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ABSTRACT: Ring-opening metathesis polymerization (ROMP) has been widely
used for the synthesis of functional polymers. However, most ROMP-derived
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polymers are nondepolymerizable, limiting their sustainability and eco-friendiness. eroymerzaton

While recent advances in designing low-strain cyclic olefin monomers have enabled Moderate RSE

the ROMP synthesis of depolymerizable polyolefins, the scope of these monomers O

remains limited due to the narrow range of ring strain energies (RSEs = 4.7—5.4 TF#:;ZQZ'“‘:KZT.” &i K F??:Jl“é.'?:&'ﬁ#."l
kcal/mol) required to allow both polymerization and depolymerization in a closed- A,

loop recycling process. Herein, we present a new class of chemically recyclable
polyolefins based on cycloheptene derivatives with RSEs ranging from 3.8 to 7.2
kcal/mol. The wide range of RSEs enabled the establishment of a structure—
polymerizability—depolymerizability relationship, shedding light on the role of RSE
in both polymerization and depolymerization. A functional group transformation
(FGT) strategy, harnessing reversible ketone-to-acetal chemistry, was developed to
overcome the low polymerizability of low-strain monomers and the moderate
depolymerizability of polymers made from moderate-strain monomers. This FGT approach not only enhanced the chemical
recycling of moderately depolymerizable polyolefins but also provided access to highly depolymerizable polyolefins that are
challenging to synthesize through direct ROMP of ultralow strain monomers. Moreover, the thermal properties of the chemically
recyclable polyolefins developed in this study are highly tunable, with a broad range of glass transition temperatures (—7 to 104 °C),
highlighting their potential for various applications.
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B INTRODUCTION

Chemical recycling to monomers (CRM) represents an ideal
approach to enhancing the sustainability and environmental
friendliness of polymer materials."* In a typical CRM process,
postconsumer polymer waste is depolymerized into its
constituent monomers, which can then be repolymerized into

including polymethacrylates and polystyrene.””'> However, it
should be noted that high reaction temperatures (>100 °C) are
still required when light is used to assist the solution
depolymerization of these vinyl polymers, due to their inherently
high ceiling temperatures.” The second approach focuses on the
design of novel polymer structures that can be easily

new polymer products with properties comparable to the
original materials.”~> Moreover, the CRM approach can
effectively recycle mixed or contaminated plastics that can not
be processed by traditional mechanical recycling method.®
Despite its significant promise, chemical recycling of commodity
polymers, especially vinyl polymers with high ceiling temper-
atures, is quite energy-intensive and often requires high
temperatures (>400 °C) to initiate the depolymerization
process.” Therefore, it would be highly desirable to develop
new technologies to make chemical recycling process energeti-
cally efficient and economically viable.

Two approaches are currently being pursued to enhance the
chemical recyclability of polymers. The first one involves
facilitating the depolymerization of existing commodity
polymers by designing novel catalytic systems, such as
photocatalysts.” Compared to traditional thermally induced
depolymerization, the photoassisted process has demonstrated
high efliciency in achieving relatively lower-temperature
depolymerization of various commodity vinyl polymers,
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depolymerized. Over the past decade, significant progress has
been made in developing new depolymerizable polymer
structures, driven by various chain-growth polymerization
techniques, such as radical polymerization,">™"" ionic ring-
opening polymerization,”"”~** nucleophilic aromatic ring-
opening polymerization,” coordination ring-opening polymer-
ization,ZG_28 and ring-opening metathesis polymerization
(ROMP).””~*" Among these depolymerizable polymers, poly-
olefins produced via ROMP have attracted increasing interest
due to their hydrolytically stable backbones and mild
depolymerization conditions."'
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Cyclic olefin monomers with low ring strain energies (RSEs)
have recently been employed in ROMP to produce depolymer-
izable polyolefins (Figure 1A).** Examples include cyclopentene

