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ARTICLE INFO ABSTRACT
Keywords: Near real-time (NRT) crop type mapping plays a crucial role in modeling crop development, managing food
Crop mapping supply chains, and supporting sustainable agriculture. The low-latency updates on crop type distribution also
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help assess the impacts of weather extremes and climate change on agricultural production in a timely fashion,
aiding in identification of early risks in food insecurity as well as rapid assessments of the damage. Yet NRT crop
type mapping is challenging due to the obstacle in acquiring timely crop type reference labels during the current
season for crop mapping model building. Meanwhile, the crop mapping models constructed with historical crop
type labels and corresponding satellite imagery may not be applicable to the current season in NRT due to
spatiotemporal variability of crop phenology. The difficulty in characterizing crop phenology in NRT remains a
significant hurdle in NRT crop type mapping. To tackle these issues, a novel emergence-based thermal pheno-
logical framework (EMET) is proposed in this study for field-level NRT crop type mapping. The EMET framework
comprises three key components: hybrid deep learning spatiotemporal image fusion, NRT thermal-based crop
phenology normalization, and NRT crop type characterization. The hybrid fusion model integrates super-
resolution convolutional neural network (SRCNN) and long short-term memory (LSTM) to generate daily sat-
ellite observations with a high spatial resolution in NRT. The NRT thermal-based crop phenology normalization
innovatively synthesizes within-season crop emergence (WISE) model and thermal time accumulation
throughout the growing season, to timely normalize crop phenological progress derived from temporally dense
fusion imagery. The NRT normalized fusion time series are then fed into an advanced deep learning classifier, the
self-attention based LSTM (SAtLSTM) model, to identify crop types. Results in Illinois and Minnesota of the U.S.
Corn Belt suggest that the EMET framework significantly enhances the model scalability with crop phenology
normalized in NRT for timely crop mapping. A consistently higher overall accuracy is yielded by the EMET
framework throughout the growing season compared to the calendar-based and WISE-based benchmark sce-
narios. When transferred to different study sites and testing years, EMET maintains an advantage of over 5% in
overall accuracy during early- to mid-season. Moreover, EMET reaches an overall accuracy of 85% a month
earlier than the benchmarks, and it can accurately characterize crop types with an overall accuracy of 90% as
early as in late July. F1 scores for both corn and soybeans also achieve 90% around late July. The EMET
framework paves the way for large-scale satellite-based NRT crop type mapping at the field level, which can
largely help reduce food market volatility to enhance food security, as well as benefit a variety of agricultural
applications to optimize crop management towards more sustainable agricultural production.

1. Introduction provision of crop species distribution estimates with low latency (e.g.,
one to two days) and frequent updates (e.g., daily to weekly), can help

Crop type information is essential to understand the global food predict potential food shortfalls or surpluses and provide valuable in-
supply and support sustainable agricultural development over space and sights for supply chain management, insurance design, and food market
time. In particular, near real-time (NRT) crop type mapping, through the volatility in a timely fashion (Cai et al., 2018; Yang et al., 2023). NRT
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crop type mapping can also facilitate a wide range of applications,
including crop acreage estimation, crop phenology characterization, and
yield predictions, within the growing season (Bégué et al., 2018; Yang
et al., 2023; Zhang and Diao, 2023). With altered patterns of tempera-
ture and precipitation, and increased frequencies of extreme weather
events, global food security has been increasingly challenged by climate
change events (Portner et al., 2022; Prosekov and Ivanova, 2018).
Through early characterization of crop type distribution, NRT crop
mapping can provide important data for assessing the impacts of climate
change and weather extremes on agricultural production throughout the
growing season. These insights may further aid in early warning systems
and risk management by helping identify early signs of potential food
insecurity risks and provide rapid assessments of the damage, enhancing
food security under changing climate conditions (Cai et al., 2018; Gao
et al., 2023; Gao and Zhang, 2021).

Crop type mapping models typically utilize machine learning tech-
niques to analyze diverse types of remote sensing imagery for identi-
fying and classifying crop species of agricultural fields. A range of
metrics (e.g., reflectance bands, vegetation indices [VIs], gray level co-
occurrence matrix [GLCM], seasonal amplitude of VIs, length of the
growing season) extracted from satellite remote sensing have been
employed to differentiate crop types. These metrics, spanning across
spectral, structural, textual, and temporal dimensions, are used to
characterize phenological, biophysical, and physiological properties of
crop species (Feng et al., 2019; Nguyen et al., 2020; Wang et al., 2019;
Zhong et al., 2019). Particularly, the temporal crop phenological pat-
terns extracted from remote sensing time series have been deemed
among the most critical to identifying crop types (Zhong et al., 2019).
Affected by a combination of weather, environmental, and management
conditions, crop species usually maintain unique temporal phenological
development patterns throughout the growing season (e.g., timing of
emergence and flowering). Such temporal phenological patterns can be
represented via phenological metrics or be modeled with machine (or
deep) learning techniques from time-series satellite images (Diao, 2020;
Diao et al., 2021). The phenological metrics can be extracted using
threshold-based (White et al., 2009), derivative-based (Tan et al., 2010),
curvature-based (Klosterman et al., 2014; Zhang et al., 2003), Gu-based
(Gu et al.,, 2009), pheno-network (Diao, 2019), and curve fitting
parameter-based (Soudani et al., 2008; Zhong et al., 2014) methods.
Besides phenological metrics, several deep learning architectures (e.g.,
long short-term memory [LSTM], one-dimensional convolutional neural
network [1-DCNN], and transformer) have been increasingly utilized to
learn temporal patterns of crop species from high-dimensional time-se-
ries remote sensing data (Pelletier et al., 2019; Xu et al., 2020; Zhong
et al., 2019). For example, the crop-specific temporal patterns can be
modeled using the memory cell and gating mechanism (i.e., input gate,
forget gate, and output gate) by LSTM, convolutional operations across
the temporal dimension by 1-DCNN, as well as the self-attention
mechanism by transformer (Hochreiter and Schmidhuber, 1997; Pel-
letier et al., 2019; RuBwurm and Korner, 2020; Xu et al., 2021; Zhong
et al., 2019).

Despite the progress made in detecting crop species with character-
istic temporal phenological patterns, NRT crop type mapping remains
challenging. Most phenological metrics rely on satellite observations
throughout the growing season, which makes these metrics difficult to
be retrieved in NRT (You et al., 2023). Deep learning models, with the
flexibility to learn feature representations from varying lengths of sat-
ellite time series, largely facilitate NRT applications. However, the crop
type ground reference labels for training the deep learning models can
be difficult to acquire within season, particularly at large scales. The
limited availability of crop labels significantly hampers the model
development during the growing season (Wang et al., 2019; Xu et al.,
2020). To address the aforementioned issues, a favored strategy adopted
by existing studies is to train deep learning classifiers using satellite time
series from the past growing seasons alongside corresponding historical
ground reference data (e.g., Cropland Data Layer [CDL] in the US)
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(Johnson and Mueller, 2021; Xu et al., 2021; Xu et al., 2020; Yaramasu
etal., 2020; Zhu et al., 2017). The pre-trained model can then be applied
to satellite observations of the current growing season to obtain crop
type predictions (Azar et al., 2016; Cai et al., 2018; Johnson and
Mueller, 2021; Konduri et al., 2020; Xu et al., 2020). Most of these
models employ the calendar-based modeling strategy which assumes
that crop growth patterns are comparable in terms of calendar dates
across years and locations. Yet such assumptions may not be met due to
the spatiotemporal difference in climatic and environmental conditions,
which may lead to varying farming practices (e.g., planting timing) and
crop phenological progress over space and time (Kerner et al., 2022; Lin
et al., 2022; Zhong et al., 2014; Zhong et al., 2016). Recognizing the
challenge of model transferability from past to current growing seasons,
recent efforts have been devoted to reducing the differences between the
distributions of satellite data and/or crop type statistics acquired in
different years and locations (e.g., through feature shift or domain
adaptation) (Kluger et al., 2021; Wang et al., 2023; Wang et al., 2022).
While these methods demonstrate improved model scalability, potential
large differences between the source and target distributions may be
difficult to accommodate (Xu et al., 2024). It remains a challenge to
effectively communicate the mechanism of crop phenology variability
with crop mapping models, which holds the potential for accommoda-
ting the spatiotemporal variation in phenology and enhancing model
scalability.

Given that most phenological metrics need to be extracted retroac-
tively with season-long satellite observations, NRT acquisition of crop
phenology remains a significant challenge, particularly when crop type
information is not available. The efforts towards satellite-based NRT
phenology characterization are still limited (Gao and Zhang, 2021).
Among the limited efforts, the curve-based and trend-based phenology
approaches have been devised to detect crop phenology using satellite
imagery in NRT. The curve-based phenology approach estimates the
NRT crop phenology by associating the current-season satellite time
series with historical satellite observations alongside their correspond-
ing phenological metrics in past seasons. (Liao et al., 2023; Liu et al.,
2018; Shen et al., 2023). Yet this approach usually requires crop type
labels for building the relationship between the current and past season
satellite observations, which makes it hardly applicable during the early
season when crop type information may not be available. The trend-
based phenology approach estimates the crop phenology through
identifying trend changes of VI curves using only the satellite observa-
tions in the current growing season (Gao et al., 2020a; Gao et al,
2020Db). The trend changes of VI curves associated with crop emergence
can be identified in NRT using the trend-based within-season emergence
(WISE) model. Compared to the curve-based phenology approach, the
trend-based approach has lessened requirement of both crop type labels
and historical satellite observations, making it promising in character-
izing the phenological variation in NRT for corresponding crop type
mapping. Yet the trend-based phenology approach is more tailored for
detecting the NRT early-season phenology (i.e., crop emergence). As the
crop phenological development throughout the growing season is sub-
ject to the influence of environmental and climatic conditions (e.g.,
temperature in particular), the limited ability of the trend-based
approach in timely accommodating the whole-season phenological dy-
namics remains a significant hurdle for scalable NRT crop type mapping.

