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Distribution-Agnostic Database De-Anonymization
Under Obfuscation and Synchronization Errors

Serhat Bakirtas , Member, IEEE, and Elza Erkip , Fellow, IEEE

Abstract—Database de-anonymization typically involves
matching an anonymized database with correlated publicly
available data. Existing research focuses either on practical
aspects without requiring knowledge of the data distribution
yet provides limited guarantees, or on theoretical aspects
assuming known distributions. This paper aims to bridge these
two approaches, offering theoretical guarantees for database
de-anonymization under synchronization errors and obfuscation
without prior knowledge of data distribution. Using a modified
replica detection algorithm and a new seeded deletion detection
algorithm, we establish sufficient conditions on the database
growth rate for successful matching, demonstrating a double-
logarithmic seed size relative to row size is sufficient for detecting
deletions in the database. Importantly, our findings indicate
that these sufficient de-anonymization conditions are tight and
are the same as in the distribution-aware setting, avoiding
asymptotic performance loss due to unknown distributions.
Finally, we evaluate the performance of our proposed algorithms
through simulations, confirming their effectiveness in more
practical, non-asymptotic, scenarios.

Index Terms—Dataset, database, matching, de-anonymization,
alignment, distribution-agnostic, privacy, synchronization, obfus-
cation.

I. INTRODUCTION

THE accelerating growth of smart devices and applications

has accelerated the collection of user-level micro-data

both by private companies and public institutions. This data

is often shared or sold after removing explicit user identifiers,

a.k.a. anonymization, and coarsening of the data through noise,

a.k.a. obfuscation. Despite these efforts, there is a growing

concern about the privacy implications [1]. These concerns

were further justified by the success of a series of practical

de-anonymization attacks on real data [2], [3], [4], [5], [6]. In

the light of these successful attacks, recently there has been

an increasing effort on understanding the information-theoretic
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Fig. 1. An illustrative example of database matching under column repetitions.
The column colored in red is deleted, whereas the column colored in blue is
replicated. Y (1)

i,2 and Y (2)
i,2 denote noisy copies, i.e. replicas, of Xi,2. The goal of

database de-anonymization studied in this paper is to estimate the correct row
permutation σn =

�
1 2 3 4 5 6
2 6 4 1 3 5

�
, by matching the rows of X and Y without any

prior information on the underlying database (pX), obfuscation (pY |X), and
repetition (pS ) distributions.

and statistical foundations of database de-anonymization,

a.k.a. database alignment, database matching, and database
recovery [7], [8], [9], [10], [11], [12], [13], [14], [15], [16].

Our recent work focuses on the database de-anonymization

problem under synchronization errors. In [13], we investigated

the matching of Markov databases under synchronization

errors only, with no subsequent obfuscation, i.e. noise, using

a histogram-based detection method. In [14] and [15], we

extended this effort to databases with noisy synchronization

errors. We introduced a noisy replica detection algorithm,

and a seeded deletion detection algorithm, and used joint-

typicality-based matching to derive achievability results, which

we subsequently showed to be tight, for a seed size double

logarithmic with the row size of the database. In [13], [14], and

[15] we assumed that the underlying distributions are known

and tailored repetition detection and matching algorithms for

these known distributions.

Motivated by most practical settings where the underly-

ing distributions are not readily available, in this paper, we

investigate the de-anonymization problem without any prior
knowledge of the underlying distributions. Borrowing a noisy

random column repetition model from [14], illustrated in

Figure 1, we show that even though the distributions are not

known a priori, matching can be performed with no asymptotic

(in database size) loss of performance. To that end, we first

modify the noisy replica detection algorithm proposed in [14]

so that it still works in the distribution-agnostic setting. Then,

we propose a novel outlier-detection-based deletion detection

algorithm and show that when seeds, whose size grows

1556-6021 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and
similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6192-9006
https://orcid.org/0000-0001-8718-8648


BAKIRTAS AND ERKIP: DISTRIBUTION-AGNOSTIC DATABASE DE-ANONYMIZATION 3191

double logarithmic with the number of users (rows), are avail-

able, the underlying deletion pattern could be inferred. Next,

through a joint-typicality-based de-anonymization algorithm

that relies on the estimated distributions and the repetition

pattern, we derive a tight sufficient condition for database

de-anonymization to succeed. Finally, we evaluate the per-

formance of our proposed distribution-agnostic algorithms

through simulations on finite databases and demonstrate their

success in the non-asymptotic regime as well. We stress that, to

the best of our knowledge, this is the first work that tackles the

distribution-agnostic database matching under synchronization

errors.

The structure of the rest of this paper is as follows:

Section II introduces the formal statement of the problem.

Section III contains our proposed algorithms, states our main

result, and contains its proof. In Section IV we evaluate

the performances of our proposed algorithms in the non-

asymptotic regime via simulations. Section V consists of the

concluding remarks. Proofs are provided in the Appendix.

Notation: We denote a matrix X with bold capital letters,

and its (i, j)th element with Xi, j. A set is denoted by a

calligraphic letter, e.g., X . [n] denotes the set of integers

{1, . . ., n}. Asymptotic order relations are used as defined

in [17, Chapter 3]. Unless stated otherwise, all logarithms

are base 2. H(.) and I(.; .) denote the Shannon entropy and

the mutual information [18, Chapter 2], respectively. D(p‖q)

denotes the relative entropy [18, Chapter 2.3] (in bits) between

two Bernoulli distributions with respective parameters p and

q.
p→ denotes convergence in probability.

II. PROBLEM FORMULATION

In this section, we formalize our problem, adopting some

definitions from [15]. In Section II-A, we formally define the

database pairs of interest and seed matrices. In Section II-B,

we present our key performance criterion, and state the main

objective in this paper. In Section II-C, we discuss the set of

assumptions used in our analyses. Finally, in Section II-D we

present some well-known information-theoretic results that are

used in this paper.

A. Anonymized and Labeled Correlated Databases & Seeds

Definition 1 (Anonymized Database): An (mn, n, pX)

anonymized database X = {Xi, j ∈ X }, (i, j) ∈ [mn] × [n] is

a randomly generated mn×n matrix with Xi, j
i.i.d.∼ pX , where pX

has a finite discrete support X = {1, . . ., |X |}.
Definition 2 (Column Repetition Pattern): The column

repetition pattern S n = {S 1, S 2, . . . , S n} is a random vector

with S i
i.i.d.∼ pS , where the repetition distribution pS has a finite

integer support {0, . . ., smax}. Here δ � pS (0) is called the

deletion probability.

Definition 3 (Anonymization Function): The anonymization
function σn is a uniformly-drawn permutation of [mn].

Definition 4 (Obfuscation Distribution): The obfuscation
(also referred to as noise) distribution pY |X is a conditional

probability distribution with both X and Y taking values

from X .

Fig. 2. Relation between the anonymized database X and the labeled
correlated database, Y.