A Previous Work on Depolymerizable Polyolefins (RSEs = 4.7-5.4 kcal/mol)
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Figure 1. Depolymerizable polyolefins and the ring strain energies of
their constituent monomers. (A) Representative examples of
depolymerizable polyolefins based on various low-strain cyclic olefin
monomers. (B) This study: depolymerizable and transformable
polyheptenamers synthesized from ultralow to moderate strain
monomers.

derivatives,”??%* 2,3-dihyd1rofu1ran,36 cyclohexene deriva-
tives,”’>° cycloheptene,” and fused-ring cyclooc-
tenes.’*?7>>* The low strain of these monomers facilitates
the efficient depolymerization of polyolefins through a ring-
closing metathesis process. Nevertheless, the scope of
monomers for producing chemically recyclable polyolefins
remains limited, since a suitable range of ring strain (4.7—5.4
kecal/mol) is essential for achieving both polymerization and
depolymerization in a closed-loop recycling process.*""** Indeed,
polymerization has proven rather challenging for ultralow-strain
monomers such as cyclohexene (RSE = 2.5 kcal/mol),***® while
depolymerization is hindered by the moderate RSEs of
monomers such as cyclooctene (RSE = 82 kcal/mol).*?
Therefore, previous studies have focused on designing or
discovering cyclic olefin monomers that fall within the narrow
RSE ;/\SIiSr;dow required for producing depolymerizable poly-

In this study, we designed and synthesized a series of
functional cycloheptene-derived monomers (M1—M4) with a
wide range of RSEs from 3.85 to 7.21 kcal/mol (Figure 1B).
Solvent-free ROMP of these cycloheptene-derived monomers
led to functional polymers that are depolymerizable under mild
conditions. It was observed that RSE plays a pivotal role in
governing the polymerizability of monomers and the depoly-
merizability of their corresponding polymers. To address the low
polymerizability of low-strain monomers (M3 and M4) and the
moderate depolymerizability of polyolefins produced from
moderate-strain monomer (M1), we developed a functional
group transformation (FGT) strategy to enable the reversible
transformations of these monomers and their polymer structures
(Figure 1B). This approach not only enhances the chemical
recycling of moderately depolymerizable polymers by convert-
ing them into highly depolymerizable structures, but also
facilitates the synthesis of highly depolymerizable polyolefins
that are otherwise difficult to produce directly from ROMP of
ultralow strain monomers. Moreover, these chemically recycla-
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Figure 2. Newman projections of cycloheptene-derived monomers and their ring-opened structures. (A) The structures and their corresponding
Newman projections for cycloheptene (CHEP) and functional monomers (M2 and M3). (B) Newman projections and their simulated ring-opened
structures. Geometry optimizations were performed using the B3LYP/6-31G* level of theory in vacuum. The lowest-energy conformers were used for

the Newman projection analysis.
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Figure 3. Synthesis and characterization of cycloheptene-based monomers and polymers. (A) Synthetic routes to monomers. M1 can be synthesized
under three-step conditions: (i) Mg, THF, 0 °C; (ii) Jones’ reagent, acetone, 20 °C; and (iii) G2, DCM (20 mM), 40 °C. M1 can be subsequently
converted into M2—M4 following these conditions (iv) NaBH,, THF/MeOH, 0—20 °C; (v) Ac,0, TEA, DMAP, DCM, 0—20 °C; (vi) ethylene
glycol, p-TsOH, triethyl orthoformate, DCM, 40 °C; and (vii) pinacol, p-TsOH, triethyl orthoformate, DCM, 40 °C. (B) Two synthetic approaches to
polymers: direct ring-opening metathesis polymerization (ROMP) and postpolymerization modification. (C) Polymer information. P1, P2, P3, and
P4a were synthesized by direct ROMP of monomers (see Table S1). P4b was obtained via functional group transformation (FGT) of P1.

ble polyolefins exhibit tunable thermal properties, with glass
transition temperatures ranging from —7 to 104 °C, highlighting
their potential for diverse industrial applications.

