm that is unconditionally

private yet mimics the base algorithm when the stream

meets the degree bound (and adds only linear overhead

to the time and space complexity of the base algorithm).

To do so, we design new projection algorithms for graph

streams, based on the batch-model techniques of [BBDS13;

DLL16], which modify the stream to limit its degree. Our

main technical innovation is to show that the projections

are stable—meaning that similar input graphs have similar

projections—when the input stream satisfies a privately

testable safety condition. Our transformation then follows

a novel online variant of the Propose-Test-Release frame-

work [DL09], privately testing the safety condition before

releasing output at each step.

1. Introduction

Graphs provide a flexible and powerful way to model
and represent relational data, such as social networks,
epidemiological contact-tracing data, and employer-
employee relationships. Counts of substructures—
edges, nodes of a given degree, triangles, connected
components—are fundamental statistics that shed light
on a network’s structure and are the focus of extensive
algorithmic study. For example, edge counts can quantify
relationships in a social network; a function of triangle
and 2-star counts called the “correlation coefficient” or
“transitivity” of a network is of interest to epidemiologists
for understanding disease spread [BS10; YJM+13];
and connected component counts have been used for
determining the number of classes in a population
[Goo49] and estimating fatalities in the Syrian civil
war [CSS18].

When the graph contains sensitive information about
individuals, one must balance the accuracy of released
statistics with those individuals’ privacy. Differential
privacy [DMNS16] is a widely studied and deployed
framework for quantifying such a trade-off. It requires
that the output of an algorithm reveal little about any
single individual’s record (even hiding its presence or
absence in the data set).

In this work, we study differentially private algo-
rithms that continually monitor several fundamental
statistics about a graph that evolves over time. We
consider the continual release (or continual observation)
model of differential privacy [DNPR10; CSS11] in which
the input data is updated over time and statistics about it
must be released continuously. (In contrast, in the batch

model, input arrives in one shot and output is produced
only once.)

There are two standard notions of differential privacy
(DP) for algorithms that operate on graph data: (1) edge

DP [NRS07], for which the algorithm must effectively
obscure the information revealed by any individual edge
(including its mere presence or absence), and (2) node

* A full version of this paper is available on arXiv [JSW24].
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DP [HLMJ09; BBDS13; KNRS13; CZ13], for which
the algorithm must obscure the information revealed by
a node’s entire set of connections (including even the
node’s presence or absence).

Edge privacy is typically easier to achieve and
more widely studied. However, in social networks and
similar settings, nodes—rather than edges—correspond
to individuals and so node privacy is more directly rele-
vant. Indeed, existing attacks infer sensitive information
about a person from aggregate information about their
neighborhood in the network (e.g., sexuality can be
inferred from an individual’s Facebook friends [JM09]),
showing that privacy at the node level rather than only
the edge level is important.
Background: Node-differential Privacy. To under-
stand the challenges of designing node-private algo-
rithms, consider the task of estimating the number of
edges in a graph. For every graph G with n vertices,
there is a node-neighboring graph G

0 with n more edges
(obtained by adding a new, high-degree node connected
to all existing nodes). A node private algorithm, however,
must hide the difference between G and G

0. Therefore,
every node-private algorithm must have additive error
⌦(n) on either G or G

0, which means large relative
error when G and G

0 are sparse. It is thus impossible to
get a useful worst-case accuracy guarantee for counting
the edges in a graph or, for similar reasons, many other
basic statistics.

As a result, node private algorithms are often tailored
to specific families of inputs. In the batch model,
instead of aiming for universal accuracy across all graph
types, algorithms are designed to provide privacy for all
possible graphs while providing accurate estimates for a
select subset of “nice” graphs—for example, graphs that
satisfy a degree bound—on which the statistic of interest
is well behaved. There are now several techniques for
achieving this type of guarantee in the batch model,
notably projections [BBDS13; KNRS13; DLL16] and
Lipschitz extensions [BBDS13; KNRS13; CZ13; RS16b;
RS16a; DLL16; BCSZ18b; CD20; KRST23]. Broadly,
these techniques start from an algorithm which is both
private and accurate when restricted to a set of “nice”
graphs, and find a new algorithm that mimics the base
algorithm on the set of “nice” graphs while providing
privacy for all possible graphs; such extensions exist
under very general conditions [BCSZ18a; BCSZ18b].

The continual release setting complicates these ap-
proaches, causing tools for the batch setting to break
down. Projections and Lipschitz extensions are harder to
design: in the batch setting, the decision to remove an
edge may propagate only across nodes; in the continual
release setting, the change can also propagate through
time, rendering existing batch-model solutions ineffec-
tive. Even the general existential result of [BCSZ18a]

applies, at best, only to the offline version of continual
release (in which the algorithm can inspect the entire
input stream before starting to produce output). In a
nutshell, ensuring low sensitivity separately at each point
in time does not guarantee the type of stability that is
needed to get low error with continual release (e.g.,
`1 stability of difference vectors [SLM+18]). For this
reason, the only straightforward way to get node-private
algorithms from existing batch model work is to use
advanced composition [DRV10] and compose over T

time steps. This potentially explains why prior works
on node-private continual release of graph statistics
assume restrictions on the input graphs to their private
algorithms, providing privacy only in the case where
the restriction is satisfied.

1.1. Our Results

Truly Node-private Algorithms. For several fundamen-
tal graph statistics, we obtain (the first) algorithms that
satisfy the usual notion of node-differential privacy in
the continual release setting—that is, they require no
assumption on the input streams.

In contrast, previous work on node-private continual
release of graph statistics [SLM+18; FHO21] develops
algorithms for basic graph statistics that are accurate
and private when the input graph stream has maximum
degree at most a user-specified bound D but exhibit
blatant privacy violations if the input graph stream
violates the bound.1 This conditional node-privacy is not
standard in the literature: prior work on node-privacy
in the batch model gives unconditional privacy guaran-
tees (e.g., [BBDS13; KNRS13; CZ13; RS16b; RS16a;
DLL16; BCSZ18b; CD20; KRST23]). To emphasize
the conditional nature of the privacy guarantees for
[SLM+18; FHO21], we say they satisfy D-restricted

node-DP. (Similarly, algorithms whose edge-privacy
depends on such an assumption satisfy D-restricted

edge-DP.)
We consider an insertion-only model of graph

streams, where an arbitrary subset of new nodes and
edges arrives at each of T time steps (Definition 2.2).
We do not assume any relationship between the size
of the graph and T . The degree of a node u in the

1. For example, suppose edges in the graph denote transmissions
of a stigmatized disease like HIV and suppose the analyst knows
that all the edges associated with one individual, Bob, arrive at a
given time step t (and only those edges arrive). The outputs of the
[FHO21] edge-counting algorithm at times t� 1 and t would together
reveal how many disease transmissions Bob is involved in, up to error
D/", for privacy parameter ". When Bob’s degree is much larger
than D, this is a clear violation of node privacy. One can argue using
this example that the algorithms of [SLM+18; FHO21] do not satisfy
(", �)-node differential privacy (Definition 2.8) for any finite " with
� < 1.
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stream is the total number of edges adjacent to u in the
stream (equivalently, in the final graph). The stream’s
maximum degree is the largest of its nodes’ degrees;
if this maximum is at most D, we say the stream is
D-bounded.

Our main contribution is a black-box transformation
that can take any D-restricted-DP “base” algorithm and
transform it into an algorithm that is private on all graphs
while maintaining the original algorithm’s accuracy on
D-bounded graphs.

We then use this transformation to produce specific
node-private algorithms for estimating several funda-
mental graph statistics and (in all but one case) show
that the error incurred by these private algorithms is
near optimal. Prior work either has accuracy that is
exponentially worse in T for the same privacy guarantees
(e.g., [BBDS13; CZ13; KNRS13; DLL16; KRST23]), or
exhibits blatant privacy violations ([SLM+18; FHO21])
and is not actually node-DP. We generally use algorithms
from previous work as our base, though for connected
components the restricted-DP algorithm is new. Impor-
tantly for real-world applications, our algorithms are
efficient: they add only linear overhead to the time and
space complexity of the base algorithm.

Table 1 summarizes the bounds we obtain on additive
error—worst-case over D-bounded graph streams of
length T—for releasing the counts of edges (fedges), tri-
angles (ftriangles), k-stars2 (fk-stars), and connected com-
ponents (fCC), as well as degree histograms (fdegree-hist);
it also compares with previous results. The parameters
", � specify the privacy guarantee (Definition 2.8).
Stable, Time-aware Projections. Central to our ap-
proach is the design of time-aware projection algorithms
that take as input an arbitrary graph stream and produce
a new graph stream, in real time, that satisfies a user-
specified degree bound D. “Time-aware” here refers
to the fact that the projection acts on a stream, as
opposed to a single graph; we drop this term when the
context is clear. “Projection” comes from the additional
requirement that the output stream be identical to the
input on every prefix of the input that is D-bounded.
Ideally, we would simply run the restricted-DP algorithm
on the projected graph stream and thus preserve the
original algorithm’s accuracy on D-bounded streams.

