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Toward coherent quantum computation of scattering amplitudes with a measurement-based
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In recent years, applications of quantum simulation have been developed to study the properties of strongly
interacting theories. This has been driven by two factors: on the one hand, needs from theorists to have access
to physical observables that are prohibitively difficult to study using classical computing; on the other hand,
quantum hardware becoming increasingly reliable and scalable to larger systems. In this work, we discuss the
feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible
via lattice QCD and are at the core of the experimental program at Jefferson Laboratory, the future Electron-Ion
Collider, and other accelerator facilities. We show that recent progress in measurement-based photonic quantum
computing can be leveraged to provide deterministic generation of required exotic gates and implementation in
a single photonic quantum processor.
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I. INTRODUCTION

A. Quantum simulation of subatomic physics

It is now well-accepted that the vast majority of subatomic
phenomena are described by the Standard Model of particles.
This encodes three of the known fundamental forces, the
opaquest of which is the strong nuclear force. This force is
responsible for the formation and structure of all atomic nuclei
and countless of other experimentally observed particles.1

Although we know this force is described by quantum chro-
modynamics (QCD), the theory of quarks and gluons, it is not
yet evident how the dynamics of these fundamental particles
result in emergent phenomena taking place throughout the
universe and experiments across the world. As a result, one
of the primary goals of modern-day nuclear physics has been
to construct accurate methods for accessing the consequences
of the theory.

The primary challenge in studying QCD is its nonper-
turbative nature. This has motivated the development of a
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1Collectively, asymptotic states of QCD are known as hadrons.

large variety of frameworks to constrain physical quantities.
Arguably, the most successful method that has been demon-
strated to be able to access QCD observables without making
approximations on the underlying dynamics goes by the name
of lattice QCD. Lattice QCD makes use of Monte Carlo tech-
niques to statistically sample the Euclidean path integral of
QCD. This provides statistical determination of correlation
functions of the theory defined in Euclidean spacetime, which
can subsequently be related to a variety of key observables
of the theory. Most notably, one can determine quantities that
are independent of time, like the spectrum and local matrix
elements.2

As one would expect, this procedure puts tight constraints
on the physics that may be directly accessed. In particular,
quantities that are sensitive to the time signature or static
properties of systems with finite chemical potential are cur-
rently just outside of the reach of lattice QCD calculations. In
general, these quantities introduce sign problems that prohibit
their direct calculation.3 The desire to have real-time, nonper-
turbative quantities, among other observables that cannot be
obtained directly via lattice QCD, has turned the field towards
considering the use of quantum computing (QC).

A driving motivation for having a nonperturbative real-
time formulation of quantum field theories (QFT) is the

2We point the reader to Refs. [1,2] for recent reviews on the
progress of lattice QCD community to measure single- and multi-
hadron observables, respectively.

3Some methods have been constructed to indirectly access time-
dependent quantities, e.g., Refs. [3,4].
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determination of scattering amplitude of few-body systems.
These can be obtained from infinite-volume real-time cor-
relation functions following the Lehmann, Symanzik and
Zimmermann reduction procedure. Most physical properties
of few-body systems are encoded in scattering amplitudes and
they are the primary focus of particle and nuclear experimen-
tal searches. As a result, having a nonperturbative mechanism
to access these from the Standard Model is of utmost
importance. In this work, we focus our attention on the fea-
sibility of using quantum optical simulation for determining
scattering observables for QFTs.

Note also that QC offers a promising approach to avoid
the sign problem in classical Monte Carlo sampling tech-
niques for lattice QCD, a significant challenge in classical
simulations, particularly those involving fermions. In classical
Monte Carlo simulations, the path integral formulation often
leads to integrals over complex-valued probability amplitudes.
This can result in severe cancellations, making it difficult
to obtain statistically significant results. This issue, known
as the sign problem, restricts the ability to study large-mass
atomic nuclei, and many important physical properties, par-
ticularly at finite baryon density and chemical potential, or
real-time evolution. QC relies on unitary evolution, avoiding
the problematic summation of oscillating terms, as the evo-
lution is governed by the actual physical dynamics of the
system. The Hamiltonian of the system is simulated directly
and the system evolves in real time, which bypasses the need
for Monte Carlo integration and the associated sign problem.
While Trotterization (discretizing time evolution into small
steps) introduces its own set of errors, these are different
from the sign problem and can be systematically controlled
and reduced using a mixture of quantum and classical error
correction techniques, such as higher-order decompositions,
adaptive or randomized Trotterization, error extrapolation,
quantum error mitigation techniques, and quantum error cor-
rection codes. The sign problem is particularly severe at finite
baryon density. QC can naturally handle the complex phases
arising in such scenarios, providing access to regions of the
phase diagram that are inaccessible to classical simulations.
Moreover, quantum simulations can explore nonperturbative
phenomena in lattice QCD that are inaccessible by classical
methods. This includes the ability to calculate pure as well
as thermal states, and explore out-of-equilibrium phenomena
and early universe dynamics (see, e.g., Ref. [5] and references
therein).

B. Quantum simulation and quantum sampling: promises
and limitations

As first remarked by Feynman [6], using QC for the
quantum simulation of an N-qubit physical system pro-
vides an exponential speedup because QC requires but
a polynomial overhead ∼O(N p) (accounting for quantum
error correction) whereas classically solving quantum evo-
lution, e.g., Schrödinger’s equation, requires diagonalizing a
22N -dimensional Hamiltonian matrix. Lloyd confirmed this
quantum advantage [7] by remarking that a vast majority of
physically relevant Hamiltonians (hard-sphere and van der
Waals gases, Ising and Heisenberg spin systems, strong and
weak interactions, and some gauge theories) have a local

structure, yielding a polynomial number ∼O(Nk ) of Hamil-
tonian parameters. Building on these seminal works, a great
deal of progress has been made in setting a pathway towards
the quantum simulation of quantum field theories [8–18].

Whereas quantum evolution quantum simulation can be
implemented by “brute force” QC using the gate/circuit
model, a potentially more promising approach is to find direct
mappings between the physical system to be simulated and
the experimental simulator. An exemplar is the quantum sim-
ulation of the quantum field theory of a self-interacting scalar,
initially proposed over qubits [8,9] and subsequently adapted
to continuous-variable quantum optical fields, also known as
qumodes, in lieu of qubits, in Ref. [10]. In both cases, an
effective field theory is employed with spatial discretization
of the field. In the latter case, an additional benefit is the
simulation of massive bosonic quantum fields with quantum
optical fields.

Subsequently, Ref. [11] raised the issue that the need to
restrict the space to be finite would naïvely prohibit the access
to scattering observables, given the absence of asymptotic
states in a finite volume. This same paper provided a practical
solution to this issue, by constructing carefully defined wave
packets, thereby allowing physical scattering amplitudes to
be, in principle, determined with finite resources.

The ability to ultimately perform any quantum simulation
hinges upon reliable quantum hardware. In recent years there
has been some progress on this front. Two approaches might
be defined: either find a breakthrough application for a noisy
intermediate-scale quantum (NISQ) device [19] that would
yield genuine quantum advantage, or find a path beyond the
NISQ regime to achieve scalable, fault-tolerant quantum com-
puting. While the former approach is applicable to simpler
quantum technology such as quantum sensing (e.g., LIGO
[20]), it has not yet been shown to be relevant to quantum
computing (QC).

More specialized, nonuniversal quantum machines, such
as quantum circuit samplers [21], boson samplers [22],
and Gaussian boson samplers [23], have claimed a quan-
tum advantage over classical computers for the specific
task of sampling from a classically-hard-to-calculate prob-
ability distribution [21,24,25]. Quantum samplers operate
efficiently by simply measuring the outputs of their quan-
tum circuit, the measurement results constituting samples
from the associated classically intractable quantum probabil-
ity distribution. Indeed, these outputs can only be simulated
classically (e.g., by Monte Carlo methods) if their unitary
evolution has been solved first, and that is hard to calculate
classically.

It is then natural to consider, as a useful follow-up applica-
tion for a quantum sampler, the empirical reconstruction of the
classically intractable quantum probability distributions from
the histogram obtained by statistically significant sampling.
This was proposed, for example, to compute Franck-Condon
factors in molecular spectra [26] or to detect graph isomor-
phism [27]. However, these proposed extensions of boson
sampling beyond its initial intent face a major roadblock that
negates their promise because statistical sampling incurs an
exponential or superexponential overhead in these cases. Two
factors are at play here: (i) the number of samples required to
reach statistical significance is linear in the number of variate
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realizations [28], which is favorable but, (ii) the latter can
scale exponentially or superexponentially (in the case of the
multinomial distribution of boson sampling) with the size of
the system (number of qubits or qumodes in the quantum
circuit). Thus quantum probability reconstruction will incur
as prohibitive a cost as classical simulation and the (genuine)
sampling advantage demonstrated by quantum samplers so far
[21,24,25] is fated to remain just that: a sampling advantage
and not a computational advantage. As we will see later, the
quantum sampling in lattice quantum field theories studied in
this work is not always subject to such an unfavorable scaling,
which opens the door to bona fide simulation of quantum
probability distributions and quantum probability amplitude
distributions.

C. Quantum optics for massively scalable,
continuous-variable quantum simulation

An essential motivation of the approach in this paper is
the record scalability that stems from the use of continuous-
variable quantum information (CVQI), which is encoded in
qumodes rather than qubits. The qumode encoding makes
use of bosonic field amplitudes, such as the quadratures Q =
(a + a†)/

√
2 and P = i(a† − a)/

√
2 of the quantized electro-

magnetic field, a being the photon annihilation operator (see
Appendix for more details). This approach is now established
as being fully deterministic and eminently scalable [29] to
thousands and even millions of entangled qumodes, as was
demonstrated by the experimental generation of record-size
CV cluster entangled states [30–34] which constitute uni-
versal resources for quantum computing [35–37]. Again, we
emphasize that CVQC makes no use of postselected resources
whatsoever.

An important question is that of quantum error correc-
tion and fault tolerance. As was mentioned above, one might
not expect NISQ technology to be able to reach interesting
computational performance and therefore a path toward fault
tolerant quantum simulation is required. While a full fault
tolerance study is left for a future paper, we outline such a path
in Sec. V C. Suffice it to say here that qubit encodings are still
attainable over CVQI [38], by use of the Gottesman-Kitaev-
Preskill (GKP) encoding [39], for which a fault tolerance
threshold was proven to exist for CVQC [40].

In this work, we derive the various quantum opti-
cal building blocks necessary to quantum simulate time-
dependent amplitudes for scalar field theories using a photonic
continuous-variable architecture as a first step towards un-
derstanding time evolution in lattice QCD. In particular, we
focus our attention on the determination of matrix elements
involving time-separated currents. In Sec. II, we begin by
providing a detailed description of the classes of matrix el-
ements we are after. Furthermore, provide a conceptually
simple for accessing spectra and matrix elements of states of
an interacting theory using real-time correlation functions. In
Sec. III, we discuss a procedure for using quantum optics for
performing quantum simulations of complex field theory. In
Sec. IV, we apply this procedure to the coherent quantum
simulation of correlators. In Sec. V, we show how tech-
niques from measurement-based quantum computing can be

leveraged to simulate current correlators. Finally, in Sec. VI
we conclude.

