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Distribution-Agnostic Database De-Anonymization
Under Obfuscation and Synchronization Errors
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Abstract—Database  de-anonymization typically involves
matching an anonymized database with correlated publicly
available data. Existing research focuses either on practical
aspects without requiring knowledge of the data distribution
yet provides limited guarantees, or on theoretical aspects
assuming known distributions. This paper aims to bridge these
two approaches, offering theoretical guarantees for database
de-anonymization under synchronization errors and obfuscation
without prior knowledge of data distribution. Using a modified
replica detection algorithm and a new seeded deletion detection
algorithm, we establish sufficient conditions on the database
growth rate for successful matching, demonstrating a double-
logarithmic seed size relative to row size is sufficient for detecting
deletions in the database. Importantly, our findings indicate
that these sufficient de-anonymization conditions are tight and
are the same as in the distribution-aware setting, avoiding
asymptotic performance loss due to unknown distributions.
Finally, we evaluate the performance of our proposed algorithms
through simulations, confirming their effectiveness in more
practical, non-asymptotic, scenarios.

Index Terms—Dataset, database, matching, de-anonymization,
alignment, distribution-agnostic, privacy, synchronization, obfus-
cation.

I. INTRODUCTION

HE accelerating growth of smart devices and applications

has accelerated the collection of user-level micro-data
both by private companies and public institutions. This data
is often shared or sold after removing explicit user identifiers,
a.k.a. anonymization, and coarsening of the data through noise,
a.k.a. obfuscation. Despite these efforts, there is a growing
concern about the privacy implications [1]. These concerns
were further justified by the success of a series of practical
de-anonymization attacks on real data [2], [3], [4], [5], [6]. In
the light of these successful attacks, recently there has been
an increasing effort on understanding the information-theoretic
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Fig. 1. An illustrative example of database matching under column repetitions.
The column colored in red is deleted, whereas the column colored in blue is
replicated. ¥;,’ and Y;7’ denote noisy copies, i.e. replicas, of X;;. The goal of

database de-anonymization studied in this paper is to estimate the correct row

permutation o, = (12313 ¢), by matching the rows of X and Y without any

prior information on the underlying database (py), obfuscation (py|x), and
repetition (pg) distributions.

and statistical foundations of database de-anonymization,
a.k.a. database alignment, database matching, and database
recovery [7], [8], [9], [10], [11], [12], [13], [14], [15], [16].

Our recent work focuses on the database de-anonymization
problem under synchronization errors. In [13], we investigated
the matching of Markov databases under synchronization
errors only, with no subsequent obfuscation, i.e. noise, using
a histogram-based detection method. In [14] and [15], we
extended this effort to databases with noisy synchronization
errors. We introduced a noisy replica detection algorithm,
and a seeded deletion detection algorithm, and used joint-
typicality-based matching to derive achievability results, which
we subsequently showed to be tight, for a seed size double
logarithmic with the row size of the database. In [13], [14], and
[15] we assumed that the underlying distributions are known
and tailored repetition detection and matching algorithms for
these known distributions.

Motivated by most practical settings where the underly-
ing distributions are not readily available, in this paper, we
investigate the de-anonymization problem without any prior
knowledge of the underlying distributions. Borrowing a noisy
random column repetition model from [14], illustrated in
Figure 1, we show that even though the distributions are not
known a priori, matching can be performed with no asymptotic
(in database size) loss of performance. To that end, we first
modify the noisy replica detection algorithm proposed in [14]
so that it still works in the distribution-agnostic setting. Then,
we propose a novel outlier-detection-based deletion detection
algorithm and show that when seeds, whose size grows
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double logarithmic with the number of users (rows), are avail-
able, the underlying deletion pattern could be inferred. Next,
through a joint-typicality-based de-anonymization algorithm
that relies on the estimated distributions and the repetition
pattern, we derive a tight sufficient condition for database
de-anonymization to succeed. Finally, we evaluate the per-
formance of our proposed distribution-agnostic algorithms
through simulations on finite databases and demonstrate their
success in the non-asymptotic regime as well. We stress that, to
the best of our knowledge, this is the first work that tackles the
distribution-agnostic database matching under synchronization
erTors.

The structure of the rest of this paper is as follows:
Section II introduces the formal statement of the problem.
Section III contains our proposed algorithms, states our main
result, and contains its proof. In Section IV we evaluate
the performances of our proposed algorithms in the non-
asymptotic regime via simulations. Section V consists of the
concluding remarks. Proofs are provided in the Appendix.

Notation: We denote a matrix X with bold capital letters,
and its (i, ) element with Xij. A set is denoted by a
calligraphic letter, e.g., X. [n] denotes the set of integers
{1,...,n}. Asymptotic order relations are used as defined
in [17, Chapter 3]. Unless stated otherwise, all logarithms
are base 2. H(.) and I(.;.) denote the Shannon entropy and
the mutual information [18, Chapter 2], respectively. D(pllq)
denotes the relative entropy [18, Chapter 2.3] (in bits) between
two Bernoulli distributions with respective parameters p and

P . .
q. — denotes convergence in probability.

II. PROBLEM FORMULATION

In this section, we formalize our problem, adopting some
definitions from [15]. In Section II-A, we formally define the
database pairs of interest and seed matrices. In Section II-B,
we present our key performance criterion, and state the main
objective in this paper. In Section II-C, we discuss the set of
assumptions used in our analyses. Finally, in Section II-D we
present some well-known information-theoretic results that are
used in this paper.

A. Anonymized and Labeled Correlated Databases & Seeds

Definition 1  (Anonymized Database): An (m,,n, px)
anonymized database X = {X;; € X}, (i, ) € [m,] X [n] is
a randomly generated m, X n matrix with X; ; e Px, where py
has a finite discrete support X = {1,...,|X][}.

Definition 2 (Column Repetition Pattern): The column
repetition pattern S" = 1{84,8,,...,5,} is a random vector
with §; i ps, where the repetition distribution ps has a finite
integer support {0,..., smx}. Here 6 = pg(0) is called the
deletion probability.

Definition 3 (Anonymization Function): The anonymization
function o, is a uniformly-drawn permutation of [m1,].

Definition 4 (Obfuscation Distribution): The obfuscation
(also referred to as noise) distribution py;x is a conditional
probability distribution with both X and Y taking values
from X.
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Fig. 2. Relation between the anonymized database X and the labeled

correlated database, Y.

Definition 5 (Labeled Correlated Database): Let X and §"
be a mutually-independent (m,,n, px) anonymized database
and repetition pattern, o, be an anonymization function, and
pyix be an obfuscation distribution. Then, Y is called the
labeled correlated database if the i™ row X! of X and the
o (D)™ row Y g:l(i) = [Yo, )15 - - Yo,a).k,] of Y have the relation
given in (1)—(2), as shown at the bottom of the next page,
where

Kj=)"s,. 3)

t=1

Note that S ; indicates the times the jM column of X is repeated
in Y. When §; =0, the jth column of X is said to be deleted
and when §'; > 1, the 7™ column of X is said to be replicated.