The challenge is that the resulting process is only
private if the projection algorithm is stable, meaning
that neighboring input streams map to nearby projected
streams. Specifically, the node distance between two
streams S and S 0 is the minimum number of nodes that
must be added to and/or removed from S to obtain S 0.
Edge distance is defined similarly (Definition 2.5). Node-

2. A k-star is a set of k nodes, each with an edge to a single
common neighbor (which can be thought of as the k-star’s center).

neighboring streams are at node distance 1. The node-to-

node stability of a projection is the largest node distance
between the projections of any two node-neighboring
streams; the node-to-edge stability is the largest edge
distance among such pairs.

If we had a projection with good (that is, low)
node-to-node stability, then running the restricted-DP
algorithm on the projected graph stream would satisfy
node privacy, and we would be done. Alas, we do not
know if such a projection exists. (We show that such
a transformation does exist for edge-DP—see the end
of this section.) Instead, we give two simple, greedy
projection algorithms that have good node-to-node and
node-to-edge stability when the input graph stream
satisfies a privately testable “safety” condition. The
safety condition is that the stream has few large-degree
vertices (Definition 3.2). Specifically, a graph (or stream)
is (D, `)-bounded if it has at most ` nodes of degree
larger than D.3

We obtain a general transformations from D-
restricted-DP algorithms to truly private ones by testing
the safety condition using a novel online variant of the
Propose-Test-Release framework of [DL09].

We explore two natural methods for time-aware
projection, each based on a batch-model projection al-
gorithm from the literature. Both time-aware projections
greedily add edges while maintaining an upper bound
on each node’s degree. One of these methods bases
its greedy choices on the degree of the nodes in the
original graph stream (“BBDS”, [BBDS13]), while the
other bases its choices on the degree of the nodes in
the projection that it produces (“DLL”, [DLL16]). The
results in Table 1 are obtained using the BBDS-based
projection and our general transformation.

We give tight bounds on three measures of stability,
summarized in Table 2. The table lists upper bounds;
the lower bounds for the BBDS projection are identical
up to small additive constants (and the edge-to-edge
stability is identical), while the bounds for DLL are
tight up to a constant multiplicative factor. A graph in
the batch model can be represented as a length-1 graph
stream, so these projections’ stability properties also
hold for graphs in the batch model.

The DLL projection preserves more edges than the
BBDS projection when the input has some high-degree
vertices (the graph returned by BBDS is a subgraph
of that returned by DLL), which initially suggests that
the DLL projection could be more useful. Indeed, in
the batch setting, the authors of [DLL16] show that the

3. (D, `)-boundedness is a computationally efficient proxy for
requiring that the stream be close in node-distance to a D-bounded
stream. Testing the latter condition directly is NP-hard (by reduction
from vertex cover); we instead efficiently compute the distance to the
nearest not (D, `)-bounded stream—see Section 4.
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Lower bounds for
" � log T

T , � = O
�
1
T

� Reference
Additive `1 error for

"  1, � = ⌦
⇣

1
poly(T )

⌘ Node-DP
guarantee

BBDS/CZ/KNRS eO(D
p
T/")⇤ (", �)

[FHO21] O(D log5/2 T/") D-restricted (", 0)fedges ⌦(D log T/")

Our work O(D log5/2 T/" + log7/2 T/"2) (", �)

BBDS/CZ/KNRS eO(D2
p
T/")⇤ (", �)

[FHO21] O(D2 log5/2 T/") D-restricted (", 0)ftriangles ⌦(D2 log T/")

Our work O(D2 log5/2 T/" + log9/2 T/"3) (", �)

BBDS/CZ/KNRS eO(Dk
p
T/")⇤ (", �)

[FHO21] O(Dk log5/2 T/") D-restricted (", 0)fk-stars ⌦(Dk log T/")

Our work O(Dk log5/2 T/" + logk+5/2 T/"k+1) (", �)

[DLL16] eO(D2
p
T/")⇤ (", �)

[FHO21] eO(D2 log5/2 T/") D-restricted (", 0)fdegree-hist ⌦(D log T/")

Our work eO(D2 log5/2 T/" + log9/2 T/"3) (", �)

[KRST23] eO(D
p
T/")⇤ (", �)

fCC ⌦(D log T/")
Our work O(D log5/2 T/" + log7/2 T/"2) (", �)

TABLE 1. ACCURACY OF OUR NODE-PRIVATE ALGORITHMS, PREVIOUSLY KNOWN restricted NODE-PRIVATE ALGORITHMS, AND
NODE-PRIVATE BATCH MODEL ALGORITHMS ON INSERTION-ONLY, D-BOUNDED GRAPH STREAMS OF LENGTH T . “BBDS/CZ/KNRS” REFERS

TO [BBDS13; CZ13; KNRS13]; THE ERROR BOUNDS WITH ⇤ WERE COMPUTED BY APPLYING ADVANCED COMPOSITION [DRV10] TO
BATCH MODEL ALGORITHMS. ERROR LOWER BOUNDS FOR THESE PROBLEMS ARE FOR SUFFICIENTLY LARGE T .

⇧BBDS
D ⇧DLL

D

edge-to-edge 3 2`+ 1

node-to-edge D + ` D + 2`
p

min{D, `}
node-to-node 2`+ 1 2`+ 1

TABLE 2. STABILITY OF ⇧BBDS
D AND ⇧DLL

D ON (D, `)-BOUNDED
INPUT GRAPH STREAMS, FROM THEOREM 3.3.

projected degree distribution (and number of edges) has
low sensitivity. This allows for the DLL projection to
provide a better privacy-utility trade-off for these tasks
in the batch model. However, this projection actually has
worse stability when we measure node- or edge-distance
between output graphs.4 Therefore, more noise must
be added when using the DLL projection for generic
applications, as compared to the BBDS projection. In
our uses, this ultimately means that the projection
of [BBDS13] provides the better privacy-utility trade-off.
Truly Edge-private Algorithms. Although our focus
is on node-privacy, we show along the way that the

4. This distinction is crucial in the continual-release setting. For
example, even though the degree distribution of the DLL projection
has node sensitivity O(D) in the batch setting, the sequence of
degree distributions one gets when projecting a stream has unbounded
sensitivity.

BBDS-based time-aware projection has edge-sensitivity
3, uniformly over all graphs. (This follows from a batch-
model argument of [BBDS13] and a general “Flattening
Lemma” (Lemma 3.6) that we establish for greedy,
time-aware projections.) As a result, one can make D-
restricted edge-private algorithms into truly private ones
at almost no cost in accuracy. Some consequences are
summarized in Theorem A.4.
Experiments. We provide experiments on synthetic
graphs, which show that our transformation adds little
run time overhead and results in truly node-private
algorithms that improve considerably over the batch-
model baseline.

1.2. Techniques

Stability Analyses. The main technical contribution
lies in defining time-aware versions of the two greedy
projection algorithms (Algorithm 1), and leveraging
that structure to analyze the sensitivity of the entire
projected graph sequence (Theorem 3.3). Our analyses
differ substantially from existing batch-model analyses,
both because of the sequential nature of our problem
and the stronger notions of stability we consider.

Section 3.1 contains a detailed overview of the
arguments; we highlight here a few simple but useful
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ideas. The time-aware projections share two key features:
• Shortsightedness: the algorithm includes all nodes

and makes a final decision about each edge at the
time it arrives;

• Opportunism: if an edge connects vertices with
degree at most D in the original graph stream, it
will necessarily be included in the projection.

Such greedy structure is computationally convenient
but also helps us analyze stability. To see why, consider
two graph streams S ,S 0 that differ in the presence of
a node v

+ and its edges, and let ⇧D(S ) and ⇧D(S 0)
denote the projected streams (where ⇧D could be either
of our two projections). We consider for each time step
t the difference graph �t consisting of edges that have
been added (at or before time t) to one projected stream
but not the other.

The first feature, shortsightedness, implies that this
difference graph grows monotonically. (Such a statement
need not hold for arbitrary projections.) This allows us
to show a “Flattening Lemma” (Lemma 3.6), which
states that the edge- and node-distance between ⇧D(S )
and ⇧D(S 0) depend only on the final difference graph
�T (or an intermediate graph �t in the case that we
are considering only a prefix of the streams). Thus,
shortsightedness allows us to ignore the sequential
structure and reduce to a batch-model version of ⇧D in
which arrival times affect only the order in which edges
are greedily considered.

The second feature, opportunism, allows us to take
advantage of (D, `)-boundedness. If the larger stream
has at most ` vertices of degree more than D, we can
show that �t will have a vertex cover of size at most
`+ 1 (Lemma 3.7).

These structural results suffice to bound the node-
to-node stability of both projections by 2`+ 1.

From this point, the analyses of the two projections
diverge. Each inclusion rule leads to different structure
in the difference graph �T . The most involved of these
analyses proves a (tight) bound of D+2`

p
min {D, `}

on the node-to-edge stability of the DLL-based projec-
tion. At a high level, that analysis proceeds by orienting
the edges of �T to show that it is close in edge distance
to a large DAG which is covered by at most ` edge-
disjoint paths and then bounding the possible size of
such a DAG.