Definition 5 (Labeled Correlated Database): Let X and S n

be a mutually-independent (mn, n, pX) anonymized database

and repetition pattern, σn be an anonymization function, and

pY |X be an obfuscation distribution. Then, Y is called the

labeled correlated database if the ith row Xn
i of X and the

σn(i)th row YKn
σn(i) = [Yσn(i),1, . . .,Yσn(i),Kn ] of Y have the relation

given in (1)–(2), as shown at the bottom of the next page,

where

Kj �
jX

t=1

S t. (3)

Note that S j indicates the times the jth column of X is repeated

in Y. When S j = 0, the jth column of X is said to be deleted
and when S j > 1, the jth column of X is said to be replicated.

The ith row Xi of X and the σn(i)th row Yσn(i) of Y are called

matching rows.

We can interpret (1) as follows: Since X has i.i.d. entries

and the noise on the each database entry is i.i.d., each retained

entry Xi, j with S j � 0 will correspond to an independent

replica run Yσn(i),Kj−1+1, . . .,Yσn(i),Kj in Yσn (i). Then, (2) directly

follows from the fact that the noise on the retained entries is

i.i.d.
The relationship between X and Y, as described in

Definition 5, is illustrated in Figure 2.

As often done in both the graph matching [19] and the

database matching [14] literatures, we will assume the avail-

ability of a set of already-matched row pairs called seeds, to

be used in the detection of the underlying repetition pattern.

Definition 6 (Seeds): Given a pair of anonymized and

labeled correlated databases (X,Y), a seed is a correctly

matched row pair with the same underlying repetition pattern

S n. A batch of Λn seeds is a pair of seed matrices of respective

sizes Λn × n and Λn ×
Pn

j=1 S j.

For the sake of notational brevity and without loss of

generality, we assume that the seed matrices G(1) and G(2)

are not submatrices of X and Y. Throughout, we will assume

a seed size Λn = ω(log n) = ω(log log mn) which is double-

logarithmic with the number of users mn.

B. Performance Criterion

As the number of rows mn increases for a fixed number

of columns n, so does the probability of mismatch due to

the increased number of candidates. In turn, in database de-

anonymization problems, the relationship between the row

size mn and the column size n directly impacts the de-

anonymization performance. Hence, as done in [8], [12], [13],

[14], and [16], we utilize the database growth rate, defined

below, as the main performance metric.
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Definition 7 (Database Growth Rate): The database growth
rate R of an (mn, n, pX) anonymized database is defined as

R = lim
n→∞

1
n

log mn. (4)

Definition 8 (Distribution-Agnostically Achievable
Database Growth Rate): Consider a sequence of (mn, n, pX)
anonymized databases X with database growth rate R, an
independent a repetition probability distribution pS , an
obfuscation distribution pY |X and the resulting sequence
of labeled correlated databases Y. Given seed matrices
(G(1),G(2)) with a seed size Λn, the database growth rate R is
said to be distribution-agnostically achievable if there exists
a successful matching scheme ψ : (X,Y,G(1),G(2)) 7→ σ̂n that
does not rely on any knowledge on pX , pS and pY |X , with

lim
n→∞

Pr (σn(I) , σ̂n(I)) = 0 where I ∼ Unif([mn]) (5)

where σn is true the anonymization function.

Remark 1: We note that the performance criterion described
in Definition 8 is known as almost-perfect recovery. Another
well-known performance criterion is the perfect recovery cri-
terion where all rows need to be matched. More formally, the
perfect recovery criterion corresponds to

lim
n→∞

Pr(σn , σ̂n) = 0. (6)

Observe that the difference between the two performance
criteria is that in the almost-perfect criterion allows a sub-
linear fraction of the database rows to be mismatched. This
mismatch budget allows us to use tools such as typicality from
information and communication theories. We refer to [10] for
an in-depth analytical comparison of the Gaussian database
matching results under these different performance criteria.

Definition 9 (Distribution-Agnostic Matching Capacity):
The distribution-agnostic matching capacity C is the supre-
mum of the set of all distribution-agnostically achievable
database growth rates corresponding to a database distribution
pX , repetition distribution pS , obfuscation distribution pY |X ,
and seed size Λn.

In this work, our main objective is the characterization of
the distribution-agnostic matching capacity C. We remark that
this is in contrast with prior work ([8], [12], [13], [14]) that
assumed complete distributional knowledge.

Throughout, since we are interested in the distribution-
agnostic matching capacity, we assume a positive database
growth rate R > 0. In other words, we assume n ∼ log mn.

C. Assumptions

Our analysis hinges on the following assumptions:
(a) The anonymized database X and the column repetition

pattern S n are known to be independent. It is also known
that their components Xi, j and S i are i.i.d., while the
distributions pX and pS are not known.

(b) The conditional independence of the noisy replicas
stated in (2) is known, leading to a memoryless obfus-
cation model, whereas the noise distribution pY |X is not.

(c) |X | and smax are known.
As we argue in Sections III-A and III-B, S n can be detected

without any assumptions on the correlation between X and S n.
In turn, one could test the independence of X and the estimate
Ŝ n of S n. Furthermore, the i.i.d. nature of the components
of X and Ŝ n, and the obfuscation can be inferred via the
Markov order estimation algorithm of [20] with a probability
of error vanishing in n, justifying (a)-(b). Similarly, since |X |
and smax do not depend on n, they can easily be estimated
with a vanishing probability of error, justifying (c).

We note that our analysis is limited to the setting in which
the anonymized database X has categorical entries, namely
they come from a discrete distribution, and synchronization
errors and obfuscation occur randomly and not in an adver-
sarial manner.

D. Preliminaries

In our derivations, we rely on some well-known classical
information-theoretic definitions and results which we present
below for the sake of completeness.

Definition 10 (Joint Entropy [18, Chapter 2.2]:) The joint
(Shannon) entropy associated with a pair of discrete random
variables (X,Y) with a joint distribution pX,Y is defined as:

H(X,Y) , −E[log pX,Y (X,Y)]. (7)

Definition 11 (Joint Typicality [18, Chapter 7.6]:) The ε-
typical set A(n)

ε (X,Y) associated with discrete random variables
(X,Y) with joint distribution pX,Y is the set of all sequence
pairs (xn, yn) satisfyingˇ̌̌

−
1
n

log pXn,Yn (xn, yn) − H(X,Y)
ˇ̌̌
≤ ε (8)

where H(X ,Y) is the entropy rate of (X ,Y).