The i row X; of X and the o,,(i)™ row Y, of Y are called
matching rows.

We can interpret (1) as follows: Since X has i.i.d. entries
and the noise on the each database entry is i.i.d., each retained
entry X;; with §; # 0 will correspond to an independent
replica run Yo,i).Kioi+1s - s Yo, (0.K; in Y, (7). Then, (2) directly
follows from the fact that the noise on the retained entries is
i.id.

The relationship between X and Y, as described in
Definition 5, is illustrated in Figure 2.

As often done in both the graph matching [19] and the
database matching [14] literatures, we will assume the avail-
ability of a set of already-matched row pairs called seeds, to
be used in the detection of the underlying repetition pattern.

Definition 6 (Seeds): Given a pair of anonymized and
labeled correlated databases (X,Y), a seed is a correctly
matched row pair with the same underlying repetition pattern
S™. A batch of A, seeds is a pair of seed matrices of respective
sizes A, xnand A, x 30, S

For the sake of notational brevity and without loss of
generality, we assume that the seed matrices GV and G®
are not submatrices of X and Y. Throughout, we will assume
a seed size A, = w(logn) = w(oglogm,) which is double-
logarithmic with the number of users m,.

B. Performance Criterion

As the number of rows m, increases for a fixed number
of columns n, so does the probability of mismatch due to
the increased number of candidates. In turn, in database de-
anonymization problems, the relationship between the row
size m, and the column size n directly impacts the de-
anonymization performance. Hence, as done in [8], [12], [13],
[14], and [16], we utilize the database growth rate, defined
below, as the main performance metric.
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Definition 7 (Database Growth Rate): The database growth
rate R of an (m,,n, px) anonymized database is defined as

1
R = lim — logm,. @)

n—oo n

Definition 8 (Distribution-Agnostically ~ Achievable
Database Growth Rate): Consider a sequence of (my,n, px)
anonymized databases X with database growth rate R, an
independent a repetition probability distribution pg, an
obfuscation distribution pyjx and the resulting sequence
of labeled correlated databases Y. Given seed matrices
(G, GP) with a seed size A,, the database growth rate R is
said to be distribution-agnostically achievable if there exists
a successful matching scheme v : (X, Y,G,G®) - &, that
does not rely on any knowledge on px, ps and pyxx, with

lim Pr(o,(I) # 6,(I)) = 0 where I ~ Unif([m,]) (5)

where o, is true the anonymization function.

Remark 1: We note that the performance criterion described
in Definition 8 is known as almost-perfect recovery. Another
well-known performance criterion is the perfect recovery cri-
terion where all rows need to be matched. More formally, the
perfect recovery criterion corresponds to

r}Lnt;lo Pr(o, # d,) = 0. (6)
Observe that the difference between the two performance
criteria is that in the almost-perfect criterion allows a sub-
linear fraction of the database rows to be mismatched. This
mismatch budget allows us to use tools such as typicality from
information and communication theories. We refer to [10] for
an in-depth analytical comparison of the Gaussian database
matching results under these different performance criteria.

Definition 9 (Distribution-Agnostic Matching Capacity):
The distribution-agnostic matching capacity C is the supre-
mum of the set of all distribution-agnostically achievable
database growth rates corresponding to a database distribution
px, repetition distribution pg, obfuscation distribution pyx,
and seed size A,,.

In this work, our main objective is the characterization of
the distribution-agnostic matching capacity C. We remark that
this is in contrast with prior work ([8], [12], [13], [14]) that
assumed complete distributional knowledge.

Throughout, since we are interested in the distribution-
agnostic matching capacity, we assume a positive database
growth rate R > 0. In other words, we assume n ~ log m,,.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 20, 2025

C. Assumptions

Our analysis hinges on the following assumptions:

(a) The anonymized database X and the column repetition
pattern S” are known to be independent. It is also known
that their components X;; and S; are i.i.d., while the
distributions px and pg are not known.

(b) The conditional independence of the noisy replicas
stated in (2) is known, leading to a memoryless obfus-
cation model, whereas the noise distribution pyx is not.

(¢) |X| and spmax are known.

As we argue in Sections III-A and III-B, " can be detected
without any assumptions on the correlation between X and S”.
In turn, one could test the independence of X and the estimate
$§" of $". Furthermore, the i.i.d. nature of the components
of X and S”, and the obfuscation can be inferred via the
Markov order estimation algorithm of [20] with a probability
of error vanishing in n, justifying (a)-(b). Similarly, since |X|
and sp.x do not depend on n, they can easily be estimated
with a vanishing probability of error, justifying (c).

We note that our analysis is limited to the setting in which
the anonymized database X has categorical entries, namely
they come from a discrete distribution, and synchronization
errors and obfuscation occur randomly and not in an adver-
sarial manner.

D. Preliminaries

In our derivations, we rely on some well-known classical
information-theoretic definitions and results which we present
below for the sake of completeness.

Definition 10 (Joint Entropy [18, Chapter 2.2]:) The joint
(Shannon) entropy associated with a pair of discrete random
variables (X, Y) with a joint distribution pxy is defined as:

H(X,Y) = -E[log pxy(X, Y)I. (7)
Definition 11 (Joint Typicality [18, Chapter 7.6]:) The e-
typical set AP (X, Y) associated with discrete random variables
(X,Y) with joint distribution pyy is the set of all sequence
pairs (x",y") satisfying
1
- ; IOg pxn,yn(x",y") - H(X, Y) <e€ (8)
where H(X,)) is the entropy rate of (X,))).

Proposition 1 (Joint Asymptotic Equipartition Property [18,
Theorem 7.6.1]): Let X" and Y" be generated according to the

i.i.d. marginal distributions px. and py., independently. Then,
the following holds:

Pr((X", 7") € A”(X, Y)) < 27"(X:1=30) 9)

Pr(Yy, =y IX! = 2

J:S j#0

J:S 20 s=1

1_[ Pr(Yo, i)k 1415 - - Yo, 0., = Y415 - VK IXij = X)) €]

S./
[T [1prx0x.ssdxp 2
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where I(X;Y) =
information.

HX) + HY) — HX,Y) is the mutual

III. MAIN RESULT

Our main result in Theorem 1 is on the distribution-
agnostically achievable database growth rates when no prior
information is provided on distributions py, pyx, and pg.

Theorem 1  (Distribution-Agnostic Matching Capacity):
Consider an anonymized and labeled correlated database
pair. We assume that the underlying database distribution
Dx, the obfuscation function pyyx, and the column repetition
distribution ps are unknown. Given a seed size A, = w(logn),
the distribution-agnostic matching capacity is given by

C=I(X;Y%S) (10)

where S ~ ps, X ~ px and Y5 = Y,,...,Ys such that
iid.
Yi|X "~ pyx.