To achieve NRT characterization of crop phenology and crop types at
the field level, the dense time-series remote sensing data of both high
spatial and temporal resolutions are needed (Gao et al., 2017). Yet most
satellite datasets (e.g., MODIS, Landsat, and Sentinel-2) still suffer from
the trade-off between spatial and temporal resolutions, and the frequent
cloudy and rainy weather events in many agricultural systems further
limit the availability of satellite time series. Those datasets may not be
able to capture the rapid phenological changes during the crop growing
season. The limited data availability during critical growing windows
has also been found to negatively affect crop type mapping models with
degraded classification performance (Cai et al., 2018; Xu et al., 2020). A
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feasible solution to this data availability issue is via the spatiotemporal
satellite image fusion, which blends satellite datasets of different reso-
lution characteristics to generate consecutive remote sensing observa-
tions with both high spatial and temporal resolutions (Zhu et al., 2018).
The spatiotemporal image fusion models can be categorized into the
following groups: weight function-based, unmixing-based, learning-
based, Bayesian-based, and hybrid methods (Gao et al., 2006; Song
et al., 2018; Zhukov et al., 1999). Despite a variety of fusion models
being developed, rapid and drastic temporal changes among imagery
remain challenging to be predicted in most spatiotemporal image fusion
studies. Many fusion models also require satellite images both before
and after the target prediction date, which may not match the purpose of
NRT data acquisition (Yang et al., 2021). Thus, an adequate design of
spatiotemporal image fusion models that can tackle these issues is crit-
ical in the context of NRT field-level crop type mapping.

The objective of this study is to develop a novel EMErgence-based
Thermal phenological framework (EMET) for NRT crop type mapping
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at the farm field level. The EMET framework synthesizes spatiotemporal
data fusion, crop phenology normalization, and advanced deep learning
to achieve scalable NRT crop mapping. In particular, an innovative NRT
thermal-based phenological approach is proposed to normalize and
register the crop growth progress throughout the growing season in a
timely fashion. Specifically, we aim at 1) integrating spatiotemporal
data fusion into NRT crop type mapping with a hybrid deep learning
spatiotemporal fusion model; 2) devising an innovative NRT thermal-
based crop phenology normalization approach by synthesizing NRT
crop emergence characterization with thermal time accumulation
throughout the season; 3) evaluating the influence of different levels of
phenology normalization on NRT crop mapping performance across
years and locations.

120

160 200 240
Day of Year (DOY)

Fig. 1. (a) The geographic locations of the Illinois (IL) and Minnesota (MN) study sites; (b) The heat accumulation (measured by accumulated growing degree days
[AGDDY]) for the states of IL and MN in the training (2017) and testing (2019 and 2020) years from early- to mid-season; Heat accumulation approximates the amount
of energy to be used for crop development. The variation in heat accumulation across space and time is substantial; (c) The early-season HLS tiles for the IL and MN
study sites in false color composite, respectively; (d) The corresponding CDL data for the IL and MN study sites, respectively.
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2. Data and materials
2.1. Study sites

This study is focused on the U.S. Corn Belt. The Corn Belt is an
important global food production area, with corn and soybeans being
the two predominant crop species. Specifically, we select two study sites
located in the U.S. Corn Belt, namely eastern Illinois (IL) and south-
western Minnesota (MN) (Fig. 1a). Both study sites are mainly covered
by agricultural fields (corn and soybeans), with a small fraction of other
land cover classes such as forests, water bodies, and built-up areas. Crop
phenological progress varies between the two spatially separate sites,
with a discrepancy of about or over one week. Apart from the spatial
phenological difference, substantial inter-annual variations in crop
phenology progress are observed among different years (e.g., variation
in crop emergence can be as large as four weeks across years) (USDA-
NASS, 2022). To examine the influence of spatiotemporal crop pheno-
logical variations on NRT crop type mapping, the crop type mapping
model is first built with the 2017 data in the IL study site, as 2017 is a
relatively normal year in terms of meteorological conditions. The
model’s ability to accommodate inter-annual phenological variations
will be tested in two other years, namely 2019 and 2020. These two
years are selected because excessive precipitation events in spring 2019
caused considerable delay in crop planting and subsequent crop
phenological progress, while 2020 is a year with relatively more similar
meteorological conditions to the training year 2017 (Fig. S1). Both the IL
and MN study sites are tested for assessing the transferability of the
model across different locations (Fig. 1b).

2.2. Datasets

The high spatial- and temporal-resolution fusion images are
employed as the primary source of satellite images for NRT crop type
mapping in this study. The fusion data are generated from the Moderate
Resolution Imaging Spectroradiometer (MODIS) MCD43A4 nadir Bidi-
rectional Reflectance Distribution Function (BRDF) Adjusted Reflec-
tance (NBAR) dataset (Schaaf and Wang, 2015) and Harmonized
Landsat Sentinel-2 (HLS) dataset (Claverie et al., 2018). The MODIS
MCD43A4 products have a spatial resolution of 500 m with daily ob-
servations. The NBAR processing mitigates the effects of viewing angles
on illumination and reflectance. The reflectance of MCD43A4 at each
date is generated through modeling the satellite observations from both
Terra and Aqua during its surrounding 16-day period with consideration
of image quality, temporal distance, as well as observation coverage to
reduce the sensor and atmospheric noise. The HLS product is generated
through the integration of Landsat 8 and Sentinel-2 with a processing
workflow incorporating atmospheric correction, geometric resampling
and registration, and BRDF normalization. The HLS dataset utilizes
satellite images acquired from both Landsat and Sentinel-2 to create
consistent surface reflectance products with a spatial resolution of 30 m.
The HLS dataset provides a more frequent revisit cycle (approximately
three days) since 2017, as Sentinel-2 started operating at full capacity
after that year, yet cloud cover may substantially reduce the availability
of HLS images. In our study sites, the number of cloud-free images
ranges from 6 to 9 for each growing season, necessitating spatiotemporal
image fusion for NRT crop mapping. Before fusion, the MODIS and HLS
images are spatially aligned. The MODIS MOD10A1 Snow Cover Daily
Global 500 m Grid product is further utilized to mask the snow pixels
within the study sites. Extreme values (i.e., out of three times of standard
deviation of reflectance) in the MODIS images are also masked and
excluded from analysis. The Quality Assessment layer of the HLS data is
used to mask pixels contaminated by cloud, cloud shadow, haze, and
other noises. Six shared bands in the MODIS and HLS datasets are
included in the fusion process, including blue, green, red, near-infrared
(NIR), short-wave infrared 1 (SWIR1), and SWIR2. The resulting fusion
dataset provides images with a 30-m spatial resolution and daily
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observations, which is ideal for NRT agricultural applications (see de-
tails in 3.1). Normalized difference vegetation index (NDVI), the most
widely used vegetation index, is derived from the fusion dataset for the
characterization of NRT crop phenology and utilized as a variable for
crop type identification.

The Cropland Data Layer (CDL) dataset is utilized to provide the
ground truth label (Boryan et al., 2011). The CDL dataset is produced
and published each year by the National Agricultural Statistics Service
(NASS) of United States Department of Agriculture (USDA). The dataset
includes annual crop type maps with a 30-m spatial resolution, with a
coverage of the Continuous US (CONUS) since 2018. In both the IL and
MN study sites, the major crop types included in CDL are corn and
soybeans, and the producer’s and user’s accuracies for these two crop
types in the CDL dataset are around 95%. Therefore, CDL is well-suited
for providing reliable ground truth reference information for crop type
mapping.

The crop progress report (CPR) is a dataset providing weekly reports
on cumulative percentages of major crop types reaching a variety of
phenological stages at the state level (USDA-NASS, 2022). Published by
USDA NASS, the CPR dataset offers state-level information on the
phenological status of crops across the U.S., including the IL and MN
sites in this study. Specifically, the emerged percentages of corn and
soybeans in CPRs for the two states are utilized to validate the results of
the NRT characterization of crop emergence dates in EMET.

In order to obtain thermal time information, DAYMET is employed in
this study for the provision of meteorological data. DAYMET is a dataset
providing daily weather information across North America, including
temperature, precipitation, and solar radiation (Thornton et al., 2022;
Thornton et al., 2021). The data are generated based on a combination
of ground meteorological observations and statistical modeling. The
spatial resolution for this dataset is 1 km, and the temporal resolution is
1 day. Among all the near-surface meteorological variables provided by
DAYMET, daily minimum and maximum temperatures are adopted to
estimate the thermal time accumulation for the crop species in our study
sites.

