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Abstract

Recovered shipboard solids (rocks and sediments) may be char-
acterized for elemental abundances on International Ocean Discov-
ery Program (IODP) expeditions in several ways, using either the
shipboard inductively coupled plasma—atomic emission spectrome-
ter (ICP-AES) or a handheld portable X-ray fluorescence spectrom-
eter (pXRF). These two instruments have overlapping capabilities in
terms of the elements they measure but are designed to meet differ-
ent analytical needs. During Expedition 366, we made extensive use
of both instruments to conduct standard bulk elemental analysis of
samples and in situ measurements on rock surfaces of cores. The
following is a description of current shipboard measurement proto-
cols for recovered rocks and sediments using these instruments, an
analysis of the respective methodologies, and recommendations for
best analytical practices.

Portable X-ray fluorescence
spectrometry

Based on the success in using portable X-ray fluorescence spec-
trometry (pXRF) for core characterization during International
Ocean Discovery Program (IODP) Expedition 352 (Ryan et al,
2017; Reagan et al.,, 2015, 2017), pXRF was used both to conduct
near—real time characterization of recovered rock samples from
cores and to analyze serpentinite rock powders and unconsolidated
serpentinite samples during Expedition 366. A new pXRF—an
Olympus DeltaX handheld instrument—was acquired by IODP for
use during Expedition 366 and future expeditions. Compared to the
original Fisher Niton instrument described in Ryan et al. (2017), this
new instrument has overall expanded analytical capabilities.

The Olympus DeltaX is a self-contained energy-dispersive XRF
survey tool that includes data correction packages tailored to geo-

logical applications. The data correction methods are based on
“fundamental parameters” methodology, which solves a series of
nonlinear equations for each analyzed element. The parameters
used in these equations comprise metrics for the X-ray source, fluo-
rescence intensities, absorption coefficients, and absorption edge
effects for each wavelength analyzed, together with parameters for
sample geometry (e.g., van Sprang, 2000) and a Compton normal-
ization scheme (Reynolds, 1963). The “geochemistry/soils” protocol
used on the ship presumes a perpendicular sample geometry. The
protocol analyzes for elements at two different filter settings to opti-
mize results.

Analysis of different core materials

Generally, the pXRF instrument is operated by the shipboard
scientist(s), typically from the Petrology/Core Description or Geo-
chemistry teams, who are tasked with overseeing its use. The proto-
col for rock surface analyses used during Expedition 366 is as
follows.

Rock surface samples

The primary shipboard use of the pXRF instrument during Ex-
pedition 366 was to conduct quick geochemical assessments of the
cored material through direct measurements on rock surfaces of ei-
ther working- or archive-half core pieces. For these measurements,
rock samples that could be removed from the core without damage
were placed in a specially made shielded sample analysis assembly
(Figure F1). Samples that were too fragile to be removed were ana-
lyzed in situ using a shielded sleeve analyzer mount (Figure F1). For
in situ measurements, a layer of 3525 Ultralene 0.16 mil (4 pm) thin
film was placed over the core to prevent contamination and/or
damage to the X-ray analyzer. In all cases, it is important that the
geometry of the sample is consistent, surface parallel to and in close
proximity to the analyzer face, to minimize atmospheric absorption
effects and geometry-related losses. Selection criteria for choices of
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materials to be analyzed and the specifics for making measurements
with the Olympus pXRF are outlined in the Appendix.

Sample powders

The pXRF can also be used to quantitatively assess elemental
abundances in powdered samples. Sample powder analyses were
conducted using XRF powder mount assemblies, the use of which is
outlined in detail in Reagan et al. (2015); a synoptic description of
their use is included in the Appendix.

For both rock surface and powder measurements, a powder-
mounted standard reference material (BHVO-2 was used during
Expedition 366) should be analyzed with each set of unknowns to
track instrument performance over time (Table T1). During Expe-
dition 366, the total variation among individual measurements of

Figure F1. A. Olympus DeltaX portable X-ray fluorescence analyzer (pXRF) in
its storage holster. B. General purpose lead-shielded sample mount. C. Lead
shielded sliding core mount. D. Barcode reader for core ID. E. Dell laptop
driver computer.
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the same sample was always well within the measurement uncer-
tainties reported by the instrument and was often less than or equal
to £5%. Day-to-day variation in results for BHVO-2 indicated +1%
variability for higher precision elements and no worse than +6.5%
for trace elements over the course of the expedition (Table T2).

pXRF calibration of geologic materials

Although the Olympus pXRF presents data in concentration
terminology (either parts per million or weight percent), it is im-
portant to recognize that these values are, for all practical purposes,
merely intensity readings. It is necessary to calibrate the instrument
against recognized standard reference materials for each element to
be measured quantitatively (e.g., Ryan et al., 2017). During Expedi-
tion 366, calibration curves for the different elements measured via
pXRF were determined using the same suite of standard reference
materials used for inductively coupled plasma—atomic emission
spectrometer (ICP-AES) analyses to improve inter-instrument data
comparisons (Table T1). Powder mounts for each of the reference
materials were analyzed to develop the working curves, as well as
for periodic checks on instrument performance during pXRF mea-
surements of unknowns. The working curves were developed in Mi-
crosoft Excel, and slope and intercept values from the working
curves were used to calculate concentration results for unknowns
(Figure F2). Both rock and powder samples were analyzed using
powder-based working curves because past results indicated no dif-
ferences in instrument performance between rocks and powders
(Ryan et al., 2017; Reagan et al., 2015).