The node-to-edge analysis of the BBDS-based algo-
rithm is also subtle, but different. The key point there
is that all of the edges connected to v

+ can potentially
cause changes in the projected graph, even the edges
which are not selected for inclusion in the projection
themselves. We refer to Section 3.2 for further detail.
Testing Distance to Unsafe Streams. A second, less
involved insight is that, although it is NP-hard to
compute the node distance to the nearest stream that is

not D-bounded, (D, `)-boundedness gives us a proxy
that is much easier to work with. Specifically, we
observe that D-bounded streams are always distance
at least `+ 1 from the nearest non-(D + `, `)-bounded
stream; furthermore, this distance can be computed in
linear time (Lemma 4.3). Since the distance to non-
(D + `, `)-boundedness at any given time step has low
node-sensitivity, we can use a novel (to our knowledge)
online variant of the PTR framework [DL09] based on
the sparse vector technique [RR10; HR10] to monitor
the distance and stop releasing outputs when the distance
becomes too small. The privacy analysis of this part
follows the argument of [DL09] but differs because,
rather than making a binary decision to either release or
not release an output, the testing process dynamically
chooses to release outputs at up to T time steps (see
Theorem 4.4). The resulting general transformations are
summarized in Theorem 4.1.

1.3. Related Work

Our contributions draw most heavily from the liter-
ature on batch-model node-differentially private algo-
rithms. Node privacy was first formulated by [HLMJ09].
The first nontrivial node-private algorithms emerged
in three concurrent works [BBDS13; KNRS13; CZ13]
that collectively identified two major families of (over-
lapping) approaches based on Lipschitz extensions
[BBDS13; KNRS13; CZ13; RS16a; RS16b; DLL16;
BCSZ18b; CD20; KRST23] on one hand, and projec-
tions [BBDS13; KNRS13; DLL16] on the other. These
works provide algorithms with (tight) accuracy guaran-
tees for D-bounded graphs for the statistics we consider
here as well as families that arise in the estimation of
stochastic block models and graph neural networks. They
also consider other families of graphs on which their
specific statistics are well behaved. Most relevant here
is the batch-model projection of BBDS [BBDS13] with
low edge-to-edge sensitivity, and the Lipschitz extension
for degree distributions of DLL [DLL16]. This latter
extension can be viewed algorithmically as a greedy
projection for which the degree histogram is stable. We
use their projection idea, analyzing the stability of the
graph as a whole.

There is also an extensive literature on batch-model
edge-private algorithms; we do not attempt to survey it
here.

A second major tool we draw on is the D-restricted
node- and edge-private algorithms of [SLM+18; FHO21]
for continual release of graph statistics. These in turn
use the widely-studied tree mechanism, whose use in
the continual-release setting (for numerical data) dates
back to the model’s introduction [DNPR10; CSS11].
Also relevant are the edge-private streaming algorithms
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of [Upa13; UUA21] for cuts and spectral clustering.
(To the best of our understanding, the application of
our transformations to their algorithms does not yield
non-trivial utility guarantees.)

Finally, our work draws on the Propose-Test-Release
framework of [DL09], combining it with the sparse
vector mechanism [RR10; HR10; LSL17] to monitor
the distance from the stream to the nearest non-(D, `)-
bounded stream.

1.4. Organization of This Manuscript

Section 2 lays out the model and basic definitions
used in the remainder of the paper. Section 3 presents the
time-aware projections and the results on their stability.
Section 4 explains the general black-box transformation
from D-restricted edge (or node) privacy to true node
privacy. Section 5 develops the applications to basic
graph statistics. Section 6 presents our experimental
results. Because of space constraints, many proofs are
deferred to the full version, which can be found at
[JSW24].

2. Preliminaries

Definition 2.1 (Graph). A graph G = (V,E) consists
of a set of vertices V (also known as nodes), and a set
of edges E, where edge {v1, v2} 2 E if and only if
there is an edge between nodes v1 2 V and v2 2 V .

Definition 2.2 (Graph stream). Given a time horizon T ,
a graph stream S 2 ST is a T -element vector, where
each element of the vector contains some set of nodes
and edges, or the symbol ? if no nodes or edges arrive
in that time step. At each time t 2 [T ], either ? arrives
or some set of nodes and edges arrives. By convention,
an edge’s endpoints arrive no later than the edge.

We denote by St the set of added nodes and edges
which arrive in time step t. We use S[t] to denote the
sequence S1, . . . ,St.

Definition 2.3 (Flattened graph). Let S 2 ST be a
graph stream of length T . The flattened graph of the
first t terms S[t] of a graph stream, denoted flatten(S[t]),
is the graph that can be formed by all of the nodes and
edges which arrive at or before time t.

When the meaning is clear, we may refer to the graph
stream through time t when stating a property of the
flattened graph of the graph stream through time t. For
example, when we say that S[t] has maximum degree
at most D, we mean that flatten(S[t]) has maximum
degree at most D.

We next define neighboring graphs and graph
streams. In privacy-preserving data analysis, the no-
tion of neighboring datasets is important since privacy

requires that evaluating a function on similar datasets
produces indistinguishable outputs. There are two natural
notions of neighboring graphs and graph streams: node
neighbors differ on a node (and its associated edges),
while edge neighbors differ on one edge. We denote
node and edge neighbors with the relations 'node and
'edge respectively.

Definition 2.4 (Neighboring graph streams). Two graphs
(respectively, graph streams) are node-neighbors if one
can be obtained from the other by removing a vertex
and all of its adjacent edges. (For graph streams, the
adjacent edges for the removed node may have been
spread over many time steps.)

Similarly, two graphs (respectively, graphs streams)
are edge neighbors if one can be obtained from the other
by either removing one edge, removing an isolated node,
or removing a node of degree 1 and its adjacent edge.5

A generalization of node- and edge-neighboring
graphs and graph streams is the notion of node and
edge distance between graphs and graph streams. We
note that node- and edge-neighboring datasets are at
node and edge distance 1, respectively.

Definition 2.5 (Node and edge distance). The node-

distance dnode(G,G
0) is defined as the length d of the

shortest chain of graphs (respectively, graph streams)
G0, G1, . . . , Gd where G0 = G, Gd = G

0, and every
adjacent pair in the sequence is node neighboring.

The edge-distance dedge(G,G
0) is defined as the

length d of the shortest chain of graphs (respectively,
graph streams) G0, G1, . . . , Gd where G0 = G, Gd =
G

0, and every adjacent pair in the sequence is edge
neighboring.

Given two graphs with no isolated vertices G =
(V,E) and G

0 = (V 0
, E

0) (where V and V
0 may

overlap), the edge distance between G and G
0 is exactly

the size of the set E4E
0. (Isolated vertices that are not

in both graphs add to the distance.)
Differential Privacy in the Batch Model. To define
differential privacy in the batch model, we introduce the
notion of (", �)-indistinguishability.

Definition 2.6 ((", �)-indistinguishability). We say that
two random variables R1, R2 over outcome space Y are
(", �)-indistinguishable (denoted R1 ⇡",� R2) if for all
Y ✓ Y , we have

Pr [R1 2 Y ]  e
" Pr [R2 2 Y ] + �;

Pr [R2 2 Y ]  e
" Pr [R1 2 Y ] + �.

5. Another way to define edge neighbors would be to take the set
of nodes as fixed and public, and only consider changes to one edge.
We adopt the more general definition since it simplifies our results on
node-to-edge stability.

132

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on April 11,2025 at 20:21:42 UTC from IEEE Xplore.  Restrictions apply. 



Informally, a function is differentially private if
applying the function to inputs which differ in the
data of one individual results in outputs from simi-
lar distributions—more specifically, from distributions
which are (", �)-indistinguishable. We use the definitions
of node and edge neighbors presented above to formalize
the notion of what it means for graphs or graph streams
to differ in the data of one individual.

Definition 2.7 (Differential privacy (DP) in the batch
model [DMNS16]). A randomized algorithm M :
ST ! Y is (", �)-node-DP (respectively, edge-DP),
if for all pairs of node-neighboring (respectively, edge-
neighboring) graph streams S and S 0, the distributions
M(S ) and M(S 0) are (", �)-indistinguishable:

M(S ) ⇡",� M(S 0).

The term pure DP refers to the case where � = 0,
and approximate DP refers to the case where � > 0.

Privacy under Continual Observation. We now define
privacy of graph statistics under continual observation;
the general definition is borrowed from [JRSS23]. In
the continual release setting, first explored by [CSS11;
DNPR10], an algorithm receives a stream of inputs
S = (S1, . . . , ST ) 2 ST . The definition of privacy
requires indistinguishability on the distribution of the
entire sequence, not just one output. For simplicity,
in this version, we consider only the simpler, non-
adaptive concept of differential privacy. We conjecture
that all our algorithms and results extend verbatim to the
adaptive version [JRSS23] (since the main components
of our algorithm, the tree mechanism and sparse vector
technique, are known to be adaptively private).

Definition 2.8 (Privacy of a mechanism under continual
observation). Define AM as the batch-model algorithm
that receives a dataset x as input, runs M on stream x,
and returns the output stream y of M. We say that M
is (", �)-DP in the non-adaptive setting under continual

observation if AM is (", �)-DP in the batch model.

We borrow the definition of accuracy from [JRSS23],
which bounds the error of a mechanism with respect to
a target function f . The definition takes the maximum
error over both time steps and the coordinates of the
output of f . (Although most of the functions we approx-
imate return a single real value, the degree histogram
fdegree-hist returns a vector at each step and requires the
extra generality.)