3. Methods

The EMET framework consists of three main components, namely
hybrid deep learning spatiotemporal image fusion, NRT thermal-based
crop phenology normalization, and deep learning-based crop type
mapping (Fig. 2). The hybrid deep learning fusion model is first
employed to blend the MODIS and HLS images to generate daily 30-m
satellite images. The fused time-series satellite data are then used for
characterizing crop emergence in NRT. The crop emergence dates are
then utilized as the onset dates of thermal time accumulation. By inte-
grating the NRT crop emergence characterization with thermal time
accumulation, our proposed thermal-based phenology normalization
approach can register the crop growth progress throughout the growing
season, enhancing the model robustness and transferability when the
model is applied across different years and/or locations. After
phenology normalization, the phenology-normalized time-series satel-
lite observations are fed into an advanced deep learning classifier to
generate the predictions of their corresponding crop types. Moreover,
the satellite datasets involved in this study (e.g., MODIS and HLS) are
updated with a low latency of one to two days after the data acquisitions,
further facilitating the NRT application of the proposed EMET
framework.

3.1. Hybrid deep learning fusion model

NRT crop type mapping requires timely acquisition of satellite ob-
servations with high spatiotemporal resolutions in order to capture the
rapid phenological changes during the growing season. In this study, the
hybrid deep learning fusion model (Yang et al., 2021) is utilized to fuse
the MODIS and HLS data to generate time-series satellite images with
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Fig. 2. The overall flowchart of the EMET framework.

the ability to predict temporal phenological changes among image
acquisition dates. As Fig. 3 shows, the hybrid fusion model incorporates
two types of deep learning architectures, namely super-resolution con-
volutional neural network (SRCNN) and long short-term memory
(LSTM). SRCNN is capable of establishing the relationship between
coarse features learned from the MODIS images and the fine features
from corresponding HLS images, while LSTM is able to learn the tem-
poral salient features in the sequential satellite images. Through inte-
grating the two architectures, the hybrid fusion model can better capture
spatial details and register the sensor difference of the two datasets due
to the employment of SRCNN; the explicit modeling of temporal
dependence through LSTM enables the model to capture rapid

SRCNN
Feature Non-linear
-2 | Extraction Mapping Reconstruction
t-1 —_—
Convolution Convolution Convolution

Coarse images (e.g., MODIS)

phenological changes among the time-series satellite observations. The
hybrid deep learning fusion model is thus well-suited for NRT crop type
mapping. On the one hand, the model ability to learn and predict drastic
temporal changes is largely enhanced by integrating SRCNN and LSTM.
On the other hand, the ability of LSTM to model complex temporal re-
lationships allows the model to predict future dates without requiring
satellite images both before and after the prediction dates.

The hybrid deep learning fusion model works as follows (Fig. 3). The
SRCNN model consists of three convolutional layers. The first convolu-
tional layer extracts critical spatial features from the MODIS images,
followed by the non-linear mapping layer which maps the extracted
features to the HLS scale. The third convolutional layer is to reconstruct
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Fig. 3. The diagram of the hybrid deep learning fusion model.
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the super-resolution (SR) images with the mapped features. The LSTM
model consists of two LSTM layers, each with 100 neurons, followed by a
dropout layer with a dropping rate of 25%. The LSTM model first learns
the temporal features embedded in the sequential SR images. After
learning the temporal changing patterns, the trained LSTM model is
applied to the original HLS images to generate the final fusion image on
the prediction date. Our previous study has shown that the hybrid deep
learning fusion model can more robustly predict rapid phenological
changes among images acquired during crop growing seasons, which
ensures the high image quality that is appropriate for modeling dynamic
agriculture systems, such as the U.S. Corn Belt. The detailed information
about the model structure and parameters for the hybrid deep learning
fusion model can be found in our previous study (Yang et al., 2021).

Before the fusion process, the MODIS images are first bilinearly
resampled to the spatial resolution of HLS (30 m). To predict the fusion
image on date t, the hybrid deep learning fusion model requires three
MODIS images, namely M; 2, M; 1, and M, acquired on dates t-2, t-1,
and t, respectively. The model also requires two HLS images H, » and
H; 4, collected on dates t-2 and t-1, respectively. In practice, the MODIS
and HLS image pairs that are closest to the prediction date (on dates t-2
and t-1) are chosen to train the model. The SRCNN component learns the
spatial relationships between features in the MODIS-HLS image pairs to
generate HLS-wise SR images on dates t-2, t-1, and t. The sequence of SR
images on dates t-2, t-1, and t are then utilized to train the LSTM model,
which learns the temporal patterns across the image sequence. The
LSTM model will then take the original HLS images on dates t-2 and t-1
and make the prediction of the fusion image on date t. We apply the
fusion model on different predicted date t (i.e., from day 1 to 365), in
order to generate a daily 30-m fusion dataset.

For each year and study site combination, 50,000 pixels (see Table S1
for the proportions of corn and soybeans) are randomly selected based
on the corresponding CDL data. 50,000 time-series observations corre-
sponding to the selected pixels are then generated with the daily 30-m
fusion images. For each pixel, the time-series observations are from
seven variables, namely six band reflectance (blue, green, red, NIR,
SWIR1, and SWIR2) and NDVI. A moving Savitzky-Golay (SG) filter is
then applied to the time-series observations to ensure that abnormal
values are removed and that the time series are smoothed.

ISPRS Journal of Photogrammetry and Remote Sensing 215 (2024) 271-291
3.2. NRT thermal-based crop phenology normalization

3.2.1. NRT crop emergence characterization

In this study, an innovative within-season emergence (WISE) char-
acterization model is incorporated in the EMET framework. WISE is
designed as a trend-based NRT crop phenology characterization method,
which is capable of identifying crop emergence timing using only the
currently available satellite observations during the growing season. As
Fig. 4 illustrates, the WISE algorithm utilizes the smoothed daily NDVI
time series processed by the SG filter as mentioned in Section 3.1. The
Moving Average Convergence Divergence (MACD) function, which is
sensitive to early trend changes, is used to capture the signal of crop
green-up. Specifically, the MACD is obtained through the difference
between two Exponential Moving Average (EMA) functions with short
and long moving windows, respectively. The EMA and MACD functions
are as follows:

EMA(v(t),n) =v(t)*k + EMA(v(t — 1),n)*(1 — k) )
k=2/(n-1) @
MACD(t) = EMA(v(t),a) — EMA(v(t),b) 3)

where v(t) represents the observation from the time-series NDVI data at
time t; n is the size of moving window in EMA; k is regulated by n and
represents the weight given to the v(t). The MACD is obtained through
two EMAs with window sizes a and b, which stand for a smaller size and
a larger size of moving windows, respectively. Specifically, a =5 and
b = 10 in this study. The change of sign in MACD (i.e., from negative to
positive) suggests a detected uptrend in the NDVI time series. Since
MACD is a moving average-based indicator, the detected trend change in
MACD can be delayed. Thus, the early trend changes are further char-
acterized using MACD divergence (MACD_div), which is defined as
follows:

MACD_div(t) = MACD(t) — EMA(MACD(t),c ) 4)

where the window size ¢ = 5. The WISE model eventually identifies the
emergence date t when the following conditions are satisfied:

MACD_div(t — 1) < MACD_div_threshold

Daily NDVI time series
(SG filter)

1

MACD time series

R

MACD_div time series

s

Crop emergence
candidate dates and
momentum calculation

s

Crop emergence date |

0.02

0.014

o Daily NDVI
| — SG filtered NDVI

Emergence

— MACD

--- MACD_div
180
DoY

Fig. 4. (a) The flowchart of the WISE algorithm; (b) Daily NDVI time series from the fusion dataset smoothed with SG filter; (c) An illustrative diagram for the
characterization of crop emergence based on the MACD and MACD_div curves generated from the smoothed NDVI time series. In this example, three dates meet the
criteria of MACD and MACD_div, but only the third date (in green) meets the momentum requirement, while the other two dates (in gray) do not accumulate a

momentum larger than 0.01.
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and

MACD_div(t) > MACD_div_threshold

and

MACD(t) < MACD _threshold, 5)

where the two thresholds MACD_threshold and MACD_div_threshold
are empirically set to be 0.01 and 0, respectively.

Since WISE is a NRT crop phenology characterization model which
may be applied during very early stages, it also computes the emergence
momentum in order to ensure the significance of the detected uptrend in
NDVI time series. The momentum is defined as an integral of positive
MACD values after the detected emergence date divided by the number
of days during the upward period. Through the incorporation of mo-
mentum, the WISE model can differentiate crop emergence which leads
to significant uptrends in NDVI from other subtle uptrends caused by
early-season weed growth or soil background information. The
threshold for the momentum is set to be 0.01. All the parameters (i.e., a,
b, ¢, MACD_threshold, and MACD_div_threshold) in WISE are tuned in
consideration of a range of values with reference to previous studies
(Gao et al., 2020a; Gao et al., 2021).