II. PHYSICAL OBSERVABLES
FROMMINKOWSKI CORRELATORS

We begin by reviewing a class of scattering amplitudes that
are at the core of the experimental program at Jefferson Lab
and the future Electron-Ion Collider, but that are presently
inaccessible via lattice QCD. These are time-sensitive matrix
elements of the form 〈Pf |J μ(t )J ν (0)|Pi〉, where t is real time
separating the electromagnetic current J μ, μ is the Lorentz
index, and |Pi〉 and 〈Pf | denote generic initial and final states
with four-momenta Pi and Pf respectively. By determining
these matrix elements as a function of time, one can obtain
a rich set of the structure of information of the initial/final
states. As a concrete example, if one considers the case where
P2

f = P2
i = m2, where m is the mass of a stable hadron, the

Fourier transform of this matrix element results in the virtual
Compton scattering amplitude,

C = i
∫

dt d�x eiq·x〈Pf |T
[
J μ(t, �x)J ν (0)

]|Pi〉conn., (1)

where we have left the kinematic dependence of the amplitude
implicit, the “conn.” subscript means that only fully connected
diagrams contribute to the amplitude, q is the four-vector
denoting the momenta carried by one of the external cur-
rents, we have assumed the states have appropriate relativistic
normalization, and T denotes the time-ordering operator.4

This virtual Compton scattering amplitude can be used, for
example, to constrain the basic functions describing the dis-
tributions of the quarks and gluons inside the hadron [43].

This is just one example of a broad class of ampli-
tudes that are currently inaccessible via Euclidean cor-
relation functions that may, in principle, be determined
using Minkowski correlators. More generally, by determining
matrix elements of time-dependent products of external cur-
rents, 〈Pf |

∏
n J (xn)|Pi〉, and using the Lehmann-Symanzik-

Zimmermann reduction formula one can quite literally obtain
any scattering amplitude desired [44]. This would be a major
advantage over lattice QCD. Here we will discuss at most the
first nontrivial example, namely amplitudes of the same class
as the Compton scattering amplitude.

Having given a concrete example of an observable of in-
terest, it is worthwhile to make some generalities regarding
the access of scattering amplitudes via numerical methods.
It is generally true that physical quantities of a QFT can be
obtained directly or indirectly from real-time correlation func-
tions. In practice, in order to evaluate correlation functions,
one must resort to introducing regulators. Lattice field theories
are defined by the introduction of specific ultraviolet (UV)
and infrared (IR) regulators. The UV regulator is the smallest
allowed spacetime separation, known as the lattice spacing,
and is normally labeled as a. In contrast, the IR regulator
is the size of the spacetime volume (V). For example, if we
consider theories in 1 + 1D, the spacetime volume would be

4A detailed recent discussion of this amplitude can be found in
Refs. [41,42].
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V = T × L where T is the temporal extent and L is the spatial
extent. Naïvely, one can recover a desired physical observable
M by taking the limit in which these regularities are removed,
e.g., M = lima→0,L→∞ M(a, L). In general, these limits are
either not well defined or impractical to achieve. This subtle
point is of significant importance when interested in the deter-
mination of scattering amplitudes. As previously mentioned,
Ref. [11] explained why scattering amplitudes are not directly
accessible from correlation functions defined in a finite space
due to the absence of asymptotic states. That being said, this
limitation is lifted in the aforementioned reference.

A. Definitions and notations

As discussed in the introduction, a primary shortcoming of
the modern-day lattice QCD program is its inability to access
correlation functions defined in real time. Here we discuss
how time-dependent matrix elements, of the kind shown on
the right-hand side of Eq. (1), could in principle be obtained
using real-time quantum computations of the theory. To ac-
cess these, it will be necessary to first consider the simpler
correlation functions.

Before proceeding with the definition and understanding of
the desired correlation functions, it is useful to introduce some
concepts. First, for simplicity, we will assume that the fields
of the underlying quantum field of interest are real scalars.
This simplifies the subsequent expressions while leaving the
key message unchanged.

Second, we will assume the presence of an IR regulator that
renders the spectrum discrete. A natural example of this would
be making the volume finite, which will be necessary in future
calculations. This would also make the momenta discrete.

Such a regulator would discretize the eigenstates of both
the free and full Hamiltonian labeled as H0 and H , respec-
tively, with eigenstates and eigenvalues defined by

H0|�〉0 = E (0)
� |�〉0, (2)

H |�〉 = E�|�〉, (3)

where � is a vector comprised of the quantum numbers that
define the eigenstate. We reserve the special symbol of |�〉0
for the vacuum of the free Hamiltonian (|�〉0 = |0〉o), which
we conveniently fix to have zero energy (E (0)

0 = 0). Note that
we will use the state normalization

〈� f |�i〉 = δ�i,� f , (4)

which differs from the standard infinite-volume normalization
for relativistic states.

To simulate dynamics, we will use optical field modes and
identify the eigenstates of the free Hamiltonian |n〉o with the
Fock states of the optical simulating field,

N |n〉γ = n|n〉γ , (5)

where N = a†a is the photon number operator of the cor-
responding mode, and the subscript γ emphasizes that the
state is defined in terms of the optical field. We will also
need the eigenstates of the amplitude and phase quadratures
of the quantum optical field [see Eq. (A1) in the Appendix],

respectively,

Q|s〉γq
= s|s〉γq

,

P|s〉γp
= s|s〉γp

. (6)

The quadratures Q and P act similarly to the position and
momentum, respectively, of a harmonic oscillator.

We will concentrate on matrix elements of currents, which
are operators that can be written in terms of the fundamental
fields of the theory, and their matrix elements can encode the
physical properties of the states. A notable example is the
electromagnetic vector current, J μ whose matrix elements
can, among other things, provide constraints on the charge
distribution inside a given state, as well as other observables
of interest.

B. Accessing the spectrum

Accessing any one state of the interacting theory is gener-
ally challenging. A more modest goal is to probe properties of
these states. Here we introduce a methodology for accessing
the spectrum of the full Hamiltonian, without having to re-
solve the eigenstates.5 Instead, we use eigenstates of the free
Hamiltonian, which are more readily accessible as probes.
This is a soft assumption since one could use any basis of
states as probes into the eigenstates of the full Hamiltonian,
as long as these overlap with the desired sector of the theory.

Let |�i〉0 and |� f 〉0 be arbitrary eigenstates of H0, where
�i and � f are vectors comprised of the quantum numbers
defining the corresponding states. Then we define a two-point
correlation function,

C2pt.(t ) = 0〈� f |e−itH |�i〉0. (7)

as a matrix element of the unitary evolution operation on the
basis of free states of the theory, making it suitable for quan-
tum simulation with the free states identified with suitable
Fock states of the optical field.

By inserting a complete set of states, we can rewrite the
correlation function as

C2pt.(t ) =
∑

n

e−itEn
0〈� f |n〉〈n|�i〉0, (8)

making explicit the connection between the time dependence
of the correlators and the spectrum of the full Hamiltonian H .

Modern-day lattice QCD calculations exploit a similar re-
lation between Euclidean correlators and the spectrum, where
the former can be written as

∑
n cne−τEn in imaginary time, τ .

The coefficients cn encode the overlap between desired states
and the operators used to access them. Since the spectrum is
time-independent, the spectra obtained using Minkowski and
Euclidean correlation functions are identical.

Since Euclidean correlators are sums over exponentially
decaying functions, they are dominated by low-lying states
at “large” imaginary time, allowing systematic determination
of these states. Determining the energies of the theory from

5Note that the former is compatible with quantum simulation
whereas the latter is not, as it carries the well-known exponential
overhead of quantum state estimation.
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FIG. 1. Shown are the values of C2pt.(ω, T ) [defined in Eq. (9)] and C̃2pt.(ω, T ) [defined in Eq. (10)] as red solid lines and green dashed
lines respectively. In making these plots, we used a simple toy model with a single stable particle described in the text. The vertical dashed
lines are the values of actual spectrum of the model. For C̃2pt.(ω, T ), we used m	t = 1/10. The imaginary part of ω has been fixed to m/100.
The top panel corresponds to T = 10/m, while the bottom corresponds to T = 100/m.

Minkowski correlators is slightly more challenging since all
states in principle contribute at any given time. Various tech-
niques have been proposed in the literature [45–47]. Here we
present a conceptually simple but perhaps computationally
impractical one. As will be shown, in addition to being sys-
tematically improvable, the advantage of this method is that it
is easily generalizable to more complicated quantities like the
desired long-range matrix elements.

Assuming we have constrained the correlation functions
for times in the range of t ∈ [0, T ], Eq. (8) can be Fourier
transformed to the energy space. We do this by introducing a
complex variable ω, which satisfies Im[ω] > 0. We obtain

C2pt.(ω, T ) ≡
∫ T

0
dt eitωC2pt.(t )

= i
∑

n

0〈� f |n〉〈n|�i〉0
	ωn

(1 − eiT 	ωn ), (9)

where 	ωn = ω − En.
In a standard (classical) lattice calculation, time is dis-

cretized, therefore, C2pt.(t ) will only be constrained for a
finite number of discrete points in time. Assuming there are
Nt points evenly spaced by 	t = T

Nt
, and approximating the

integral with a sum, we find

C̃2pt.(ω,	t, T ) ≡ 	t
Nt∑

nt =1

eint 	t ωC2pt.(t )

= 	t
∑

n
0〈� f |n〉〈n|�i〉0 ei	ωn	t

×
(

1 − ei	ωnT

1 − ei	ωn	t

)
. (10)

Note that in the limit 	t → 0, one recovers Eq. (9).
An illustrative example is shown in Fig. 1. For simplicity,

it is assumed 0〈� f |n〉= 1/
√

N , where N is the number of
states considered. The number of states has been truncated
to N = 90, the first few of which are depicted by the vertical

grey lines. For simplicity, we have assumed that the incoming
free-particle eigenstate has the quantum numbers of a single-
particle state, which are different than those of the vacuum of
the theory. As a result, the lowest-lying state this will couple
is the single-particle state with mass m. Assuming a single
species in this theory and no deep bound states, the rest of
the spectrum would be near the two-particle threshold and/or
above it. This means that there is a mass gap of at least m
between the ground state and the rest of the states. With this
scenario in mind, we let the rest of the states to have energies
� 2m and assume they are evenly separated with a gap of m/5.
The solid red lines correspond to C2pt.(ω, T ) in Eq. (9) using
Im[ω]/m = 0.01. The dashed lines correspond to C̃2pt.(ω, T )
in Eq. (10) and m	t = 1/10. The results are shown for two
values of T = 10/m, 102/m corresponding to Nt = 102, 103.
One sees a signal for the ground state, albeit this is distorted
by the interference with the excited states. Depending on the
mass gap and the resources available allowing for the time
resolution, it might be more beneficial to use alternative meth-
ods (e.g., the rodeo method [46]) that may provide quicker
resolution of the spectrum.

We conclude by remarking that this method provides a
systematically improvable way for accessing the spectrum
from real-time correlation functions that have been accessed
for a finite number of measurements in time. As seen in
comparing the top and bottom panels of Fig. 1, the ground
state resolution improves as mT increases. This is because
the error is related to the dimensionless quantity 	t

T = 1
Nt

, and
therefore decreases as Nt increases.

C. Accessing local matrix elements currents

This procedure can be generalized to allow for the
determination of matrix elements of currents that are local in
time. In what follows, we assume a generic current, which we
label as J and insert at t = 0. To specify the initial and final
states that couple to the current, we insert two time evolution
operators at times ti and t f satisfying t f > 0 > ti. Since these
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correlation functions depend on three-time locations,
(ti, 0, t f ), we refer to them as three-point correlators. We
can write these explicitly in terms of unitary time-evolution
operators and the current,

C3pts.(t f , ti ) ≡ 0〈� f |e−it f HJ (0)eitiH |�i〉0, (11)

making it amenable for quantum simulations using quantum
gates.