Definition 2.9 (Accuracy of a mechanism). Given a set
of allowable streams S ✓ X ⇤, a mechanism M is (↵, T )-
accurate with respect to S for a function f : X ⇤ ! Rk

if, for all fixed (i.e., non-adaptively chosen) input streams
S = (S1, . . . , ST ) 2 S , the maximum `1 error over the

outputs a1, . . . , aT of mechanism M is bounded by ↵

with probability at least 0.99; that is,

Pr
coins of M


max
t2[T ]

��f
�
S[t]
�
� at

��
1  ↵

�
� 0.99.

If the indistinguishability property of differential
privacy holds conditioned on the promise that both node-
neighbors (respectively, edge-neighbors) lie in the set
of graph streams with maximum degree at most D, we
say that the algorithm offers D-restricted (", �)-node-

DP (respectively, D-restricted (", �)-edge-DP). This is
the notion of privacy explored by all prior work on
node-private graph statistics under continual observation
[FHO21; SLM+18].

Definition 2.10 (D-restricted DP). A randomized al-
gorithm M : G ! Y is D-restricted (", �)-node-DP

(respectively, edge-DP) if Definition 2.7 holds when
restricted to the set of node-neighboring (respectively,
edge-neighboring) graph streams with maximum degree
at most D.

Likewise, M is D-restricted (", �)-node-DP un-

der continual observation (respectively, edge-DP) if
Definition 2.8 holds when restricted to the set of
node-neighboring (respectively, edge-neighboring) graph
streams with maximum degree at most D.

3. Stable and Time-Aware Projections

In this section we present two time-aware projection

algorithms ⇧BBDS
D and ⇧DLL

D , and prove Theorem 3.3
that presents their robust stability guarantees when run
on (D, `)-bounded graph streams. The two projection
algorithms follow very similar strategies at a high level
and are presented together in Algorithm 1. Both take
as input a graph stream S of length T 2 N and some
user-specified value D 2 N and return a projected graph
stream with maximum degree at most D. If the graph
stream S is already D-bounded, then both algorithms
output it unchanged. At each time step, both algorithms
greedily choose and output some subset of the arriving
edges to include in the projection.

Algorithm 1 takes parameter c, called the inclusion

criterion, that determines which of the two projections
it executes. Let ⇧BBDS

D denote Algorithm 1 with inclusion
criterion c = original and let ⇧DLL

D denote the version
with c = projected . (We use the author initials of
[BBDS13; DLL16] to denote the algorithms inspired by
their respective projections.)

The two algorithms differ from each other in terms
of how they decide whether an edge should be added to
the projection so far. The first algorithm ⇧BBDS

D adds edge
e = {u, v} if the degree of both end points u and v is
less than D in the original graph stream so far (i.e., S
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Algorithm 1 ⇧D for time-aware graph projection by
edge addition.

Input: Graph stream (S1, . . . ,ST ) = S 2 ST , time
horizon T 2 N, degree bound D 2 N, and inclusion
criterion c 2 {original , projected}.

. c = original yields BBDS-based projection ⇧BBDS
D

. c = projected yields DLL-based projection ⇧DLL
D

Output: Graph stream (S⇤
1 , . . . ,S

⇤
T ) = S⇤ 2 ST

1: for t = 1 to T do

2: Parse St as (@Vt, @Et)
3: for v in @Vt do d(v) = 0

4: @E
proj
t = ;

5: for e = {u, v} in @Et, in consistent order, do

6: add edge (d(u) < D) ^ (d(v) < D)
7: if add edge then

8: set @Eproj
t = @E

proj
t [ {e}

9: . add edge e = {u, v} to the projection
10: else ignore e = {u, v}
11: if c = original or add edge then

12: d(u) += 1, d(v) += 1
13: . increment degree counters for u, v

14: Output S⇤
t = (@Vt, @E

proj
t )

restricted to all edges considered before e). The second
algorithm ⇧DLL

D adds edge e = {u, v} if nodes u and v

both have degree less than D in the projection so far
(i.e. ⇧D(S ) restricted to all edges considered before e).
Consistent Ordering. When multiple edges arrive in a
time step, the projections must decide on the order in
which to consider these edges. While the exact ordering
does not matter, we assume a consistent ordering of the
edges in the input graph stream. Consistency means that
any pair of edges in neighboring graph streams should
be considered for addition to the projection in the same
relative order. A similar ordering assumption is made
by [BBDS13; DLL16].

A simple implementation of such an ordering as-
sumes that each node u has a unique string identifier
idu—a user name, for example—and orders edges
according to their endpoints (so (u, v) gets mapped
to (idu, idv), where idu < idv and pairs are ordered
lexicographically).

Since both projections process edges at the time
they arrive, they end up considering edges according
to a time-aware version of the ordering: edges end up
being considered in the lexicographic order given by the
triples (t, idu, idv), where t is the edge’s arrival time.

Ordering the edges uniformly randomly within each
time step would also suffice since one can couple the
random orderings on two neighboring streams so they
are consistent with each other. We omit a proof of this,
and assume lexicographic ordering in the rest of this

manuscript.

Remark 3.1 (Running Algorithm 1 on static graphs).
Algorithm 1 can also take a (static, not streamed) graph
as input by interpreting the graph as a length-1 graph
stream, where the first element of the graph stream is
equal to the graph itself.

3.1. Stability of the Time-Aware Projection Al-

gorithms

Our analysis of the projection algorithms differs
significantly from the batch-model analyses of [BBDS13;
DLL16]. First, we consider the stability of the entire
projected sequence, and not a single graph. Second,
Blocki et al. [BBDS13] consider only the edge-to-edge
stability of their projection algorithm, while Day et al.
[DLL16] only analyze the stability with respect to a
particular function of the projected graph (namely, its
degree distribution). We analyze several stronger notions
of stability for the entire sequence produced by our
projections. All but one of these stability guarantees
hold for streams that are (D, `)-bounded.

Definition 3.2 ((D, `)-bounded). We say that a graph
G is (D, `)-bounded if it has at most ` nodes of degree
greater than D. Similarly, a graph stream S of length T

is (D, `)-bounded through time t 2 [T ] if the flattened
graph flatten

�
S[t]
�

is (D, `)-bounded (i.e., has at most
` nodes of degree greater than D).

We now present our theorem on the stability of
Algorithm 1. These stabilities are summarized in Table 2.

Theorem 3.3 (Stability of projections). Let T 2 N,

D 2 N, ` 2 N[ {0}, and let ⇧BBDS

D ,⇧DLL

D be Algorithm 1

with inclusion criterion c = original and c = projected ,

respectively.

1) (Edge-to-edge stability.) If S 'edge S 0
are edge-

neighboring graph streams of length T , then for all

time steps t 2 [T ], the edge distances between the

projections through time t satisfy the following:

a) dedge

⇣
⇧BBDS

D (S )[t] , ⇧BBDS

D (S 0)[t]
⌘
 3.

b) If S ,S 0
are (D, `)-bounded through time t, then

dedge

⇣
⇧DLL

D (S )[t] , ⇧DLL

D (S 0)[t]
⌘
 2`+ 1.

2) (Node-to-edge stability.) If S 'node S 0
are node-

neighboring graph streams of length T , then for all

time steps t 2 [T ], the edge distances between the

projections through time t satisfy the following:

a) If S ,S 0
are (D, `)-bounded through time t, then

dedge

⇣
⇧BBDS

D (S )[t] , ⇧BBDS

D (S 0)[t]
⌘
 D + `.

b) If S ,S 0
are (D, `)-bounded through time t, then

dedge

⇣
⇧DLL

D (S )[t],⇧
DLL

D (S 0)[t]
⌘
 D + 2`

p
min{D, `}.
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3) (Node-to-node stability.) If S 'node S 0
are node-

neighboring graph streams of length T , then for all

time steps t 2 [T ], the node distances between the

projections through time t satisfy the following:

a) If S ,S 0
are (D, `)-bounded through time t, then

dnode

⇣
⇧BBDS

D (S )[t] , ⇧BBDS

D (S 0)[t]
⌘
 2`+ 1.

b) If S ,S 0
are (D, `)-bounded through time t, then

dnode

⇣
⇧DLL

D (S )[t] , ⇧DLL

D (S 0)[t]
⌘
 2`+ 1.

Furthermore, the bounds above are all tight in the worst

case, either exactly (bound 1(a)), up to an additive con-

stant of 2 (bounds 2(a) and 3(a)), or up to multiplicative

constants.

The proofs that the bounds are tight appear in the full
version. Here, we focus on proving the upper bounds.
Proof Sketch for Stability of Algorithm 1 (Theo-

rem 3.3). To analyze stability, we consider a pair of
graphs streams S ,S 0 that are either edge (part (1)) or
node neighbors (parts (2) and (3)). Assume without loss
of generality that S 0 is the larger of the two streams.
When S 0 is larger by virtue of including an additional
node, we use v

+ to denote the additional node in S 0.
Our proofs of stability rely heavily on two observa-

tions. First, the greedy nature of Algorithm 1 ensures
that once an edge is added to the projection of a graph
stream, that edge will not be removed from the projection
at any future time step. Moreover, an edge may only
be added to the projection at the time it arrives—it will
not be added to the projection at any later time. This
greedy behavior simplifies the analysis dramatically. It
allows us to reason only about the distances between the
flattened projected graphs at time t, rather than about
the entire projected sequence: an edge that appears at
some time t

0
< t in one projected sequence but not the

other will still differ between the flattened graphs at
time t. This fact is captured in the “Flattening Lemma”
(Lemma 3.6), which we use throughout the remainder
of the argument. (A different projection algorithm, for
example one that recomputes a projection from scratch
at each time step, would require us to more explicitly
analyze the entire projected sequence.)