Theorem 1 implies that given a seed size A, = w(logn) =
w(loglogm,) we can perform matching as if we knew the
underlying distributions pyx, pyx and ps, and the actual
column repetition pattern S" a priori. Hence comparing
Theorem 1 with [15, Theorem 1], we conclude that in the
asymptotic regime where n — oo, not knowing the distribu-
tions and the realizations of the repetition pattern causes no
loss in the matching capacity.

We stress that the proof of the converse part of Theorem 1
directly follows from [15, Theorem 1] since distribution-
agnostic matching capacity cannot be better than the one that
assumes distributional information. The rest of this section
is on the proof of the achievability part of Theorem 1. In
Section III-A, we present an algorithm for detecting noisy
replicas and prove its asymptotic success. Then in Sec-
tion III-B, we propose a seeded deletion detection algorithm
and derive a sufficient seed size that guarantees its asymptotic
success. Subsequently, in Section III-C, we present our de-
anonymization algorithm that incorporates Sections III-A and
III-B. Finally, in Section III-E, we focus on the special case
of no obfuscation, where seeds are obsolete.

A. Distribution-Agnostic Noisy Replica Detection

Similar to [14], we use the running Hamming distances
between the consecutive columns C;z) and Cﬁ)l of Y, denoted
by W;, j € [K, — 1], where K, = Z'}zl S ; as a permutation-
invariant future of the labeled correlated database. More
formally,

my
Wj = Z ]l[Yr,jJrl#Yr./]’

Vjel[K,-1] (11)
=1
We first note that
Binom (m,,, pg), if C§2)J.L C;i)l (12)
! Binom (m,,, p;), otherwise
where
po1-Y pyOy (13)

yeX
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Algorithm 1 Distribution-Agnostic Noisy Replica Detection
Algorithm

Input : (Y,m,, K,)

Output: isReplica

W <« RunningHammingDist(Y);
(Do, p1) < EstimateParams(1V);

/* Eq. (11) */
/* Eq (66)-(67) */
/* Threshold */
isReplica + @;
/* Sweep over all (C]@),Cj(i)l) pairs. */
for j=1to K, — 1 do
if W[j] < m,7 then
/* CJ(-Q) and Cj(i)l are correlated. */
isReplica[j] < TRUE;
else
/* CJ(.Q) and Cj(i)l are independent. */
isReplica[j] <— FALSE;

end

end

prET="px()) prx(ln)’.

xXeX yeX

(14)

Here, pg is the probability that two independent entries of X
have different noisy observations in Y, and p; is the probability
that the same replicated entry of X has two different noisy
observations in Y.

From [16, Lemma 1], we know that as long as the databases
are dependent, ie., pxy # pxpy, we have py > p; for any
pxy suggesting that replicas can be potentially detected based
on W; similar to [14] and [16]. However, the algorithm in
[14] relies on a threshold test with the threshold depending
on pyxy through pg and p;. In Algorithm 1, we propose the
following modification for the distribution-agnostic setting:
We first construct the estimates py and p; for the respective
parameters py and p; through the moment estimator proposed
by Blischke [21] and then use the algorithm proposed in
[14, Section III-A] for replica detection. Note that we can
use Blischke’s estimator because the Binomial mixture is
guaranteed to have two distinct components. More formally,
the distribution of W; conditioned on S" is given by

my, w My—w
Pr(W; = w|S") = (W)[ozpo(l - po)™

+ (1 —a)pt(1 = p)™™]

for w=0,...,m, where the mixing parameter « is given by

1 n
K-1\"" Zl Lis =0
-

Since pg, and in turn § are constant in n, it can easily be

. P .
verified that as n — oo, @ — ]ﬁ. Hence « is bounded away
from both 0 and 1, suggesting that the moment estimator of

[21] and in turn, Algorithm 1 can be used to detect the replicas.

15)

(16)

a =

Lemma 1 (Noisy Replica Detection): Let E; denote the
event that Algorithm 1 fails to infer the correct relationship
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between C(z) and Cgp j=1,...,K, — 1. Then, given m, =

w(logn)
K-1
KD 2 Pr(| JE) > 0asn— oo, A7)
j=1
Proof: See Appendix A. O

Note that the condition in Lemma [ is automatically satis-
fied since m, is exponential in n (Definition 7). Furthermore,
Algorithm 1 has a runtime of O(m,n), the computational
bottleneck being the computation of the running Hamming
distances W;. Finally, we stress that as opposed to deletion
detection, discussed in Section III-B, no seeds are necessary
for replica detection.

B. Distribution-Agnostic Deletion Detection Using Seeds

In this section, we propose a deletion detection algorithm
that utilizes the seeds. Since the replica detection algorithm
of Section III-A (Algorithm 1) has a vanishing probability of
error, for notational simplicity we will focus on a deletion-
only setting throughout this subsection. Let GV and G® be
the seed matrices with respective sizes A, x n and A, x K,
and denote the j" column of G with GY), r = 1,2 where
K, = > i1 Lis #0)- Furthermore, for the sake of brevity, let
Lij denote the Hamming distance between G(l) and G(z) for
@i, j) € [n] x [K,]. More formally, let

An
A
J = Z ﬂ[Gi_P#Gﬁ?}]
=1

(18)

Observe that

Bi A, qo), GVILGP
L, ~ JBmom(Anqo). GG (19)

Binom(A,, q1), otherwise
where
qo=1-Y px(x)py(x) (20)
xeX
g1 =1-Y pxy(x,x. @1)
xeX

Here, go is the probability that two independent (non-
matching) entries in G and G® are different, and ¢; is
the probability that two matching entries in GV and G® are
different.

Thus, we have a problem seemingly similar to the one in
Section III-A. However, we cannot utilize similar tools here
because of the following:

(1) Recall that the two components py and p; of the Bino-
mial mixture discussed in Section III-A were distinct
for any underlying joint distribution pyy as long as
the databases are dependent, i.e., pxy # pxpy. Unfor-
tunately, the same idea does not automatically work
here as demonstrated by the following example: Suppose
Xi,j ~ Unif(X), and the transition matrix P associated
with py;x has unit trace. Then,

Qo -q1 =Y pxy(xx) - px(py(x)  (22)
xeX
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Fig. 3. Hamming distances between the columns of GV and G with n = 10,
K, =7 and A, = 10* for go ~ 0.76 and q; ~ 0.92. The (i, /)" element
corresponds to L; ;, with the color bar indicating the approximate values. It
can be seen that there are no outliers in the 4™, 6™, and 10™ rows. Hence, it
can be inferred that Iy = (4,6, 10).