The elements routinely measured via pXRF for quantitative de-
termination during Expedition 366 were Ca, Mn, Fe (calibrated as
oxides: CaO, MnO, and Fe,O,), Ni, Cr, Cu, Zn, and Sr. Ti, K and Rb,
Zr, and V, which were analyzed quantitatively by pXRF during Ex-
pedition 352 (Reagan et al., 2015), were generally below pXRF de-
tection limits in Expedition 366 materials. Sulfur was attempted,
based on the possibility of gypsum in some recovered materials (see

Table T1. Elemental abundance data for standard reference materials used via pXRF during IODP Expedition 366. * = standards used for ICP-AES data calibra-

tion, Expedition 366. Download table in CSV format.

Oxides (Wt%) Elements (ppm)
MgO AlLO, SiO, MnO K,O Ca0 TiO, Fe S Cr Ni Cu Zn Rb Sr

BHVO-2* 7.24 13.47 49.75 0.17 0.52 11.40 2.73 12.35 150 284 120 126 102 10 393
BIR-1* 9.69 15.43 47.83 0.17 0.03 13.27 0.96 11.33 70 398 171 122 73 0 109
DNC-1 10.09 18.32 47.10 0.15 0.23 11.38 0.48 9.95 392 278 252 98 68 4 145
JP-1* 44.66 0.64 42.39 0.12 0.00 0.56 0.01 8.36 28 2,689 2,467 6 36 1 3
OKUM* 21.29 7.97 44.14 0.18 0.04 7.85 0.38 11.81 2,460 886 44 61 1 16
UB-N* 35.21 2.90 3943 0.12 0.02 1.20 0.11 8.34 200 2,361 1,971 28 85 4 8
CGL-001* 38.22 0.48 38.54 0.08 0.02 0.68 0.02 8.00 2,780 2,300

DTS-2B* 49.40 0.45 39.40 0.06 0.01 0.12 0.01 7.76 17 15,500 3,780 3 45 2 1
DTS-1* 49.55 0.19 40.41 0.12 0.00 0.17 0.00 8.68 12 4,045 2329 6 45 0 0
All 92 7.64 15.84 49.89 0.17 0.16 11.13 1.78 10.20 234 107 64 86 1 130
SO-3 8.42 5.80 33.72 0.07 1.40 20.71 0.33 2.22 132 27 15 17 50 37 220
BCS-CRM 393 0.15 0.12 0.70 0.01 0.02 55.40 0.01 0.05 70 160
BCS-CRM 368 20.90 0.17 0.92 0.06 30.80 0.23 40 3 82 67
BE-N 13.11 10.03 38.21 0.20 141 13.93 2.61 12.77 308 357 268 70 121 47 1,381
NOD A-1 4.76 3.87 3.81 23.92 0.60 15.42 0.53 15.62 3,350 32 6,360 1,105 589 10 1,749
LKSD-4 0.92 5.90 41.60 0.08 0.81 1.80 0.38 4.09 9,900 27 32 31 192 110
LKSD-1 1.72 7.80 40.10 0.19 1.12 10.80 0.50 411 15,700 22 14 44 334 250
DNC-1 10.08 18.32 47.09 0.15 0.23 11.38 0.48 9.95 392 278 252 98 68 4 145
PACS-2 242 6.71 59.00 0.06 1.51 2.77 0.74 5.78 12,900 91 40 310 364 39 276
NKT-1 14.19 10.05 37.78 0.20 1.26 12.99 3.84 13.29 438 315 57 117 1175
JR-1 0.11 12.86 75.43 0.10 4.41 0.65 0.11 0.93 1 3 1 2 30 244 29
MRG 13.55 8.47 39.12 0.17 0.18 14.70 3.77 17.94 610 430 193 134 191 9 266
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Table T2. Precision and accuracy of pXRF determinations for standard refer-
ence material BHVO-2, which was run as a check standard in all pXRF analyt-
ical sessions during Expedition 366. SD = standard deviation (in unit of ele-
ment), CV = coefficient of variation. Download table in CSV format.