3.2.2. AGDD estimation

Growing degree day (GDD) is a widely used agricultural metric for
measuring the heat accumulation of crop species throughout the
growing season. The accumulated GDD (AGDD) approximates the en-
ergy available for crop growth and ultimately affects crop growth
progress. This information of heat accumulation can also help determine
the occurrence of specific crop phenological stages. In this study, GDD is
calculated by subtracting the base temperature Tjq. from the adjusted
daily average temperature Tygjusted_avg- The difference between Tpq, and
Tugjusted_avg TEPresents the heat energy that can be utilized for crop
growth and development. Specifically, GDD is defined as follows:

GDD = max (07 Tadjusted,avg - Tba.se) (6)

max(Toin, Thase) + Min(Trnax, Teap)
2

)

Tadjusted _avg =

where Tpq = 10 °C, Ty = 30 °C (Akyuzetal., 2017; Angel et al., 2017).
Tmin and Tmex stand for daily minimum and maximum temperatures,
respectively.

AGDD is utilized to estimate the accumulated heat during the
growing season. The AGDD estimation is obtained through the sum-
mation of daily GDD from the onset date (i.e., WISE-estimated crop
emergence date) to the prediction date of the crop type information.

predictiondate

AGDD = Z GDD (8)

onsetdate

3.2.3. NRT thermal-based phenology normalization

In order to normalize the crop progress patterns and make crop time
series comparable over space and time in NRT, the EMET framework
employs a comprehensive thermal-based phenology normalization
approach, integrating NRT crop emergence characterization and the
thermal time metric AGDD. For a given pixel in the fusion dataset, the
corresponding time-series NDVI is first extracted and smoothed. The
WISE algorithm then detects the trend change points on the time series
and estimates the emergence date with regard to the pixel. The WISE-
estimated crop emergence date will serve as the onset date for heat
accumulation. Starting from the WISE-estimated crop emergence date,
the GDD value for each day is calculated and accumulated until the
prediction date to obtain the AGDD for that pixel. All the calendar days
will then be substituted with their corresponding AGDD values, and the
time-series data, including the band reflectance and NDVI, will be
transformed accordingly. Through this normalization process, the EMET
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framework can register the crop phenological progress across different
years and regions, enhancing the model ability to accommodate the
spatiotemporal variations in crop growth progress.

To evaluate the EMET phenological scenario, two benchmark sce-
narios are further designed and compared (Fig. 5). The first one is the
calendar-based scenario, in which all the time-series data are corre-
sponding to calendar dates, and no explicit phenology information is
incorporated. All the time-series curves start at a certain date which is
shared across regions and years. Since the growing season in the U.S.
Corn Belt usually starts no earlier than late April, we set the shared start
date as day of year (DOY) 120 for the first scenario. The second scenario
is the WISE-based scenario, which incorporates the WISE-estimated
emergence date to adjust the start dates of all the time-series data.
Each curve will start at its corresponding emergence date derived by the
WISE algorithm, so that the early-season phenology around crop
emergence is registered over space and time.

3.3. Deep learning classifier

A self-attention based LSTM (SAtLSTM) model is devised in this
study to model the time-series satellite data for crop type mapping.
Time-series remote sensing observations are derived from the fusion
dataset at the pixel level to serve as the input to the SAtLSTM model,
with time steps in the model being 7 days or 50 GDDs. The predictions of
crop types are determined by each pixel’s predicted probabilities with
regard to different crop types. The SAtLSTM model consists of two LSTM
layers followed by a self-attention module (Fig. 6a).

The LSTM architecture is selected due to its ability to capture long-
term dependencies in the time-series remote sensing images. During
the growing season, the LSTM layers can identify different crop types
using its learned features that are unique to their growth patterns and
developmental stages over time. In each LSTM cell, the flow of infor-
mation at a given time step is regulated by its input gate, forget gate,
output gate, hidden state, and cell state. The gating mechanism can
determine how much new information of satellite observation to be
taken and how much of the previous states to be forgotten, which en-
ables the model to learn long-term dependencies in time-series remote
sensing data. For each time step, the LSTM cell state and hidden state are
updated based on the cell state and hidden state from the previous time
step, the satellite observation at the current time step, and the regulation
mechanism of the three gates.

Self-attention is a deep learning technique that focuses on adaptively
weighing the contributions of different inputs within a sequence to the
final prediction results (RuBwurm and Korner, 2020; Vaswani et al.,
2017). The self-attention mechanism allows deep learning models to
assign higher weights to the periods that are most characteristic of each
crop type. Moreover, the ability of the self-attention mechanism to
model complex interactions between each time step and all the
remaining time steps can help learn intricate temporal features that may
differentiate crop types.

In the self-attention mechanism, the input time series (i.e., the hid-
den features from the LSTM layers) are transformed into three compo-
nents, namely query, key, and value (Fig. 6b). The query and key are
then utilized to calculate attention weights, which correspond to the
importance of each hidden feature at different time steps to the final
output. The attention weights are then used to weigh the values in the
input sequence in order to obtain the output of the attention layer.
Specifically, the self-attention mechanism works as follows:

) v
where Q, K, and V represent query, key, and value, respectively. d is the

dimension of the key vector at a given time step. Q, K, and V are ob-
tained through linear transformations of the input X:

QK"
Vd

Attention(Q,K, V) = softmax( )
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Fig. 5. Diagram of the three scenarios tested in this study. Scenario 1 is the calendar-based scenario. Scenario 2 utilizes the WISE-derived crop emergence dates to
align the crop growth patterns. Scenario 3 illustrates how the proposed EMET framework integrates crop emergence information and thermal time together for

phenology normalization throughout the growing season.
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Fig. 6. (a) Model structure of the SAtLSTM model. Each green block represents one time step; the overlaid layers within each green block represent different features,
including band reflectance and NDVI. (b) Schematic diagram of the self-attention mechanism.

Q - WQX
K = WgX (10)
V=WyX

where X is the hidden state from the second LSTM layer, and Wgq, Wk,
and Wy are the weights for linear transformations for query, key, and
value, respectively.

Interpretation of the deep learning models can provide valuable in-
sights in how the EMET framework can discern the differences between
crop types. Here, we employ partial derivative for the SAtLSTM model to
measure the importance of the input variables. In deep learning neural
networks, partial derivative is utilized for updating the weights during
backpropagation (RuBwurm and Korner, 2020). Variables that have
larger effects on the model output can be identified through examining
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the partial derivative values of the model output with regard to the input
variables. Specifically, the interpretation of partial derivative values is
based on the magnitude and sign of the values. The magnitude of the
partial derivative values represents the rate of change in the output
caused by the change in the value of an input variable, corresponding to
the variable importance. Partial derivatives can be positive or negative.
Positive values stand for a positive relationship between the input var-
iable and the model output, and vice versa.

The predicted probability of the SAtLSTM model for corn and soy-
beans is utilized to analyze how the prediction confidence evolves over
time during the growing seasons. A dimensionality reduction technique,
t-Distributed Stochastic Neighbor Embedding (t-SNE), is also employed
to analyze the underlying structures in the high-dimensional hidden
features learned by the SAtLSTM model (Van der Maaten and Hinton,
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2008). t-SNE is able to project and visualize the high-dimensional data in
low-dimensional space and preserve local structures. The t-SNE algo-
rithm models probability distributions between data samples in both the
high-dimensional and the low-dimensional spaces, and the resulting
low-dimensional space is the one that minimizes the differences between
those two probability distributions for all data samples. The t-SNE
analysis of the hidden features from the LSTM layers can facilitate the
evaluation of distribution and separability of the features learned from
corn and soybeans pixels. The t-SNE results are further analyzed through
the Silhouette score, a widely recognized metric for assessing the sepa-
rability of different classes. The Silhouette score measures cluster
separability through contrasting the intra-class distance and inter-class
distance for the samples in each class. Ranging from —1 to 1, a higher
Silhouette score indicates better separability between classes.

The SAtLSTM model is implemented with the Keras library and
trained on an NVIDIA Tesla P100 GPU accelerator. Each LSTM layer
includes 200 hidden units after a multitude of hyperparameter tuning.
After the second LSTM layer, 50% of the neurons are randomly dropped
out, in order to help the model avoid the overfitting issue. An Adam
optimizer is adopted with its adaptive learning rates, and the initial
learning rate for the optimizer is 0.001.

3.4. Experimental design

Time-series satellite observations are derived from the fusion data in
2017, 2019, and 2020 for the two study sites. Six band reflectance (blue,
green, red, NIR, SWIR1, and SWIR2) and NDVI are included as the
variables for phenology normalization and subsequent crop type map-
ping (Belgiu and Csillik, 2018; Cai et al., 2018; Xu et al., 2020). The deep
learning classifier is first trained with the randomly sampled pixels of
the IL study site in 2017, of which 80% are used for training and the
remaining 20% are for validation. The model is then tested with the
random samples in 2019 and 2020 for both the IL and MN sites. As
mentioned in Section 3.1, 50,000 pixels are randomly sampled in each
year and study site combination. By testing the EMET framework in a
variety of years and regions, we aim to evaluate the robustness and
scalability of the proposed EMET framework. To evaluate how the
performance of the EMET framework evolves throughout the growing
season, the SAtLSTM model is trained and tested every seven days,
achieving a balance between regular updates and computational efforts.
Model training and testing are from DOY 150 to 332 (approximately
from late May to late November), with only the sequential satellite ob-
servations up to the corresponding DOY.