Proposition 1 (Joint Asymptotic Equipartition Property [18,
Theorem 7.6.1]): Let X̃n and Ỹn be generated according to the
i.i.d. marginal distributions pXn and pYn , independently. Then,
the following holds:

Pr((X̃n, Ỹn) ∈ A(n)
ε (X,Y)) ≤ 2−n(I(X;Y)−3ε) (9)

Pr(YKn
σn(i) = yKn |Xn

i = xn) =
Y

j:S j,0

Pr(Yσn(i),K j−1+1, . . .,Yσn(i),K j = yK j−1+1, . . ., yK j |Xi, j = x j) (1)

=
Y

j:S j,0

S jY
s=1

pY |X(yK j−1+s|x j) (2)
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where I(X; Y) , H(X) + H(Y) − H(X,Y) is the mutual
information.

III. MAIN RESULT

Our main result in Theorem 1 is on the distribution-
agnostically achievable database growth rates when no prior
information is provided on distributions pX , pY |X , and pS .

Theorem 1 (Distribution-Agnostic Matching Capacity):
Consider an anonymized and labeled correlated database
pair. We assume that the underlying database distribution
pX , the obfuscation function pY |X , and the column repetition
distribution pS are unknown. Given a seed size Λn = ω(log n),
the distribution-agnostic matching capacity is given by

C = I(X; YS |S ) (10)

where S ∼ pS , X ∼ pX and YS = Y1, . . .,YS such that
Yi|X

i.i.d.
∼ pY |X .

Theorem 1 implies that given a seed size Λn = ω(log n) =

ω(log log mn) we can perform matching as if we knew the
underlying distributions pX , pY |X and pS , and the actual
column repetition pattern S n a priori. Hence comparing
Theorem 1 with [15, Theorem 1], we conclude that in the
asymptotic regime where n → ∞, not knowing the distribu-
tions and the realizations of the repetition pattern causes no
loss in the matching capacity.

We stress that the proof of the converse part of Theorem 1
directly follows from [15, Theorem 1] since distribution-
agnostic matching capacity cannot be better than the one that
assumes distributional information. The rest of this section
is on the proof of the achievability part of Theorem 1. In
Section III-A, we present an algorithm for detecting noisy
replicas and prove its asymptotic success. Then in Sec-
tion III-B, we propose a seeded deletion detection algorithm
and derive a sufficient seed size that guarantees its asymptotic
success. Subsequently, in Section III-C, we present our de-
anonymization algorithm that incorporates Sections III-A and
III-B. Finally, in Section III-E, we focus on the special case
of no obfuscation, where seeds are obsolete.

A. Distribution-Agnostic Noisy Replica Detection

Similar to [14], we use the running Hamming distances
between the consecutive columns C(2)

j and C(2)
j+1 of Y, denoted

by W j, j ∈ [Kn − 1], where Kn ,
Pn

j=1 S j as a permutation-
invariant future of the labeled correlated database. More
formally,

W j ,

mnX
t=1

1[Yt, j+1,Yt, j], ∀ j ∈ [Kn − 1] (11)

We first note that

W j ∼

(
Binom (mn, p0) , if C(2)

j |= C(2)
j+1

Binom (mn, p1) , otherwise
(12)

where

p0 , 1 −
X
y∈X

pY (y)2 (13)

Algorithm 1 Distribution-Agnostic Noisy Replica Detection
Algorithm

p1 , 1 −
X
x∈X

pX(x)
X
y∈X

pY |X(y|x)2. (14)

Here, p0 is the probability that two independent entries of X
have different noisy observations in Y, and p1 is the probability
that the same replicated entry of X has two different noisy
observations in Y.

From [16, Lemma 1], we know that as long as the databases
are dependent, i.e., pX,Y , pX pY , we have p0 > p1 for any
pX,Y suggesting that replicas can be potentially detected based
on W j similar to [14] and [16]. However, the algorithm in
[14] relies on a threshold test with the threshold depending
on pX,Y through p0 and p1. In Algorithm 1, we propose the
following modification for the distribution-agnostic setting:
We first construct the estimates p̂0 and p̂1 for the respective
parameters p0 and p1 through the moment estimator proposed
by Blischke [21] and then use the algorithm proposed in
[14, Section III-A] for replica detection. Note that we can
use Blischke’s estimator because the Binomial mixture is
guaranteed to have two distinct components. More formally,
the distribution of W j conditioned on S n is given by

Pr(W j = w|S n) =

 
mn

w

!
[αpw

0 (1 − p0)mn−w

+ (1 − α)pw
1 (1 − p1)mn−w] (15)

for w = 0, . . .,mn where the mixing parameter α is given by

α =
1

Kn − 1

0@n −
nX

j=1

1[S j=0]

1A . (16)

Since pS , and in turn δ are constant in n, it can easily be
verified that as n → ∞, α

p
→ 1−δ
E[S ] . Hence α is bounded away

from both 0 and 1, suggesting that the moment estimator of
[21] and in turn, Algorithm 1 can be used to detect the replicas.

Lemma 1 (Noisy Replica Detection): Let E j denote the
event that Algorithm 1 fails to infer the correct relationship

Authorized licensed use limited to: New York University. Downloaded on April 11,2025 at 23:08:25 UTC from IEEE Xplore.  Restrictions apply. 
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between C(2)
j and C(2)

j+1, j = 1, . . .,Kn − 1. Then, given mn =

ω(log n)

κ(1)
n � Pr(

K−1[
j=1

E j)→ 0 as n→ ∞. (17)

Proof: See Appendix A. �

Note that the condition in Lemma 1 is automatically satis-

fied since mn is exponential in n (Definition 7). Furthermore,

Algorithm 1 has a runtime of O(mnn), the computational

bottleneck being the computation of the running Hamming

distances Wj. Finally, we stress that as opposed to deletion

detection, discussed in Section III-B, no seeds are necessary

for replica detection.

B. Distribution-Agnostic Deletion Detection Using Seeds

In this section, we propose a deletion detection algorithm

that utilizes the seeds. Since the replica detection algorithm

of Section III-A (Algorithm 1) has a vanishing probability of

error, for notational simplicity we will focus on a deletion-

only setting throughout this subsection. Let G(1) and G(2) be

the seed matrices with respective sizes Λn × n and Λn × K̃n,

and denote the jth column of G(r) with G(r)
j , r = 1, 2 where

K̃n �
Pn

j=1 �[S j�0]. Furthermore, for the sake of brevity, let

Li, j denote the Hamming distance between G(1)
i and G(2)

j for

(i, j) ∈ [n] × [K̃n]. More formally, let

Li, j �
ΛnX
t=1

�[G(1)
t,i �G(2)

t, j ] (18)

Observe that

Li, j ∼
(

Binom(Λn, q0), G(1)
i |= G(2)

j

Binom(Λn, q1), otherwise
(19)

where

q0 = 1 −
X
x∈X

pX(x)pY (x) (20)

q1 = 1 −
X
x∈X

pX,Y (x, x). (21)

Here, q0 is the probability that two independent (non-

matching) entries in G(1) and G(2) are different, and q1 is

the probability that two matching entries in G(1) and G(2) are

different.