The other important observation for our analysis is
the following. Consider two neighboring graphs, where
one graph contains (at most) one additional node v

+.
In the larger graph, if an edge is between two nodes of
degree at most D and is not incident to the added node
v
+, then it will be in both projections. In other words,

only edges that do not satisfy this condition may differ
between projections. This idea is captured in Lemma 3.7.
(Stability of ⇧BBDS

D .) To prove edge-to-edge stability,
we apply Lemma 3.6 and largely borrow the analysis
of [BBDS13, Proof of Claim 13]. To prove node-to-
node stability, we only need to consider the projections

through times t 2 [T ] for which the graph streams S and
S 0 are both (D, `)-bounded. We then use Lemma 3.6, in
addition to the fact that only an edge with an endpoint
node of degree greater than D in one of the original
graphs may differ between projections of neighboring
streams (Lemma 3.7) to see that all nodes and edges
that differ between graph streams belong to a vertex
cover of size at most `+1. Therefore, we can obtain S[t]
from S 0

[t] by removing v
+ and changing the remaining

` nodes in the vertex cover.
The node-to-edge stability also applies only through

times t 2 [T ] for which the graph streams S and S 0

are both (D, `)-bounded. Its proof requires more careful
analysis of exactly how many edges incident to nodes
of degree greater than D may change, in addition to
using Lemmas 3.6 and 3.7. We first show that at most
D edges incident to the added node v

+ may appear in
the projection of S 0; these edges cannot appear in S or
its projection.

We next consider whether any of the other edges
differ between projections. First, consider an added edge
e
+ incident to v

+ and some “high-degree” node u (i.e.,
with degree greater than D in S 0). The presence of
e
+ may mean exactly one edge incident to u that was

included in the projection of S will now be dropped,
since u may already have degree D when that edge
is considered for addition. Now, suppose instead that
e
+ is incident to v

+ and some “low-degree” node (i.e.,
with degree greater than D in S 0). None of the edges
incident to u will be dropped from the projection due
to the inclusion of e

+, because although the degree
of u is now larger, it is still safely at or below the
threshold of D. Of the remaining edges, then, only
edges incident to high-degree nodes may change. Since
there are at most ` nodes with degree greater than D,
there are at most ` additional edges that differ between
projections. Therefore, by combining this with the above
observation that at most D edges incident to v

+ appear
in the projection of S 0, we see that at most D + `

edges differ between projections through time t for
node-neighboring graph streams.
(Stability of ⇧DLL

D .) The analysis of this projection,
especially its node-to-edge stability, is generally more
complex. One exception is the proof of node-to-node
stability, which follows from the same argument used
to prove node-to-node stability for ⇧BBDS

D . All bounds on
the stability of this projection only apply through times
t 2 [T ] for which the graph streams S and S 0 are both
(D, `)-bounded (note that the edge-to-edge stability for
⇧BBDS

D does not rely on this assumption).
The node-to-edge stability analysis of this algorithm

is more involved, though it also relies on Lemma 3.6. We
consider a pair of arbitrary node neighbors and leverage
the greedy nature of our algorithm to iteratively construct
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a difference graph that tracks which edges differ between
the projections of each graph. We show that the edge
distance between the projections of neighboring graphs
is exactly the number of edges in the difference graph. If
the difference graph on any two node neighbors were to
form a DAG on `+1 nodes with at most k paths of length
at most `, then we would be able to bound its edge count
by 2`

p
k and prove, by setting k = min{D, `}, that the

projections are at edge distance at most 2`
p

min {D, `}
(in the full version, we prove this upper bound on the
number of edges in such a DAG).

In reality, we show that the difference graph is
edge distance at most D from a DAG with this special
structure. This introduces an additive D term in the
edge distance between the projections (which is to be
expected since the projections of two node neighbors
could differ in D edges that are incident to the differing
node). The “pruning” argument, which shows how to
remove edges from the difference graph to obtain the
special DAG, and the construction of the resulting DAG
form the most involved part of our analysis.

The edge-to-edge stability of ⇧DLL
D also uses

Lemma 3.6. If both graphs have maximum degree
at most D, Algorithm 1 acts as the identity, and the
projections differ in at most one edge. For graphs with at
most ` nodes of degree greater than D, we observe that
all of the edges in the corresponding difference graph
form two paths of length at most `, where all edges
in each path are incident either to nodes with degree
greater than D in S 0 or to the node with the added edge.
Since there are at most ` of these high-degree nodes,
the path has length at most 2`+ 1.
Useful Lemmas for Proving Stability. As described
in the proof sketch, Lemmas 3.6 and 3.7 are used for
proving many of the stability statements in Theorem 3.3.
Before presenting the proofs of stability, we present
those lemmas, along with definitions for terms that are
used in the lemmas and their proofs.

The first definition is motivated by the observa-
tion that, if we run the algorithm on edge- or node-
neighboring graph streams, edges are considered for
inclusion in the output stream S⇤ in the same relative
order for both graph streams (i.e., edge e1 is considered
before edge e2 in stream S if and only if e1 is considered
before e2 in stream S 0).

Definition 3.4 (Projection stage of an edge). Let T 2 N
be a time horizon, D 2 N be a degree bound, S be a
graph stream of length T , and let ⇧D 2 {⇧BBDS

D ,⇧DLL
D }

denote one of the variants of Algorithm 1. An edge e in
S is processed at projection stage i of algorithm ⇧D(S )
(denoted ProjStage(e) = i) if e is the i

th edge to be
considered by ⇧D(S ).

In the proofs that follow, we are often interested in

the value of a counter d(·) (see Line 3 of Algorithm 1) in
relation to a projection stage; we say that a counter d(u)
has value j at projection stage i if, when the j

th edge
is considered for inclusion in the projection, d(u) = j

on Line 6.
Multiple edges may arrive in a time step, so the

projection stage of an edge is related to but distinct
from the arrival time of the edge.

The second definition comes from the following
observation. Consider a node u and counter d(u) in
Algorithm 1. If an edge e incident to u is processed at
a projection stage where Algorithm 1 has d(u) � D,
then e will not be included in the output stream. Since
no more edges incident to u will be included, node u

can be thought of as being saturated. Definition 3.5
allows us to talk about the order in which this saturation
occurs.

Definition 3.5 (Saturation stage of a node). Let T 2 N
be a time horizon, D 2 N be a degree bound, S be a
graph stream of length T , and let ⇧D 2 {⇧BBDS

D ,⇧DLL
D }

denote one of the variants of Algorithm 1. A node u in
S has saturation stage b (denoted SatStageS (u) = b) if
b is the first projection stage such that d(u) � D by the
end of Line 12 in ⇧D(S ). We define SatStageS (u) =1
if there is no b for which the described condition holds.

Lemma 3.6 (Flattening Lemma). Let ⇧D 2
{⇧BBDS

D ,⇧DLL

D } denote one of the variants of Algorithm 1.

For every edge- or node-neighboring pair of graph

streams S and S 0
of length T , the edge- and node-

distance between the projected streams through time t

is the same as the edge- and node-distance between the

flattened graphs through time t 2 [T ]:

dedge

�
⇧D(S )[t],⇧D(S 0)[t]

�

= dedge

�
flatten

�
⇧D(S )[t]

�
, flatten

�
⇧D(S 0)[t]

��
(1)

and

dnode

�
⇧D(S )[t],⇧D(S 0)[t]

�

= dnode

�
flatten

�
⇧D(S )[t]

�
, flatten

�
⇧D(S 0)[t]

��
.(2)

Lemma 3.7 (Edges between low-degree nodes remain
in both projections). Let ⇧D 2 {⇧BBDS

D ,⇧DLL

D } denote one

of the variants of Algorithm 1. Consider a pair of edge-

or node-neighboring graph streams S ,S 0
of length T ,

where S 0
contains (at most) one additional node as

compared to S . For all edges e = {u, v} that arrive

in S at (or before) time step t 2 [T ], if u and v have

degree at most D in S 0
[t], then e is in both ⇧D(S ) and

⇧D(S 0).

Lemma 3.7 has an important consequence: if U

is the set of nodes that have degree more than D in
S 0
[t] (where S 0 is the larger of two neighboring graph
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streams), then U [ {v+} forms a vertex cover for the
edges that differ between the projections ⇧D(S )[t] and
⇧D(S 0)[t]. We use this in the proof of Theorem 3.3 in
a few ways. Most directly, if we have an upper bound
of `+ 1 on the size of U , then we immediately obtain
an upper bound of 2`+1 on the node distance between
the projections ⇧D(S )[t] and ⇧D(S 0)[t], which gives us
the proof of node-to-node stability. It is also the first
step in the proofs of other stability statements.