Inserting a complete set of states, we deduce the spectral
decomposition

C3pts.(t f , ti ) =
∑
n f ,ni

e−it f En f eitiEni
0〈� f |n f 〉〈ni|�i〉0〈n f |J (0)|ni〉.

(12)

Working in the time interval t ∈ [−Ti, Tf ], with Ti, Tf > 0,
we obtain the Fourier transform of the three-point correlation
function,

C3pts.(ω f , ωi, Tf , Ti )≡
∫ Tf

0
dt f eit f ω f

∫ 0

−Ti

dti e−itiωiC3pts.(t f , ti )

=
∑
n f ,ni

i 0〈� f |n f 〉
	ωn f

i
〈ni|�i〉0
	ωni

(1 − eiTf 	ωn f )

× (1 − eiTi	ωni )〈n f |J (0)|ni〉 (13)

where we have introduced complex frequencies ωi and ω f ,
and the frequency differences 	ωn j = ω j − Enj .

By scanning the frequency-dependent correlation function
as a function of both ωi and ω f , one can in principle identify
the spectrum of the theory since these values of ω would
give the local maxima. More importantly, Eq. (13) tells us
how the correlation function at these values of ω depend on
the desired matrix elements of the external current. As Tf

and Ti becoming increasingly large, the value of the correlator
at a given peak associated with an eigenstate of the theory
would be saturated by a single value of 〈n f |J (0)|ni〉 and other
quantities that may be constrained from two-point correlation
functions.

Here we have assumed that time is a continuous parameter,
which in a standard (classical) lattice calculation it is not.
Lifting this assumption can be done using the same steps used
to arrive at Eq. (10).

D. Accessing nonlocal current matrix elements

Finally, we arrive at the matrix elements of current that are
displaced in time. In particular, we are interested in accessing
matrix elements of the form 〈n f |T [J (tc)J (0)]|ni〉, where two
local currents are inserted at different times.

Here we discuss the possibility of accessing these from
four-point correlation functions. We will assume a particular
time ordering where tc > 0, but this is a soft assumption in
what follows that is easily lifted. Assuming t f > tc > 0 > ti,
we can define the desired correlator as

C4pts.(t f , tc, ti ) ≡ 0〈� f |e−i(t f −tc )HJ (0)e−itcHJ (0)eitiH |�i〉0
= 0〈� f |e−it f HJ (tc)J (0)eitiH |�i〉0. (14)

The first line provides a representation that is most immedi-
ately useful for quantum computations. The second equality

follows from the identification of J (tc) = eitcHJ (0)e−itcH as
a Heisenberg operator.

By inserting a complete set of states, we find Eq. (14) can
be rewritten,

C4pts.(t f , tc, ti ) =
∑
n f ,ni

e−it f En f eitiEni
0〈� f |n f 〉〈ni|�i〉0

× 〈n f |J (tc)J (0)|ni〉. (15)

At this stage, this looks similar to Eq. (12), with the only
difference being that the matrix element also depends on
time. Given our goal is to constrain 〈n f |J (tc)J (0)|ni〉, we
can perform a Fourier transform of this. By determining the
correlation function over continuous time periods given by
ti ∈ [−Ti, 0] and t f ∈ [tc, Tf ], one arrives at

C4pts.(ω f , ωi, tc, Tf , Ti )

≡
∫ Tf

tc

dt f eit f ω f

∫ 0

−Ti

dti e−itiωiC4pts.(t f , tc, ti )

=
∑
n f ,ni

i 0〈� f |n f 〉
	ωn f

i
〈ni|�i〉0
	ωni

(eitc	ωn f − eiTf 	ωn f )

× (1 − eiTi	ωni )〈n f |J (tc)J (0)|ni〉. (16)

This result closely resembles that of Eq. (13). The key
differences are due to the boundary of t f , and the time depen-
dence of the matrix element. Otherwise the key observations
made for Eq. (13) carry through. In particular, by considering
large values of |Tj | and nonzero values of Im[ω j], this correla-
tion function will have peaks at the spectra of the theory. The
value at the peak will depend on the desired matrix elements
and quantities that are directly accessible from the two-point
correlation function, Eq. (9). In other words, by determining
both the one- and four-point correlation functions for a suf-
ficiently large range of time, one would be able to determine
real-time long-range matrix elements.

In arriving at Eq. (16), we have assumed time to be a
continous variable. This is an assumption that is simple to lift
following the steps taken to go from Eq. (9) to Eq. (10).

E. Comments on the feasibility

The viability of implementing the proposed techniques
depends on a range of details on the implementation of the
calculations and the underlying dynamics of the theory. On
the latter point, investigation such as the one presented in
Ref. [11], where the study of Compton-like amplitudes from
real-time correlation functions was first proposed, could pro-
vide a guide on the scale of resources needed to be able to
carry out studies of realistic theories. In particular, the study
considered the implications for strongly interacting theory in
1 + 1D theories, and it was found that using spatial volumes
satisfying mL = 20 − 30, where m is the lightest mass in
the theory, Compton amplitudes may be determined from
real-time correlation functions. Using this same framework,
one can provide estimates of the values of mT and Im[T ω j]
needed to arrive at percent-level systematic errors. Such an
investigation lies outside of the scope of this work, and it
might be the case that alternative methods (e.g., rodeo method
[46] or generalizations) might prove to be more beneficial.
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III. QUANTUM SIMULATION: THE CASE
FOR QUANTUM OPTICS

A. Introduction

1. Basic principle

The quantum calculation of scattering amplitudes in an
interacting relativistic scalar quantum field theory (QFT) was
first proposed as a qubit-based quantum sampler [8,9]. That al-
gorithm was subsequently translated to a continuous-variable
(CV) sampler [10], which paves the way to quantum optical
implementations and also allows the direct simulation of one
quantum field with only one quantum optical field (rather
than incurring the overhead of encoding the m samples of the
discretized amplitude of one quantum field into log2 m qubits).

The basic idea is to encode a relevant quantum unitary evo-
lution U (t ) into a quantum circuit, with specifically prepared
input states |in〉. The sampling of that quantum circuit, i.e., the
measurement of the quantum circuit outcomes |out〉〈out|, can
be used to reconstruct the correlator

C(t ) = 〈out|U (t )|in〉. (17)

For concreteness, we will consider a 1 + 1-dimensional com-
plex QFT with a quartic [φ4] interaction and a conserved
current.

An essential feature of our approach is that it gives access
to phase-sensitive probability amplitudes, Eq. (17), rather than
transition probabilities P (t ) = |C(t )|2 proposed by earlier ap-
proaches [8,10]. As exposed in Sec. II, C(t ) is the most readily
interesting quantity because the quantum phase plays a key
role in performing the Fourier transform, e.g., Eq. (13), and
accessing spectra, among other physical quantities. The prob-
lem of determining the phase of the probability amplitudes
manifests itself in two ways. First, we need to know the
relative phase across different final states, assuming t is fixed.
Second, we need to know the relative phase across different
values of t . This is discussed in Sec. IV.

The method discussed below allows for the determination
of two relative phases by experimentally interfering with the
two corresponding quantum evolutions. This method can be
implemented easily for different output states at the same
evolution time t . For different evolution times, the implemen-
tation is more involved and non-Gaussian resources (in terms
of their Wigner function) will be needed.

2. Quantum advantage

Before we proceed to the detailed presentation of our quan-
tum simulator, it is important to make our case for quantum
advantage. Our simulation is based on the empirical recon-
struction, via statistically significant quantum sampling, of the
probabilities P(t ) ∝ |C(t )|2 and even, using a phase-sensitive
configuration described below, of the correlators C(t ) directly.

As we mentioned in Sec. I B, quantum samplers derive
their quantum advantage from their ability to sample from a
classically hard-to-calculate probability distribution. But sam-
pling advantage is not what we are after.

In this work, as well as in previous ones [8,10], the goal is
to achieve quantum advantage for computing the probability
distribution by statistically significant sampling in order to
reconstruct the empirical probability distribution from the

histogram of experimental data, thereby realizing a “quantum
Galton board.” The question here is: might the sampling time
grow exponentially, or worse, with the size of the problem,
thereby negating any quantum advantage?

Answering this question requires, first, to know how many
samples are needed to achieve statistical significance for a
given number of distinct sampling outcomes. This question
was answered in Ref. [28] where it was shown, in a nut-
shell, that the probability reconstruction error depends only
linearly on the total number of sampling outcomes. Next, we
need to know how this number of sampling outcomes, i.e., of
histogram bins, scales with the size of the simulated system.
In general, this depends on the measurement basis used to
sample and is related to the exponential overhead of quantum
state estimation: for N qubits, a single arbitrary state can a
priori span all 2N basis vectors, requiring on the order of as
many measurements to determine it.

However, whereas a classical computer needs to access
the whole 2N -dimensional Hilbert space of N-qubit quantum
states in order to calculate quantum evolution [6], the quan-
tum simulator of a generally local Hamiltonian [7] does not,
because such Hamiltonians only feature a polynomial number
of parameters, leading to “exploration” of a polynomial-sized
region of Hilbert space only.6 In our case, energy-momentum
conservation and the physics behind our QFT system will
allow us to make an informed guess of the polynomial-sized
region of Hilbert space that our simulator must work in, and
therefore we will not be searching blindly. This allows us to
expect, in principle, a quantum advantage from the quantum
simulations we present here.

Note that, while it is expected that sampling the complete
distribution of states of a given QFT be an exponentially hard
problem, our goal here is to provide a method for computing
scattering processes using quantum processors. As we argue
in Sec. II, all scattering observables can be reconstructed from
time-dependent correlation functions of just single-particle
states in the theory. This implies that one only needs to
access such states, and this would be the key to alleviating
the sampling complexity issue. Hence, we find ourselves in
a different situation, in which the sampling yields a limited
number of outcomes, and statistical significance can therefore
be reached, while the corresponding probability distribution is
still difficult to calculate classically because it is highly non-
linear (e.g. φ4 model). In this situation, quantum advantage
can therefore be gained from reconstructing the probability
distribution from statistically significant sampling.

Finally, it is worth reemphasizing the major advantage of
quantum simulations over Monte Carlo methods. As will be
presented in Sec. IV, a crucial result of this work is the phase-
sensitive quantum simulation of correlators, such as C1pt.(t ),
Eq. (7). In contrast, standard Monte Carlo classical computing
techniques suffer from a sign problem that prohibits a reliable
determination of the phase.7

6A Hamiltonian with a number of parameters exponential in N
simply cannot be efficiently quantum-simulated, of course.

7Note that proof-of-principle studies of real-time observables using
Monte Carlo techniques have been performed [48].
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B. The physical model

Turning now to the specific example, we consider a com-
plex massive scalar field φ(x) = [φ1(x) + iφ2(x)]/

√
2 of mass

m in a single spatial dimension denoted by x. We discretize
space using L lattice points (x = 0, 1, . . . , L − 1), impose
periodic boundary conditions, and choose units so that the
lattice spacing is a = 1. Let π be the conjugate momentum to
the complex field φ obeying the commutation relations

[φ(x), π†(x′)] = iδxx′ . (18)

The Hamiltonian is

H =
L−1∑
x=0

[
π†(x)π (x) + ∇φ†(x)∇φ(x) + m2

0φ
†(x)φ(x)

+ λ

4
(φ†(x)φ(x))2

]
, (19)

where ∇φ(x) ≡ φ(x + 1) − φ(x), m0 is the bare mass, and λ

is the coupling constant. These constants have dimensions,
however here they are treated as dimensionless since we have
set the lattice spacing a = 1. Were we to restore a, we would
be working with the dimensionless parameters L/a, m0a, and
λa2. Thus, in the chosen units, the continuum limit (normally
a → 0) is instead obtained as m0, λ → 0 and L → ∞. It is
interesting to study the scaling of physical quantities in this
limit which is computationally challenging [49].