Thus, we have a problem seemingly similar to the one in

Section III-A. However, we cannot utilize similar tools here

because of the following:

(i) Recall that the two components p0 and p1 of the Bino-

mial mixture discussed in Section III-A were distinct

for any underlying joint distribution pX,Y as long as

the databases are dependent, i.e., pX,Y � pX pY . Unfor-

tunately, the same idea does not automatically work

here as demonstrated by the following example: Suppose

Xi, j ∼ Unif(X ), and the transition matrix P associated

with pY |X has unit trace. Then,

q0 − q1 =
X
x∈X

pX,Y (x, x) − pX(x)pY (x) (22)

Fig. 3. Hamming distances between the columns of G(1) and G(2) with n = 10,
K̃n = 7 and Λn = 104 for q0 ≈ 0.76 and q1 ≈ 0.92. The (i, j)th element
corresponds to Li, j, with the color bar indicating the approximate values. It

can be seen that there are no outliers in the 4th, 6th, and 10th rows. Hence, it
can be inferred that Idel = (4, 6, 10).

=
1

|X |
X
x∈X

pY |X(x|x) − pY (x) (23)

=
1

|X | (tr(P) − 1) (24)

= 0 (25)

In [14], this problem was solved using the following

modification: Based on pX,Y , a bijective remapping Φ ∈
S(X ) is picked and applied to all the entries of G(2) to

obtain G(2)(Φ) before computing the Hamming distances

Li, j, where S(X ) denotes the symmetry group of X .

Denoting the resulting version of the Hamming distance

by Li, j(Φ), where

Li, j(Φ) �
ΛnX
t=1

�[G(1)
t,i �G(2)

t, j (Φ)] (26)

it was proved in [14, Lemma 2] that there as long as

pX,Y � pX pY , there exists Φ ∈ S(X ) such that q0(Φ) �
q1(Φ). We will call such Φ a useful remapping.

(ii) In the known distribution setting, we chose a useful

remapping Φ and threshold τn for Hamming dis-

tances based on pX,Y . In Section III-A, we solved the

distribution-agnostic case via parameter estimation in

Binomial mixtures. However, the same approach does

not work here. Suppose the jth retained column G(2)
j

of G(2) is correlated with G(1)
r j . Then the jth column of

L(Φ) will have a Binom(Λn, q1(Φ)) component in the

r j
th row, whereas the remaining n − 1 rows will contain

Binom(Λn, q0(Φ)) components, as illustrated in Figure 3.

Hence, it can be seen that the mixture parameter β of

this Binomial mixture distribution approaches 1 since

β =
(n − 1)K̃n

nK̃n
= 1 − 1

n
. (27)



BAKIRTAS AND ERKIP: DISTRIBUTION-AGNOSTIC DATABASE DE-ANONYMIZATION 3195

Algorithm 2 Distribution-Agnostic Seeded Deletion Detection
Algorithm

This imbalance prevents us from performing a parameter
estimation as done in Algorithm 1.

In Algorithm 2, we exploit the aforementioned observation
that for a useful mapping Φ, in each column of L(Φ), there is
exactly one element with a different underlying distribution,
while the remaining n−1 entries are i.i.d., rendering this entry
an outlier. Note that Li, j(Φ) being an outlier corresponds to
G(1)

i and G(2)
j (Φ) being dependent, and in turn S i , 0. On the

other hand, the lack of outliers in any given column of L(Φ)
implies that Φ is not useful. Thus, Algorithm 2 is capable
of deciding whether a given remapping is useful or not. In
fact, the algorithm sweeps over all elements of S(X ) until we
encounter a useful one.

To detect the outliers in L(Φ), we propose to use the
absolute deviations M(Φ), i.e., distances of Li, j(Φ) to the

sample mean µ(Φ) of L(Φ). More formally, we have

µ(Φ) ,
1

nK̃n

nX
i=1

K̃nX
j=1

Li, j(Φ) (28)

Mi, j(Φ) , |Li, j(Φ) − µ(Φ)|, ∀(i, j) ∈ [n] × [K̃n] (29)

In Algorithm 2, we test these absolute deviations Mi, j(Φ)
against a threshold τ̂n independent of the underlying distri-
bution pX,Y . If Mi, j(Φ) is lower than τ̂n, we detect retention
i.e., non-deletion.

Note that this step is equivalent to utilizing Z-scores (also
known as standard scores), a well-studied concept in statistical
outlier detection [22], where the absolute deviations are also
divided by the sample standard deviation. In Algorithm 2, for
the sake of notational brevity, we will avoid such division.

We observe that the runtime of Algorithm 2 is O(Λnn2) due
to the computation of L(Φ).

Lemma 2 below states that for sufficient seed size, Λn =

ω(log n) = ω(log log mn), Algorithm 2 works correctly with
high probability.

Lemma 2 (Deletion Detection): Let IR = { j ∈ [n] : S j , 0}
be the true set of indices of retained columns and ÎR be its
estimate output by Algorithm 2. Then for any seed size Λn =

ω(log n), we have

κ(2)
n , lim

n→∞
Pr(ÎR , IR) = 0. (30)

Proof: See Appendix B. �

C. Distribution-Agnostic De-Anonymization Scheme

In this section, we propose a de-anonymization scheme
by combining Algorithm 1 and Algorithm 2, and performing
a modified version of the typicality-based de-anonymization
proposed in [14]. This then leads to the achievability proof of
Theorem 1 in Section III-D.

Given the database pair (X,Y) and the corresponding seed
matrices (G(1),G(2)), the proposed de-anonymization scheme
given in Algorithm 3 is as follows:

(i) Detect the replicas through Algorithm 1.
(ii) Remove all the extra replica columns from the seed

matrix G(2) to obtain G̃(2) and perform seeded deletion
detection via Algorithm 2 using G(1), G̃(2). At this step,
we have an estimate Ŝ n of the column repetition pattern
S n.

(iii) Based on Ŝ n and the matching entries in G(1), G̃(2),
obtain the maximum likelihood estimate [23] p̂X,YS |S of
pX,YS |S where

p̂X(x) ,
1

Λnn

ΛnX
i=1

nX
j=1

1[G(1)
i, j =x], ∀x ∈ X (31)

p̂Y |X(y|x) ,

ΛnP
i=1

K̃nP
j=1
1[G(1)

i,r j
=x,G̃(2)

i, j =y]

ΛnP
i=1

K̃nP
j=1
1[G̃(2)

i, j =y]

, ∀(x, y) ∈ X 2 (32)

p̂S (s) ,
1
n

nX
j=1

1[S j=s], ∀s ≥ 0 (33)
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Algorithm 3 Distribution-Agnostic Database De-
Anonymization Scheme

and construct

p̂X,YS |S (x, ys|s) =

8̂<̂
:

p̂X(x)1[ys=∗] if s = 0

p̂X(x)
sY

j=1

p̂Y |X(y j|x) if s ≥ 1 (34)

with ys = y1. . .ys and ∗ denoting erasure.
(iv) Using Ŝ n, place markers between the noisy replica runs

of different columns to obtain Ỹ. If a run has length
0, i.e. deleted, introduce a column consisting of erasure
symbol ∗ < X .