3.2. Proof of Node-to-Edge Stability for ⇧BBDS

D

Here we prove item (2a) of Theorem 3.3, which we
repeat below for convenience. The proof uses Lem-
mas 3.6 and 3.7, though it requires a more careful
analysis of the flattened graphs than the proofs of items
(1a) and (3) of Theorem 3.3.

Theorem 3.8 (Item (2a) of Theorem 3.3). Let T 2 N,

D 2 N, ` 2 N [ {0}, and let ⇧BBDS

D be Algorithm 1 with

inclusion criterion c = original . If S 'node S 0
are

node-neighboring graph streams of length T , then for

all time steps t 2 [T ] such that S and S
0

are (D, `)-
bounded through time t, the edge distances between the

projections through time t satisfy

dedge

⇣
⇧BBDS

D (S )[t] , ⇧BBDS

D (S 0)[t]
⌘
 D + `.

Proof of Theorem 3.8. Without loss of generality, let
S 0 be the larger graph stream—that is, it contains an
additional node v

+ and associated edges, which we rep-
resent with the set E+. To simplify notation, let F[t], F

0
[t]

denote flatten
�
⇧BBDS

D (S )[t]
�

and flatten
�
⇧BBDS

D (S 0)[t]
�

re-
spectively. Note that we only care to bound the node
distance between projections for times t 2 [T ] where
S[t],S

0
[t] are (D, `)-bounded. By Lemma 3.6, we only

need to bound dedge(F[t], F
0
[t]).

By Lemma 3.7, only edges incident (1) to v
+ or

(2) to nodes with degree greater than D in S 0
[t] will

differ between flattened graphs F[t] and F
0
[t]. We now

count the number of edges in these categories that differ
between F[t] and F

0
[t].

We first bound the number of edges in (1). There are
at most D edges incident to v

+ in F
0
[t] because F

0
[t] has

maximum degree at most D, and none of these edges
show up in F[t] since v

+ is not in F[t]. Therefore, there
are at most D edges in category (1).

We next bound the number of edges in (2). Each
flattened graph F[t] and F

0
[t] contains at most D · ` edges

incident to nodes with degree greater than D in S 0
[t].

However, we show that many of these edges will be the
same in both flattened graphs. Let U denote the set of
nodes, excluding v

+, that both have degree greater than
D in S

0
[t] and are incident to edges in E

+. Consider an

edge e = {u, v}, where neither u nor v is in U . The
added edges in E

+ will not affect the values of d(u) or
d(v), so either e will be in both F[t] and F

0
[t], or it will

be in neither flattened graph.
Now consider edges e

0 incident to nodes in U . All
edges in E

+ are of the form e
+ = {v+, w}. If e

+

is processed at a projection stage where d(w) � D in
⇧BBDS

D on S 0, then e
+ will not cause any edges e0 to differ

between F[t] and F
0
[t]. However, if e+ is processed prior

to this projection stage, then there may be one edge ew

incident to w that appears in F[t] but does not appear
in F

0
[t], due to having d(w) = D at the projection stage

when ew is processed instead of d(w) = D � 1 < D

(as is the case when running ⇧BBDS
D on S ). Note that e+

will not affect the inclusion of other edges in the output
stream: any edge incident to w that is processed at a
projection stage after ew will appear in neither flattened
graph, and any edge that is processed at a projection
stage prior to ew will have d(w) < D when considered
for inclusion in both output streams.

We see that each edge e = {v+, w} in E
+ causes at

most one edge incident to w to differ between projections
(in particular, to appear in F[t] but not appear in F

0
[t]).

Therefore, if we bound |E+|, we can bound the number
of edges in category (2). Since all edges in E

+ are
incident to v

+ and a node in U , there are at most |U |
edges in E

+. By the fact that the streams S[t] and S
0
[t]

are (D, `)-bounded, there are at most ` nodes in U .
Therefore, the number of edges in category (2) is at
most `.

Categories (1) and (2) contain a total of at most
D+ ` edges, so at most D+ ` edges differ between F[t]

and F
0
[t], which is what we wanted to show.

4. From D-restricted Privacy to Node Pri-

vacy

In this section, we present our general trans-
formation from restricted edge- and node-DP algo-
rithms to node-DP algorithms (Algorithm 3). As input,
Algorithm 3 takes several user-specified parameters
("Test,�Test,�, D, T ), a length-T graph stream S of ar-
bitrary degree, and black-box access to a base algorithm.
At every time step, Algorithm 3 returns either the result
of running one more step of the base algorithm on the
projection of the graph stream, or a special symbol ?
denoting failure.

The following theorem encapsulates its privacy and
accuracy properties, and its efficiency. Roughly, the
overall algorithm is private for all graph streams as
long as the base algorithm satisfies either edge or node
variants of D-restricted DP. It is accurate on graph
streams through all time steps that satisfy the assumed
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degree bound, and adds only linear overhead to the
runtime of the base algorithm.

Theorem 4.1 (Privacy for all graph streams and
restricted accuracy). Consider running Algorithm 3

with parameters "Test,�Test,�, D, T , and let ` =l
8 ln

⇣
T

��Test

⌘
/"Test

m
and D

0 = D+` as in lines 2 and 3.

1) (Node privacy from restricted edge privacy.) Sup-

pose RestrictedPrivAlgD0 satisfies D
0
-restricted

("0, �0)-edge-DP under continual observation for

graph streams of length T . Then Algorithm 3 sat-

isfies (unrestricted) (", �)-node-DP under continual

observation for graph streams of length T , with

" = "Test + "
0 · (D0 + `) and

� = (1 + e
"Test)e"�Test + �

0 · e"
0·(D0+`) · (D0 + `).

In particular, for "  1 and T � 2, it suffices to set

"Test = "/2 and �Test = �/30, and

"
0 = ⇥

⇣
"

B

⌘
and �

0 = ⇥

✓
�

B

◆
,

where B = D +
log(T/(��))

"
.

2) (Node privacy from restricted node privacy.) Sup-

pose RestrictedPrivAlgD0 satisfies D
0
-restricted

("0, �0)-node-DP under continual observation for

graph streams of length T . Then Algorithm 3 sat-

isfies (unrestricted) (", �)-node-DP under continual

observation for graph streams of length T , with

" = "Test + "
0 · (2`+ 1) and

� = (1 + e
"Test)e"�Test + �

0 · e"
0·(2`+1) · (2`+ 1).

In particular, for "  1 and T � 2, it suffices to set

"Test = "/2 and �Test = �/30, and

"
0 = ⇥

⇣
"

B

⌘
and �

0 = ⇥

✓
�

B

◆
,

where B =
log(T/(��))

"
.

3) (Accuracy.) If the input graph stream S is (D, 0)-
bounded through time step t

0
, then the output from

RestrictedPrivAlgD0 is released at all time steps

t  t
0

with probability at least 1� �.

4) (Time and space complexity.) Algorithm 3 adds

linear overhead to the time and space complexity

of RestrictedPrivAlgD0 . More formally, let R[t]

and S[t] be the runtime and space complexity of

RestrictedPrivAlgD0 through t time steps, and let

n[t] and m[t] be the number of nodes and edges

in the graph stream through time t. The total time

complexity of Algorithm 3 through time t 2 [T ]
is R[t] + O(n[t] + m[t] + t), and the total space

complexity through time t is S[t] +O(n[t]).

The basic idea of the algorithm follows the Propose-
Test-Release (PTR) framework of [DL09]: we use the
sparse vector technique [DNR+09; RR10; HR10] to
continually check that the conditions of Theorem 3.3
are met. As long as they are, we can safely run the base
algorithm with parameters scaled according to the edge
(or node) sensitivity of the projection so that, by group
privacy, its outputs are (", �)-indistinguishable on all
pairs of node-neighboring inputs, satisfying (", �)-node-
DP.

4.1. Testing for Bad Graphs

To use the sparse vector technique, we need a
stream of queries with (node) sensitivity 1. Below, we
define a function DistToGraph with node-sensitivity
1 that returns the minimum, over all graphs, of the
node distance between the input graph and a graph
with at least ` nodes of degree greater than D. In
other words, it tells how close the input graph is to
a graph that is not (D, ` � 1)-bounded. This function
can be used to make such a stream of node-sensitivity 1
queries for continually checking whether the conditions
of Theorem 3.3 are satisfied.

Definition 4.2 (DistToGraphD,`). Let DistToGraphD,` :
G ! N[{0} return the minimum node distance between
the input graph and a graph with at least ` nodes of
degree greater than D.

We now present some properties of DistToGraph,
which we will use in the proof of privacy for the black-
box framework described in Algorithm 3.

Lemma 4.3 (Properties of DistToGraph).
DistToGraphD,` has the following properties:

1) DistToGraphD,` has node-sensitivity 1.

2) For an input graph G with |V | nodes and |E| edges,

DistToGraphD,` can be computed in time O(|V | +
|E|).
Furthermore, given a graph stream S , one can

determine the sequence of distances for all prefixes

of the stream, online. With each node or edge arrival,

the distance can be updated in constant time.

3) Let G 2 G be a (D, `)-bounded graph (i.e., with

at most ` nodes of degree greater than D). Then

DistToGraphD+k,`+k(G) � k for all k 2 N [ {0}.