=7 Z prx(xx) = py(x) (23)
xEX

= m““‘” -1 (24)

=0 (25)

In [14], this problem was solved using the following
modification: Based on pxy, a bijective remapping ® €
S(X) is picked and applied to all the entries of G to
obtain G®(®) before computing the Hamming distances

L;j, where S(X) denotes the symmetry group of A.
Denoting the resulting version of the Hamming distance
by L; j(®), where

Ay
L jo) = Z ﬂ[Gi_‘);er/’(q))]

t=1

(26)

it was proved in [14, Lemma 2] that there as long as
pxy # pxPy, there exists ® € S(&X') such that go(P) #
q1(®). We will call such ® a useful remapping.

(i1) In the known distribution setting, we chose a useful
remapping @ and threshold 7, for Hamming dis-
tances based on pyy. In Section III-A, we solved the
distribution-agnostic case via parameter estimation in
Binomial mixtures. However, the same approach does
not work here. Suppose the j retained column G(z)
of G® is correlated with G!)'. Then the /" column of
L(®) will have a Binom(An,ql(CD)) component in the

th row, whereas the remaining n — 1 rows will contain
Blnom(A,,, qo(®)) components, as illustrated in Figure 3.
Hence, it can be seen that the mixture parameter 8 of
this Binomial mixture distribution approaches 1 since

PICELN L

27
nk, n @7
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Algorithm 2 Distribution-Agnostic Seeded Deletion Detection
Algorithm

Input : (G, G® A, . n K, X)
Output: fR;
S(X) «+ SymmetryGroup(X);
T 2A3/3(log n)l/g; /* Threshold */
/* Sweep over ® until a useful remapping is found. */
for s + 1 to |X|! do
fR — J;
O+ S(X)[s]; /* Pick a remapping. */
L(®) + HammDist(G™"), G (®)); /* Eq. (18) */
w(®) < SampleMean(L(®)); /* Eq. (28) */
M(®) « |L(P) — u(P)|; /* Eq. (29) */
/* Sweep over G§-2)(<I>). */
forj<—1toK'n do
count < 0;
/* Sweep over G,El). */
for i < 1 to n do
if M(®)[¢][j] < 7, then
* G,El) and Gj(?)(CI)) are correlated. */
/* Add GED to the retention set. */
fR — fR U {Z},
count < count + 1;
end

/* Retention set */

end
if count > 1 then
* G,EU matched with multiple Gj(?)((I)) */
return ERROR ; /* Misdetection error. */
else
if count = 0 then
/* No outliers found (P is useless). */
Skip to next ®;
end

end
end
return /g;

end

This imbalance prevents us from performing a parameter
estimation as done in Algorithm 1.

In Algorithm 2, we exploit the aforementioned observation
that for a useful mapping @, in each column of L(®), there is
exactly one element with a different underlying distribution,
while the remaining n—1 entries are i.i.d., rendering this entry
an outlier. Note that L; j(®) being an outlier corresponds to
Ggl) and G(jz)((D) being dependent, and in turn S; # 0. On the
other hand, the lack of outliers in any given column of L(®)
implies that ® is not useful. Thus, Algorithm 2 is capable
of deciding whether a given remapping is useful or not. In
fact, the algorithm sweeps over all elements of S(X) until we
encounter a useful one.

To detect the outliers in L(®), we propose to use the
absolute deviations M(®), i.e., distances of L;;(®) to the

3195
sample mean u(®) of L(®). More formally, we have
1 n K,
D)L — L; i(® 28
(@) nmz;%;”() (28)
M; (@) 2 |L; j(®) — w(D)], V(i j) € [n] X [K,] (29)

In Algorithm 2, we test these absolute deviations M; ;(P)
against a threshold 7, independent of the underlying distri-
bution pyy. If M;;(®) is lower than 7,, we detect retention
i.e., non-deletion.

Note that this step is equivalent to utilizing Z-scores (also
known as standard scores), a well-studied concept in statistical
outlier detection [22], where the absolute deviations are also
divided by the sample standard deviation. In Algorithm 2, for
the sake of notational brevity, we will avoid such division.

We observe that the runtime of Algorithm 2 is O(A,n?) due
to the computation of L(®D).

Lemma 2 below states that for sufficient seed size, A, =
w(logn) = w(loglogm,), Algorithm 2 works correctly with
high probability.

Lemma 2 (Deletion Detection): Let Ir = {j € [n] : S ; # 0}
be the true set of indices of retained columns and Iy be its
estimate output by Algorithm 2. Then for any seed size A\, =
w(logn), we have

K2 2 Tim Pr(fg # Ig) = 0. (30)
Proof: See Appendix B. o

C. Distribution-Agnostic De-Anonymization Scheme

In this section, we propose a de-anonymization scheme
by combining Algorithm 1 and Algorithm 2, and performing
a modified version of the typicality-based de-anonymization
proposed in [14]. This then leads to the achievability proof of
Theorem 1 in Section III-D.

Given the database pair (X,Y) and the corresponding seed
matrices (G, G), the proposed de-anonymization scheme
given in Algorithm 3 is as follows:

(i) Detect the replicas through Algorithm 1.

(ii)) Remove all the extra replica columns from the seed
matrix G? to obtain G® and perform seeded deletion
detection via Algorithm 2 using G, G®. At this step,
we have an estimate $” of the column repetition pattern
S
Based on $”" and the matching entries in G, G®,
obtain the maximum likelihood estimate [23] px ys;s of
Px.ys|s Where

(iii)

1 A, n
=YD gy VXEX (D)

px(x) = A2l
i=1 j=1
A, K,
Z ]l[G{l):X GP=y)
~: ~: 1,rj L)
Prolo) & L V) e (32)
1, ~0_
pay et [G,’,,‘*)’]
NP B
ps(s) = ) Lis;=s- Vs>0 (33)

J=1
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Algorithm 3  Distribution-Agnostic ~ Database  De-
Anonymization Scheme
Input : (X,Y,¢, G G®)
Output: 6,; /* Anonymization function */
/* Noisy Replica Detection (Sec. II-A) */
isReplica+ Alg.1(Y); /* (). */
/* Seeded Deletion Detection (Sec. II-B) */
isDeleted« Alg.2(G(), G isReplica); [ (ii). */
S EstimateRepetitionPattern(isReplica,isDeleted);
/* Estimate the underlying distrlbutlon */
Px.ys|s EstlmateDlst(G(l) G® _ §my, /(). */
Y + MarkerAddition(Y, Sny; /* (iv). */
/* Sweep over all row pairs (X;,Y;). */
for i = 1 to rowSize(X) do
count<— 0;
for j = 1 to rowSize(Y) do
if isJointTypical(X[¢][:], Y[4][:], s, Px,ys|s,€)
then
/* X; and Y; are matching rows. */
Gnlt] <
count<— count + 1;
end
end
if count # 1 then
/* X; is matched with multiple Y;. */
Gnli] < 05 /* Matching error. */
end
end
and construct
pX(x)]]-bl—*] if s=0
Dx.ys)s (X, y ls) = PX(X)HPHX(lex) ifs>1 (34)
j=1
with y* = y;...y; and * denoting erasure.
(iv) Using §”, place markers between the noisy replica runs

of different columns to obtain Y. If a run has length
0, i.e. deleted, introduce a column consisting of erasure
symbol * ¢ X.