(v) Fix ε > 0. Match the lth row YKn
l of Ỹ with the ith row

Xn
i of X, if Xi is the only row of X jointly ε-typical (See

Definition 11) with YKn
l according to p̂X,YS |S , assigning

σ̂n(i) = l. Otherwise, declare an error.
Finally, note that the runtime of Algorithm 3 is O(m2

nn) due
to the typicality check (each O(n)) for all row pairs (Xn

i ,Y
Kn
j ),

(i, j) ∈ [mn]2.

D. Proof of Theorem 1

We are now ready to prove Theorem 1 where we use
Algorithm 3 to obtain a matching scheme σ̂n.

Let κ(1)
n and κ(2)

n be the error probabilities of the noisy replica
detection (Algorithm 1) and the seeded deletion (Algorithm 2)
algorithms, respectively. Using (31)–(33) and the Law of Large
Numbers, we have

p̂X,YS |S
p
→ pX,YS |S (35)

and by the Continuous Mapping Theorem [24, Theorem 2.3]
we have

Ĥ(X,YS |S )
p
→ H(X,YS |S ) (36)

I(X̂; Ŷ Ŝ |Ŝ )
p
→ I(X; YS |S ) (37)

where Ĥ(X,YS |S ) and Î(X,YS |S ) denote the conditional joint
entropy and conditional mutual information associated with
p̂X,YS |S , respectively. Thus, for any ε > 0 we have

κ(3)
n , Pr(|Ĥ(X,YS |S ) − H(X,YS |S )| > ε)

n→∞
−→ 0 (38)

κ(4)
n , Pr(|Î(X,YS |S ) − I(X,YS |S )| > ε)

n→∞
−→ 0 (39)

Using Proposition 1 and a series of union bounds
and triangle inequalities involving Ĥ(X,YS |S ), H(X,YS |S ),
Î(X,YS |S ), and I(X,YS |S ), the probability of error of the de-
anonymization scheme (See (5).) can be bounded as

Pr(Error) ≤ 2−n(I(X;YS |S )−4ε−R) + ε +

4X
i=1

κ(i)
n (40)

≤ 2ε (41)

as n→ ∞ as long as R < I(X; YS |S )−4ε, concluding the proof
of the main result.

E. No-Obfuscation Setting

In Sections III-A and III-B, we focused on the obfuscated
(noisy) setting and proposed algorithms for detecting noisy
replicas (Algorithm 1) and column deletions (Algorithm 2).
As discussed in Sections III-A and III-B, the key idea behind
detection is either extracting permutation-invariant features of
the columns (Algorithm 1) or assuming the correct matching
is given for the seeds (Algorithm 2). We showed that in the
general noisy setting, for the latter approach to succeed a
double-logarithmic seed size Λn is sufficient.

Now, we will focus on the no-obfuscation (repetition-only)
setting, where

pY |X(y|x) = 1[y=x], ∀(x, y) ∈ X 2 (42)

as a special case. Following a similar approach to Algorithm 1,
through the extraction of a new set of permutation-invariant
features of the database columns, we argue that seeds are not
required for repetition (both replica and deletion) detection.
Specifically, we will replace Algorithm 1 and Algorithm 2 a
single the histogram-based detection algorithm of [16] which
works as follows:

(i) First, we construct the respective column histogram
matrices H(1) and H(2) and of X and Y as follows:

H(1)
i, j =

mnX
t=1

1[Xt, j=i], ∀i ∈ X ,∀ j ∈ [n] (43)

H(2)
i, j =

mnX
t=1

1[Yt, j=i], ∀i ∈ X ,∀ j ∈ [Kn] (44)

(ii) Next, we count the number of times the jth column H(1)
j

of H(1) is present in M(2). If H(1)
j is present s times in

H(2), we assign Ŝ j = s, where Ŝ n is the estimate of the
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repetition pattern S n. If H(1)
j is absent in H(2), we assign

Ŝ j = 0.
Note that a repetition error could occur only when there

are identical columns in H(1) whose probability, we argue,
vanishes with the column size n in the following lemma:

Lemma 3 (Asymptotic Uniqueness of the Column His-
tograms [16, Lemma 1]): Let H(1)

j denote the histogram of

the jth column of X. Then, for any mn = ω
�

n
4

|X |−1

�
lim
n→∞

Pr
�
∃i, j ∈ [n], i , j,H(1)

i = H(1)
j

�
→ 0. (45)

Note that since mn is exponential in n (See Definition 7),
mn = ω(ns) ∀s ∈ Q. Hence, the order relation given
in Lemma 3 is automatically satisfied and hence repetition
detection could be performed without any seeds in the no-
obfuscation setting with a runtime of O(mnn) due to the
computation of the histogram matrices (H(1),H(2)).

For the non-obfuscation setting, we also consider a modified
de-anonymization scheme, given in Algorithm 4, that does
not rely on any estimates of the underlying distributions.
Specifically, we perform de-anonymization via exact sequence
matching as follows:

(i) First, we perform repetition detection via the histogram-
based detection algorithm described above.

(ii) Next, we discard the deleted columns from X to obtain
X̄.

(iii) Similarly, we discard all additional copies in a repetition
run in Y to obtain Ȳ.

(iv) Finally, we match the ith row Xn
i with the jth row YKn

j ,
assigning σ̂n(i) = j, if Ȳ K̂n

j is the only row of Ȳ equal
to X̄K̂n

i .
The histogram-based detection and the modified de-

anonymization scheme are given in Algorithm 4. We note that
the overall runtime of Algorithm 4 is O(m2

nn) due to the exact
row matching (each O(n)) of m2

n row pairs.
The matching scheme described above and given in

Algorithm 4 leads to the achievability result given in
Theorem 2. The converse immediately follows from
the distribution-aware matching capacity result of [15,
Theorem 2].

Theorem 2 (Distribution-Agnostic Matching Capacity in the
No-Obfuscation Setting): Consider an anonymized and labeled
correlated database pair. We assume that the underlying
database distribution pX and the column repetition distribution
pS are unknown. Suppose there is no obfuscation, i.e.,

pY |X(y|x) = 1[y=x], ∀(x, y) ∈ X 2. (46)

Then, for any seed size Λn, the distribution-agnostic matching
capacity C is given by

C = (1 − δ)H(X). (47)

Proof: See Appendix C. �
Observe that Theorem 2 states that the repetition distribution

pS appears in the matching capacity only through the deletion
probability δ in the no-obfuscation setting.