BHVO-2 PXRF v

(N=51) values SD (%) Accepted
TiO, (wt%) 2.75 0.035 1.27 273
Ca0 (wt%) 11.86 0.14 1.16 1.4
MnO (wt%) 0.18 0.0046 2.50 0.17
Fe,0; (Wt%) 12.55 0.087 0.69 12.35
Ni (ppm) 144 8.2 5.66 120
Cr (ppm) 300 20 6.56 284
Cu (ppm) 143 8.0 5.56 126
Zn (ppm) 103 34 3.34 102
Sr (ppm) 394 3.1 0.78 393

Igneous and metamorphic petrology and alteration in the Expe-
dition 366 methods chapter [Fryer et al., 2018]), but an insufficient
number of standards were available with sulfur data to produce a
reasonable working curve. P, Co, As, Se, Y, Nb, Ag, Cd, Sn, Sb, Mo,
W, Hg, Pb, Bi, Th, and U are all reported by the pXRF but were all
below detection in our samples.

The pXRF instrument also collects and reports results for Mg,
Al and Si, elements that produce low-energy X-rays that are readily
absorbed in air and so are not usually accessible via pXRF systems.
We constructed correlation curves for these elements, and given the
challenges regarding instrument sensitivity and reliability, the
curves are surprisingly linear, albeit with comparatively poor cor-
relation coefficients and nonzero intercepts (Figure F3). Although
the instrument does not produce quantitative data for these ele-
ments, we could obtain “ballpark” results for Mg and Si using the
correlation curves in Figure F3, which aided in petrographic identi-
fication of clast samples in the cores.

Following the approaches taken during Expedition 352, we
made interpretive quantitative use of pXRF data for those elements
with curves with high correlation r values (>0.95) and good inter-
cepts (Y intercept approximating 0); this information was recorded
in the Laboratory Information Management System (LIMS) data-
base. For species (like Si, Mg, and Al) that show scattered but linear
correlations, we used the pXRF results to make first-cut estimates of
material composition to inform our petrologic interpretations and
decide on samples for ICP-AES analysis.

Recommendations for pXRF use and
data correction/management

Aside from the protocols described above and in the Appendix,
the following additional considerations may improve the quality of
data collected, reduce the amount of time necessary to process raw
data, and facilitate archiving of results for future use:

¢ The collection window on the “barrel” of the DeltaX pXRF
handheld device should always be covered with a layer of 3525
Ultralene 0.16 mil (4 um) film to prevent contamination/dam-
age to the cover of the analyzer face.

» Data may not download from the analyzer or computer inter-
face if the power supply is disrupted. In this case, disconnect the
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power supply from the unit, download all collected data, includ-
ing both numerical results and spectrum files, to an external
hard drive or to the shipboard server (Uservol) before proceed-
ing. During Expedition 366, we stored (at a minimum) one copy
of all data files on the instrument’s notebook PC as well as one
copy on Uservol to ensure redundancy in the event of file loss,
deletion, or corruption.
« The laboratory technician(s) tasked with pXRF support should
upload data files for input to LIMS regularly because this allows
other members of the scientific party (i.e., geochemists perform-
ing the ICP-AES analysis, core describers, etc.) access to the
data, as well as further redundancy.
When transferring data files from the instrument to an external
computer for calibration, change the data file types from CSV
(pXRF default) to TXT (basic text file). This allows manual iden-
tification of the column delimiters in the file; MS Excel does not
identify them correctly in the CSV files.

-

Because the pXRF allows one to conduct large numbers of anal-
yses very rapidly, managing and organizing these data becomes a
major concern. During Expedition 352, more than 2000 pXRF mea-
surements were conducted (Reagan et al., 2015), and during Expedi-
tion 366 more than 800 pXRF analyses were made. Our initial plan
for using a single MS Excel spreadsheet for collection, storage, and
processing of raw data in real time failed, as we quickly discovered
that the amount of data generated outpaced the storage and calcula-
tion capabilities of a single spreadsheet. Therefore, careful attention
needs to be paid at the beginning of an expedition to the amount of
data likely to be gathered and how it will need to be managed and
used. For Expedition 366, it was determined that maintaining sepa-
rate spreadsheets for the following data was necessary, as follows:

« Calibration curves: several sets of working curves appropriate to
the materials being analyzed may be necessary, and plots of
these curves will need to be generated for publication.

» Raw data: a single master sheet was sufficient. Password protec-

tion is strongly recommended so that data cannot accidentally

be lost or altered.

Processed data and diagrams/plots/charts: we used a calculation

spreadsheet into which raw pXRF data were pasted and then

calibrated using the appropriate set of working curves. During

Expedition 366, we maintained several such files, some tailored

to the compositional character of the samples being measured,

to more readily resolve our measurements on powders from in
situ rock surface analyses.