(v) Fix e > 0. Match the I row YZK" of Y with the i™ row
X! of X, if X; is the only row of X jointly e-typical (See
Definition 11) with YIK” according to py ys|s, assigning
G ,(i) = I. Otherwise, declare an error.

Finally, note that the runtime of Algorithm 3 is O(m?n) due

to the typicality check (each O(n)) for all row pairs (X}, YJ’.(”),
(i, J) € [my)*.

D. Proof of Theorem 1

We are now ready to prove Theorem 1 where we use
Algorithm 3 to obtain a matching scheme &,.

Let £, and {? be the error probabilities of the noisy replica
detection (Algorithm 1) and the seeded deletion (Algorithm 2)
algorithms, respectively. Using (31)—(33) and the Law of Large
Numbers, we have

R p
Pxys|s = Px,ys|s (35)
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and by the Continuous Mapping Theorem [24, Theorem 2.3]
we have

AKX, Y51S) 5 HX, Y5|S)
1X: 7518 D 10x; Y518)

(36)
(37

where A(X,YS|S) and (X, YS|S) denote the conditional joint
entropy and conditional mutual information associated with
Dx.ys|s, respectively. Thus, for any € > 0 we have

&P £ Pr(H(X, YS|S) - HX, Y5 |S)| > €) =5 0 (38)
KD £ Pr([(X, Y51S) - I(X, Y51S)| > ) —> 0 (39)

Using Proposition 1 and a series of union bounds
and triangle inequalities involving H(X, YS|S), H(X,Y5|S),
f(X, Y5|S), and I(X, Y5|S), the probability of error of the de-
anonymization scheme (See (5).) can be bounded as

4
Pr(Error) < 2 nUGYSIS)~4e=R) 4 o 4 Z K
i=1

(40)

<2e 41)

as n — oo as long as R < I(X; Y5|S)—4e, concluding the proof
of the main result.

E. No-Obfuscation Setting

In Sections III-A and III-B, we focused on the obfuscated
(noisy) setting and proposed algorithms for detecting noisy
replicas (Algorithm 1) and column deletions (Algorithm 2).
As discussed in Sections III-A and III-B, the key idea behind
detection is either extracting permutation-invariant features of
the columns (Algorithm 1) or assuming the correct matching
is given for the seeds (Algorithm 2). We showed that in the
general noisy setting, for the latter approach to succeed a
double-logarithmic seed size A, is sufficient.

Now, we will focus on the no-obfuscation (repetition-only)
setting, where

prixOI) = Loy, V(x,y) € X2 (42)

as a special case. Following a similar approach to Algorithm 1,
through the extraction of a new set of permutation-invariant
features of the database columns, we argue that seeds are not
required for repetition (both replica and deletion) detection.
Specifically, we will replace Algorithm 1 and Algorithm 2 a
single the histogram-based detection algorithm of [16] which
works as follows:

(1) First, we construct the respective column histogram
matrices H" and H® and of X and Y as follows:

my

HY =3 1y, VieX.Vjelnl — (43)
=1
HY) =Y My Yie X VjelK] — (44)

t=1

(ii) Next, we count the number of times the j™ column H(l)
of HY is present in M. 1f H'" is present s times in
H®?, we assign S = s, where S" is the estimate of the
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repetition pattern S”. If H;l) is absent in H®, we assign
S;=0.
Note that a repetition error could occur only when there
are identical columns in HY whose probability, we argue,
vanishes with the column size n in the following lemma:

Lemma 3 (Asymptotic Uniqueness of the Column His-
tograms [16, Lemma 1]): Let H;l) denote the histogram of

the i column of X. Then, for any m, = w (nﬁ)

lim Pr (Eli, jelnl, i+ j HY = H}“) 0. (45)
Note that since m, is exponential in n (See Definition 7),
m, = w®@) ¥s € Q. Hence, the order relation given
in Lemma 3 is automatically satisfied and hence repetition
detection could be performed without any seeds in the no-
obfuscation setting with a runtime of O(m,n) due to the
computation of the histogram matrices (H", H®).

For the non-obfuscation setting, we also consider a modified
de-anonymization scheme, given in Algorithm 4, that does
not rely on any estimates of the underlying distributions.
Specifically, we perform de-anonymization via exact sequence
matching as follows:

(i) First, we perform repetition detection via the histogram-
based detection algorithm described above.

Next, we discard the deleted columns from X to obtain
X.

Similarly, we discard all additional copies in a repetition
run in Y to obtain Y.

Finally, we match the i row X" with the j™ row Yf",
assigning &,(i) = j, if Yf” is the only row of Y equal
to X~

The histogram-based detection and the modified de-
anonymization scheme are given in Algorithm 4. We note that
the overall runtime of Algorithm 4 is O(mﬁn) due to the exact
row matching (each O(n)) of m% row pairs.

The matching scheme described above and given in
Algorithm 4 leads to the achievability result given in
Theorem 2. The converse immediately follows from
the distribution-aware matching capacity result of [15,
Theorem 2].

Theorem 2 (Distribution-Agnostic Matching Capacity in the
No-Obfuscation Setting): Consider an anonymized and labeled
correlated database pair. We assume that the underlying
database distribution px and the column repetition distribution
ps are unknown. Suppose there is no obfuscation, i.e.,

(ii)
(iii)
(iv)

prixOIx) = Loy, V(x,y) € X2 (46)

Then, for any seed size A,, the distribution-agnostic matching
capacity C is given by

C=0-0HX). (47)
Proof: See Appendix C. O
Observe that Theorem 2 states that the repetition distribution

ps appears in the matching capacity only through the deletion

probability ¢ in the no-obfuscation setting.
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Algorithm 4 Distribution-Agnostic De-Anonymization In No-
Obfuscation Setting
Input : (X,Y)
Output: 6,; /* Anonymization function */
/* Compute column histograms of H(!) and H®), #/
(HM H®)) « ColHist(X,Y);  /* Eq. (43)-(44). */
/* Histogram-based repetition detection */
/* Sweep over all HZ-(1 L
for i = 1 to columnSize(H")) do
/% Count how many times H'" is in H®). #/
count<— 0;
for j = 1 to columnSize(H®) do

if H®)[:][j] = HMV[:][i] then

‘ count<— count + 1;

end

end

Sli] + count;

end
(X,Y) + ColumnDiscard(X, Y, S)
/* Exact sequence matching */
/* Sweep over all row pairs (X;,Y;). */
for i = 1 to rowSize(X) do
count<— 0;
for j =1 to rowSize(Y) do
if X[i][:] = Y[j][:] then
/* X; and Y; are matching rows. */
onli] < Js
count<— count + 1;
end
end
if count # 1 then
/* X; is matched with multiple Y. */
Gnli] < 05 /* Matching error. */

end

end

IV. NON-ASYMPTOTIC REGIME

In Section III, we devised various detection and de-
anonymization algorithms and proved their performances (in
terms of error probabilities and matching capacity) in the
asymptotic regime where the column size n grows to infinity.
In this section, through extensive experiments, we will study
the performances of these algorithms when # is finite.