To renormalize the theory, m2
0 can in general take negative

values. In the procedure that follows, we will diagonalize the
quadratic piece of the Hamiltonian exactly. This requires that
the mass appears in the Hamiltonian is physical, satisfying
m2 > 0. With this in mind, we introduce the physical mass m,
and the center terms δm,

δm = m2
0 − m2. (20)

We split the Hamiltonian into free and interaction pieces,
H = H0 + Hint, with

H0 =
L−1∑
x=0

[π†(x)π (x) + ∇φ†(x)∇φ(x) + m2φ†(x)φ(x)],

Hint =
L−1∑
x=0

[
δmφ†(x)φ(x) + λ

4
(φ†(x)φ(x))2

]
. (21)

Note, we have introduced the contribution proportional to the
counter term into the interaction. Although this is quadratic in
the fields, we will treat it differently than the free part of the
Hamiltonian.

To diagonalize H0, we write the fields in terms of canonical
creation and annihilation operators,

φ(x) = 1√
L

L−1∑
k=0

1√
2ω(k)

(b(k)e2iπkx/L + c†(k)e−2iπkx/L ),

π (x) = i√
L

L−1∑
k=0

√
ω(k)

2
(b†(k)e−2iπkx/L − c(k)e2iπkx/L ),

(22)

and

ω(k) =
√

m2 + 4 sin2 πk

L
(23)

is the discretized dispersion relation for a scalar particle. The
operator b†(k) (c†(k)) creates a particle (antiparticle) of phys-
ical momentum p = 2πk

L in the periodic finite volume and
energy ω(k). The factors of 1/

√
L appearing in front of the

sums in Eq. (22) were introduced to make the creation and
annihilation operators satisfy the commutation relations

[b(k), b†(k′)] = [c(k), c†(k′)] = δkk′ . (24)

This is in contrast to the more standard 1/L, which appears in
discrete sums of finite-volume momenta. This relative factor
of

√
L is absorbed into the definition of the creation and

annihilation operators.
The free Hamiltonian H0 [Eq. (21)], can be diagonalized

using these creation and annihilation operators,

H0 =
L−1∑
k=0

ω(k)[b†(k)b(k) + c†(k)c(k)], (25)

where we normal-ordered so that the ground state |�〉o has
vanishing energy. It is annihilated by all annihilation operators
(b(k)|�〉o = c(k)|�〉o = 0). Eigenstates of the free Hamilto-
nian H0 are constructed by acting on the ground state |�〉0
with creation operators. Free particles and antiparticles are
created with b†(k) and c†(k), respectively [50]. For example,
states containing n free particles or n free antiparticles each of
momentum 2πk

L are, respectively,

|n〉o,k,b = (n!)−
1
2 b†n(k) |�〉0,

|n̄〉o,k,c = (n̄!)−
1
2 c†n̄(k) |�〉0. (26)

C. Quantum simulation using quantum optics

The goal of our quantum optical simulator if to evaluate
correlators of the form 0〈l f | exp(−iHt )|li〉0, Eq. (7), or cur-
rent matrix elements, Eq. (11), or Eq. (14). The latter two
contain current operators that will require another layer of so-
phistication involving non-Hermitian gates. We show how to
implement these with circuit-based photonic QC in Sec. IV C,
and in Sec. V, by leveraging the power of measurement-based
photonic QC. We start with the unitary evolution of Eq. (7).

As Eq. (7) indicates, we first need to prepare the system in
free-field eigenstates, which can be simulated by Fock states
of light, as addressed in Sec. III C 1 below (see Sec. V A for
concrete experimental preparation).

The next step is to implement quantum evolution under the
full Hamiltonian H = H0 + Hint. Because [H0, Hint] �= 0, this
will be done using a Trotter-Suzuki expansion in N steps of
duration 	t = t/N each, implementing the unitary

U (t ) � [U0(	t )Uint(	t )]N ≡ (e−i	tH0 e−i	tHint )N . (27)

We can now examine the separate implementations U0 and
Uint. Implementing U0 is straightforward as we can already
place the system in the eigenbasis of H0 by way of the Gaus-
sian transformations in Eq. (22), where Gaussian refers to the
Wigner function of the transformation. Implementing Uint will
require a bit more work, especially for the quartic interaction
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Hamiltonian term, and this is where quantum optical simula-
tion can be useful.

We now turn to the quantum optics specifics of our
quantum simulation. We start by distinguishing between the
quadratic (Gaussian, easy) and the quartic (non-Gaussian,
hard) terms of Hint. Any Gaussian Hamiltonian can be im-
plemented by quantum optical squeezing [51]—see also
Appendix—and optical interferometers [52] or, equivalently,
by measurement-based quantum computing (MBQC) over
CV cluster states [37]. The non-Gaussian Hamiltonian terms
can then be accessed by simply adding photon-number-
resolving (PNR) measurements to the aforementioned CV
MBQC capability, as described in Sec. V.

1. Optically encoding the free Hamiltonian H0

Having introduced the QFT of interest, we review the key
concepts that allow for the use of quantum optics to diagonal-
ize a massive free scalar QFT, based on techniques discussed
in [10]. For a brief introduction to the basics of the quantum
optics formalism used here, we point the reader to Appendix.

The free ground state |�〉o of the massive boson field can be
straightforwardly simulated by the vacuum state of a photonic
system consisting of 2L independent optical qumodes. Thus,
for our purposes, it is convenient to assign a qumode not
to each lattice site (position representation) as was done in
Ref. [10], but to each site of the dual lattice (momentum
representation). We also need to use two qumodes per dual
site, corresponding to particles and antiparticles. Thus we
identify the free massive boson vacuum (left-hand side) with
the photonic qumode vacuum (right-hand side)

|�〉o ≡
L−1∏
k=0

|0〉γ ,k,b ⊗ |0〉γ ,k,c (28)

where (k, i) (i = b, c) label the optical qumode and |0〉γ is its
ground state [Eq. (5) with n = 0]. Thus eigenstates of H0 can
be constructed as products of photon number eigenstates of
the qumodes. For example, we create the multiparticle states
(26) with photonic fields as |n〉γ ,k,b and |n̄〉γ ,k,c, respectively.
Doing this directly requires single-field light emitters of fixed
photon numbers n and n̄, which is experimentally arduous,
though feasible [53,54]. It is easier to employ photon-pair
emitters, such as based on parametric downconversion in
nonlinear materials [55]. Such sources can emit distinguish-
able fields, thereby creating photon-number correlated (and
field-entangled) qumodes, whose quantum state is the two-
mode-squeezed state described in Eq. (A5) of the Appendix.
Because of the photon number correlation, measuring the pho-
ton number in one qumode will project the other qumode onto
a Fock state, thereby generating a fixed number of simulated
particles or antiparticles. In Sec. V, we will detail a specific
implementation of this protocol that leverages MBQC over
cluster entangled states.

2. Optically encoding the interaction Hamiltonian Hint

Next, we turn to the implementation of the interaction
Hamiltonian Hint [Eq. (21)]. The quartic interaction, which
requires non-Gaussian gates, makes this a nontrivial task.
Expressing Hint in terms of the modes of the free Hamiltonian

results in a rather complicated expression involving terms
that mix different qumodes. To implement quantum gates in-
volving Hint, we introduce a Gaussian unitary transformation
G that reduces the complexity of Hint allowing its efficient
implementation with single and two-qumode gates.

The form of the interaction Hamiltonian, Eq. (21), strongly
suggests to define creation and annihilation operators at each
lattice site (position representation) instead of on the dual
lattice (momentum representation), as was used to diagonalize
the free Hamiltonian. We will therefore need to relate the
corresponding qumodes, which we show can be done easily
with quantum optics.

At each lattice site x, we introduce quadratures for two
qumodes as follows. We define their annihilation operators,

B(x) = φ(x) + iπ†(x)√
2

, C(x) = φ†(x) + iπ (x)√
2

, (29)

which obey standard Heisenberg algebras, [B(x), B†(x′)] =
[C(x),C†(x′)] = δxx′ . The quadratures are

QB(x) = B(x) + B†(x)√
2

, PB(x) = B(x) − B†(x)√
2i

,

QC (x) = C(x) + C†(x)√
2

, PC (x) = C(x) − C†(x)√
2i

, (30)

in terms of which the interaction Hamiltonian (21) can be
written as

Hint =
L−1∑
x=0

(
δm

2
{[QB(x) + QC (x)]2 + [PB(x) − PC (x)]2}

+ λ

16

{
[QB(x) + QC (x)]2 + [PB(x) − PC (x)]2

}2
)

.

(31)

Notice that QB(x) + QC (x) and PB(x) − PC (x) commute [56],
so ordering is not important. To implement the various terms
in Eq. (31), we need to engineer the quadratures (QB,C, PB,C )
from our original photonic fields which, again, encode the
linear momenta of the free field, Eq. (24). To construct the
transformation relating the two sets of quadratures, we start
by relating the corresponding annihilation operators. Using
Eq. (22), it is straightforward to obtain

B(x) = 1

2
√

L

L−1∑
k=0

[(
1√
ω(k)

+
√

ω(k)

)
b(k)

+
(

1√
ω(k)

−
√

ω(k)

)
c†(L − k)

]
e2iπkx/L,

C(x) = 1

2
√

L

L−1∑
k=0

[(
1√
ω(k)

−
√

ω(k)

)
b†(k)

+
(

1√
ω(k)

+
√

ω(k)

)
c(L − k)

]
e2iπkx/L. (32)
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With these expressions, we can immediately read off the
Fourier transforms of B(x) and C(x), respectively,

B̃(k) = 1

2

(
1√
ω(k)

+
√

ω(k)

)
b(k)

+ 1

2

(
1√
ω(k)

−
√

ω(k)

)
c†(L − k),

C̃(k) = 1

2

(
1√
ω(k)

−
√

ω(k)

)
b†(k)

+ 1

2

(
1√
ω(k)

+
√

ω(k)

)
c(L − k). (33)

Note that the discrete Fourier transform can be straightfor-
wardly implemented as a passive optical unitary transforma-
tion U over 2L modes, realized by a 2L × 2L generalized
optical interferometer [57]. Thus

U †BU = B̃, U †CU = C̃, (34)

where B = [B(0), B(1), . . . , B(L − 1)]T , and similarly for C,
as well as B̃ and C̃. Note that U is an operator acting on each
component of B and C individually and is implemented with
qumode gates.

Going back to the analytic expressions (33), these bear
strong significance in quantum optics for they constitute the
exact Heisenberg-picture Bogoliubov transformation effected
by the two-mode squeezing process (by stimulated emission
of pairs of distinguishable photons, see Appendix). Using
Eq. (A8), we thus identify

cosh[r(k)] ≡ 1

2

(
1√
ω(k)

+
√

ω(k)

)
,

sinh[r(k)] ≡ 1

2

(
1√
ω(k)

−
√

ω(k)

)
, r(k) = −1

2
ln ω(k),

(35)

where r(k) is the effective squeezing parameter.
This relation between the squeezing parameter and the

dispersion relation, Eq. (23), illuminates the physical signifi-
cance of quantum optical squeezing in the context of quantum
simulation of massive bosons: on one hand, optical squeezing
confers effective mass to the massless simulating photon field,
on the other hand, two-mode squeezing generates number cor-
relations between particles of momentum k and antiparticles
of momentum L − k, ∀k. Formally, this can also be expressed
in matrix representation(

B̃(k)

C̃†(k)

)
= S†(k, L − k; r(k))

(
b(k)

c†(L − k)

)
S(k, L − k; r(k))

=
(

cosh[r(k)] sinh[r(k)]

sinh[r(k)] cosh[r(k)]

)(
b(k)

c†(L − k)

)
, (36)

where S is a two-mode squeezing operator (for details, see
Appendix).