We omit a full proof; however, the following algo-
rithm computes DistToGraph and can be implemented
in linear time. Given a graph G 2 G, first check if G is
(D, `)-bounded. While that condition is not satisfied, add
a node to G with edges incident to all existing nodes (and
check (D, `)-boundedness again). DistToGraphD,`(G)
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equals the number of nodes that have been added to G

when the check fails.

4.2. PTR in the Continual Release Setting

The high-level idea of our general transformation is
to use a novel, online variant of the Propose-Test-Release
framework (PTR) of [DL09]. To our knowledge, PTR
has not been used previously for designing algorithms
in the continual release setting. In this section, we show
that PTR can, in fact, be applied in the continual release
setting when the algorithm checking the safety condition
is itself private under continual observation, as is the
sparse vector algorithm.

Theorem 4.4 (Privacy of PTR under Continual Obser-
vation). Let Base : X T ! YT

be a streaming algorithm

and Z ✓ X T
a set of streams such that, for all neighbors

S ,S 0 2 Z , Base(S ) ⇡"Base,�Base Base(S
0).

Let Test : X T ! {?,>} be ("Test, �Test)-DP under

continual observation such that for every stream S , if

there is a time t such that S[t] does not equal the t-

element prefix of any item in Z , then Test(S ) outputs

? w.p. at least 1� �Test at or before time t.

If Algorithm 2 is initialized with Test and Base, it

will satisfy (", �)-DP under continual observation on

all input streams x 2 X T
, for

" = "Base + "Test and

� = �Base+(1+e
"Base+"Test)�Test+(1+e

"Test)e"Base+"Test�Test.

Algorithm 2 Algorithm PTR for propose-test-release
under continual observation.

Input: Stream x 2 X T , streaming algorithms Test :
X T ! {?,>}T and Base : X T ! YT .
Output: Stream in ({?,>}⇥ {Y,?})T .

1: passed True
2: b0  initial state of Base
3: s0  initial state of Test
4: for all t 2 [T ] do

5: (verdict, st) Test(xt; st�1)
6: . Send xt to Test, and set verdict to be its output
7: Output verdict
8: if verdict = ? then passed False
9: if passed = True then

10: (yt, bt) Base(xt; bt�1)
11: . Send xt to Base and output the result
12: Output yt
13: else output ?

While it is perhaps unsurprising that PTR applies to
the continual release setting, the proof of Theorem 4.4
does not follow immediately from the standard PTR

analysis: the standard analysis is binary (either release
the output of the base algorithm, or don’t), while the
version we need releases a dynamically chosen prefix
of the base algorithm’s output.

4.3. Accuracy and Privacy of Algorithm 3

In Algorithm 3, we present our method for obtain-
ing node-DP algorithms from restricted edge-DP and
restricted node-DP algorithms.

Our algorithm works as follows. Where we set
D

0 = D + ` and ` ⇡ log(T/�)
" , we initialize PTR

(Algorithm 2) with (1) a Base algorithm that offers
indistinguishability on neighbors from the set of (D0

, `)-
bounded graphs and (2) a Test algorithm that uses
sparse vector to ensure that DistToGraphD0,` is non-
negative (i.e., that the graph stream is (D0

, `)-bounded),
where ` is an additive slack term to account for the
error of the sparse vector technique. Specifically, Base
is the composition of RestrictedPrivAlgD0 with ⇧BBDS

D0 ,
where RestrictedPrivAlgD0 satisfies D

0-restricted edge-
or node-DP.

If Test succeeds, the projection will be stable with
high probability, so we can safely release the result of
running Base on the projected graph; if Test fails, the
symbol ? is released. Algorithm 3 post-processes the
outputs from PTR, so it inherits the privacy properties
of PTR. The privacy properties of Algorithm 3, stated in
Theorem 4.1, follow from Theorem 4.4 and are proven
in the full version.

5. Optimal Algorithms for fedges, ftriangles,

fCC, fk-stars

We now use our transformation in Algorithm 3 to
convert restricted edge- and node-DP algorithms for
several fundamental problems into node-DP algorithms
that achieve the same asymptotic error as the analo-
gous restricted node-DP algorithms given by [SLM+18;
FHO21], up to lower-order terms. Table 1 shows the
additive error for privately counting edges (fedges),
triangles (ftriangles), k-stars (fk-stars), and connected com-
ponents (fCC), and privately releasing degree histograms6

(fdegree-hist) of the input graph stream. Moreover, for
fedges, ftriangles, fk-stars, and fCC, the accuracy of our
algorithms is asymptotically optimal, up to lower order
terms and polylogarithmic factors.

For fedges, ftriangles, fk-stars, and fdegree-hist, the errors
for our transformation follow from substituting the "

0

term from Theorem 4.1 into the error bounds for the

6. The degree histogram fdegree-hist(G) for a graph G with maxi-
mum degree at most D is the (D+1)-element vector (a0, . . . , aD) 2
RD+1, where ai is the number of nodes with degree i in G.
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Algorithm 3 BBRestrictedToNodePriv for transform-
ing restricted-DP algorithms to node-DP algorithms.

Input: Privacy params "Test > 0, �Test 2 (0, 1];
accuracy param � 2 (0, 1]; degree bound D 2 N;
time horizon T 2 N; graph stream S 2 ST ; alg
RestrictedPrivAlg
Output: A stream, where each term is ? or an
estimate from RestrictedPrivAlg.

1: ⌧ = �8 ln(1/�Test)/"Test
2: ` = d8 ln(T/(��Test))/"Teste
3: D

0 = D + `

4: Base = RestrictedPrivAlgD0 �⇧BBDS
D0

5: . ⇧BBDS
D0 is Algorithm 1 with c = original

6: for all t 2 [T ] do

7: qt(·) = �1 · DistToGraphD0,`(flatten( · [t]))

8: Test =

(
SVT with privacy param "Test,

thresh ⌧ , queries q1, . . . , qT

9: s0  initial state for PTR
10: Initialize PTR with algorithms Test and Base
11: for all t 2 [T ] do

12: (Test-val,Base-val, st) PTR(St; st�1)
13: Output Base-val
14: . Base-val will be ? once the test fails

restricted edge-DP algorithms of [FHO21] (algorithms
with slightly worse lower-order terms follow from using
restricted node-DP algorithms). The bound for fCC fol-
lows from a new edge-DP algorithm based on the binary
tree mechanism. This algorithm and the accompanying
proof appear in the full version.

By item (1a) of Theorem 3.3, we can also immedi-
ately obtain (", 0)-edge-DP algorithms from restricted
edge-private algorithms by using the projection ⇧BBDS

D
and running the corresponding restricted edge-private al-
gorithm with "

0 = "/3 on the projection. This technique
gives the first algorithms for ftriangles, fk-stars, and fCC

that are edge-private under continual observation for all
graphs and, for graph streams with maximum degree at
most D, have asymptotically optimal accuracy (up to
polylogarithmic factors).

The lower bounds in the table follow by reductions
from a version of the ⌦(log T/") lower bound for
binary counting from [DNPR10], modified by us for the
approximate-DP setting. Proofs of these lower bounds
appear in the full version.

6. Experiments

We implemented Algorithm 3 for the task of es-
timating the number of edges. We ran our algorithm
on several synthetic graph streams (which we describe
below) and compared the accuracy of our algorithm for

counting edges to the accuracy of a direct application
of batch model algorithms for counting edges with
advanced composition. We used the implementation of
the (standard) binary tree mechanism from [AP23].

The Python code for the algorithm and
synthetic graph generation is on GitHub:
https://github.com/cwagaman/time-aware-proj.

Parameters for node privacy. All of our experiments
use " = 1 and � = 10�10 (about 2�33), and are (", �)-
node-DP.

Input streams. We look at (1) random graphs with
n = 106 nodes and m = 2 · 108 edges (with the edges
drawn uniformly without replacement from the set of
possible edges), and (2) two-block graphs with n = 106

nodes and m = 2 · 108 edges (with the edges drawn
uniformly without replacement from the set of possible
edges), except for 5,000 randomly selected nodes that
have degree 10,000 (with these edges drawn uniformly
at random from the set of edges incident to the randomly
chosen nodes). In both cases, the average degree in the
graph is 2m

n = 400, but in the two-block cases there are
nodes with 25 times the average degree.

In both cases, we consider a stream with T = 106

time steps. A uniformly random subset of m
T = 200

edges arrives at each time step.

Degree cutoffs. Recall that the algorithms we consider
require an analyst-specific degree cutoff D. We conduct
three experiments overall. For the random graphs (with
maximum degree about 400), we conduct experiments
with D = 400 and D = 1,000—these reflect settings
where the maximum degree estimate is tight or conser-
vatively large. For the two-block stream with maximum
degree 10,000, we use D = 15,000, which corresponds
to a slight overestimate of the maximum degree.

One could get around the need to specify D by
running several parallel copies of the algorithm with
different degree cutoffs (say, using powers of 2 up
to some reasonable limit, and choosing the output
corresponding to the smallest value of D for which
the PTR test has not yet rejected). We did not consider
this approach in our experiments.