Throughout this section, unless stated otherwise, we will
focus on the following simulation configuration:

e Database size (m,,n): We choose column size n =
100 with the exception of the evaluation of the de-
anonymization scheme in Section IV-C where we take
n = 25. We evaluate the performance of our algorithms
for a range of values of row sizes m,,.

e Database distribution px: Without loss of generality, we
focus on the uniform distribution px(x) = %,Vx e X
where we arbitrarily take the alphabet size |X| = 5. In
Section IV-D, we will sweep over |X].

e Obfuscation pyyx: We will consider the |X|-ary symmetric
channel with a crossover probability €. More formally, for

Authorized licensed use limited to: New York University. Downloaded on April 11,2025 at 23:08:25 UTC from IEEE Xplore. Restrictions apply.



3198

0.
10 S T ' !
5\ TA Ve e =0.20
. N LN v - -0 € =0.25
5 s A & e =0.30
ot A “w - - =035
- Yoy . V.. |-vee=040
=) yoY b -
] \ N
= \ N v.
) 1()'2 3 L \ “a v
A A B 4
[av] \ A
B \ N
2, e A
() 3 \ N
£ 107 X ' »_ E
— A
O-‘ b\ N
\ \
\ A
104 s 3 b, ‘ s >
0 50 100 150 200 250 300
Row Size (m,)
Fig. 4. Probability of error of the noisy replica detection algorithm

(Algorithm 1) K,(ll) vs. the row size m, with 10° trials. The y-axis is given in
logarithmic scale to validate the exponential relation between the error proba-
bility and m,, given in (72). Different curves correspond to different crossover
probabilities e.

any (x,y) e X 2 we have
1-—¢, if y=x

prix(ylx) = (48)

, ify#x

-1 Y
where we simulate with a range of values of €.

e Repetition distribution ps: We consider a “deletion-
duplication” model for the repetition distribution with

0, if s=0
ps(s)=491-6-v, ifs=1 49)
Y, if s =2

where 6 = 0.3 and y = 0.2.

We stress that even though we assume a discrete uniform
distribution for py, and a symmetric noise model for pyx for
our experimental analyses, as we have proved in Section III,
our algorithms work for any discrete distribution px with finite
support X, and any obfuscation distribution pyx where X and
Y take values from X.

A. Noisy Replica Detection

Figure 4 demonstrates the relationship between the replica
detection error K,(,l) of Algorithm 1 and the row size m,. Note
that the linear relation in the semi-logarithmic plot validates
the exponential decay of Kﬁ,l) with m,, stated in (72).

Figure 4 shows that as the crossover probability € increases,
i.e., the labeled correlated database Y gets noisier, the error
probability decay becomes slower, leading to a worse detec-
tion performance, as expected. This is due to the following:
Our simulation configuration leads to the following Binomial

parameters po (Eq. (13)) and p; (Eq. (14)):

1
pozl—m (50)
2 €
pr=l=(-e -y (51)
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Consequently,
€ 1
X1 -1 lxr

and D(t||po) and D(1 — 7]|1 — p;) are decreasing functions of

€ for any € < 1~ 3. Thus, we have a worse replica detection

performance for a higher crossover probability €.

po—pi=(1-e’+ (52)

B. Seeded Deletion Detection

While our replica detection algorithm (Algorithm 1) works
for a small column size as shown in Figure 4, our seeded
deletion detection algorithm (Algorithm 2) requires large col-
umn sizes. This is because the threshold 7, of Algorithm 2 is
chosen based on its asymptotic properties and does not take
estimated parameters into account, unlike the threshold m, 7
of Algorithm 1. Hence, while the outliers still exist in L(®)
(Eq. (26)) for any useful remapping @, the threshold becomes
too large to distinguish the outlier from the rest of the entries.

To overcome this problem, we propose a modification to
Algorithm 2 based on the following observation: As shown for
a family of distributions in [25], the largest two order statistics
of a sequence of n i.i.d. random variables typically have close
values for large n. More formally, let T(yy; < ... < T, ; be
the order statistics of the j" column of M(®) (Eq. (29)) and
define

(53)

Then, for large n, we expect to have T, ; = M, (@), where
r; is the index of the j™ retained column (Eq. (76)), and

lim R(n)’j = (54)
lim R(,,_l)’j =1 (55)

Based on this, we propose the following modification; First,
we compute the sample means R, and R(,1) of {R,), j}ji”l and
{Ro-1), j};i”l, respectively. Then, the algorithm declares @ to be
useful if

(56)

for a threshold 7 above 1. We note that while any finite value
of 7 that is larger than and bounded away from 1 works in
the asymptotic regime where n — oo, in the small column
size regime, for each value of n, T is a heuristically chosen
threshold slightly larger than 1, e.g. 7= 1.5 for n = 100.

After deciding that @ is useful, the j" retained column is
inferred as:

Ir(j) = argmax M; ;(®) (57)
The resulting modified deletion detection algorithm is given in
Algorithm 5. From Figure 5, it can be seen that Algorithm 5
performs well for a small column size.

Comparing the different curves in Figure 5, we can conclude
that as the crossover probability € increases, the decay of the
error probability becomes slower, indicating a worse detection
performance. In turn, to achieve the same deletion detection
error rate, we need a higher number of seeds in scenarios with
a higher level of obfuscation.
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Algorithm 5 Modified Distribution-Agnostic Seeded Deletion
Detection Algorithm

Input : (G, G® 7)
Output: fR;
S(X) + SymmetryGroup(X);
/* Sweep over @ until a useful remapping is found. */
for s + 1 to |X]|! do
fR — J;
D+ S(X)[s] /* Pick a remapping. */
L(®) + HammDist(G(), G2 (®)); /* Eq. (18) */
w(®) < SampleMean(L(®)); /* Eq. (28) */
M(®) - [L(®) — p(@)]: /% Eq. (29) */
R < OrderStatisticRatios(M(®));  /* Eq. (53) */
if mean(R[n][:])< 7 mean(R[n-1][:]) then
/* @ is a useless remapping. */
if s # |X|! then
| Skip to next ®;

else

/* No useful remapping is found. */

return ERROR ;
end

/* Retention set */

else
/* ® is a useful remapping. */

/* Sweep over all G§2)(®). */

for j + 1 to K,, do
/¥ Find GV correlated with G'*) (). #/
/* Add such 7 to the retention set. */
I = Ig U {argmax M(®)[i][j]};

1€|n
end

return /y;

end
end

C. De-Anonymization Scheme

In this subsection, we evaluate the performance of
the de-anonymization scheme (Algorithm 3) proposed in
Section III-C. While doing so, we decrease the column size
from n = 100 to n = 25 due to the following considerations:

(i) As discussed in Section III-C, Algorithm 3 has a runtime
of O(m2n).