Algorithm 4 Distribution-Agnostic De-Anonymization In No-
Obfuscation Setting

IV. NON-ASYMPTOTIC REGIME

In Section III, we devised various detection and de-
anonymization algorithms and proved their performances (in
terms of error probabilities and matching capacity) in the
asymptotic regime where the column size n grows to infinity.
In this section, through extensive experiments, we will study
the performances of these algorithms when n is finite.

Throughout this section, unless stated otherwise, we will
focus on the following simulation configuration:
• Database size (mn, n): We choose column size n =

100 with the exception of the evaluation of the de-
anonymization scheme in Section IV-C where we take
n = 25. We evaluate the performance of our algorithms
for a range of values of row sizes mn.

• Database distribution pX: Without loss of generality, we
focus on the uniform distribution pX(x) = 1

|X | ,∀x ∈ X
where we arbitrarily take the alphabet size |X | = 5. In
Section IV-D, we will sweep over |X |.

• Obfuscation pY |X: We will consider the |X |-ary symmetric
channel with a crossover probability ε. More formally, for
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Fig. 4. Probability of error of the noisy replica detection algorithm

(Algorithm 1) κ(1)
n vs. the row size mn with 105 trials. The y-axis is given in

logarithmic scale to validate the exponential relation between the error proba-
bility and mn given in (72). Different curves correspond to different crossover
probabilities ε.

any (x, y) ∈ X 2, we have

pY |X(y|x) =

8<
:

1 − ε, if y = x
ε

|X | − 1
, if y � x

(48)

where we simulate with a range of values of ε.
• Repetition distribution pS : We consider a “deletion-

duplication” model for the repetition distribution with

pS (s) =

8̂<
:̂
δ, if s = 0

1 − δ − γ, if s = 1

γ, if s = 2

(49)

where δ = 0.3 and γ = 0.2.

We stress that even though we assume a discrete uniform

distribution for pX , and a symmetric noise model for pY |X for

our experimental analyses, as we have proved in Section III,

our algorithms work for any discrete distribution pX with finite

support X , and any obfuscation distribution pY |X where X and

Y take values from X .

A. Noisy Replica Detection

Figure 4 demonstrates the relationship between the replica

detection error κ(1)
n of Algorithm 1 and the row size mn. Note

that the linear relation in the semi-logarithmic plot validates

the exponential decay of κ(1)
n with mn stated in (72).

Figure 4 shows that as the crossover probability ε increases,

i.e., the labeled correlated database Y gets noisier, the error

probability decay becomes slower, leading to a worse detec-

tion performance, as expected. This is due to the following:

Our simulation configuration leads to the following Binomial

parameters p0 (Eq. (13)) and p1 (Eq. (14)):

p0 = 1 − 1

|X | (50)

p1 = 1 − (1 − ε)2 − ε2

|X | − 1
(51)

Consequently,

p0 − p1 = (1 − ε)2 +
ε2

|X | − 1
− 1

|X | , (52)

and D(τ‖p0) and D(1 − τ‖1 − p1) are decreasing functions of

ε for any ε < 1− 1
|X | . Thus, we have a worse replica detection

performance for a higher crossover probability ε.

B. Seeded Deletion Detection

While our replica detection algorithm (Algorithm 1) works

for a small column size as shown in Figure 4, our seeded

deletion detection algorithm (Algorithm 2) requires large col-

umn sizes. This is because the threshold τ̂n of Algorithm 2 is

chosen based on its asymptotic properties and does not take

estimated parameters into account, unlike the threshold mnτ
of Algorithm 1. Hence, while the outliers still exist in L(Φ)

(Eq. (26)) for any useful remapping Φ, the threshold becomes

too large to distinguish the outlier from the rest of the entries.

To overcome this problem, we propose a modification to

Algorithm 2 based on the following observation: As shown for

a family of distributions in [25], the largest two order statistics

of a sequence of n i.i.d. random variables typically have close

values for large n. More formally, let T(1), j ≤ . . . ≤ T(n), j be

the order statistics of the jth column of M(Φ) (Eq. (29)) and

define

R(i), j �
T(i), j

T(i−1), j
, 2 ≤ i ≤ n. (53)

Then, for large n, we expect to have T(n), j = Mrj, j(Φ), where

r j is the index of the jth retained column (Eq. (76)), and

lim
n→∞R(n), j = ∞ (54)

lim
n→∞R(n−1), j = 1 (55)

Based on this, we propose the following modification: First,

we compute the sample means R̄(n) and R̄(n−1) of {R(n), j}K̂n
j=1 and

{R(n−1), j}K̂n
j=1, respectively. Then, the algorithm declares Φ to be

useful if
R̄(n)

R̄(n−1)

≥ τ̃ (56)

for a threshold τ̃ above 1. We note that while any finite value

of τ̃ that is larger than and bounded away from 1 works in

the asymptotic regime where n → ∞, in the small column

size regime, for each value of n, τ̃ is a heuristically chosen

threshold slightly larger than 1, e.g. τ̃ = 1.5 for n = 100.

After deciding that Φ is useful, the jth retained column is

inferred as:

ÎR( j) = argmax
i∈[n]

Mi, j(Φ) (57)

The resulting modified deletion detection algorithm is given in

Algorithm 5. From Figure 5, it can be seen that Algorithm 5

performs well for a small column size.

Comparing the different curves in Figure 5, we can conclude

that as the crossover probability ε increases, the decay of the

error probability becomes slower, indicating a worse detection

performance. In turn, to achieve the same deletion detection

error rate, we need a higher number of seeds in scenarios with

a higher level of obfuscation.



BAKIRTAS AND ERKIP: DISTRIBUTION-AGNOSTIC DATABASE DE-ANONYMIZATION 3199

Algorithm 5 Modified Distribution-Agnostic Seeded Deletion

Detection Algorithm

C. De-Anonymization Scheme

In this subsection, we evaluate the performance of

the de-anonymization scheme (Algorithm 3) proposed in

Section III-C. While doing so, we decrease the column size

from n = 100 to n = 25 due to the following considerations:

(i) As discussed in Section III-C, Algorithm 3 has a runtime

of O(m2
nn).

(ii) As in the proof of Theorem 1 (Eq. (40)), the matching

error probability decreases exponentially in the column

size n. Hence to observe a non-trivial (non-zero) match-

ing error, we must consider a row size mn exponential in

n (Definition 7). This suggests, simulating Algorithm 3

in the non-trivial regime becomes computationally pro-

hibitive, even for n = 100.

In addition to the modified deletion detection algorithm

(Algorithm 5), we make a slight modification to Algorithm 3,

described below to accommodate the small column size. After

performing replica and deletion detection, and estimating

p̂X,YS |S , instead of fixing an ε > 0 (that depends on n) and

checking the ε-joint-typicality of the row pairs from X and Ỹ,

in Algorithm 6, we do the following:

Fig. 5. Probability of error of the modified seeded deletion detection algorithm
(Algorithm 5) vs. the seed size Λn with τ̃ = 1.5 and 104 trials. The y-axis is
given in the logarithmic domain to validate the exponential relation between
the deletion detection error probability and Λn given by Lemma 2. Different
curves correspond to different crossover probabilities ε.