We evaluate the accuracy of the fusion images to ensure the reli-
ability of the time-series fusion data for both study sites in the training
and testing years. Specifically, three quantitative metrics are selected to
evaluate the fusion results, namely root mean square error (RMSE),
spectral angle mapper (SAM), and erreur relative global adi-
mensionnelle de synthese (ERGAS) (Yang et al., 2023). RMSE is a single-
band metric which calculates the average reflectance difference between
the predicted fusion image and the reference HLS image. SAM is a cross-
band metric evaluating the spectral distortion between the predicted
and reference images. ERGAS is a cross-band metric which focuses on
measuring the spectral difference between fusion images and reference
HLS images by integrating normalized RMSE among all the bands. For
all the three metrics, lower values suggest more favorable results. The
results of NRT phenology characterization are also examined. The cu-
mulative percentages of emerged corn and soybeans estimated by WISE
are validated using corresponding CPRs, with RMSE as an accuracy
metric.

The performance of EMET is compared with that of the calendar and
WISE approaches. Overall accuracy and F1 scores are selected as the
accuracy metrics to assess the model performance in classifying corn and
soybeans. The overall accuracy measures the portion of the pixels that
are correctly classified. The F1 score is the harmonic average of pro-
ducer’s accuracy and user’s accuracy. It is calculated for corn and
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soybeans separately and provides insights into the model performance
regarding different crop types. To understand how the SAtLSTM model
leverages the satellite time series for crop type mapping, partial de-
rivatives of the output predicted probabilities with respect to the
model’s input variables are also investigated (Xu et al., 2021). Partial
derivatives can suggest the impact of each input feature at each time step
on the final prediction of crop types. Euclidean distance is further uti-
lized to measure the intraspecific and interspecific differences of corn
and soybeans across years and study sites under different phenology
normalization scenarios (Serra and Arcos, 2014). To investigate the
benefits of the employment of the SAtLSTM model, random forest (RF),
as a classic machine learning model, is adopted in this study as a
benchmark model to be compared with SAtLSTM. As an ensemble
model, RF is constructed with a diverse set of decision trees, which
makes the model robust and effective in preventing overfitting. Since the
RF model may not explicitly model sequential data, each band reflec-
tance or NDVI at each time step is input as an individual variable to the
RF model, and the prediction of crop types is determined by the voting
results of the set of decision trees.

4. Results
4.1. Fusion performance

The mean RMSE, SAM, and ERGAS values of the hybrid deep
learning fusion model for different year and study site combinations are
calculated to assess the fusion accuracy (Table S2 and Fig. S2). The
images used for validation for each year and study site combination can
be found in Table S3. Fig. 7 shows the fusion results around DOY 200 in
our study sites and years. The MODIS, HLS, and fusion images are in
false color composite. The comparison between Fig. 7(b) and Fig. 7(c)
suggests that the fusion images can well capture both the spatial and
spectral features in the study sites. The spatial structures in the fusion
images resemble those in the reference HLS images with clear field
boundaries and similar within-field spatial patterns. For spectral infor-
mation, the fusion and HLS images share similar color tones, and the
fusion images can well capture the spectral differences among different
crop fields. Two clusters of crop fields are observed in the HLS images,
with their spatial distributions resembling those of the two crop species
in the CDL dataset (Fig. 7(d)). The NDVI time series are extracted from
the fusion images at randomly fields for corn (Fig. 7(e)) and soybeans
(Fig. 7(f)) in the IL and MN study sites, overlayed with the corresponding
NDVI values obtained from the cloud-free HLS images at the same lo-
cations. Compared to the HLS observations, the fusion images greatly
improve the observation frequency, providing a much denser time-series
dataset. The HLS data (orange dots) are well aligned with the fusion data
(blue dots), which further confirms the performance of the hybrid deep
learning fusion model. In terms of quantitative assessments, the mean
RMSE values for visible bands remain lower than 0.03, and those for
infrared bands range from 0.04 to 0.07. ERGAS also indicates the
satisfactory performance of the fusion model. The mean ERGAS values
spanning from 1.607 to 1.863, with standard deviation from 0.2 to 0.4;
the mean SAM values are around 0.1. The standard deviations for these
accuracy metrics remain low, suggesting a stable performance of the
fusion model. All the quantitative metrics suggest the high accuracy of
the fusion images produced by the hybrid deep learning fusion model.

4.2. WISE accuracy

The WISE algorithm is utilized to map crop emergence dates in NRT
based on the NDVI time series derived from the fusion data. The emer-
gence mapping results are presented for two example areas from the IL
and MN study sites in 2019 and 2020, respectively (Fig. 8). The median
emergence date of corn in 2019 is DOY 156 for the IL site and DOY 160
for the MN site, while their counterparts in 2020 are DOY 143 and 130,
respectively. Within each map, the WISE algorithm can also retrieve the
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Fig. 7. Fusion results for the selected study sites and years. (a) MODIS images, (b) HLS images, and (c) fusion images are presented in false color composite. The
fusion images show comparable spatial and spectral patterns to those of the reference HLS images, and the spatial structures resemble those in (d) the CDL data of the
corresponding regions. Two randomly selected NDVI time series for (e) corn and (f) soybeans in the IL and MN study sites are plotted, respectively. Blue dots
represent data derived from the fusion dataset, while orange dots are extracted from the original HLS images.

difference in crop emergence dates between corn and soybeans, as
roughly two clusters of fields can be observed in all the maps, corre-
sponding to the two main crop species in the study sites. Comparing the
WISE mapping results with the CDL data, WISE is able to derive the
general pattern that the emergence dates for corn are generally earlier
than those for soybeans. Overall, the WISE algorithm gives promising
results in NRT characterization of crop emergence, which is crucial in
the normalization of the spatiotemporal variations in crop phenology.

To assess the accuracy of the WISE-derived emergence dates, results
are aggregated for each year and study site combination and then
compared with the state-level CPR dataset. Fig. 9 shows the cumulative
percentage of crop emergence for corn and soybeans derived from both
WISE (blue curve) and CPRs (red curve). As the extent of CPRs (state-
level) is different from that of WISE results (HLS tile, a subset of the
state), the CPR cumulative progress may exhibit a wider timespan
compared to the WISE results. Yet the comparison between the WISE-
derived emergence dates and CRPs indicates that the general emer-
gence timings derived by the WISE algorithm match well with those of
CPRs. The comparison also suggests that the WISE algorithm can capture
the interannual variation of crop phenology, such as the delayed
emergence of corn and soybeans in 2019. WISE can also well capture the
interspecific phenological difference that corn tends to emerge earlier
than soybeans. In most cases, the RMSE values for the various year and
study site combinations are mostly around 10%. The difference between
the WISE-derived median emergence dates and the CPR-derived median
dates is within a week, which agrees with the previous findings (Gao
et al., 2021).

4.3. Within-season crop mapping

4.3.1. Comparison across phenological scenarios

Fig. 10 shows the model performance of three phenological scenarios
(i.e., calendar, WISE, and EMET) throughout the growing season for the
IL and MN sites in both 2019 and 2020. In general, the EMET framework
performs better than the calendar (base) and WISE scenarios. In the IL
study site, EMET scores the highest end-of-season overall accuracy with
93.5% and 92.1% in 2019 and 2020, respectively (91.9% and 90.6% for
WISE scenario; 90.3% and 89.8% for the base scenario). The EMET
framework also achieves higher F1 scores for both corn and soybeans
compared to the other two benchmark scenarios. Among the two
benchmark scenarios, the WISE scenario tends to yield relatively more
satisfactory results compared to the base scenario. The advantage of
EMET is not only evident at the end of growing seasons but throughout
the growing seasons. In most cases, EMET can reach the accuracy
plateau around DOY 200, earlier than the benchmark scenarios. Taking
90% of overall accuracy as an example, the EMET framework reaches
90% accuracy around seven days earlier than the WISE scenario in both
2019 and 2020. In 2019, EMET achieves 90% accuracy more than 20
days earlier than the base scenario.

Compared to the IL study site, the advantage of the EMET framework
is more substantial in the MN site, especially during the early- to mid-
season. For both 2019 and 2020, EMET holds substantial advantage
over the two benchmark scenarios until the end of September (around
DOY 270). Similar patterns can also be observed for the F1 scores for
corn and soybeans. In 2019, EMET maintains an advantage ranging from
6% to 10% in overall accuracy when compared to the base scenario from
DOY 180 to 250, while the WISE scenario holds an advantage of around
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2% over the base scenario in the same period. In 2020, EMET also holds
an evident advantage (between 2% and 5%) from DOY 200 to 260
compared to the two benchmark scenarios. In the MN site, EMET obtains
an overall accuracy of 85% before DOY 200 in both 2019 and 2020,
which is more than a month earlier than the two benchmarks. EMET is
also the only one that reaches an overall accuracy of 90% in the MN site.
Since the model is trained in IL and tested in MN, the end-of-season
accuracy of the MN site is admittedly less favorable compared to that
obtained in the IL site. Yet the substantial improvement brought by the
EMET framework throughout the growing season suggests that the
proposed model possesses the great ability to accommodate the spatio-
temporal variations in crop phenological progresses and provide more
reliable crop mapping results at an earlier timing.