As in the proof of Theorem 1 (Eq. (40)), the matching
error probability decreases exponentially in the column
size n. Hence to observe a non-trivial (non-zero) match-
ing error, we must consider a row size m, exponential in
n (Definition 7). This suggests, simulating Algorithm 3
in the non-trivial regime becomes computationally pro-
hibitive, even for n = 100.

(i)

In addition to the modified deletion detection algorithm
(Algorithm 5), we make a slight modification to Algorithm 3,
described below to accommodate the small column size. After
performing replica and deletion detection, and estimating
Dxys|s, instead of fixing an € > 0 (that depends on n) and
checking the e-joint-typicality of the row pairs from X and Y,
in Algorithm 6, we do the following:
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Fig. 5. Probability of error of the modified seeded deletion detection algorithm
(Algorithm 5) vs. the seed size A, with 7= 1.5 and 10* trials. The y-axis is
given in the logarithmic domain to validate the exponential relation between
the deletion detection error probability and A, given by Lemma 2. Different
curves correspond to different crossover probabilities €.

(i) For each (i, j) € [m,]*, compute

Aij = (58)

HX.Y'IS) - H (X, Y5S)]
where

y A 1 ~ n on
H,‘J(X, YS |S) = _Z log Dxn yKn|gn (Xl s Y/Knls ) (59)
(ii) For each j € [m,], match the j® row Y]K of Y with the

™ row X7 of X, if

[ =argmin A;; (60)

i€[my,]
assigning &,(l) = j.
(iii) If there exist distinct jj, j» such that [ satisfies (60),
declare error and assign 6,(/) = 0.

We note that testing A; ; against a threshold e would corre-
spond to the joint-typicality check as done in Algorithm 3.

The experimental evaluation of the performance of
Algorithm 6 is given in Figure 6. As expected, we observe
that a higher row size m,, leads to an increased matching error.

Similar to Figures 4 and 5, Figure 6 demonstrates the impact
of the obfuscation on the de-anonymization performance. As
the databases become more obfuscated, the de-anonymization
performance degrades potentially an order of magnitude.
Hence, we can conclude that the amount of obfuscation plays
a crucial role in preserving privacy in databases.

D. Histogram-Based Repetition Detection

In this subsection, we evaluate the performance of the
histogram-based repetition detection algorithm (Algorithm 4)
of Section III-E in the no-obfuscation setting.

For uniform database distribution X ~ Unif([X]), we can
obtain the following closed-form asymptotic expression for
the repetition detection error probability of Algorithm 4:
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Algorithm 6  Modified
Anonymization Scheme

Input : (X,Y,GM G®)
Output: 6,; /* Anonymization function */
/* Noisy Replica Detection (Sec. II-A) */
isReplica+— Alg.1(Y);
/* Modified Seeded Deletion Detection (Sec. IV-B) */
G « removeExtraReplicas(G (? isReplica);
isDeleted« Alg.5(G™"), G®?) 7);
Sn o EstimateRepetitionPattern(isReplica,isDeleted);
/* Estimate the underlying distribution. */
Px,ys|s < EstimateDist(G("), G® §ny;
Y + MarkerAddition(Y, S™);
/* Computing A; ; Eq. (58)*/
A < computeDeltas(X,Y, S”,ﬁxys‘s);
/* Sweep over all row pairs (X;,Y;). */
for i = 1 to rowSize(X) do
count<«— 0;
for j = 1 to rowSize(Y) do
if i = argmin A; ; then
1€[mn]
/* X; and Y; are matching rows. */

Gnlt] <
count<— count + 1;
end

Distribution-Agnostic ~ De-

end

if count # 1 then
/* X; is matched with multiple Y;. */

Gnli] < 05 /* Matching error. */

end

end
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Fig. 6.  Probability of de-anonymization error of the modified de-
anonymization scheme (Algorithm 6) vs. the row size m, with n = 25, A, = 25
and 10* trials. Different curves correspond to different crossover probabilities
E.

Proposition 2 [15, Propositon 4]: Let &, denote the prob-
ability of the column histograms of X not being unique. If
X ~ Unif(X), then

11X
2 2

1-|X] [X]
fn =nmy

(4m) 2 |2 (1 + 0, (1)) = 04(1))

(61)
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Fig. 7. Probability of error of the histogram-based repetition detection
(Section III-E) vs. the row size m, with 10° trials. Both axes are given in the
logarithmic domain to validate the linear relation given in (62).

1-|X|
Proposition 2 states that for fixed n and |X|, &, c m,, > | i.e.,

log &, is linear with log m,, for large n and m,,. More formally,

1-1X
logé, = 2| | log m,, + CIXI +2logn + S (62)
where
1-1X X
Clx = 2' l logdn + |—2| log |X] (63)

and &, — 0 as m,,n — co. We note that (62) implies that
the order relation given in Lemma 3 is tight.

From Figure 7, one can see that after some m,, logé&,
decays linearly with log m,, (excluding |X'| = 3) with respective
approximate slopes of —1.40,—-1.97,-2.51,—-2.97 demonstrat-
ing that (62), which predicts respective asymptotic slopes of
-1.50,-2,-2.50,-3, holds even when n = 100. Note the
value of m, where &, starts decaying becomes smaller with
increasing alphabet size |X|.

In Figure 7, as the alphabet X' gets larger, the decay of the
error probability is steeper. This is inherent to the nature of
the histograms as in Proposition 2 and not an artifact of the
simulation configuration chosen.

V. CONCLUSION

In this paper, we have investigated the distribution-agnostic
database de-anonymization problem under synchronization
errors, in the form of column repetitions, and obfuscation,
in the form of noise on the retained entries of the database.
We showed that through either modifications of the exist-
ing algorithms for the distribution-agnostic setting or novel
ones, we can correctly detect the repetition pattern and
perform de-anonymization, in both obfuscated (noisy) and no-
obfuscation (noiseless) settings. Interestingly, our results show
that in terms of matching capacity, there is no penalty for
not knowing the underlying distributions asymptotically. Our
experimental results illustrate that our proposed algorithms or
their slightly modified versions work in the non-asymptotic
regime with small database sizes as well. Overall, our work
provides insights into the practicality of distribution-agnostic
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database de-anonymization algorithms with theoretical guar-
antees. Finally, an important direction of future work is the
extension of our proposed algorithms to continuous database
distributions, as well as adversarial noise and column repeti-
tion patterns.

APPENDIX
A. Proof of Lemma 1

The estimator proposed in [21] works as follows: Define the
k"™ sample factorial moment F as

1 K,—1 k-1 W.—i
A J
Fet ey L= vketml 4
j=1 i=0
and let FF
ve—=—22 (65)
Fy - F}

Then the respective estimators py and p; for py and p; can
be constructed as:

_ U+ U2 -4UF, +4F,

Po 5 (66)
. U~- \JU?—4UF, +4F
=t PR (67)

From [21], we get p;>pi, i = 0,1, and in turn Tig.