B RESULTS AND DISCUSSION

Design and Computational Analysis of Monomers. We
began our preliminary exploration with the design of functional
cycloheptene monomers. A library of monomers bearing ketone
(M1), ester (M2), and acetal groups (M3 and M4) was designed
and analyzed using density functional theory (DFT) to estimate
their ring strain energies (Figures 1B, S1—S4, and Supporting
Sections 3.1 and S). DFT calculations revealed a significant
impact of functional group on the ring strain. As the size of
functional group increases, the RSE of monomer gradually
decreases (Figure 1B). Specifically, M1, with a small ketone
group, has a moderate RSE of 7.21 kcal/mol, whereas M4, which
contains a bulky acetal group, exhibits an ultralow RSE of 3.85
kcal/mol.

To uncover the origin of the substituent effect on RSE, we
examined the structures of monomers and their ring-opened
forms via the Newman projections along the C5—C6 bond
(Figures 2 and SS). Cycloheptene (CHEP) was used as a
reference for comparison with the functional monomers. As
shown in Figure 2A, the dihedral angles HS'—C5—C6—H§,
C4—-C5—C6—H6',and H5—C5—C6—C7 in CHEP closely align
with their corresponding dihedral angles (i.e., O—CS—C6—HS,
C4—C5—C6—H6’, and HS—C5—C6—C7) in M2, indicating
that substituting HS’ with an acetate group does not alter the
ring structure. Similarly, no noticeable structural change in the
ring was observed in M3, where both HS and HS5' are replaced
by a cyclic acetal group. We then analyzed the ring-opened
structures of these monomers (Figure 2B). The dihedral angles

remain similar for all the acyclic structures, regardless of the
substitutions on CS. Notably, the ring-opening of functional
monomers (M2 and M3) results in a significant gauche
interaction between the substituent and an allyl group,
destabilizing the structure due to the steric repulsion between
these two bulky groups (Figure 2B). Since RSE represents the
relative energy difference between the cyclic monomer and their
ring_opened form (RSE = Hmonomer - Hring—opened form — Hethylene))
an increase in the energy of the ring-opened form would result in
a reduction of the RSE. As the size of the functional group
increases, the gauche interaction becomes more significant,
thereby leading to a smaller RSE.

Synthesis of Monomers and Polymers. Since the ketone
monomer (M1) serves as a precursor for the synthesis of other
monomers, we first prepared M1 using a method described in a
previous study (Figure 3A)."” M2 was subsequently obtained
through the hydride reduction of M1, followed by acetylation of
the resulting hydroxyl group. The acetal monomers M3 and M4
were generated by reacting M1 with ethylene glycol and pinacol,
respectively.

The structures of all monomers were confirmed by nuclear
magnetic resonance (NMR) spectroscopy and mass spectrom-
etry (Figures S6—S19).

ROMP of monomers was enabled by Grubbs’ second-
generation catalyst (G2). To optimize the polymerization
conditions, we investigated the effects of reaction temperature
(20—40 °C) and monomer concentration on the ROMP of M1
(entries 1—4 in Table S1). As shown in Table S1, the conversion
of M1 gradually increased as the reaction temperature
decreased, suggesting that the polymerization is driven by
enthalpy. Moreover, bulk polymerization at room temperature
(20 °C) led to a near-quantitative conversion of M1. Based on
these results, solvent-free and room temperature conditions
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Figure 4. Depolymerization study of functional polyheptenamers. (A—C) Schematic illustrations of the depolymerization of P1—P3.
Depolymerization experiments were conducted under dilute conditions (20 mM olefin) in the presence of G2 for 12 h. Depolymerization of P1
was performed at 40 °C, while depolymerizations of P2 and P3 were carried out at room temperature. (D—F) '"H NMR spectra of polymers (top
green), depolymerized products (middle red), and original monomers (bottom blue). Monomer recovery yields were calculated based on NMR
analysis. (G—I) Size exclusion chromatography traces of the polymers (green) and their depolymerized products (red).

were employed for the polymerization of other monomers
(M2—M4) to maximize their conversions.