As Fig. 10 indicates, it is more challenging to make an accurate map
of crop types in the early season, considering the relatively limited
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availability of satellite observations. Thus, we further examine the
mapping results at a relatively early timing in the growing seasons.
Fig. 11 shows the mapping results of crop types on DOY 192 in two
example subset areas of the IL and MN sites, respectively. For both the
years 2019 and 2020, the EMET framework generates mapping results
that are the most visually similar to the reference CDL data when
compared to results from the benchmarks. The base scenario tends to
generate maps with more salt-and-pepper effect. In 2019, the base sce-
nario shows a tendency to overestimate the soybeans class in both study
sites, while an overestimation of corn is observed in the MN site in 2020.
Among the two benchmark scenarios, the WISE scenario can generate
relatively more accurate maps compared to the base scenario. Overall,
the better agreement between the EMET-generated crop type maps with
the reference CDL data further demonstrates the enhanced model per-
formance and scalability of the EMET framework.
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With DOY 192 (July 11), 2019 in the MN site as an example, we
further generate the t-SNE plots of the learned hidden features of
SAtLSTM models under three phenological scenarios (Fig. 12). Overall,
the features learned in the EMET scenario show better separability be-
tween the pixels of corn and soybeans. In the calendar-based scenario,
the shapes of the clusters for corn and soybeans are more irregular, with
substantial mixture between them. While the WISE scenario generally

improves the separation between corn and soybeans, there exists a small
cluster of data samples which are separate from the major clusters for
both corn and soybeans and include mixed data samples from both
classes. The SAtLSTM learned features in the EMET scenario show
clearer separation between corn and soybeans, which suggests that the
EMET framework is able to help the deep learning model extract the
features that can better differentiate the two crop species. The Silhouette
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score quantitatively confirms the findings. The Silhouette scores are
0.242 and 0.378 in the calendar and WISE scenarios, respectively,
whereas the EMET scenario achieves a Silhouette score of 0.461.

Partial derivatives for all input variables throughout the growing
season are derived from the SAtLSTM model during the training process
under three scenarios (Fig. 13). In the calendar-based scenario, the
sensitivity of the model output relative to the variables other than
SWIR1 remains quite low. For the SWIR1 variable, the deep learning
classifier does not respond much to the input until around DOY 170. The
amplitude of partial derivatives then significantly increases from around
DOY 170 to DOY 210, which coincides with the period when the accu-
racy of the model climbs fast (Fig. 10). After phenology normalization,
SWIR1 still remains the most influential variable, with the model output
being more responsive to other variables, such as Red and NIR.
Comparing the magnitude of partial derivatives among scenarios, the
calendar-based scenario yields much lower partial derivative values.
The thermal-based EMET scenario generates overall the largest partial
derivative values, indicating that the input variables in the EMET sce-
nario can be better leveraged by the SAtLSTM model to accurately
classify the crop types. The EMET scenario also generates partial de-
rivatives with more peaks than the WISE scenario (e.g., NIR, SWIR1, and
SWIR2).

We further examine the predicted probabilities of corn and soybeans
pixels of the MN site under three scenarios from the early- to mid-season
in the testing year 2019 (Fig. S3). The MN site in 2019 is selected as the
accuracy results indicate that the spatial (IL vs. MN) and interannual
(2017 vs. 2019) variations together in crop phenology pose greater
challenges to crop mapping models. Results are shown every two weeks
during the early- to mid-season. Pixels with a probability value larger
than 0.5 are correctly classified by the model. In the early stage of the
growing season, the calendar-based and WISE scenarios tend to make
imbalanced predictions and largely overestimate one crop type over the
other. For example, the WISE scenario tends to predict most pixels as
corn in the early season. In contrast, the distribution of the predicted
probability is more balanced between corn and soybeans under the
EMET scenario, which leads to its better performance during the early
season. After July, while all three scenarios can generally identify corn
and soybeans with satisfactory accuracy, EMET still demonstrates better
results compared to the benchmarks. For instance, on DOY 234 (mid-
August), the median predicted probabilities of EMET for corn and soy-
beans are 0.936 and 0.964, respectively. Their counterparts for the
calendar-based scenario are 0.822 and 0.894, respectively. For the WISE
scenario, the median predicted probabilities for corn and soybeans are
0.825 and 0.918, respectively. Overall, the calendar-based and WISE
scenarios yield more misclassified pixels compared to EMET. EMET also
shows more left-skewed distributions and fewer pixels are with pre-
dicted probabilities lower than 0.5, which suggests its better
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performance over two benchmarks.

4.3.2. Phenology normalization

To examine how different phenology normalization approaches
transform the crop progress patterns, we randomly select and average
1000 time series for each crop type in each year and study site combi-
nation. Fig. 14 presents the averaged time series of the SWIR1 band
reflectance and NDVI time series for 120 days after the start dates of the
time series in the three phenology normalization scenarios. As indicated
in Fig. 13, this time period covers the time steps that are the most critical
in differentiating the two crop species. SWIR1 is selected because this
band is found to be the most important variable for accurate crop type
mapping (Fig. 12); NDVI is selected as it is a widely used VI for assessing
crop conditions and growth progress.

In the calendar-based scenario, there exists distinctive interspecific
difference between the mean curves for corn and soybeans. Consistent
with the CPRs, corn pixels are found with earlier emergence and growth
progress compared to soybeans pixels in every year and study site
combination. However, the intraspecific difference between the training
and testing years is also substantial (i.e., the time-series patterns for the
same species in the training and testing years are different). For
example, the time series for corn in the testing year can sometimes be
closer to that for soybeans in the training year, which likely leads to the
confusion of these two crop species in the mapping results. Normalized
by the crop emergence dates, the WISE scenario largely reduces intra-
specific difference between the training and testing years. In general, the
averaged time series for the two crop types in the testing years are close
to their corresponding curves derived from the training year. Yet the
interspecific difference also gets diluted after the WISE normalization,
likely due to the fact that all the time series start at the emergence dates
derived by the WISE algorithm. This observation is more obvious for the
NDVI time series, which may stem from the fact that NDVI is the feature
that WISE utilizes to identify crop emergence dates. Through the
incorporation of the thermal unit AGDD, the EMET normalization sce-
nario can reduce the intraspecific difference across years and study sites
while still preserving the interspecific difference between corn and
soybeans. While the WISE scenario can normalize the crop growth
patterns with the detected crop emergence, it may not consider how
different crop types respond to heat accumulation during the growing
season. The employment of AGDD in place of calendar dates can reflect
the differences in the growth rates across different phenological stages
between corn and soybeans, which ultimately helps differentiate the
growing patterns of one crop type from another.

Euclidean distance is employed to further quantify the intraspecific
and interspecific differences (Tables 1 and 2). Intraspecific difference is
measured by the Euclidean distance between the averaged time series of
the six bands reflectance and NDVI for the same crop type in two
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Fig. 13. Partial derivative values for the SAtLSTM model under the three phenology normalization scenarios: (a) calendar-based, (b) WISE, and (c) EMET. Partial
derivative values are averaged for each crop type. Buffer areas represent 95% confidence intervals.

different years. Interspecific difference is obtained through the
Euclidean distance between the averaged time series of the seven input
features for the two crop types in the same year. Ideally, lower intra-
specific differences together with higher interspecific differences are
desired. Lower intraspecific differences suggest that the temporal pat-
terns for the same crop type are more comparable across training and
testing years, while higher interspecific differences indicate larger
separability between corn and soybeans. For instance, with 2017 IL as
the training case and 2019 IL as the testing one, the quantitative results
suggest that the calendar-based scenario yields the larger distances for
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both intraspecific (14.739 for corn, 14.929 for soybeans) and interspe-
cific differences (12.552 in 2017, 14.985 in 2019). While the WISE al-
gorithm reduces intraspecific differences (7.037 for corn, 6.610 for
soybeans), it also generates the lowest interspecific difference (5.335 in
2017, 11.313 in 2019). The proposed EMET normalization scenario not
only yields substantially lower intraspecific difference compared to the
calendar-based scenario (5.090 for corn, 7.044 for soybeans), but also
retains a relatively large interspecific difference (8.126 in 2017, 12.449
in 2019). Similar patterns are observed in all the year and study site
combinations — the EMET scenario can reduce the intraspecific
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Fig. 14. Average time series of the normalized SWIR1 band reflectance and NDVI values generated from 1000 randomly selected pixels for both IL and MN sites in

2019 and 2020.

differences compared to the calendar-based scenario, while the inter-
specific differences remain relatively large after the EMET phenology
normalization compared to the WISE scenario. Overall, the results of
Euclidean distances suggest the great potential of EMET in enhancing
model scalability by normalizing the interannual varying phenological
patterns while preserving the interspecific difference to help the model
differentiate the crop types.