-

Data from the pXRF system can be captured using the “Raw
Data” MS Excel spreadsheet import function. When “File, Import..”
is selected, a user prompt requests the import file type. Select “Text
file) find the appropriate pXRF DataExport file (files are named by
date, such as “ExportData-XX-XX-20XX.txt” and “ExportSpm-XX-
XX-20XX.txt”), and select “Get Data” Delimiting with the “Tab;
“Comma,” and “Space” options selected was the format best suited
for pulling in the raw pXRF results; however, this format may vary,
depending on how the MS Excel data spreadsheet is designed.
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Figure F2. Calibration curves for elements quantitatively analyzed via pXRF during IODP Expedition 366. The plotted data are for the geological reference
samples listed in Table T1.
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Figure F3. Correlation curves for Si, Al, and Mg using the Olympus DeltaX
pXRF system, showing general, if poor, linear relationships, despite consider-
able X-ray absorption at these wavelengths of these elements.
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Inductively coupled plasma-atomic
emission spectrometry

Shipboard procedures for digestion of rocks and subsequent
chemical analysis via ICP-AES have historically referred to Murray
et al. (2000), which is based on the Jobin-Yvon ICP-AES system
available on the R/V JOIDES Resolution at that time. Subsequently,
the ICP-AES system on the JOIDES Resolution has been upgraded
several times, most recently in 2017, and the technology of ICP-AES
instrumentation has changed markedly. The most significant
changes relate to wide adoption of Echelle monochromator systems
for improved wavelength resolution and the use of high-sensitivity
charge-coupled device (CCD)-based detector arrays. Together,
these two advances improve sensitivity markedly and allow resolu-
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tion and simultaneous quantitative analysis of many more optical
wavelengths than was possible on such instruments in the past.
Therefore, although some general information about ICP spectro-
photometry and analytical practices in Murray et al. (2000) are still
relevant, current ICP-AES technology affords greater flexibility and
sensitivity for many elements of interest, along with new challenges
related to these capabilities. Below are updates to protocols for sam-
ple preparation, ICP-AES calibration and analysis, and data reduc-
tion based on specific experiences during Expeditions 366 and 352,
as well as broader experiences with this class of instrumentation
(e.g., Ryan and Langmuir, 1987, 1993; Tenthorey et al., 1996; Savov
et al., 2001, 2005; Peterson et al., 2009).

ICP-AES operation and elements analyzed

The shipboard ICP-AES is operated by JOIDES Resolution Sci-
ence Operator (JRSO) shipboard geochemistry laboratory techni-
cians, and JRSO laboratory technicians also handle sample
powdering, oxidation/loss on ignition (LOI) determination, flux fu-
sion digestion, and dissolution. However, the geochemistry techni-
cians routinely seek guidance from the shipboard party geochemists
in selecting calibration standards and check samples, setting up run
queues, assaying data quality, and addressing questions regarding
sample preparation, oxidation, and dissolution concerns. They may
also seek assistance in making ICP sample dilutions if their work-
load on the other instruments in the laboratory is high.

Echelle monochromator/CCD-based ICP-AES detector systems
allow analysts to select from a large menu of optical wavelengths for
elements of interest (see Table T3 for examples) with very few in-
strument-related limitations on the number of different elements
and/or optical wavelengths per element analyzed. For shipboard
work, the primary constraint on which elements can be successfully
measured by ICP-AES is the large dilution factor (4000:1) used for
routine rock analysis. This degree of dilution is common for major
element measurements via ICP-AES, and it is necessary to ensure
that Si and Al (and during Expedition 366, Mg) are at low enough
solution concentration levels to permit their measurement without
detector saturation (see discussion below). A second benefit is that
these dilute solutions produce less wear on the ICP torch and sam-
ple handling assembly, important for an instrument at sea where re-
placement parts and/or instrument servicing are unavailable.
However, this high degree of dilution prevents the measurement of
lower abundance elements, which either end up below the instru-
ment detection limits or outside its linear dynamic range (on ICP-
AES systems, this range typically begins at 10x the detection limit
for the analytical wavelength in question; Potts, 1992). The elements
that cannot be quantitatively measured by ICP-AES on the ship in-
clude geologically interesting species that occur at low parts per
million levels in marine sediments and igneous rocks, as well as
moderately higher abundance elements traditionally examined via
ICP on more concentrated solutions (Nb, Be, Rb, Zn, Cu, Y, P, Nj,
and Cr in mafic rocks and sediments; in Expedition 366 ultramafic
samples K, Mn, and Ti). The menu of elements that can be mea-
sured successfully on the ship thus depends in part on the materials
recovered. Because the ICP-AES will report results for elements
that are outside their analytical ranges, it is necessary to calculate
the practical limits of determination for the species being analyzed,
based on measured instrument detection limits for the analytical
lines selected (e.g., the lower limit of detection = 3x standard devia-
tion of the blank; see Potts 1992), to identify those elements that will
yield reliable results via ICP-AES on the ship.
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Table T3. Example analytical wavelengths and detection limits for the ele-
ments routinely analyzed on the JOIDES Resolution via ICP-AES. Download
in CSV format.