Combining with the discrete Fourier transform, Eq. (33),
the initial Fock-state qumodes, which coïncide with the eigen-
modes of the free Hamiltonian, can be transformed into
qumodes that simplify the interaction Hamiltonian by the

Gaussian transformation G,

B = G† b G, C = G† c G, G = S U, (37)

where G acts on individual components of b =
[b(0), b(1), . . . , b(L − 1)]T and c = [c(0), c(1), . . . , c(L −
1)]T . Note that any N-mode Gaussian transformation in
quantum optics can be experimentally realized with N × N
interferometers and single-mode squeezers, according to
the Bloch-Messiah singular-value decomposition [52].
Another way, as we will see, is to use the machinery of
measurement-based quantum computing over qumode cluster
states.

The Gaussian transformation G can also be used to relate
the quadratures (30) to the quadratures of the modes in the
momentum representation, b(k), c(k). We obtain

QB = G†qbG, PB = G† pbG, QC = G†qcG, PC = G† pcG,

(38)
where qb(k) = [b(k) + b†(k)]/

√
2, pb(k) = i[b†(k) −

b(k)]/
√

2, and similarly for (qc, pc). This transformation
allows us to implement gates involving the quadratures
(QB,C, PB,C ) using the gates with quadratures (qb,c, pb,c)
that are native to our photonic substrate. In particular, the
interaction Hamiltonian, Eq. (31), can be written in terms of
these quadratures as

Hint = G†
L−1∑
k=0

hint(k) G, (39)

where

hint(k) = δm

2
[(qb(k) + qc(k))2 + (pb(k) − pc(k))2]

+ λ

16
[(qb(k) + qc(k))2 + (pb(k) − pc(k))2]2.

(40)

The Gaussian unitary G and quantum gates involving various
terms of hint can be implemented with optical elements. Un-
like the free Hamiltonian, hint is not diagonal. However, it is
a simplified expression compared to Hint as terms labeled by
different values of the index k are now separated and commute
with each other. Thus the contributions for each k can be
implemented with quantum gates involving single qumodes
and beam splitters.

3. Quantum computation of evolution

Finally, we turn to the quantum computation of the evo-
lution of the system with the full Hamiltonian H . Here,
we outline a circuit implementation using photonic quantum
gates. We show how to implement these steps in Sec. V, by
leveraging the power of measurement-based photonic quan-
tum computing.

The full Hamiltonian evolution will be done using the
Trotter-Suzuki expansion of Eq. (27). An important question
here is what the minimal required time step 	t is and whether
it is accessible to an optical simulator. One reasonable esti-
mate is 	t � max[ω(k)]−1 ∼ 1/m. Using Eq. (35), we get
	t � e−2r(0). (Note that we are working in units in which the
lattice spacing is a = 1, so all quantities are dimensionless.)
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FIG. 2. Quantum circuit implementing the unitary Pint, Eq. (43), on two qumodes labeled (k, b) and (k, c). BS is a 50:50 beam splitter, R
is phase-space rotation given in Eq. (41), and P4 is a quartic phase gate [Eq. (45)].

It is straightforward to implement the evolution unitary
e−i	tH0 , because H0 is diagonal in the photonic qumodes.
Thus this is free-field evolution, i.e., light propagation, simply
defined by the optical path. It can be implemented using phase
shifts (also known as phase-space rotations),

Rb(k; θ ) = eiθb†(k)b(k), Rc(k; θ ) = eiθc†(k)c(k) (41)

acting on particle and antiparticle modes, respectively, as

e−i	tH0 =
L−1⊗
k=0

Rb(k; ω(k)	t ) ⊗ Rc(k; ω(k)	t ). (42)

To simulate Hint with photonic qumodes, we need the Gaus-
sian unitary G, Eq. (37). Using Eqs. (39) and (40), we
obtain

e−i	tHint = G†
L−1⊗
k=0

Pint(k) G, Pint(k) = e−i	t hint (k). (43)

To implement Pint, we massage hint with these steps:

hint = UBS

[
δm

(
q2

b + p2
c

) + λ

4

(
q2

b + p2
c

)2
]

UBS

=UBS R†
c

(π

4

)[
δm

(
q2

b + q2
c

) + λ

4

(
q2

b + q2
c

)2
]

Rc

(π

4

)
UBS

= UBS R†
c

(π

4

)[
δm

(
q2

b + q2
c

) + λ

24

(
4q4

b + 4q4
c

+ (qb + qc)4 + (qb − qc)4
)]

Rc

(π

4

)
UBS, (44)

where UBS implements a 50:50 beam splitter, and Rc( π
4 ) is the

phase shift defined in Eq. (41) with θ = π
4 . It follows that Pint

can be implemented with beam splitters and rotation gates,
which are Gaussian, as well as non-Gaussian quartic phase
gates,

P4(γ ) = ei γ

6 q4
. (45)

The circuit implementing Pint is shown in Fig. 2.
Cubic phase states and gates can be made by combin-

ing two-mode squeezing and PNR detection, as proposed in
Ref. [39]. Optical cubic gates have long been deemed diffi-
cult to implement, due to the necessity of detecting at least
50 photons for high enough non-Gaussian quality (measured
as negativity of the Wigner function) [58], but the recent
demonstration of PNR detection of up to 100 photons [59]

has opened up new possibilities. Higher-order gates can then
be obtained by use of the Baker-Campbell-Hausdorff formula
[60]. It has been shown that 15 cubic phase gates are needed to
exactly create one quartic phase gate [61]. There are, however,
strong reasons to believe that other, approximate techniques
could be used to lead to a greater economy of resources: for
example, approximate probabilistic methods for cubic phase
gates have been proposed [62,63]. There has also been a
deterministic non-Gaussian gate based on a tailored Kerr non-
linearity proposed in Ref. [64].

An optical-circuit implementation of the field-encoded
evolution operator (27) is shown in Fig. 3. Note that,
though we detail an actual physical optical implementation
in Fig. 3 for the sake of concreteness, our optical approach
will substantially differ, being measurement-based rather than
circuit-based quantum computing and will be detailed in
Sec. V. The reason why we propose this measurement-based
approach is that it allows the implementation of difficult gates,
i.e., the quartic phase gate and current operators, with greater
ease and in a near-deterministic manner.

IV. COHERENT QUANTUM SIMULATION
OF CORRELATORS

This section details a main result of this paper, which is
the method for the quantum simulation of phase-sensitive
correlators, such as C2pt.(t ) = 0〈� f |e−itH |�i〉0 in Eq. (7), which
enables the computation of the Fourier transform in Eq. (9).
This requires an additional layer of complexity as, again,
quantum sampling alone can only give access to the prob-
ability P (t ) = |C(t )|2 corresponding to a correlator C(t ).
Unsurprisingly, this layer involves quantum interferometry.
We will first determine C(t ) at a given time t but various initial
and final states, and then use these results to determining C(t )
at different times.

We can gain access to C2pt.(t ) by performing a series of
weak displacements of the state before counting photons. The
initial and final states in the correlator (7) are eigenstates of
the free Hamiltonian H0, and can be written as tensor products
of 2L Fock states, each simulated by a separate photonic
qumode (5),

|li〉0 =
L−1⊗
k=0

|mk〉γ ,k,b ⊗ |mk〉γ ,k,c,

|l f 〉0 =
L−1⊗
k=0

|nk〉γ ,k,b ⊗ |nk〉γ ,k,c (46)

with the initial state containing mk particles and mk

antiparticles with momentum p = 2πk/L, and similarly
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FIG. 3. Quantum circuit displaying one time step 	t of the Trotterized evolution operator of Eq. (27). Each horizontal wire is an optical
qumode parametrized as (k, i) (k = 0, . . . , L − 1 and i = b, c) initialized on the left in a Fock state. Gates labeled G [Eq. (37)], R [Eq. (41)]
are Gaussian; Pint [Eq. (43)] involves non-Gaussian quartic phase gates (see Fig. 2). To the right are PNR measurements for each qumode.

for the final state. It is convenient to introduce the
vectors m = (m0, . . . , mL−1, m0, . . . , mL−1)T , n = (n0, . . . ,

nL−1, n0, . . . , nL−1)T , and identify

|�i〉0 = |m〉γ , |� f 〉0 = |n〉γ . (47)

A. Single-mode implementation

In order to capture the essence of our approach without
cluttering the notation, we first consider a toy model with a
single physical mode (unlabeled here to simplify notations)
and correlator

Cn,m(t ) = γ〈n|e−itH |m〉γ . (48)

As described in Sec. V, we can prepare many copies of |m〉γ
for a given m, evolve the state via MBQC on a 1D chain
cluster state, perform PNR detection, and histogram the re-
sults against the output photon number n, thereby obtaining
an empirical probability distribution for Pn,m = |Cn,m|2 for
each n. This can be done efficiently if the number of differ-
ent outcomes n stays low, in particular when the number of
modes increases. But this does not give us access to the full
complex number that is Cn,m. To remedy this, we introduce
field displacements of the evolved photon state just before
measurement,

D(ξ ) = eξa†−ξ∗a, (49)

where |ξ | is the amplitude of the added laser field and arg(ξ ) is
its phase. Field displacements can be straightforwardly imple-
mented experimentally using an unbalanced beamsplitter to
coherently add a phase- and amplitude-controlled laser field
to a qumode, thereby displacing it in phase space. Thus we
are led to consider the modified correlators and corresponding
detection probabilities that we have access to

Cn,m(ξ ; t ) = γ〈n|D(ξ )e−itH |m〉γ , Pn,m = |Cn,m|2. (50)

For small displacements, |ξ | � 1, we can approximate the
displacement operator to first order

D(ξ ) � 1 + ξa† − ξ ∗a + O(ξ 2) (51)

and the detection probabilities can be expressed in terms of
the correlator (48) that we are interested in,

Pn,m(ξ ) = |Cn,m|2 + 2
√

n Re[ξ ∗Cn,mC∗
n−1,m]

− 2
√

n + 1 Re[ξCn,mC∗
n+1,m] + O(ξ 2). (52)

Suppose ξ ∈ R. With just three measurement settings, we
obtain

Pn,m(0) = |Cn,m|2,
Pn,m(ξ ) = Pn,m(0) + 2ξ (

√
n Re[Cn,mC∗

n−1,m]

− √
n + 1 Re[Cn,mC∗

n+1,m]),

Pn,m(iξ ) = Pn,m(0) + 2ξ (−√
n Im[Cn,mC∗

n−1,m]

+ √
n + 1 Im[Cn,mC∗

n+1,m]). (53)

Starting with zero-photon (n = 0) detection events, we obtain
a system coupling only two correlators,

P0,m(0) = |C0,m|2,
P0,m(ξ ) = P0,m(0) − 2ξ Re[C0,mC∗

1,m],

P0,m(iξ ) = P0,m(0) + 2ξ Im[C0,mC∗
1,m], (54)

which is sufficient to determine the correlators C0,m and C1,m

up to a global phase. Substituting these results into the system
(53) for n = 1 yields C2,m ∈ C, and so on. For a maximum
photon detection of M photons, these 3M equations can be
solved to obtain all Cn,m correlators involving fewer than M
photons.