4.3.3. Comparison between SAtLSTM and RF

The overall accuracy and F1 scores of both classes are assessed
throughout the growing seasons for the SAtLSTM and RF models,
respectively (Fig. 15). The results suggest that the SAtLSTM model
performs consistently better than the RF model for both the IL and MN
study sites throughout the two testing growing seasons in 2019 and
2020. Among the four site-year combinations, the performances of the
two models are relatively more similar for the IL site in 2020, while the
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advantage of SAtLSTM is more significant in the other three site-year
combinations. Considering that the model is trained in the IL site, and
that 2020 is a year that has more similar meteorological conditions to
the training year 2017, it would presumably be less challenging to
predict crop types in 2020 for the IL site. For the IL site in 2019, the
SAtLSTM model possesses a consistent advantage in overall accuracy of
around 5% throughout the growing season. The better performance of
SAtLSTM is also evident in terms of F1 scores for both corn and soy-
beans. For the MN site in 2019 and 2020, the SAtLSTM model generates
significantly higher overall accuracy and F1 scores for corn in the early
season. After the accuracy plateau, the deep learning model can still
hold an advantage of approximately 3%, accompanied by consistently
higher F1 scores for soybeans. When the weather conditions and/or the
locations differ from those of the IL site in 2017, the SAtLSTM model
exhibits more superior capabilities of capturing the temporal-evolving
features embedded in the time-series satellite observations, compared
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Table 1

Intraspecific differences between the averaged time series in the training (2017
IL) and testing (2019 and 2020 for IL and MN) years, for corn and soybeans.
Differences are measured by Euclidean distance.

Euclidean Distance Intraspecific — Corn  Intraspecific —
Soybeans
2017 IL & 2019 IL Calendar  14.739 14.929
WISE 7.037 6.61
EMET 5.09 7.044
2017 IL & 2020 IL Calendar  8.098 7.156
WISE 5.81 5.333
EMET 5.224 4.526
2017 IL & 2019 MN  Calendar  11.92 9.441
WISE 6.643 6.769
EMET 7.91 7.749
2017IL & 2020 MN  Calendar  15.079 12.372
WISE 10.809 8.676
EMET 8.675 8.119
Table 2

Interspecific differences between the averaged time series of corn and soybeans
in the training (2017 IL) and testing (2019 and 2020 for IL and MN) years.
Differences are measured by Euclidean distance.

Euclidean Distance Interspecific — Interspecific —

Training Testing

2017 IL & 2019 IL Calendar  12.552 14.985

WISE 5.335 11.313

EMET 8.126 12.449

2017 IL & 2020 IL Calendar  12.552 11.502
WISE 5.335 7.218
EMET 8.126 8.826

2017 IL & 2019 Calendar  12.552 10.515
MN WISE 5.335 7.283
EMET 8.126 9.154
2017 IL & 2020 Calendar 12.552 11.06
MN WISE 5.335 7.113
EMET 8.126 7.941

to the RF model.

4.3.4. County-level crop type mapping

To demonstrate the ability of the EMET framework to map crop types
in large spatial areas, we present county-level crop mapping results in
both the IL and MN site in 2019. The Piatt County, IL and the Watonwan
County, MN are selected as two mapping areas. Fig. 16 shows the
comparison of the county-level mapping results among the proposed
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EMET framework and the two benchmarks in the early season, using
DOY 171 in mid-June for illustration. In both IL and MN sites, the
calendar-based and WISE scenarios show limited ability to differentiate
the crop types in the early season. In Piatt County, IL, the calendar-based
and WISE scenarios yield overall accuracies of 0.614 and 0.620,
respectively. They tend to overestimate corn distribution, and few soy-
beans fields are correctly identified. The EMET scenario achieves an
overall accuracy of 0.774, with relatively more soybeans being correctly
identified. In Watonwan County, MN, the calendar-based scenario
largely overestimates soybeans pixels (overall accuracy: 0.631), whereas
the WISE scenario substantially misclassifies soybeans as corn (overall
accuracy: 0.676). On the contrary, the EMET framework demonstrates
its improved capability of differentiating corn and soybeans (overall
accuracy: 0.736). Though the EMET results are not perfect with blurred
boundaries and salt-and-pepper effects in the early season, the proposed
framework starts to capture the general spatial distribution patterns of
the two crop species, suggesting the efficacy of our proposed phenology
normalization strategy.

Fig. 17 further illustrates how the EMET crop mapping results evolve
in the early- to mid-season in 2019 for the two selected counties in the IL
and MN sites. Three maps generated for early July, early August, and
early September are presented for the Piatt and Watonwan Counties,
respectively. For the Piatt County, EMET can already produce a fairly
accurate crop type map in early July in 2019 with an overall accuracy of
0.905, though there still exists an overestimation of soybeans, which
leads to the slight salt-and-pepper effects in the map. As the growing
season progresses, the Piatt crop type maps generated later in early
August (overall accuracy: 0.937) and early September (overall accuracy:
0.940) are progressively more accurate when compared to the reference
CDL data. Mapping crop types for Watonwan County in MN is more
challenging due to the spatial difference between the IL and MN sites. As
a result, maps of Watonwan County have relatively more salt-and-
pepper effects when compared to those of Piatt County in IL. Yet the
EMET framework can still well capture the general distribution of corn
and soybeans fields in early July (overall accuracy: 0.857). The mapping
accuracy in Watonwan County gradually increases as the season pro-
gresses, achieving an overall accuracy of 0.885 in early August and
0.934 in early September. Overall, the county-level mapping results
demonstrate that the EMET framework is promising in accurate map-
ping of crop type over extended geographical regions in NRT.

5. Discussion

The novel EMET framework is proposed in this study to facilitate
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timely and scalable crop mapping across space and time using training
samples from previous years. Through the integration of spatiotemporal
image fusion, thermal-based phenology normalization, and deep
learning, the EMET framework demonstrates superior performance in
NRT mapping of crop types at the field level in the U.S. Corn Belt. The
hybrid deep learning fusion model plays an important role in monitoring
the farm fields in NRT by providing time-series remote sensing images
with high spatial and temporal resolutions throughout the growing
season. The temporally dense satellite dataset lays a solid foundation for
the subsequent NRT crop phenology normalization and crop type
mapping. A thermal-based NRT phenology normalization approach is
innovatively devised through integrating NRT crop emergence charac-
terization (WISE) and AGDD normalization, which allows the timely
normalization of the crop phenological patterns across space and time.
An advanced deep learning model, SAtLSTM, is employed in this study
in an effort to effectively extract and learn the complex temporal
evolving features from the normalized satellite time series for accurate
crop classification.
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The advantage of the EMET framework particularly lies in its capa-
bility of NRT crop mapping throughout the growing season. While sat-
ellite missions provide valuable time-series datasets for agricultural
applications, it remains challenging how we can leverage the limited
information available during early- to mid-season and make reliable
crop type map as early as possible. One prominent challenge is that data
availability is highly uncertain during such a relatively short time
period. For rainfed agricultural systems like the U.S. Corn Belt, the
availability of frequent satellite observations can hardly be guaranteed
due to cloud contamination. To that end, the EMET framework in-
corporates the hybrid deep learning fusion model, which captures the
rapid phenological temporal changes and ensures the availability of
dense time series at any time during the growing season. The temporal
dynamics captured by the time series facilitates phenology character-
ization (e.g., emergence) and accurate crop type mapping. Quantitative
accuracy assessment further confirms that the enhanced spatiotemporal
resolution of the fusion dataset contributes to earlier and more accurate
identification of crop types (Fig. S4). The satellite datasets used in this
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Fig. 17. Evolving crop type maps for (a) the Piatt County in the IL site and (b) the Watonwan County in the MN site during the early- to mid-season in 2019,

generated by EMET.

study (i.e., HLS and MODIS) are publicly available only one to two days
after the images are acquired by the satellite sensors, securing the low
latency of the proposed EMET framework and facilitating NRT crop
mapping.