Detection Limit of
Wavelength limit determination
Element (nm) (ppb) (ppb)
Aluminum 167.079 0.8 8
308.215 2 20
396.152 0.2 2
Barium 455.403 0.01 0.1
493.409 — —
Boron 182.591 25 25
249.773 0.13 13
Calcium 317.933 0.55 5.5
393.366 0.009 0.09
Chromium 267.716 0.1 1.1
Cobalt 228.616 0.3 3
Copper 324.754 0.2 2
327.395 0.13 13
Germanium 265.117 29 29
Iron 259.94 0.13 13
238.204 0.15 1.5
Lithium 670.784 0.16 1.6
Lutetium 261.542 0.08 0.8
Magnesium 279.079 0.9 9
279.553 0.01 0.1
Manganese 257.61 0.02 0.2
Nickel 231.604 0.4 4
Potassium 766.491 0.8 8
Scandium 361.383 0.044 0.44
Silicon 288.158 0.8 8
251.611 1.2 12
Sodium 588.995 0.08 0.8
589.592 0.09 0.9
Strontium 407.771 0.019 0.19
Titanium 334.941 0.17 1.7
Vanadium 292.402 0.07 0.7
Yttrium 371.03 0.081 0.81
Zinc 213.856 0.09 0.9
Zirconium 339.198 0.34 34

Sample preparation and LOI determination

Shipboard sample preparation and LOI determination proce-
dures described in Murray et al. (2000) and updated in recent JODP
Proceedings volumes (Reagan et al., 2015, for Expedition 352) are
appropriate for a range of sediment and rock compositions, but care
must be taken with unusual sample matrixes. In an example from
Expedition 366, sample ignitions on carbonate-rich materials in
quartz crucibles resulted in crucible devitrification because of reac-
tions between quartz and carbonates. Alumina ceramic crucibles
are less susceptible to such interactions and are thus probably more
suitable for shipboard use on unknown matrixes. Although ignition
temperatures of ~1000°C were acceptable for LOI determinations
on the serpentinites and ultramafic materials recovered during Ex-
pedition 366, these high temperatures also resulted in sample sin-
tering and/or sticking when the materials were more Si or Ca rich.
Conversely, ignition temperatures of <850°C were inadequate to de-
compose carbonates, even if held at this temperature for several
hours. Thus, heating samples to at least 900°C is advisable to ensure
decomposition of all volatile-bearing phases and obtain reliable
measures of LOL
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Sample powdering for ICP-AES analyses is commonly done us-
ing the shipboard tungsten carbide (WC) shatterbox system, which
is effective for powdering a wide range of sample types but can con-
taminate for elements of geological interest such as W, Hf, Nb, and
Ta. Also available on the JOIDES Resolution are several ball mill
shakers with alumina ceramic mills, which cause fewer issues with
sample contamination for trace elements. A number of recent expe-
ditions have sought to make organized use of ICP sample powder
residues to generate a single coherent elemental and isotopic data
set for those samples analyzed on the ship (e.g., Reagan et al., 2015).
This kind of coordinated analytical program can be facilitated by
powdering samples in materials that will minimize issues with sam-
ple contamination but still permit the time-efficient powdering of
samples for shipboard measurement.

Sample digestion and dilution procedures

Flux-fusion sample digestion using LiBO, is the preferred means
for shipboard sample dissolution and is widely utilized to digest sil-
icate rocks of all types for dissolution in dilute acids (see Murray et
al., 2000; Tenthorey et al., 1996; Potts, 1992; Klein et al., 1991; and
others). This approach affords additional benefits for ICP-AES mea-
surement because Li is a strong light emitter and, as such, can at
concentrations >1000 ppm produce a strong positive light matrix
that flattens the optical background and neutralizes sample matrix
effects, a significant challenge in ICP-AES measurements (e.g.,
Murray et al., 2000; Potts, 1992). Although CCD detector systems
help minimize issues with proper background correction, matrix
enhancement effects are still a significant concern for the alkaline
elements (in particular Na and K but also Mg and Ca). Even at a
4000:1 dilution factor, matrix-related problems with measurements
can still occur if the samples being analyzed are compositionally
very different from each other and/or from the standards used for
instrument calibration. For example, analyzing basalts along with
marine sediments using sediment and other higher-Si igneous rock
standards for calibration will yield inaccurate information on Na
and K in basalts, related to matrix effects associated with their dif-
ferent Si concentrations. A similar problem was evident during Ex-
pedition 366, when sediments or mafic igneous rocks were run
along with serpentinites, which have very high Mg concentrations.

A time-efficient means for addressing this problem is the inten-
tional use of Li as a peak enhancer in ICP-AES solutions. Addition
of Li to the 21000 ppm level in solution creates a uniform optical
matrix for all elements analyzed, swamping the effects of other
high-abundance dissolved species (Si, Al, Fe Mg, Ca, and Na). One
can generate such solutions using a Li-spiked HNO; solution to di-
lute digested ICP-AES samples for analysis. As long as each sample
has the same level of added Li, ensured by pipetting or weighing a
constant amount of dilution acid, and that level is 21000 ppm Li, a
strong uniform optical sample matrix can be maintained.