B. Multimode extension

The above procedure can be easily generalized to the full
2L-mode system, where local weak displacements of 0, ξ ,

and iξ are applied in every combination to each mode before
detection. In this case, the modified correlators and corre-
sponding multimode detection probabilities can be written as

Cn,m(ξ; t ) = γ 〈n|
L−1∏
k=0

⊗Dk,b(ξk ) ⊗ Dk,c(ξ k ) · e−itH |m〉γ ,

Pn,m = |Cn,m(t )|2, (55)

where ξ = (ξ0, . . . , ξL−1, ξ 0, . . . , ξL−1) ∈ C2L is the vector
defining the 2L-mode displacement. The PNR detectors
project the state of the system onto the 2L-mode Fock state
of the photon field |n〉γ [Eq. (47)], and |m〉γ is the initial
multimode photon-number eigenstate before evolution. The
quantum circuit for two lattice sites requiring four qumodes
is depicted in Fig. 4.
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FIG. 4. Phase-sensitive simulation of the two-point correlator (7)
for two lattice sites requiring four qumodes.

If only one mode is displaced at a time, we can consider
displacements by 0, ξ j, iξ j , for a given mode j. Working as
with the single-mode toy model, we obtain expressions of
detection probabilities in terms of the two-point correlators
(7) that we are interested in,

Pn,m(0) = |Cn,m|2,
Pn,m(ξ j ê j ) = Pn,m(0) + 2ξ j

(√
n j Re

[
Cn,mC∗

n−ê j ,m

]
− √

n j + 1 Re
[
Cn,mC∗

n+ê j ,m

])
,

Pn,m(iξ j ê j ) = Pn,m(0) + 2ξ
( − √

n j Im
[
Cn,mC∗

n−ê j ,m

]
+ √

n j + 1 Im
[
Cn,mC∗

n+ê j ,m

])
, (56)

where ê j is the unit vector along component j.
For a 2L-mode system with maximum PNR resolution of

K photons on each mode, displacing in this way leads to
4L + 1 measurement settings which give rise to (4L + 1)K

equations that can be solved to determine the (4L)K real
parameters associated with the possible correlation functions.
However, not all correlators are needed.

Next, we discuss how to extract the relative phase of corre-
lation functions at different times, using the above results. By
differentiating with respect to time and inserting a complete
set of Fock states, we obtain

dCn,m(t )

dt
= i

∑
n′

γ 〈n|H |n′〉γCn′,m(t ) (57)

via which one can access the time-dependent global phase that
could not be determined through Eq. (56).

Next, we discuss two alternative methods of obtaining the
global phase with quantum computation. Suppose we wish to
relate the global phases at times ta, tb with tb > ta > 0.

The first method relies on photon-controlled evolution. We
prepare our state |m〉 and evolve it with e−itaH . We attach two
ancillary qumodes, labeled as a0 and a1, one in a single photon
state, |1〉a0 , and the other in the vacuum state, |0〉a1 . These are
interfered in a 50/50 beam splitter to generate the entangled
state (|01〉a0a1

+ |10〉a0a1
)/

√
2. Mode a0 is used as control

for the evolution of our state by e−i(tb−ta )H . This requires the
photon-number-controlled gate

CUa0 ≡ exp
{ − i(tb − ta)Na0 ⊗ H

}
, (58)

where Na0 is the photon number of the ancilla qumode a0.
This is a non-Gaussian gate that increases the complexity of
the quantum simulation. The ancilla modes interfere again at a
second beam splitter and their photon numbers are measured.
Only one detector is needed, because there is only one photon

between the two ancilla modes. This is equivalent to a Mach-
Zehnder interferometer for the ancilla modes where one of
the arms is used as a control for the gate (58). The quantum
circuit for a single mode [Eq. (48)], for simplicity in notation,
is shown in Fig. 5. Explicitly, the state in the quantum circuit
before the measurements is given by

|out〉 = BSa0a1 · e−itaH · CUa0 · BSa0a1 |m〉|1〉a0
|0〉a1

= 1
2 [(e−itbH + e−itaH )|m〉|1〉a0

|0〉a1

+ (e−itbH − e−itaH )|m〉|0〉a0
|1〉a1

]. (59)

The only possible photon number measurement outcomes
on the ancilla qumodes are (na0 , na1 ) ∈ {(1, 0), (0, 1)}. After
measuring all modes, we obtain the outcome (n, na0 , na1 ) with
probability

Pn,na0
= 1

4 |Cn,m(ta) + (−)na0 Cn,m(tb)|2

= 1
4 [|Cn,m(ta)|2 + |Cn,m(tb)|2 + 2(−)na0

× cos(�(tb) − �(ta))|Cn,m(ta)Cn,m(tb)|] (60)

showing explicitly the dependence on the global phase �(t ).
Having already obtained |Cn,m(t )|, we can calculate the
relative phase �(tb) − �(ta) with experimental data using
Eq. (60).

An alternative method is based on field-controlled evolu-
tion. In this case, we attach a single ancilla qumode labeled a
in a state that consists of two sharp peaks at the quadrature
values qa = sa, sb, denoted |sa, sb〉qa

. This assumes that we
have access to such a state, such as a squeezed Schrödinger
cat state, which is challenging to engineer. We use the ancilla
quadrature as control in the evolution of the state |m〉, by
applying the non-Gaussian quadrature-controlled gate

CUq ≡ exp{−iτq ⊗ H} (61)

which is less complex than the photon-number-controlled gate
(58). The parameters are chosen so that ta = saτ , tb = sbτ .
Finally, we perform a homodyne detection measuring the p
quadrature of the ancilla. The quantum circuit is shown in
Fig. 5.

Measurement of the output state gives us access to the
probability distribution

P (p) ∝ ∣∣Cm,n(ta)eipsa + Cm,n(tb)eipsb
∣∣2

≈ |Cn,m(ta)|2 + |Cn,m(tb)|2 + cos(�(tb) − �(ta)

+ p(sb − sa))|Cn,m(ta)Cn,m(tb)| (62)

from which the phase difference �(tb) − �(ta) can be
calculated.

C. Three-point correlation functions

Beyond simulating Hamiltonian evolution, we seek matrix
elements of currents, such as given by Eq. (11). Consider the
three-point correlation function

Cn,m(ti, t f ) = 〈n|eit f HJ (x)e−itiH |m〉, (63)

where J (x) is the U (1) current,

J (x) = i[φ(x)π†(x) − φ†(x)π (x)]. (64)
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FIG. 5. Quantum circuits for the calculation of the time-dependent global phase of the two-point correlation function (48) using photon-
number and quadrature control.

To compute the three-point correlator, we work as before
by inserting displacement operators and taking derivatives.
Additionally, we insert the Gaussian unitary eiζJ (x), instead
of J (x) itself, which is a Hermitian operator, and expand
for small ζ , eiζJ (x) = I + iζJ (x) + O(ζ 2), to recover the de-
sired amplitude. The quantum circuit for the calculation of
the three-point correlator on two lattice sites requiring four
qumodes is shown in Fig. 6.

This procedure yields the three-point correlation functions
up to a global phase. To calculate the phase, we work as before
to express the derivative with respect to time t f as

dCn,m(ti, t f )

dt f
= i

∑
n′

γ 〈n|H |n′〉γCn′,m(ti, t f ) (65)

from which we can deduce the global phase as a function of
time.

Alternatively, we can introduce ancilla qumodes to perform
a controlled evolution by controlling either with photon num-
ber or a quadrature, similar to the process depicted in Fig. 5.

It is straightforward to extend this method to higher-point
correlators of currents, albeit it becomes more cumbersome as
the number of insertions of currents increases.

V. MEASUREMENT-BASED QUANTUM
OPTICAL SIMULATION

In this section, we turn to MBQC implementation, which
allows us to leverage the record scalability achieved in the
generation of cluster states [30–34], the quantum substrates
for universal quantum computing [35,65].

In addition, an MBQC implementation allows us to achieve
two critical simulation steps: (i) the generation of arbitrary
input Fock states (which map directly to excitation states
of the free-field QFT) and (ii) the deterministic generation
of the nonunitary polynomial gates which simulate current
matrix elements. Nonunitary quantum gates in particular
are very nonstandard and require non-Gaussian quantum

optical resources. It has been shown that the formalism of
measurement-based quantum computing and, in particular,
its photonic implementation using continuous-variable cluster
states, can be leveraged to great effect by the simple addition
of photon-number-resolved (PNR) measurements [66].

A. Input Fock states

As presented in Sec. III, eigenstates of the free Hamiltonian
H0 are products of states in the photon-number basis, |n〉γ .
The states can be created within the cluster by performing
PNR detection on cluster state nodes (see Appendix). From
a quantum optical viewpoint, this can be seen immediately if
one thinks of a two-mode cluster state as a locally rotated two-
mode squeezed state

∑∞
n=0(tanh r)n/ cosh r |n〉1|n〉2, which is

perfectly photon-number correlated. Hence PNR detecting n
photons in one mode will result in projecting the other mode
onto Fock state |n〉. This can also be shown in the Gaussian
teleportation gate formalism whose homodyne detector is re-
placed by a PNR detector in order to project on the Fock basis.
First, we write a Fock state in the quadrature eigenbasis,

|n〉γ = (2π )−
1
2

∫ ∞

−∞
ds ψn(s)|s〉γq

, (66)

where ψn(s) is the well-known Hermite-Gauss wavefunction,
normalized here to

√
2π for mere convenience

ψn(s) = (2π )
1
2 × π− 1

4 (n! 2n)−
1
2 Hn(s) e− s2

2 , (67)

Hn(s) being the Hermite polynomial of order n. We then re-
express the Fock state as a quadrature eigenstate modified by
the non-Gaussian operator ψn(Q):

|n〉γ = (2π )−
1
2 ψn(Q)

∫ ∞

−∞
ds |s〉γq

, (68)

|n〉γ = ψn(Q) |0〉γp
. (69)

FIG. 6. Phase-sensitive simulation of the three-point correlator (63) for two lattice sites requiring four qumodes.
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Now, we replace the homodyne detector in the canonical teleportation circuit of Eq. (A10) by a PNR detector as operator Fn and
use the previous result8

(70)

where the application of non-Gaussian gate ψn(Q1) allows us to formally restore quadrature detection on mode 1. Since the CZ
gate exp(iQ1Q2) contains only amplitude quadrature operators it commutes with ψn(Q1), yielding

(71)

which is the familiar teleportation gate of Eq. (A10) and
therefore results in the measurement-based operator (with the
now familiar 2 ← 1 swap implied)

Fn = R( π
2 ) ψn(Q). (72)

If input (in)1 is a bare cluster state node |0〉1P, then Fn|0〉1P =
in|n〉2γ , i.e., a Fock state to a global phase left. Thus, perform-
ing PNR detection on the cluster state allows one to embed
Fock states within the cluster.

Crucially, one can see that PNR directly enacts a nontriv-
ial “Hermite-Gaussian” non-Gaussian gate which contains an
nth-order polynomial in Q. We will see in Sec. V B that a
variant of PNR detection, called photon subtraction, on the
CV cluster state allows us to separate out the polynomial gate
in Q [66], which is required for the evaluation of current
matrix elements discussed in Sec. II C, thereby yielding a
unique capability of our PNR-augmented CV cluster state
paradigm.

Finally, note that, although the PNR detection results, i.e.,
the input photon numbers, are stochastic, one can always
apply PNR detection to several cluster state nodes simultane-
ously and subsequently reroute the desired outcome once it is
obtained, by teleportation to the desired cluster state location
through homodyne measurements. This parallel “repeat-until-
success” method does not carry a significant overhead and
allows precise state preparation.