Results. We present results via two different types of
plots (Fig. 1). The first type shows the actual edge
count, the value reported by our algorithm, and the value
reported by algorithms that follow from prior work. The
second type shows the relative error of our algorithm
and that of prior work. The denominator in the relative
error is the current edge count, which increases linearly
over time. We show these plots for all 106 time steps,
along with a “zoomed-in” version of these plots for the
first 50,000 time steps. These latter plots allow one to
see the variability of the error over time.
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Running time. As stated in Theorem 4.1, our algorithm
requires O(n + m) additional time (total) and O(n)
additional space on a stream with n nodes and m edges.
On a laptop, our (unoptimized) implementation for edge
counting runs in about 6 · 10�5 seconds per edge on
the random graph described above with n = 106 nodes
and m ⇡ 2 · 108 edges. For comparison, merely reading
the graph and tracking the degree of each node (with
the same machine and programming environment) takes
1.5·10�5 seconds per edge. Compared to this elementary
processing, our algorithm takes more time by a factor
of 4; optimized implementations would presumably see
a similarly small run time increase.
Discussion. Our experimental results, displayed in Fig-
ure 1, show natural regimes where our new algorithm
offers much better accuracy than the batch-model base-
line. Furthermore, in all three experiments, the relative
error of our algorithm drops below 1 early in the stream
(10,000 time steps for the random graphs, and 50,000
for the two-block model). The error of our algorithm
largely reflects the asymptotic error bounds, showing that
the advantage of our algorithm holds even for modest
settings of parameters. Additionally, implementing our
algorithm was straightforward, and it is lightweight and
runs quickly, even without optimizations.

Our algorithm’s error is driven by the specified
degree cutoff D (assuming it produces any output at all,
which requires roughly that D be not much smaller than
the actual maximum degree). The experiments reflect
this: the relative error is lower in the random graph
stream, where the maximum and average degree are
basically the same, than in the two-block graph. And
the relative error is lower when the degree cutoff is
close to the maximum degree (D = 400 as opposed to
D = 1,000, for the random graph stream). Choosing the
value of D automatically (as discussed under “Degree
cutoffs”, above) would help address overestimation
of the maximum degree. However, variance among
the degrees is a more fundamental obstacle, since the
sensitivity of the edge count to the removal of any single
vertex is equal to the maximum degree, but relative error
compares to the total number of edges.

These experiments also reveal some limitations of
our algorithm. Our algorithm’s advantage over the base-
line comes the fact that its error scales with polylog T ,
instead of the

p
T scaling that appears when composing

the batch-model algorithms. As a result, T must be
large to obtain a significant accuracy advantage. Our
algorithm’s advantage over the baseline also improves
for larger values of D, since then the fixed, additive
slack term from the PTR framework becomes less
significant. Designing an algorithm with low additive
error in practice for all ranges of D (including, say, with
D a small constant) remains an open question.
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Appendix A.

A.1. Properties of Differential Privacy

The definition of differential privacy extends to
groups of individuals. If an algorithm is DP for one
individual, it also offers a (differently parameterized)
privacy guarantee for a collection of individuals. We
borrow the formulation of this property from [Vad17].

Lemma A.1 (DP offers group privacy [DMNS16]). Let

M : X ! Y be a randomized algorithm that is (", �)-
DP. Then, where x, x

0 2 X differ in the data of k

individuals, A(x) and A(x0) are (k · ", k · ek" · �)-
indistinguishable. That is,

A(x) ⇡k·",k·ek"·� A(x0).

This follows from a well-known “weak triangle
inequality” for (", �)-indistinguishability:

Lemma A.2 (Weak triangle inequality). For all

"1, "2, �1, �2 � 0: If random variables A,B,C satisfy

A ⇡"1,�1 B and B ⇡"2,�2 C, then A ⇡"0,�0 C for

"
0 = "1 + "2 and �

0 = max(�1 + e
"1�2, �2 + e

"2�1) 
e
"2�1 + e

"1�2.

Differential privacy is robust to post-processing.

Lemma A.3 (DP is robust to post-processing
[DMNS16]). Let M : X ! Y be a randomized

algorithm that is (", �)-DP. Let f : Y ! Z be an

arbitrary, randomized mapping. Then f �M : X ! Z
is (", �)-DP.
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A.2. Edge-DP under Continual Observation

We can use the edge-to-edge stability of ⇧BBDS
D to

transform algorithms that satisfy D-restricted edge-
DP under continual observation that satisfy (pure or
approximate) edge-DP under continual observation. Up
to logarithmic factors, the algorithms we obtain are
asymptotically optimal for ftriangles, fCC, fk-stars.

The errors for our edge-private algorithms follow
from item (1a) of Theorem 3.3, which says that we
can achieve (", 0)-edge-DP by running the algorithms
of [FHO21] for ftriangles, fk-stars, fdegree-hist, and our al-
gorithm for fCC, with privacy parameter "

0 = "/3.
(Because item (1a) of Theorem 3.3 holds unconditionally,
there is no need to use the PTR framework.) In contrast
with previous work [FHO21; SLM+18], this allows us to
offer privacy on all graph streams, and we maintain the
accuracy guarantees of the restricted private algorithm
(up to constant factors) for graph streams with maximum
degree at most D.

Theorem A.4 (Accuracy of edge-private algorithms).
Let " > 0, D 2 N, T 2 N, and S be a length-T

graph stream. There exist (", 0)-edge-DP algorithms for

the following problems whose error is at most ↵, with

probability 0.99, for all times steps t 2 [T ] where S[t]
has maximum degree at most D:

1) ftriangles, ↵ = O

 
D log3/2 T

"

!
.

2) fCC, ↵ = O

 
log3/2 T

"

!
.

3) fk-stars, ↵ = O

 
D

k�1 log3/2 T

"

!
.

4) fdegree-hist, ↵ = eO
 
D log3/2 T

"

!
, where eO hides

logD and log(log T/") factors.

Proof of Theorem A.4. This proof follows immediately
from combining item (1a) of Theorem 3.3, which
describes the edge-to-edge stability of Algorithm 1 that
includes edges in the projection according to original
degrees (which we call ⇧BBDS

D ), with the edge-private
algorithms of [FHO21] and with our edge-private al-
gorithm for fCC. In particular, for fedges and ftriangles

we can run the restricted edge-private algorithms of
[FHO21] with "

0 = "/3 on outputs from the projection
⇧BBDS

D ; and for fCC we do the same, except with our
algorithm.

Appendix B.

The Sparse Vector Technique

We use the sparse vector technique (SVT), intro-
duced by [DNR+09] and refined by [RR10; HR10;
LSL17], to continually check that the input graph
satisfies the conditions of Theorem 3.3. In Algorithm 4,
we provide a version of the sparse vector technique
described in [LSL17, Algorithm 1].

Algorithm 4 Mechanism SVT for answering threshold
queries with the sparse vector technique.

Input: Stream S 2 ST ; queries q1, q2, . . . of sen-
sitivity 1; cutoff c 2 N; privacy parameter " > 0;
threshold ⌧ 2 R.
Output: Stream of answers in {?,>}.

1: "1 = "2 = "/2
2: count = 0
3: Draw Z ⇠ Lap(1/"1)
4: for each time t 2 1, 2, . . . , T do

5: Draw Zt ⇠ Lap(2c/"2)
6: if qt(S ) + Zt � ⌧ + Z and count < c then

7: Output ?
8: count += 1
9: else output >

Theorem B.1 (Privacy of SVT [LSL17]). Algorithm 4

is (", 0)-DP under continual observation.
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C. Meta-Review

The following meta-review was prepared by the
program committee for the 2024 IEEE Symposium on
Security and Privacy (S&P) as part of the review process
as detailed in the call for papers.

C.1. Summary

The paper develops privacy preserving algorithms to
continually release graph statistics (edge count, degree
histogram, triangle count) as the graph is updated over
time. There are two notions of differential privacy (DP)
for graphs: edge privacy and node privacy. While node-
DP provides a much more compelling privacy guarantee
to individuals, it is quite challenging to develop node-DP
algorithms as most graph statistics are highly sensitive
to the addition or removal of a single node with high
degree. Because of this challenge prior work had only
achieved a weaker notion of “degree restricted” node-DP
where the DP privacy guarantees only hold if one makes
the (implausible) assumption that every node in the
graph/stream has degree at most D. The paper uses graph
projections to transform a “degree restricted” node-DP
algorithm (or a “degree restricted” edge-DP algorithm)
into an algorithm that satisfies node-DP unconditionally.
The node-DP algorithms are shown to be accurate as
long as the original graph/stream was “degree restricted”
i.e., the maximum degree of any node in the graph is
at most D for some suitable parameter D < n.

C.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

C.3. Reasons for Acceptance

1) Creates a New Tool to Enable Future Science:
The paper introduces the first node-DP algorithm
to continually release fundamental graph statistics
(edge count, degree histogram, triangle count) as
the graph is updated over time.

2) Provides a Valuable Step Forward in an Established
Field: Prior work (e.g., [BBDS13]) used graph
projections as a tool to preserve node-DP in the
static setting. The paper shows how these graph
projections can be extended to work in the continual
release setting where the graph is updated over time.

C.4. Noteworthy Concerns

1) The node-DP algorithm in the paper is only shown
to release accurate statistics if the underlying graph

has maximum degree D. It is not clear whether
the statistics will be accurate in the more plausible
setting that the graph is (D, `)-bounded i.e., there
are at most ` nodes whose degree is larger than D.

2) The empirical evaluation only considers synthetic
graph streams.
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