Analysis, calibration, and data reduction

ICP-AES data are corrected and calibrated externally using ana-
lyst-prepared drift and baseline correction solutions and solutions
of geological reference samples as calibration standards. Baseline
corrections are made using a procedural blank (i.e., a sample of
fused and acidified LiBO, flux otherwise prepared identically to the
samples), whereas drift corrections are made with a drift monitor
solution, commonly a rock or sediment of broadly similar composi-
tion to the unknowns being analyzed, prepared along with the sam-
ples and standards. Generally, at high analyte concentrations on
ICP-AES instruments baseline corrections are a minimal concern,
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but drift correction is essential for reliable data. The drift monitor
may be analyzed a dozen or more times during a typical analytical
session, spaced evenly throughout to “bracket” the unknowns and
standards. Commonly, one of the standard reference samples or an-
other compositionally appropriate sample available in abundance is
chosen to serve as a drift monitor. Alternatively, a mixed solution
drawn from a number of the sample solutions being analyzed may
be prepared.

Internal standard corrections

Data correction to an internal standard is commonly applied to
shipboard ICP-AES results. The internal standard is an element that
is optically similar to a large number of the species being analyzed
but is of no analytical interest; it is added to all sample solutions. Ge
and Y have both been commonly used as internal standards for
shipboard analyses. The internal standard correction is done by
generating a ratio of the intensities of analyte species to that of the
internal standard for each measured sample. This correction is use-
ful in addressing physical instrument performance variations (i.e.,
nonuniform sample input and/or temperature variations in the
plasma). However, this correction can create complications for ele-
ments that are optically very different from the chosen standard.
Thus, the alkali metals Na and K, which have analytical lines at the
red/infrared end of the spectrum, are not normally corrected to in-
ternal standards.

Calibration standards

A wide range of standard reference materials are available on the
JOIDES Resolution. At least six reference materials are prepared and
used for calibration, although more are acceptable. During Expedi-
tion 366, eight standards were routinely included in analytical runs.
Reference materials chosen as calibration standards need to be
compositionally comparable to the unknowns being analyzed but at
the same time provide a sufficient range in concentrations to permit
calculation of reasonable calibration curves. For the unusual Mg-
rich compositions of the Expedition 366 materials, six ultramafic
reference materials (three peridotites, two serpentinites, and a
komatiite) and two magnesian basalts were routinely used. Data for
standard reference materials can be obtained from GeoReM (Gov-
indaraju, 1994; Jochum et al., 2005; see Table T1). New reference
materials, if necessary, can be requested before an expedition. It is
also shipboard practice to include one or two “check standards” in
every analytical run. The check standards, not used for calibration,
are run as unknowns and can thus test the accuracy and reproduc-
ibility of ICP-AES data. Calibration standards can be run as check
standards because their concentrations are known.

Data reduction

Raw results from the ICP-AES must be corrected and calibrated
to generate concentration data. Historically, the raw results are up-
loaded into an MS Excel-based calibration spreadsheet, although
newer instruments have built correction and calibration protocols
into their operational software. The calibration spreadsheet in use
during Expedition 366 prompted the user to identify sample type
(blank, drift monitor, standard, check standard, or unknown) and,
based on this information, completed all data corrections (internal
standard, blank, and drift corrections, in that order). Calibration
curves were generated from corrected data for each analyzed opti-
cal wavelength, with linear regression equations (including slope, y-
intercept, and r values for quality of fit) for analyst review. Analysts
select which calibrations to use for calculating the concentrations of
unknowns. Concentration data are reported by element for each an-
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Figure F4. ICP-AES calibration curves for the Ca (396.847 nm) and Mg
(280.271 nm) spectral lines, showing evidence for detector saturation (i.e.,
nonlinear changes in signal intensities at high concentration levels). These
were generated during spreadsheet data calibration, based on results from
the recently retired Leeman Labs ICP-AES on IODP Expedition 366.
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alyzed wavelength, and downhole plots of elemental abundances
can be generated to compare results of the same element analyzed
at different wavelengths.

Although JRSO laboratory technicians often conduct initial ICP
data manipulations, these results are reviewed, revised, and ap-
proved by the shipboard geochemists. Baseline criteria for accept-
able results include the following:

o Linear calibration curve that includes all of the standards run,
« Quality of fit (r) value of at least 0.99XX, and
» A y-intercept close to 0.

For elements showing relatively limited concentration ranges
(e.g., Si, Mg, and Fe in the ultramafic rocks examined during Expe-
dition 366), r values can be markedly reduced by a single spurious
standard reading without impacting the slope or the intercept of the
line. In such cases, the spurious standard reading can be removed
from the correlation and the corrected array accepted.