So far, we have described how CV cluster state and PNR
detection can be used together to apply an arbitrary Gaus-
sian unitary G to a well-defined Fock-state input, amounting,
respectively, to well-defined particle numbers in free-field
and momentum eigenmodes. Regarding quartic-phase gates,
exact expressions in terms of (15) cubic gates and Gaussian
gates have been derived [61], as was mentioned earlier. These
expressions can be straightforwardly translated into MBQC
operations over cluster states [37] seeded by cubic-phase
states. We now turn to the implementation of the current
matrix elements.

8Note that, unlike previous figures, these circuits flow from right to
left to better reflect operatorial order.

B. Optical quantum simulation of current operators

Beyond simulating Hamiltonian evolution, we seek ma-
trix elements of currents, such as given by Eq. (11). In this
case, generic currents given by J take the form of poly-
nomials in the field operators. In Sec. IV C, we discussed
how time correlators involving currents could be calculated
with circuit-based QC. We now show that such operator
insertions in correlation functions can be achieved through
the ability to perform the nonunitary operation of photon
subtraction on the cluster state. This, when iterated, allows
one to apply polynomial gates of arbitrary degree via gate
teleportation [66].

1. Polynomial gates

To demonstrate how this can be achieved, we can mod-
ify the teleportation circuit shown in Eq. (A10) by applying
the photon subtraction operator immediately prior to the ho-
modyne measurement and fixing the measurement angle to
θ = 0. Photon subtraction can be experimentally achieved by
placing a weakly reflective beamsplitter, of reflection coeffi-
cient r → 0, in the path of the light and sending the reflected
portion to a PNR detector. For a PNR detection outcome of n
photons, the subtraction operator is given by

Sn = (−1)n(n!enβ )−
1
2 (2 sinh β )n/2e−βa†a an, (73)

where β = − 1
2 ln 1 − r2. For a vanishing beamsplitter reflec-

tivity r → 0, β → 0 and the photon subtraction becomes a
nearly ideal application of the photon-downshift operator:
Sn → (n!)−

1
2 an. Considering this limiting case leads to a

circuit representation given by

(74)

which has a Kraus operator representation given by [66]

Kn ∝ X (m)R( π
2 )Hn

(
iQ − m√

2

)
, (75)

where Hn(x) are the Hermite polynomials of degree n.
It should be noted that using a small photon-subtraction
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beamsplitter reflectivity comes at the cost of decreasing the
success probability of a subtraction event; however, failing to
subtract any photons will reduce the applied operator to K0 ∝
X (m)R( π

2 ), which simply acts as the regular teleportation
measurement. Although it was shown in that the repeated ap-
plication of operators of the form of Kn can lead to generating
and embedding Schrödinger cat states in a cluster state, even
under imperfect conditions including Gaussian noise from
finite squeezing and away from the vanishing beamsplitter re-
flectivity limit [66], we can also use this process to implement
polynomial gates of arbitrary degrees.

By taking advantage of the ability to perform changes to
the basis of a future measurement with feedforward opera-
tions, and by performing a regular teleportation following the
circuit in Eq. (74), we can enact the operator K ′

n ∝ Hn( iQ−m√
2

).
As we cannot control the detection result, the specific Hermite
polynomial in Q that is applied will be stochastic, but known,
as m is a homodyne measurement result and n is a PNR
measurement result.

Note that we can also tune the reflectivity of the beamsplit-
ter used in photon subtraction to be small enough such that
cases where n � 2 photons are detected is vanishingly small.
In this case, we will only ever apply the operator K ′

1 ∝ Q + im
or K ′

0 ∝ 1. Thus, by repeating this circuit until the operator
K ′

1 has been applied k times, we can controllably implement
an operator that is a degree k polynomial in the quadrature

operator, Q. This final operator could be used to represent a
current, and would be

J = �k
j=1(Q + im j ), (76)

where mj ∈ R is the homodyne measurement result of the jth
teleportation circuit where photon subtraction was successful.

2. Gate teleportation

The polynomial expressed in Eq. (76) may not always be
the desired operation as one cannot control the measurement
results, mj at each step. However, if one has a sufficiently
large cluster state, regions can be used to generate a poly-
nomial resource ahead of time and use it to apply a desired
gate later through gate teleportation. Suppose that one began
with several bare cluster state nodes, each a zero-momentum
eigenstate, |0〉γp

, and iterated the method outline above on
each node separately until the measurement results mj were
near enough to a desired polynomial such that one of the states
was transformed to

|ψ ′〉 = f (Q)|0〉γp
, (77)

where f (Q) is the polynomial gate we wish to apply. Now, by
teleporting the resource |ψ ′〉 across the cluster state until it is
neighboring the quantum information that we wish to apply
the gate to, |ψ〉, and first applying a rotation R†( π

2 ) to |ψ〉, we
can implement the circuit

(78)

Pulling the circuit taut and commuting the resultant rotation
operation to the end, we get

|ψ〉out = f (Q)R( π
2 )Z†(m)R†( π

2 )|ψ〉 (79)

= f (Q)X (m)|ψ〉. (80)

Thus we can use gate teleportation to apply any operator in Q,
including polynomial gates, up to a Gaussian measurement-
dependent shift on the input quantum information.

C. Path toward fault-tolerant quantum simulation

Finally, we outline a plan of attack to correct errors in
photonic quantum simulation. The gist of the method is to
rely on Gottesman-Kitaev-Preskill (GKP) code [39] as the
error-correcting resource. The GKP qubit encoding allows
quantum error correction of qubit-level errors (e.g., a π/2
optical phase shift which amounts to a GKP qubit flip) as well
as of small CV quadrature shifts (e.g., optical phase shifts
� π/2) such as produced by the Gaussian noise resulting
from finite squeezing, thereby allowing CVQC to be made
fault tolerant over a GKP qubit encoding [40]. It has also
been shown that qumode encodings, such as the one used for
quantum simulation in this paper, can be error-corrected using
GKP ancilla [67] and this will be the strategy applied to our
photonic quantum simulation.

GKP states have already been generated and employed
as error encodings for trapped-ion [68] and transmon [69]
qubits. More recently, a preliminary demonstration of the
probabilistic generation of optical GKP states was performed
[70]. Finally, some of us have discovered quasideterministic
methods for generating GKP states [66,71], which paves the
way for near-term experimental demonstration, now in the
works.

VI. CONCLUSION

In this paper, we have proposed a detailed program, both
theoretical and experimental, for computing observables in
quantum field theories nonperturbatively using a single analog
photonic quantum processor. In particular, in Sec. II, we re-
viewed a class of time-dependent nuclear physics observables
that are currently inaccessible via lattice QCD implemented
on classical computers.

Our proposal has several unique, crucial features:
(i) it allows phase-sensitive reconstruction of scattering

amplitudes, beyond merely reconstructing a probability dis-
tribution by sampling from it;

(ii) it leverages the massive scalability of CV cluster-state
implementation, in particular in the quantum optical fre-
quency comb [29,30,72] but also in the time domain [31–34]
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and also of hybrids of the two [73], to envision scalable imple-
mentations of QFT simulation on a single photonic quantum
processor;

(iii) finally, it leverages the newly discovered capability of
CV cluster states to efficiently implement non-Gaussian, as
well as nonunitary, quantum gates such as current terms [66].

All of this bodes well for, ultimately, the experimental
feasibility of the quantum simulation of quantum field theory
beyond current lattice-gauge QCD capabilities. Although we
are not at a stage yet to consider the complexities of QCD
using the proposed setup, the path towards being able to study
QCD with a photonic quantum processor is becoming clearer.

Transitioning from our scalar QFT quantum calculations
to lattice QCD involves several steps. Each step introduces
additional complexity and requires sophisticated techniques
to manage the increased computational and theoretical chal-
lenges. A detailed roadmap includes these steps.

(1) Introduce fermionic fields into the lattice framework.
This is nontrivial due to the fermion doubling problem, which
requires the introduction of methods such as Wilson fermions,
staggered fermions, or domain wall fermions to handle. This
may be better handled by discrete variables (qubits). It is
interesting to explore QC that combines qubits (for quarks)
with qumodes (for gluons).

(2) Introduce non-Abelian gauge fields on the lattice. The
gauge field is modeled with the Wilson action using link
variables which live on the links connecting lattice sites
and plaquette variables, which are products of link variables
around elementary squares of the lattice. Progress in this di-
rection has been reported, e.g., in Ref. [74].

(3) QC of physical observables, such as hadron masses,
decay constants, and matrix elements. This often requires
sophisticated techniques to extract these quantities from lat-
tice QCD data. Tune the lattice parameters (e.g., bare quark
masses, lattice spacing) to match experimental results and
ensure accurate extrapolation to physical conditions.

(4) Perform detailed error analysis, including quantum
device imperfection as well as systematic errors from finite
lattice spacing, finite volume, and unphysical quark masses.
Extrapolate results to the continuum limit and infinite volume
limit, ensuring that physical results are robust and reliable.

(5) Address renormalization on the lattice, including non-
perturbative renormalization techniques. Extend lattice QCD
calculations to finite temperature and finite baryon density,
exploring the QCD phase diagram. Explore and develop new
algorithms and computational techniques, such as machine
learning methods, to further enhance the efficiency and ac-
curacy of lattice QCD quantum simulations.

By following these steps, one can systematically build up
from the relatively simpler scalar QFT to the highly complex
and rich structure of lattice QCD, enabling the study of the
strong interactions that govern the behavior of quarks and
gluons in high energy physics.
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APPENDIX: REVIEW OF PHOTONIC ONE-WAY
QUANTUM COMPUTING

In this Appendix, we recall fundamentals of measurement-
based universal quantum computing with cluster states [65],
also known as one-way quantum computing [35]. We focus on
the continuous-variable photonic implementation [36,40,75]
in which quantum optical fields, also known as qumodes,
are employed in lieu of qubits. As quantum computing has
been formulated for CV encodings [39,60,76], so has MBQC
[36,37,77,78]. Center to this endeavor has been the experi-
mental realization of record size qumode-based cluster states
with the most scalability promise across any quantum comput-
ing platform, be it qubit- or qumode-based [30–34,72,75,79].
See Ref. [29] for a review.

1. Basics of quantum optics

a. Quantum optical field

The quantized electromagnetic plane-wave field has the
expression, in the Heisenberg picture,

E (�r, t ) ∝ aei(�k·�r−ωt ) + a†e−i(�k·�r−ωt )

= Q cos(�k · �r − ωt ) − P sin(�k · �r − ωt ), (A1)

where a and a† are the photon annihilation and creation
operators, Q = (a + a†)/

√
2 is the position-like amplitude

quadrature, and P = i(a† − a)/
√

2 is the momentum-like
phase quadrature.