Because ring strain energy is the driving force for ROMP, we
reasoned that a decrease in RSE would result in a reduced
polymerizability of the monomers. Indeed, monomer con-
versions markedly decreased from 98% for M1 to 13% for M4
under the same polymerization conditions (i.e., solvent-free and
room-temperature), confirming the important role of RSE in
their polymerizability (entries 4—7 in Table S1). The resulting
polymers (P1—P4a) were characterized by NMR (Figures $20—
$25) and size exclusion chromatography (SEC) (Figures S27—
$30). According to the SEC results, the molecular weight
distributions of these polymers are relatively broad (D = 1.5—
2.0), which stem from secondary metathesis events typically
associated with the ROMP of low-to-moderate strain mono-
mers.**

To overcome the low polymerizability of M4 (RSE = 3.85
kcal/mol), we further employed a functional group trans-
formation approach based on ketone-to-acetal chemistry that
efficiently converted P1 into P4b (Figure 3B). NMR analysis of
P4b confirmed a quantitative transformation of ketone groups
into acetals, demonstrating the robustness of this approach
(Figure S26). Furthermore, the molecular weight of P4b is
markedly higher than that of P4a, which was synthesized via the
direct ROMP approach (Figures 3C, S30, and S31).

Depolymerization Study of Polymers. Given that the
polymer library (P1—P4) is derived from monomers with a
broad range of RSEs (3.85—7.21 kcal/mol), we hypothesized
that a structure-depolymerization relationship can be estab-
lished by investigating their depolymerization behaviors.
Depolymerization study was carried out under standard ring-
closing metathesis conditions (20 mM olefin concentration with

G2 as the catalyst). A kinetic study on the depolymerization of
P3 revealed that an equilibrium, with over 96% of the monomers
regenerated, was reached within 10 h (Figures $32).

To elucidate the impact of RSE on depolymerization
efficiency, we examined the depolymerization performance of
P1, P2, P3, and P4b (Figures 4 and S33—S36). As shown in
Figure S33, depolymerization of P1 at room temperature
resulted in only 44% monomer recovery. Increasing the reaction
temperature to 40 °C enhanced the yield of monomer
regeneration to 67%, while a noticeable amount of the thermally
rearranged product, 3-cycloheptenone,” was also formed
(Figures 4A,D,G and S34). The moderate depolymerizability
of P1 can be attributed to the moderate ring strain of M1 (7.21
kcal/mol). In comparison to P1, the depolymerization of
polymers P2—P4 with lower RSEs (3.85—4.78 kcal/mol) gave
rise to significantly higher monomer recovery yields (>90%),
even under room-temperature conditions (Figures 4 and S37).
NMR analysis revealed that the 'H NMR spectra of the
depolymerization products of P2—P4 are nearly identical to
those of their original monomers (Figures 4E,F and S36). In
addition, SEC data corroborated the NMR results by showing
the complete disappearance of polymer signals and the
appearance of monomer peaks upon depolymerization (Figures
4H,1 and S35). Critically, a reduction in RSE led to enhanced
depolymerization efliciency, with P3 and P4 achieving monomer
recovery yields exceeding 96% (Figure S37). These results
unequivocally verify the role of low RSE in promoting ring-
closing metathesis depolymerization.

Based on the polymerization and depolymerization studies
(vide supra), a structure—polymerizability—depolymerizability
relationship can be established, as shown in Figure 5. Notably,
M2 exhibits a high monomer conversion of 91%, coupled with a
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Figure S. Structure—polymerizability—depolymerizability relationship
of M1—M4 and their corresponding polymers P1—P4. Polymerization
efficiency is defined as the monomer conversion achieved during bulk
polymerization at 20 °C. Depolymerization efficiency is expressed as
the yield of monomer regeneration obtained during depolymerization
at 20 °C.

depolymerization efficiency of 91% for its corresponding
polymer. These results indicate that its RSE (4.78 kcal/mol) is
well-suited for both polymerization and depolymerization
processes. This finding aligns with previous reports on
depolymerizable polymers derived from cyclic olefin monomers,
whic}h3 ggg;cally have RSE values in the range of 4.7—5.4 kcal/
mol.””””