A serious analytical problem that only becomes evident at the
calibration stage is ICP-AES detector saturation. At higher analyte
concentrations (typically 500-1000 ppm in solution, but for some
elements as low as 50 ppm in solution), the detector response to in-
creasing concentrations becomes nonlinear. This response looks
like the intensity vs. concentration curve flattens above a certain
abundance level (Figure F4; see also Figure F15 in the Expedition
366 methods chapter [Fryer et al., 2018] for examples of Na and Ca
detector saturation during pore water analyses). Detector saturation
is a concern for the highest abundance elements analyzed (Si, Al
and sometimes Mg for silicates or Ca for carbonates, but it can also
occur when analyzing matrix-sensitive elements such as Na and K).
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A check for potential detector saturation problems involves calcu-
lating the likely solution concentrations of the higher abundance
species in the different kinds of materials to be analyzed. If likely
solution concentrations are >100 ppm at a 4000:1 dilution factor,
then it may be necessary to vary from standard procedures and di-
lute samples further.

Results of check standards provide estimates of precision and
accuracy for each analytical run, as do comparisons among results
from different wavelengths for a particular element. During Expedi-
tion 366, run-to-run relative standard deviation for the ICP-AES
was generally +1%—2% for major elements and +5%—15% for trace
elements. Accuracy was better than 2% for major elements and bet-
ter than 5% for those trace elements above procedure detection lim-
its.

Comparisons of pXRF and ICP-AES results

Direct comparisons of pXRF and ICP-AES measurements for
quality assurance/quality control (QA/QC) purposes can be diffi-
cult to make because of the very different treatment of the samples.
pXRF requires almost no sample preparation beyond a dry, flat sur-
face, whereas samples for ICP-AES analysis must be powdered, ig-
nited, and dissolved into a dilute acid solution for measurement. As
demonstrated during Expedition 352 (Reagan et al., 2015; see Ryan
etal,, 2017, for an expanded comparative study), the shipboard sam-
ple type that afforded the best comparison of results was sample
powders after being oxidized for LOI determinations that were dis-
solved for ICP-AES analysis and were analyzed directly on the
pXRE

Figure F5 compares ICP-AES and pXRF results on oxidized Ex-
pedition 366 sample powders for some of the elements that both in-
struments measured quantitatively. As discussed in Ryan et al.
(2017), correlations between ICP-AES and pXRF data on the same
samples, although linear, do not show 1:1 relationships because of
the very different data correction and calibration protocols of the
two instruments. In Figure F5, the better correlated species (Ca and
Fe) intercept near zero, whereas most slopes are <1.0, particularly
for those species near Fe, where Compton normalization strategies
can be the most problematic.

Also evident from Figure F5 is that several analyzed trace ele-
ments are not highly precise: Mn and Cr results both show consid-
erable scatter. In the Sr data comparison, extensive scatter is evident
at values >300 ppm Sr, with many of the ICP-AES measurements
running to comparatively higher values. This lack of correlation at
higher Sr concentrations likely relates to limitations in the calibra-
tion of ICP-AES measurements at higher Sr contents, as the highest
Sr standard used on the ICP-AES is BHVO-1, (432 ppm Sr; Table
T1). Samples that are markedly higher (and some Expedition 366
samples with >5000 ppm Sr were recovered) are outside the range of
the Sr working curve, which means that large systematic errors re-
lated to small variations in working curve slope or intercept can oc-
cur. The pXRF calibration curve for Sr includes data for much
higher Sr standards (Table T1; Figure F3) and is linear throughout
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this concentration range. As such, the pXRF likely produced more
reliable measurements for Sr than the ICP-AES did during Expedi-
tion 366.

Shipboard rock analysis best practices

The shipboard pXRF and ICP-AES instruments offer different
measurement capabilities for major and trace elements in the rocks
recovered during Expeditions 366 and 352. The ICP-AES can mea-
sure more elements quantitatively than the pXRE, including all the
key major elements. However, the pXRF can provide comparably
precise (and on occasion more accurate) data for a subset of the ele-
ments routinely measured by ICP-AES, as well as reasonably pre-
cise data for several other trace elements (Zn, Cu, and Rb) that are
not accessible by ICP-AES on the ship.

The biggest difference between these two different rock analysis
tools relates to the time involved in acquiring results on unknowns.
pXREF calibrations for quantitative measurements can be done at the
beginning of an expedition using a suite of calibration standards to
cover the entire likely range of sample compositions. These calibra-
tions are robust: over the course of 1-2 months there is little varia-
tion in measurements on replicate samples (e.g., Reagan et al., 2015;
Ryan et al, 2017; Table T2). The measurement of unknowns by
pXREF is very quick (20+ samples require less than an hour to mea-
sure), and data calibration involves uploading raw data to a spread-
sheet. By contrast, ICP-AES calibrations must be done in-run for
each set of unknowns using new preparations of reference materi-
als, and the time commitment required for measuring a set of un-
knowns, from sample powdering through fusion, dissolution, and
analysis, is a week or more.

An effective combination of the pXRF and ICP-AES as analyti-
cal tools for rocks involves several strategies:

« Leveraging the quick exploration capabilities of the pXRF by us-
ing it to “ballpark” results on interesting core materials to iden-
tify samples to undergo ICP-AES analysis.