Continuous-variable quantum information uses the am-
plitude and phase quadrature eigenstates, |s〉γq

, |s〉γp
, which

satisfy

Q|s〉γq
= s|s〉γq

,

P|s〉γp
= s|s〉γp

, (A2)

and are Fourier transforms of each other. Because of the
Heisenberg inequality 	Q	P � 1/2, these states have infi-
nite energy and are therefore unphysical.

b. Single-mode squeezing

In the laboratory, arbitrarily good approximations of
the quadrature eigenstates are realized by squeezed states,
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obtained from two-photon emitters. Indistinguishable pair
photons yield single-mode squeezed states of the form

S(r)|0〉γ = e
r
2 (a†2−a2 )|0〉γ (A3)

∝
∞∑

n=0

ψn |2n〉γ ∝
∫

ds e− s2

2e2r |s〉γq
∝

∫
ds e− s2

2e−2r |s〉γp
,

(A4)

where S(r) is the squeezing operator and r the squeezing pa-
rameter, related to the two-photon emission rate [80]. For r >

0, the state is phase squeezed, else it is amplitude squeezed.
The limit r → ±∞, corresponding to infinite energy, yields
unphysical “plane wave” phase-quadrature eigenstates.

c. Two-mode squeezing

Distinguishable pair photons yield two-mode squeezed
states, which are entangled states of the form

S(1, 2; r)|0〉γ = er(a†
1a†

2−a1a2 )|0〉γ (A5)

∝
∞∑

n=0

φn |n〉γ 1|n〉γ 2

∝
∫∫

dsds′ e− (s−s′ )2

2e−2r e− (s+s′ )2

2e2r |s〉γq1|s′〉γq2

∝
∫∫

dsds′ e− (s+s′ )2

2e−2r e− (s−s′ )2

2e2r |s〉γp1|s′〉γp2.

(A6)

and are the closest physical approximations of the unphysical
Einstein-Podolsky-Rosen (EPR) entangled states [81]

|EPR〉γ 12 =
∞∑

n=0

|n〉γ 1|n〉γ 2 =
∫

ds |s〉γq1|s〉γq2

=
∫

ds |s〉γp1|−s〉γp2. (A7)

In the Heisenberg picture, the two-mode squeezing process is
described by the following Bogoliubov transformation:

a1(r) = S(1, 2; r)† a1 S(1, 2; r) = a1 cosh r + a†
2 sinh r,

a2(r) = S(1, 2; r)† a2 S(1, 2; r) = a2 cosh r + a†
1 sinh r.

(A8)

2. CV cluster states

Over qubits, cluster states (also known as graph states)
are constituted of controlled-Pauli-Z gates linking qubits all
initialized in the |+〉 = (|0〉+|1〉)/

√
2 state. Over qumodes

(quantum fields), the |+〉 states correspond, ideally, to
p = 0 quadrature eigenstates. On a lattice of L sites, we

need L qumodes for particles [labeled (k, b)] and an equal
number for antiparticles [labeled (k, c)] of physical momen-
tum 2πk

L (k ∈ ZL). CV cluster states are then formed by
entangling qumodes in p = 0 phase-quadrature eigenstates
|0〉γpk,b = (2π )−1/2

∫
ds |s〉γqk,b, (and similarly for an antipar-

ticle created by c†(k)) or, in the laboratory, phase-squeezed
states S(k, b; r)|0〉k,b = exp{ r

2 [b†2(k) − b2(k)]}|0〉γ k,b, with
controlled-Z entangling gates CZ = eiQk⊗Ql . For the sake of
simplicity, we retain quadrature eigenstates for now. A cluster
state graph is defined with the aforementioned qumodes as
vertices linked by CZ edges. A two-mode example is

(A9)

This state is identical to the EPR state, to a local (single-
qumode) Fourier transform left.

In the MBQC paradigm, the universal QC gate set can
be implemented by single qubit measurements and feed-
forward to nearest neighbors on a 2D cluster graph. In
CV MBQC, these measurements fall into two categories:
field, i.e., quadrature measurements and PNR measurements.
Field measurements project onto the aforementioned quadra-
ture eigenstates, {|s〉γq

}s∈R, {|s〉γp
}s∈R,. These measurements

are implemented by homodyne detection, i.e., interference
with a well-calibrated and stable local oscillator (LO) laser
whose phase relative to that of the measured quantum
fields determines which of its quadratures is measured. PNR
measurements project onto the discrete Fock basis states
{|n〉γ }n∈N .

In terms of MBQC gates, these two types of measure-
ments have fundamentally distinct capabilities: on one hand,
quadrature-measurement-enabled MBQC gates are Gaussian
in nature (in terms of their Wigner function) and there-
fore equivalent to Clifford operations on qubits [39,76]. We
present this in more detail later. On the other hand, PNR
measurements give access to non-Gaussian gates, whose qubit
counterparts are non-Clifford gates, and enable exponential
speedup [76,82], as well as quantum error correction [39].
In this work, PNR measurements are key to initial Fock-state
preparation (thereby defining the initial excitation number of
free fields), non-Gaussian (e−itHint ) gate implementation, and
final measurements of free field excitations after evolution
involving quartic phase gates.

It is important to note that PNR measurements of CV
cluster states have recently been discovered as a powerful
enabling paradigm for MBQC [66] and have the potential to
do the same for quantum simulation.

3. Basic principles of CV MBQC

We start by recalling the fundamentals of CV MBQC as
they relate to cluster entangled states. Details can be found
in Refs. [29,37]. A central QC primitive is the teleportation
gadget, which can be expressed in circuit form as

(A10)
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where the vertical line linking the two dots denotes the CZ12

gate—note that, if (in)1 = |0〉γp1, then the input is the canon-
ical cluster state of Eq. (A9), and where the top left bra
denotes a measurement, with result m, of the θ -rotated quadra-
ture Pθ = R†(θ )PR(θ ) = −Q sin θ + P cos θ , where R(θ ) =
exp(−iθa†a). Note that this circuit proceeds from right to
left so that one can straightforwardly write down the circuit
operators in the order that they apply. Any quantum state, po-
tentially multimode (which will obviously increase the circuit
breadth), can enter the circuit at placeholder (in)1 and come
out teleported—and possibly acted on by a gate—at place-
holder (out)2. For teleportation, (in)1 = |ψ〉1 and the desired
output is (out)2 = |ψ〉2. The T2←1 teleportation operator can
be simplified and written effectively as9

T2←1 = X2
(

m
cos θ

)
R2

(
π
2

)
P2(tan θ )SWAP2←1, (A11)

where P (κ ) = eiκQ2
is the shear operator, X (s) = e−isP and

Z (t ) = eitQ are the respective Q and P-quadrature translation
(also known as displacement) operators, and the quantum
Fourier transform R2( π

2 ) is a teleportation byproduct—analog
to the Hadamard gate for qubits. Although the T2←1 teleporta-
tion operator is applied by physically performing a destructive
measurement on mode 1, the quantum information is pre-
served and teleported to mode 2, so one can treat T2←1 as
an effective single-mode (one-in, one-out) operator. Another
important point is that while the translation operator applied
is dependent upon the randomly determined measurement
result m, deterministic operation is always possible by the
feedforward of m to further qumodes, by shifting and rotating
subsequent measurement bases. In fact, for Gaussian opera-
tions, this ‘adjustment’ can even be made after performing
subsequent measurements by performing the correction on the
measurement result [36]. This is because Gaussian CV gates
are the analogues of Clifford qubit gates. Keeping this key fact
in mind, we can treat Eq. (A10) as the operator

T (κ ) = R
(

π
2

)
P (κ ), (A12)

where κ = tan θ is chosen by the user.

9Note that θ = π

2 , i.e., performing a homodyne measurement of Q,
does not teleport. It acts to disconnect the cluster state.

Concatenating several circuits of this form is equivalent
to teleporting down a cluster state chain of the form of
Eq. (A9), and one can show that any arbitrary single-mode
Gaussian unitary can be implemented with four teleportation
steps [83]:

UG = T (κ4)T (κ3)T (κ2)T (κ1). (A13)

Note that performing two consecutive measurements with
κ2 = κ3 = 0 allows for the transference of the CZ operation
and effectively applies the two-mode gate CZ14. A more detail
and graphical understanding of this effect can be found in
Ref. [37]. With the ability to apply CZi j and single-mode
Gaussian unitaries, one can thus apply arbitrary two-mode
Gaussian unitaries through series of not more than 10 homo-
dyne measurements. With homodyne measurement alone, one
can thus use a cluster state to enact any multimode Gaussian
unitary, which is the equivalent of the Clifford gate set for
qubit-based computation.

As is well known, the universal gate set for quantum
computing requires at least one non-Clifford, i.e., one non-
Gaussian, gate, by virtue of the CV translation [76,84] of
the Gottesman-Knill theorem [82]. It is also well known
that the universal gate set can be derived from solely Gaus-
sian measurement-based gates [85] when these are applied
to qumodes encoded in qubits by way of the Gottesman-
Kitaev-Preskill (GKP) code [39]. An efficient protocol for
the near-deterministic generation of GKP qubit states was
discovered recently [66] that fully leverages the CV cluster
state structure presented above with the sole addition of PNR
measurements to homodyne ones.

Finally, a critical question is that of finite squeezing:
quadrature eigenstates are unphysical and Gaussian squeezed
states must be used in practice. The question is that the finite-
ness of the squeezing parameter r introduces Gaussian noise
which will ruin the CV protocol [86]. However, the GKP
qubit encoding remedies that problem by allowing quantum
error correction for small shifts p �→ p + ε in the quadra-
ture basis |p〉 and Menicucci proved the existence of a fault
tolerance threshold for CVQC [40] requiring no more than
10 log[exp(−2r)] = 20.5 dB of squeezing. This threshold was
brought down to less than 10 dB [87] by use of topological
surface error code [88] foliated into a cluster state [89,90].

[1] Y. Aokiet al. (Flavour Lattice Averaging Group (FLAG)),
FLAG Review 2021, Eur. Phys. J. C 82, 869 (2022).

[2] R. A. Briceno, J. J. Dudek, and R. D. Young, Scattering pro-
cesses and resonances from lattice QCD, Rev. Mod. Phys. 90,
025001 (2018).

[3] M. T. Hansen, H. B. Meyer, and D. Robaina, From deep inelas-
tic scattering to heavy-flavor semileptonic decays: Total rates
into multihadron final states from lattice QCD, Phys. Rev. D
96, 094513 (2017).

[4] J. Bulava and M. T. Hansen, Scattering amplitudes from
finite-volume spectral functions, Phys. Rev. D 100, 034521
(2019).

[5] Z. Davoudi, N. Mueller, and C. Powers, Towards quantum
computing phase diagrams of gauge theories with thermal pure
quantum states, Phys. Rev. Lett. 131, 081901 (2023).

[6] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[7] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[8] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum algorithms
for quantum field theories, Science 336, 1130 (2012).

[9] S. P. Jordan, K. S. M. Lee, and J. Preskill, Quantum computa-
tion of scattering in scalar quantum field theories, Quantum Inf.
Comput. 14, 1014 (2014).

043065-19

https://doi.org/10.1140/epjc/s10052-022-10536-1
https://doi.org/10.1103/RevModPhys.90.025001
https://doi.org/10.1103/PhysRevD.96.094513
https://doi.org/10.1103/PhysRevD.100.034521
https://doi.org/10.1103/PhysRevLett.131.081901
https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.1217069
https://doi.org/10.26421/QIC14.11-12-8


RAÚL A. BRICEÑO et al. PHYSICAL REVIEW RESEARCH 6, 043065 (2024)

[10] K. Marshall, R. Pooser, G. Siopsis, and C. Weedbrook, Quan-
tum simulation of quantum field theory using continuous
variables, Phys. Rev. A 92, 063825 (2015).

[11] R. A. Briceño, J. V. Guerrero, M. T. Hansen, and A. M. Sturzu,
Role of boundary conditions in quantum computations of scat-
tering observables, Phys. Rev. D 103, 014506 (2021).

[12] W. A. de Jong, K. Lee, J. Mulligan, M. Płoskoń, F. Ringer,
and X. Yao, Quantum simulation of nonequilibrium dynamics
and thermalization in the Schwinger model, Phys. Rev. D 106,
054508 (2022).

[13] W. A. De Jong, M. Metcalf, J. Mulligan, M. Płoskoń, F. Ringer,
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