Another challenge lies in NRT crop mapping is that early crop
phenology is subject to the influence of a variety of environmental and
anthropogenic factors, which largely hinders the performance of con-
ventional calendar-based approach in the effective identification of crop
types. While previous studies have demonstrated the feasibility of
within-season crop mapping by coupling satellite images and ground
truth labels from past seasons, the calendar-based approach is subject to
the spatiotemporal variation in crop phenological progress (Xu et al.,
2020; Zhong et al., 2019). The integration of fusion datasets enables
EMET to uniquely leverage rich temporal phenological information to
derive insights from dense time series at the field level. By innovatively
integrating WISE and AGDD, crop phenological progress across space
and time can be normalized in NRT with phenological patterns of the
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same crop type more comparable. Meanwhile, the phenological varia-
tions of different crop types can be preserved. Leveraging MACD func-
tion and the momentum criteria, WISE can utilize partial-season data to
detect early signals of crop emergence. Different from the CPR dataset
which records crop emergence dates at the state level, the WISE algo-
rithm is able to estimate pixel-level crop emergence for each farm field
within a week after crop emergence (Gao et al., 2020a; Gao et al., 2021).
The WISE-derived emergence dates serve as the biofix dates for the
AGDD estimation, which enables further normalization of the crop
phenological patterns throughout the growing season. The EMET-
normalized satellite time series contain comprehensive yet complex
temporal features corresponding to different crop types. With the gate
mechanism in LSTM coupled with the self-attention design, the
SAtLSTM can model the temporal dependencies and capture the
sequential features that are sensitive to the different crop species, better
leveraging the limited information available during early- to mid-
season.
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The efficacy of the EMET phenology normalization approach is
assessed through the design of three phenological scenarios. The
calendar-based scenario is devised based on the commonly adopted
approach which organizes satellite observations based on the acquisi-
tion dates (Cai et al., 2018; Xu et al., 2020). Through the NRT charac-
terization of crop emergence stage, the WISE algorithm facilitates
normalization of early-season phenology (i.e., emergence). The WISE
scenario thus holds great potential in accommodating the spatiotem-
poral variability of crop phenological progress caused by the differences
in anthropogenic factors and environmental conditions around the
planting and emergence stages. Yet the WISE scenario may be limited in
normalizing the phenological progress in the mid- to late-season. To that
end, EMET normalization is designed to incorporate the heat accumu-
lation, an important driver of crop growth progress, to normalize crop
phenology in NRT. Current literature has discovered that thermal time
has been found conducive to phenology characterization across loca-
tions and years (Liao et al., 2023; Nguyen et al., 2020; Qian et al., 2019;
Zeng et al., 2016). In this study, EMET innovatively incorporates WISE
and AGDD in an NRT manner for phenology normalization, which is
found to be advantageous compared to the benchmark scenarios. Our
results suggest that the EMET scenario yields consistently better crop
type mapping accuracy across testing sites and years, with superior
performance especially in the early season. The ability of EMET to yield
accurate classification results earlier than the benchmarks makes it
promising in providing timely estimates of crop type distributions for
relevant stakeholders. The partial derivatives can further help us un-
derstand how the model learns critical information from the satellite
observations in the three scenarios. In terms of feature importance, the
SWIR1 band reflectance is identified as the most important variable for
all the three scenarios, consistent with the findings in the existing
literature that SWIR1 plays an important role in classifying corn and
soybeans in the U.S. Corn Belt (Cai et al., 2018; Xu et al., 2021). The
most critical period for identifying corn and soybeans is between
approximately DOY 170 and 210 (mid-June to late-July). According to
CPRs, this period corresponds to around the silking stage of corn and the
blooming stage of soybeans. Since the SWIR1 band is sensitive to water
content in crop plants, its high importance indicates that the difference
in water content between corn and soybeans during their late vegetative
to early reproductive stages may provide valuable information for ac-
curate crop type mapping.

The advantage of EMET lies not only in higher mapping accuracy,
but also in enhanced model scalability. Recent literature has found that
the incorporation of crop phenological information facilitates better
spatiotemporal transferability of crop classification models (Kerner
etal., 2022; Yang et al., 2023). In the context of NRT crop type mapping,
EMET also demonstrates its enhanced scalability compared to the
calendar-based and WISE scenarios, particularly for the MN site with
85% overall accuracy achieved over a month earlier. The advantage is
more obvious in 2019 during the early season when the excessive
rainfall largely altered crop phenological progress. The degraded per-
formance of the benchmark models in the MN site suggests that the
spatial difference between the study sites may largely affect crop type
mapping accuracy, and that the EMET framework can better accom-
modate not only interannually changing but also spatially varying
phenological patterns. To confirm this finding, additional spatial
transferability tests are carried out in Michigan (MI) and Kentucky (KY)
in 2019 (Fig. S5). These two sites are located distantly from the IL and
MN sites, with substantial differences in environmental and climatic
conditions (Fig. S5a-c). The consistent advantage of EMET from early- to
late-season in the MI and KY sites further confirms EMET’s enhanced
spatial scalability (Fig. S5d). Compared to the WISE normalization
approach that only considers the crop emergence dates, the use of AGDD
in EMET helps reduce the variability of the length for different pheno-
logical stages after crop emergence, facilitating better model scalability
(Zeng et al., 2016). The analysis of intraspecific and interspecific dif-
ferences further illustrates the advantages of EMET over the WISE
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scenario. While maintaining low intraspecific differences, EMET yields
substantially larger interspecific differences across different years and
study sites. The higher interspecific differences stem from EMET’s
ability to better account for the crop-specific relationship between crop
growth progress and heat accumulation, allowing the model to better
differentiate crop species.

While the EMET framework possesses its unique advantages and
shows promising performance in NRT crop mapping, there still exist
limitations. The thermal time metric, AGDD, is employed in EMET for
NRT normalization of crop phenology. While the employment of AGDD
improves model performance, it might also bring uncertainty in the
phenology normalization process. For example, spatiotemporal varia-
tion in climatic conditions (e.g., water stress) may affect the responses of
crop species to heat accumulation. In different regions, management
practices (e.g., cultivar selection, planting timing, and fertilization)
usually adapt to local environmental conditions in order to optimize
crop yield, which may alter the relationship between crop growth and
heat accumulation. Therefore, future work should be focused on more
comprehensive NRT modeling of crop phenology, through the integra-
tion of a combination of environmental (e.g., water availability and soil
properties) and anthropogenic factors (e.g., planting dates and cultivar)
derived from satellite remote sensing and auxiliary data sources. In
addition, the AGDD accumulation relies on the WISE-detected emer-
gence dates, yet the validation of WISE results is mainly based on state-
level CPR due to the limited availability of field-scale crop emergence
records. In the future, leveraging in-situ phenology observations for
validation at finer spatial scales will help us better understand model
performance across space and time.

While the EMET framework can well capture the interspecific dif-
ference for NRT crop mapping, its ability in reducing the intraspecific
difference over an extended area (e.g., intercontinental transfer) needs
to be further evaluated. While the spatial transferability has been tested
across the US Corn Belt, intercontinental transfer is faced with more
drastic differences in phenological progress, which may require more
comprehensive design to account various climatic and human factors for
phenology normalization. As one of the most important crop production
areas in the world, the U.S. Corn Belt is predominantly planted with corn
and soybeans, which are selected as the two crop types of interest. In the
future, we may explore the applicability of the proposed framework in
other crop production regions in which more crop types and/or more
complex landscapes may be observed. This study incorporates CDL for
model building and validation, given the relatively high accuracy of CDL
for both corn and soybeans classes. Yet the CDL quality may be
compromised in study areas where more crop species are planted. Future
studies may benefit from the integration of field observation data for
model validation. Spatiotemporal image fusion can benefit time-series
remote sensing applications by providing dense satellite time series at
desired spatial and temporal resolutions. In recent years, satellite image
products have become increasingly available (e.g., Landsat-9, Planet-
Scope, and Harmonized Landsat Sentinel-2) with improved spatial and
temporal resolution characteristics. Synthesizing multi-source satellite
data through more advanced data fusion models may represent another
direction for future improvements. With the advent of new technologies
and datasets, such as the Segment Anything Model (Kirillov et al., 2023)
or the recently published Crop Sequence Boundaries from USDA
(Abernethy et al., 2023; Hunt et al., 2023), aggregating pixel-level
mapping results into field boundaries is promising for further
enhancing model performance.

With the EMET framework, crop types can be identified in NRT as
early as late June-early July. Such early identification of crop types
provides critical information for relevant stakeholders with significant
implications for food security, agricultural risk and damage assessment,
and supply chain management. Satellite-based crop maps can serve as a
complementary means to the traditional survey-based methods for
estimating crop acreage and production. Since the crop acreage can be
estimated with low latency, NRT crop mapping holds a large potential in
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timely informing decision-makers to help them better understand the
volatility in food market, identify early signs of food insecurity, and
make proactive management plans accordingly. With the spatiotem-
poral fusion dataset at a 30-meter resolution, crop type information can
not only be used for regional-scale acreage estimation, but also facilitate
applications in precision agriculture, such as the estimation of crop
growth progress, health conditions, and yields for specific crop fields,
which can further contribute to more sustainable agricultural
production.

6. Conclusion

This study proposes the EMET framework for NRT crop mapping
through a systematic design that encompasses spatiotemporal image
fusion, crop thermal-based phenology normalization, and deep learning.
The framework is evaluated in the U.S. Corn Belt, trained with satellite
observations from the IL site in 2017, and tested in both IL and MN sites
in 2019 and 2020. The hybrid deep learning fusion model generates high
spatiotemporal resolution imagery that timely captures rapid temporal
phenological changes during the growing season. The thermal-based
NRT phenology normalization process registers crop phenological
progress across space and time through integrating the WISE-derived
crop emergence dates and heat accumulation estimated by AGDD. The
normalized time-series data enable the SAtLSTM model to better iden-
tify different crop types despite the spatiotemporal variations in crop
phenological patterns. The EMET framework can be implemented in
NRT, and the mapping results can be generated within a few days after
satellite image acquisition. Compared to calendar and WISE scenarios,
EMET demonstrates enhanced scalability with improved field-level crop
mapping results across study sites and testing years throughout the
growing season. EMET achieves an overall accuracy of 85%, approxi-
mately four weeks earlier than the benchmark scenarios; crop types can
be accurately identified by EMET as early as late July with an overall
accuracy over 90%. NRT crop type mapping can provide valuable in-
formation for reducing the volatility in the food market and enhancing
food security. The 30-m crop type maps can further facilitate a variety of
agricultural applications at the field level, including but not limited to
crop growth progress characterization, health condition estimation, and
yield prediction, holding great potential to optimize crop managements
and facilitate precision agriculture.
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