Conducting pXRF measurements on the oxidized sample pow-
der splits prepared for ICP-AES work, both to obtain results on
some species that are inaccessible via ICP on the ship and to test
concentrations on samples that yield unusual results on the ICP.
Using the pXRF when the ICP-AES cannot be used. Because the
pXREF is not sensitive to motion, it can gather sample data
during transits when the ICP-AES cannot operate, and it can
also measure samples recovered very late in an expedition when
laboratory shutdown procedures make ICP-AES measurements
impossible.

*

-

Despite improvements in its capabilities for low atomic number
species, pXRF systems cannot replace the ICP-AES as the primary
quantitative elemental analysis tool on the JOIDES Resolution.
However, in combination the two instruments offer the means to
conduct a more strategic and effective shipboard analytical program
on all recovered solids.
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Figure F5. pXRF vs. ICP-AES data comparisons of Expedition 366 samples for those elements where their quantitative analysis capabilities overlap. ICP-AES data
were collected on sample solutions made from powders ignited for LOI determination; pXRF data were collected directly on the ignited powders.
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Appendix

Sample selection protocols and Olympus pXRF operations pro-
cedures as used during Expedition 366.

Please note, per Texas A&M University and JRSO guidelines,
anyone using the pXRF handheld system must wear a radiation ring
or other approved radiation monitoring device at all times during
sample analysis.

Sample selection protocols

Use the following guidelines for selecting samples for pXRF
analysis:

« Adequate size for analysis (~4 cm? or greater sample surface is
required, given the ~7-8 mm pXRF excitation diameter).
Sufficient spacing within the core to characterize observed vari-
ation (i.e., changes in lithology, differences in grain size/tex-
ture/color, proximity to zones of alteration, and/or other distin-
guishing features), but not too many locations, which would
generate numerous redundant measurements within the same
interval.
Suitably flat surface (cut surface preferred).
« Dry surface to optimize X-ray penetration. Wet surfaces were
dried with absorptive material (e.g., Kimwipes) to improve sig-
nal penetration depth.

*

*

Documentary information, including the Expedition, Site, Hole,
date, run number, core and section, measurement type, position
within the core (offset), time of measurement, operator, and any
other comments, were recorded on the pXRF laboratory notebook
for later use in describing the samples and/or reproducing the mea-
surements.

PXRF operation

The Olympus Delta instrument is operated from a notebook PC
(Dell XRF host) on which the Delta Advanced PC operating soft-
ware for the pXRF is loaded. A detailed user manual for the instru-
ment is available for reference from the X-ray technician aboard the
JOIDES Resolution.

1. Before initial use and approximately every 10 h or once per shift,
perform a calibration check by placing the handheld unit in its
storage cradle and selecting the “CalCheck” icon at the bottom
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left-hand corner of the “Analysis” screen. Calibration checks
should be run before any sample analyses are attempted.

2. If the calibration checks are successful, place samples, smooth
side down, on the excitation window within the shielded assem-
bly, or mount the analyzer and shielded core sleeve over the core
on the sample to be analyzed.

3. Enter information about the specific sample into the computer
by selecting the “...” tab (Figure F2), which shifts the software
into “Setup” mode. Enter the run number (these are sequential
for the length of the expedition, regardless of date, time, core,
hole, etc.), sample name (or scan the core’s bar code on the cap
of the D tube with the “Symbol” bar code scanner), and the sam-
ple offset (distance from the top of the section, in cm). The
“Text_ID” field is populated and saved by the software automat-
ically.

4. Select “Save,” followed by “Back,” which returns the software to
the “Analysis” screen.

5. Press “Start” at the bottom of the screen to begin the analysis.
During Expedition 366, all samples were measured manually for
60 s, with three measurements per unknown (three spots on a
sample surface, or three repeat analyses on sample powders)
constituting a single analysis.

pXRF powder mount preparation

A supply of reusable pXRF plastic powder mounts are main-
tained on the JOIDES Resolution. The mount consists of a short (~1
cm) plastic cylinder and ring-caps that snap together on either side.

1. Cover one end of the cylindrical mount with a short length of
Ultralene 4 pm film. Use the plastic ring-cap to secure the Ultra-
lene in place and produce a smooth, transparent surface onto
which sample powders can be loaded.

2. Load at least a 2—3 mm layer of sample powder onto the Ultra-
lene, backed by a small circle of filter paper (Whatman 24 mm
circles, grade 540) and either a round 24 mm plastic foam spacer
(like those used to fill the gaps in sediment cores left by sam-
pling) or plastic floss packing to hold the sample powder in
place, followed by the snap-on sealing cap.

3. Place the transparent surface of the mount face-down in the
shielded XRF sample holder for analysis of the powder.

4. Sample powders used for pXRF can be recovered for other uses
when mounts are taken apart for cleaning and reuse.
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