Chemical Recycling of P1 via Functional Group
Transformation Strategy. Despite the moderate depolymer-
izability of P1, its ability to transform into highly depolymer-
izable polymer structures (i.e., P3 and P4) would facilitate the
chemical recycling process. In light of this, we leveraged the
FGT strategy to chemically recycle P1 back into M1 (Figure
6A). It is worth noting that the reversible and highly efficient
nature of ketone-to-acetal chemistry is critical to ensure the
effectiveness of this approach.

NMR was used to evaluate the efficiency of each step during
the chemical recycling (Figures 6B, $38, and $39). The first step,
involving ROMP of MI, led to P1 with more than 98%
monomer conversion (Figure 3C). In the second step, the

transformation of P1 to P3 was achieved through the reaction of
ketone groups with ethylene glycol, using reaction conditions
similar to those employed in the conversion of M1 into M3.
NMR analysis of the resulting P3 indicates a quantitative
conversion of the ketone groups into cyclic acetals alongside the
polymer backbone (Figure S38). Depolymerization of P3,
synthesized via postpolymerization modification of P1, further
yielded M3 with over 96% conversion. Finally, M3 was
efficiently hydrolyzed into M1, closing the loop of recycling
process (Figure 6B).

Thermal Properties of Functional Polyheptenamers.
To predict the potential of functional polyheptenamers for
industrial applications, we further assessed their thermal
properties (Figures 3C and 7). Thermogravimetric analysis
revealed the high thermal stability of P1—P4b, with their
decomposition temperatures at 5% weight loss (T) ranging
from 226 to 381 °C (Figure 7A). The relatively lower thermal
stability of P2—P4b compared to P1 can be ascribed to their
thermally labile side-chain groups: ester (P2) and acetals (P3
and P4b).

Glass transition temperatures (T,) of the polymers were
further evaluated by differential scanning calorimetry (DSC)
(Figures 7B,C and S40—S$43). Based on the DSC thermogram of
P1, a high T, of 104 °C and a T,, of 138 °C were observed,
suggesting the semicrystalline nature of the polyketone structure
and restricted chain mobility arising from dipole—dipole
interactions among ketone groups (Figure 7B). By contrast,
the T, values of P2—P4b, which bear large side chains, were
significantly lower than that of P1 (Figure 7C). The wide range
of glass transition temperatures (—7 to 104 °C) exhibited by
functional polyheptenamers illustrates their potential for
applications such as plastics and elastomers.

B CONCLUSIONS

In summary, we demonstrate a class of chemically recyclable
polyolefins based on cycloheptene-derived monomers with a
wide range of RSEs (3.8—7.2 kcal/mol). The library of
functional monomers and polymers enabled the establishment
of a structure—polymerizability—depolymerizability relationship
that elucidates the role of RSE in both polymerization and
depolymerization. A functional group transformation approach
was harnessed to transform polymers with varying propensities
to depolymerize, not only facilitating the chemical recycling of
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moderately depolymerizable polymers, but also providing access
to highly depolymerizable polyolefins that are difficult to
synthesize by ROMP of low-strain monomers directly. More-
over, these functional polymers display a broad range of glass
transition temperatures, demonstrating their potential for
various applications. Given the promise of depolymerizable
polymers in circular polymer economy, we envision that the
functional polyheptenamers developed in this study will lead to a
new class of sustainable and eco-friendly polymer materials with
highly tunable properties. The functional group transformation
approach provides a new strategy to expand the scope of cyclic
olefin monomers for the development of chemically recyclable
polyolefin materials with diverse structures.
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