(i) For each (i, j) ∈ [mn]2, compute

Δi, j �
ˇ̌
Ĥ(X,YS |S ) − Ĥi, j(X,YS |S )

ˇ̌
(58)

where

Ĥi, j(X,YS |S ) � −1

n
log p̂Xn,YKn |S n (Xn

i ,Y
Kn
j |Ŝ n) (59)

(ii) For each j ∈ [mn], match the jth row YKn
j of Ỹ with the

lth row Xn
l of X, if

l = arg min
i∈[mn]

Δi, j (60)

assigning σ̂n(l) = j.
(iii) If there exist distinct j1, j2 such that l satisfies (60),

declare error and assign σ̂n(l) = 0.

We note that testing Δi, j against a threshold ε would corre-

spond to the joint-typicality check as done in Algorithm 3.

The experimental evaluation of the performance of

Algorithm 6 is given in Figure 6. As expected, we observe

that a higher row size mn leads to an increased matching error.

Similar to Figures 4 and 5, Figure 6 demonstrates the impact

of the obfuscation on the de-anonymization performance. As

the databases become more obfuscated, the de-anonymization

performance degrades potentially an order of magnitude.

Hence, we can conclude that the amount of obfuscation plays

a crucial role in preserving privacy in databases.

D. Histogram-Based Repetition Detection

In this subsection, we evaluate the performance of the

histogram-based repetition detection algorithm (Algorithm 4)

of Section III-E in the no-obfuscation setting.

For uniform database distribution X ∼ Unif([X ]), we can

obtain the following closed-form asymptotic expression for

the repetition detection error probability of Algorithm 4:
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Algorithm 6 Modified Distribution-Agnostic De-

Anonymization Scheme

Fig. 6. Probability of de-anonymization error of the modified de-
anonymization scheme (Algorithm 6) vs. the row size mn with n = 25, Λn = 25
and 104 trials. Different curves correspond to different crossover probabilities
ε.

Proposition 2 [15, Propositon 4]: Let ξn denote the prob-
ability of the column histograms of X not being unique. If
X ∼ Unif(X ), then

ξn = n2m
1−|X |

2
n (4π)

1−|X |
2 |X | |X |2 (1 + omn (1))(1 − on(1)) (61)

Fig. 7. Probability of error of the histogram-based repetition detection
(Section III-E) vs. the row size mn with 106 trials. Both axes are given in the
logarithmic domain to validate the linear relation given in (62).

Proposition 2 states that for fixed n and |X |, ξn ∝ m
1−|X |

2
n , i.e.,

log ξn is linear with log mn for large n and mn. More formally,

log ξn =
1 − |X |

2
log mn + C|X | + 2 log n + ζmn,n (62)

where

C|X | �
1 − |X |

2
log 4π+

|X |
2

log |X | (63)

and ζmn,n → 0 as mn, n → ∞. We note that (62) implies that

the order relation given in Lemma 3 is tight.

From Figure 7, one can see that after some mn, log ξn
decays linearly with log mn (excluding |X | = 3) with respective

approximate slopes of −1.40,−1.97,−2.51,−2.97 demonstrat-

ing that (62), which predicts respective asymptotic slopes of

−1.50,−2,−2.50,−3, holds even when n = 100. Note the

value of mn where ξn starts decaying becomes smaller with

increasing alphabet size |X |.
In Figure 7, as the alphabet X gets larger, the decay of the

error probability is steeper. This is inherent to the nature of

the histograms as in Proposition 2 and not an artifact of the

simulation configuration chosen.

V. CONCLUSION

In this paper, we have investigated the distribution-agnostic

database de-anonymization problem under synchronization

errors, in the form of column repetitions, and obfuscation,

in the form of noise on the retained entries of the database.

We showed that through either modifications of the exist-

ing algorithms for the distribution-agnostic setting or novel

ones, we can correctly detect the repetition pattern and

perform de-anonymization, in both obfuscated (noisy) and no-

obfuscation (noiseless) settings. Interestingly, our results show

that in terms of matching capacity, there is no penalty for

not knowing the underlying distributions asymptotically. Our

experimental results illustrate that our proposed algorithms or

their slightly modified versions work in the non-asymptotic

regime with small database sizes as well. Overall, our work

provides insights into the practicality of distribution-agnostic
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database de-anonymization algorithms with theoretical guar-
antees. Finally, an important direction of future work is the
extension of our proposed algorithms to continuous database
distributions, as well as adversarial noise and column repeti-
tion patterns.

APPENDIX

A. Proof of Lemma 1

The estimator proposed in [21] works as follows: Define the
kth sample factorial moment Fk as

Fk ,
1

Kn − 1

Kn−1X
j=1

k−1Y
i=0

W j − i
mn − i

, ∀k ∈ [mn] (64)

and let

U ,
F3 − F1F2

F2 − F2
1

(65)

Then the respective estimators p̂0 and p̂1 for p0 and p1 can
be constructed as:

p̂0 =
U +

p
U2 − 4UF1 + 4F2

2
(66)

p̂1 =
U −

p
U2 − 4UF1 + 4F2

2
(67)

From [21], we get p̂i
p
→ pi, i = 0, 1, and in turn τ

p
→ U

2 .
Thus for large n, τ is bounded away from p0 and p1. We
complete the proof following the same steps taken in the proof
of [15, Lemma 1], which we provide below for the sake of
completeness.

Let A j denote the event that C(2)
j and C(2)

j+1 are noisy replicas
and B j denote the event that the algorithm infers C(2)

j and C(2)
j+1

as replicas. Via the union bound, we can upper bound the total
probability of replica detection error κ(1)

n as

κ(1)
n = Pr(

Kn−1[
j=1

E j) (68)

≤

Kn−1X
j=1

Pr(Ac
j) Pr(B j|Ac

j) + Pr(A j) Pr(Bc
j |A j) (69)

Observe that conditioned on Ac
j, W j ∼ Binom(mn, p0) and

conditioned on A j, W j ∼ Binom(mn, p1). Then, from the
Chernoff bound [26, Lemma 4.7.2], we get

Pr(B j|Ac
j) ≤ 2−mnD(τ‖p0) (70)

Pr(Bc
j |A j) ≤ 2−mnD(1−τ‖1−p1) (71)

Thus, through the union bound, we obtain

κ(1)
n ≤ (Kn − 1)

h
2−mnD(τ‖p0) + 2−mnD(1−τ‖1−p1)

i
(72)

Since the RHS of (72) has 2Kn − 2 = O(n) terms decaying
exponentially in mn, for any mn = ω(log n) we have

κ(1)
n → 0 as n→ ∞. (73)