Thus for large n, T is bounded away from py and p;. We
complete the proof following the same steps taken in the proof
of [15, Lemma 1], which we provide below for the sake of
completeness.

Let A; denote the event that CE.Z) and C§'2+)1 are noisy replicas
and B; denote the event that the algorithm infers C;Z) and Cﬁ:l
as replicas. Via the union bound, we can upper bound the total
probability of replica detection error KD as

K,—1
KD =Pr(| ) E)) (68)
j=1
K,-1
<) Pr(AS)Pr(Bj|A) + Pr(A ) Pr(BSA))  (69)
j=1

Observe that conditioned on A;, W; ~ Binom(m,, pg) and
conditioned on A;, W; ~ Binom(m,, p;). Then, from the
Chernoft bound [26, Lemma 4.7.2], we get

Pr(B;|AS) < 27" PClpo) (70)
Pr(BS|A ) < 27mP=li=ry (71)

Thus, through the union bound, we obtain
KV < (K, - 1)[2—mnD(r||po> n z—mnD(l—THl—m):I (72)

Since the RHS of (72) has 2K, — 2 = O(n) terms decaying
exponentially in m,, for any m, = w(logn) we have
KD = 0asn— .

(73)

Observing that n ~ logm, concludes the proof. O
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B. Proof of Lemma 2

For now, suppose that @ is a useful remapping. Using
Chebyshev’s inequality [27, Theorem 4.2] it is straightforward
to prove that for any ¢, > 0

¥ = Pr(ju(®) — Ayqo(®)| > Aye,) (74)
1
=0 =—— 75
(KnnAnEn) )
First, let
Ig={ri,...rg } (76)

and note L, ;(®) ~ Binom(A,, q1(®)). Thus, from the Cher-
noff bound [26, Lemma 4.7.2] we get

Br.j = Pr(ILy, (@) — Ang1 (D) = €,An) (77
< 2~ MDD (@)=6ullg1 (©))
4 2~ MDU-q1( D)= ll1=q1(®)) (78)
Now, for notational brevity, let
f(e&) = D(q - €llg) (719)
Then, one can simply verify the following
f'(&) = log —— ~ log ——= (80)
1-g¢g 1-g-¢€
1 1 1
4 = 81
NS loge|:q—e+1—q+e:| @D
Similarly, letting
8 =D -qg—€ll-—¢q) (82)
we get
, l-g¢g l-g-e€
g'(e) = log —log (83)
q q+e
1 1 1
"(e) = 84
8@ loge[l—q—e+q+e] (84)
Observing that
f0)=f(0)=0 (85)
800)=g'(0)=0 (86)

and performing second-order MacLaurin series expansions on
f and g, we get for any € < 1

f(e) = c(q)e” + O(€) (87)

g(e) = c(q)e® + O(e) (88)
where

ol @

Now, let A, =T, logn and €, = l",jl/ 3 and pick the threshold
as 7, = 2A,¢,. Observe that since I',, = w,(1), we get

Ty = 20,6, = 0(Ay) (90)
AnE = F,I,/3 logn = w,(logn) 1)

Then, we have
B, < 2 1=Au(c(q1(@)E;+O(€) 92)
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— 1-c@ (@), logn+O(e)

93)
Note that with probability at least 1 —y — 3, ; we have
(D) — Ango(D)] < Ay, %94)
Ly, (@) = Apg1 (D)] = Ape, 95)
From the triangle inequality, we have
M, j(®) = |Ly, (D) — p(D)] (96)
> Au(1q1(D) — qo (D) - 2¢,) 7
> 7, (98)
for large n. Therefore, from the union bound we have
Pr(dj € [K,] : M, j(®) < %) 99)
K,
<Y+ Y B (100)
j=1
og Ky 1—c(qy @) log nt- O
=y+ 2log Ky —1-c(q n logn+0O(€))) (101)
Since K, <n and A, = w,(logn), we have
lim log &, — c(q1(@)I'* logn = —co (102)
Thus we have
lim Pr(3j € [K,] : M, ;<%,)=0 (103)

Next, we look at i # r;. Repeating the same steps above,
we get

Bij = Pr(IL; (D) = Augo(P)] > €,An) (104)
< 27 M D(Go(®)=6ullgo(®))
1 2~ AD(1~40(®)=6,[1-q0®)) (105)
= 21—C(f10(®))r;1/3 log n+0(e))) (106)
Again, from the triangle inequality, we get
M; (@) = |L; (D) — p(D)] (107)
< 2e, (108)
=1, (109)
From the union bound, we obtain
Pr(3j € [K,] i € [n]\ {rj} : M; (@) > ) (110)
k/l
<y+ YD B (111)
Jj=1 i#r;
<yt nzzl—c(qo@»riﬁ logn+0O(¢) (112)
Since A, = w(logn), as n — oo we have
Pr(3j € [K,] i € [n]\ {rj} : M; (@) > %,) — 0.  (113)

Thus, for any useful remapping @, the misdetection probability
decays to zero as n — oo.

For any remapping @ that is not useful, following the same
steps, one can prove that

Pr(Remapping @ is declared useful, even though it is not.)
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n kn
<y+ Z ZPI’(M,’J > €,\y)

(114)
i=1 j=1

<y+ n221—c<qo<c1>>>rnl/3 logn+0O(e)) (115)
= 0,(1) (116)

Since |S(X)| = |X|! = O,(1), we have
> Pr(® is declared useful.) = 0,(1) 117)

®:not useful

concluding the proof. O

C. Proof of Theorem 2

Let € > 0 and denote by &, the error probability of the
histogram-based repetition algorithm. Denote the e-typical set
of sequences (with respect to px) of length k = (1 —6 — e)n
by A(fk)(X) and the pairwise collision probability between X'
and X", given K, = k and X" € AP(X), by Po(k). Since
additional columns in Y would decrease the pairwise collision
probability between independent rows, we have

Peori(Ky) < Peoti(k), VK, >k (118)

Since we perform exact row matching and the rows of X are
independent, we have

Poi(k) = Pr(X¥F = X¥1XF € AL (X)) (119)
< QKHE)=e). (120)
Thus, we can bound the probability of error P, as
Po <Y Peoi(k) + €+, + &, (121)
=2
< QMRYTKHX)=O) 4 ¢ 4 p + &, (122)
where x, = Pr(K, < k). Since m, is exponential in n,

by Lemma 3, &, — 0 as n — oo. Furthermore, kn is a
Binom(n, 1-9) random variable and from law of large numbers
Kk, = 0 as n— oo. Thus P, < € as n — oo if

R<(1-6-eHX). (123)

Thus, we can argue that any database growth rate R satisfying

R < (1 -8HX) (124)

is achievable, by taking € small enough. m
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