Observing that n ∼ log mn concludes the proof. �

B. Proof of Lemma 2

For now, suppose that Φ is a useful remapping. Using
Chebyshev’s inequality [27, Theorem 4.2] it is straightforward
to prove that for any εn > 0

γ , Pr(|µ(Φ) − Λnq0(Φ)| > Λnεn) (74)

= O
�

1
K̃nnΛnεn

�
(75)

First, let
IR = {r1, . . ., rK̃n

} (76)

and note Lr j, j(Φ) ∼ Binom(Λn, q1(Φ)). Thus, from the Cher-
noff bound [26, Lemma 4.7.2] we get

βr j, j , Pr(|Lr j, j(Φ) − Λnq1(Φ)| ≥ εnΛn) (77)

≤ 2−ΛnD(q1(Φ)−εn‖q1(Φ))

+ 2−ΛnD(1−q1(Φ)−εn‖1−q1(Φ)). (78)

Now, for notational brevity, let

f (ε) , D(q − ε‖q) (79)

Then, one can simply verify the following

f ′(ε) = log
q

1 − q
− log

q − ε
1 − q − ε

(80)

f ′′(ε) =
1

log e

�
1

q − ε
+

1
1 − q + ε

�
(81)

Similarly, letting

g(ε) , D(1 − q − ε‖1 − q) (82)

we get

g′(ε) = log
1 − q

q
− log

1 − q − ε
q + ε

(83)

g′′(ε) =
1

log e

�
1

1 − q − ε
+

1
q + ε

�
(84)

Observing that

f (0) = f ′(0) = 0 (85)
g(0) = g′(0) = 0 (86)

and performing second-order MacLaurin series expansions on
f and g, we get for any ε < 1

f (ε) = c(q)ε2 +O(ε3) (87)

g(ε) = c(q)ε2 +O(ε3) (88)

where

c(q) ,
1

log e

�
1
q
+

1
1 − q

�
(89)

Now, let Λn = Γn log n and εn = Γ−
1/3

n and pick the threshold
as τ̂n = 2Λnεn. Observe that since Γn = ωn(1), we get

τ̂n = 2Λnεn = on(Λn) (90)

Λnε
2
n = Γ

1/3
n log n = ωn(log n) (91)

Then, we have

βr j, j ≤ 21−Λn(c(q1(Φ))ε2
n+O(ε3

n )) (92)
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= 21−c(q1(Φ))Γ
1
/3

n log n+O(ε3
n )) (93)

Note that with probability at least 1 − γ − βr j, j we have

|µ(Φ) − Λnq0(Φ)| ≤ Λnεn (94)
|Lr j, j(Φ) − Λnq1(Φ)| ≥ Λnεn (95)

From the triangle inequality, we have

Mr j, j(Φ) = |Lr j, j(Φ) − µ(Φ)| (96)
≥ Λn(|q1(Φ) − q0(Φ)| − 2εn) (97)
≥ τ̂n (98)

for large n. Therefore, from the union bound we have

Pr(∃ j ∈ [K̃n] : Mr j, j(Φ) ≤ τ̂n) (99)

≤ γ +

K̃nX
j=1

βr j, j (100)

= γ + 2log K̃n−1−c(q1(Φ))Γ
1
/3

n log n+O(ε3
n )) (101)

Since K̃n ≤ n and Λn = ωn(log n), we have

lim
n→∞

log K̃n − c(q1(Φ))Γ
1/3
n log n = −∞ (102)

Thus we have

lim
n→∞

Pr(∃ j ∈ [K̃n] : Mr j, j ≤ τ̂n) = 0 (103)

Next, we look at i , r j. Repeating the same steps above,
we get

βi, j , Pr(|Li, j(Φ) − Λnq0(Φ)| ≥ εnΛn) (104)

≤ 2−ΛnD(q0(Φ)−εn‖q0(Φ))

+ 2−ΛnD(1−q0(Φ)−εn‖1−q0Φ)) (105)

= 21−c(q0(Φ))Γ
1
/3

n log n+O(ε3
n )) (106)

Again, from the triangle inequality, we get

Mi, j(Φ) = |Li, j(Φ) − µ(Φ)| (107)
≤ 2εn (108)
= τ̂n (109)

From the union bound, we obtain

Pr(∃ j ∈ [K̃n] ∃i ∈ [n] \ {r j} : Mi, j(Φ) ≥ τ̂n) (110)

≤ γ +

K̃nX
j=1

X
i,r j

βi, j (111)

≤ γ + n221−c(q0(Φ))Γ
1
/3

n log n+O(ε3
n )) (112)

Since Λn = ω(log n), as n→ ∞ we have

Pr(∃ j ∈ [K̃n] ∃i ∈ [n] \ {r j} : Mi, j(Φ) ≥ τ̂n) −→ 0. (113)

Thus, for any useful remapping Φ, the misdetection probability
decays to zero as n→ ∞.

For any remapping Φ that is not useful, following the same
steps, one can prove that

Pr(Remapping Φ is declared useful, even though it is not.)

≤ γ +

nX
i=1

K̃nX
j=1

Pr(Mi, j ≥ εnΛn) (114)

≤ γ + n221−c(q0(Φ))Γ
1
/3

n log n+O(ε3
n )) (115)

= on(1) (116)

Since |S(X )| = |X |! = On(1), we haveX
Φ:not useful

Pr(Φ is declared useful.) = on(1) (117)

concluding the proof. �

C. Proof of Theorem 2

Let ε > 0 and denote by ξn the error probability of the
histogram-based repetition algorithm. Denote the ε-typical set
of sequences (with respect to pX) of length k = (1 − δ − ε)n
by A(k)

ε (X) and the pairwise collision probability between Xn
1

and Xn
i , given K̂n = k and Xn

1 ∈ A(k)
ε (X), by Pcol,i(k). Since

additional columns in Ȳ would decrease the pairwise collision
probability between independent rows, we have

Pcol,i(K̂n) ≤ Pcol,i(k), ∀K̂n ≥ k (118)

Since we perform exact row matching and the rows of X̄ are
independent, we have

Pcol,i(k) = Pr(X̄k
i = X̄k

1 |X̄
k
1 ∈ A(k)

ε (X)) (119)

≤ 2−k(H(X)−ε). (120)

Thus, we can bound the probability of error Pe as

Pe ≤

mnX
i=2

Pcol,i(k) + ε + κn + ξn (121)

≤ 2nR2−k(H(X)−ε) + ε + κn + ξn (122)

where κn = Pr(K̂n < k). Since mn is exponential in n,
by Lemma 3, ξn → 0 as n → ∞. Furthermore, K̂n is a
Binom(n, 1−δ) random variable and from law of large numbers
κn → 0 as n→ ∞. Thus Pe ≤ ε as n→ ∞ if

R < (1 − δ − ε)H(X). (123)

Thus, we can argue that any database growth rate R satisfying

R < (1 − δ)H(X) (124)

is achievable, by taking ε small enough. �
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