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Abstract

Automatically identifying the stepping-stones that will lead
to a predetermined final solution presents a significant chal-
lenge for optimization algorithms, yet is essential for solv-
ing complex problems. This study, inspired by Picbreeder,
investigates a variation of NeuroEvolution of Augmenting
Topologies (NEAT) which aims to perform an image repli-
cation task using Compositional Pattern Producing Networks
(CPPNs) without a human in the loop. This challenge is cen-
tral to many similar problems in evolutionary computation
and artificial life, where identifying key intermediate goals
known as stepping-stones is crucial but difficult, often requir-
ing precise fine-tuning of solutions. We leverage techniques
from deep learning computer vision research: a fitness func-
tion based on perceptual-similarity to help avoid deceptive
optima, Fourier features to diversify the CPPNs’ inputs, and
gradient-based backpropagation to balance the exploration of
evolutionary search with goal-directed exploitation. Back-
propagation has the additional benefit of smoothing the fit-
ness landscape of topological network mutations. Our results
indicate that combining these approaches with CPPN-NEAT
yields more diverse and higher fitness solutions compared to
traditional NEAT. This hybrid method not only preserves di-
versity, but also leverages the strengths of both evolutionary
algorithms and gradient descent to achieve more detailed and
accurate image generation. We speculate that this is a promis-
ing avenue for algorithm design, where exploiting gradient
information can be balanced with maintaining robust diver-
sity in the search process.

Introduction

One of the most intriguing aspects of evolutionary algo-

rithms is their ability to mimic natural evolution. They

are capable of discovering diverse stepping stones in com-

plex problem domains requiring hierarchical solutions, like

neuroevolution and image generation. Even so, identify-

ing solutions that serve as intermediate stepping stones to-

wards a complex final solution is a significant challenge

for optimization algorithms because these stepping stones

may not look like the final solutions or be on a straight-

line path towards that ultimate goal (Lehman and Stanley,

2011a; Woolley and Stanley, 2011; Auerbach and Bongard,

2011). A notable solution to this challenge can be seen in

Picbreeder (Secretan et al., 2008) as users guide the evolu-

tion of Compositional Pattern Producing Networks (CPPNs)

through selective breeding to generate complex and com-

pelling images. Users often stumble upon stepping stones

in an intuitive and serendipitous manner that is difficult to

replicate in an automated, goal-directed algorithm. These

stepping-stones need to be appropriately diverse in order to

represent the full range of potential solutions, while also be-

ing high enough quality to enable future improvement and

to be viable candidate solutions in themselves.

Evolutionary methods without a human in the loop like

NeuroEvolution of Augmenting Topologies (NEAT) are of-

ten successful in evolving diverse structures, but they can

stumble in navigating the vast solution space to identify ar-

chitectures that not only perform well but also have potential

for significant local improvement. CPPN-NEAT attempts to

automatically identify useful stepping stones but fails to do

so in the complex problem domain of image matching, be-

cause stepping stones have very different pixel patterns than

the final target (Gaier et al., 2019).

On the other hand, humans are able to classify images

based on perceptual similarity. In Picbreeder, this allows

users to identify which CPPNs are likely to lead to future

improvements. Picbreeder also enables many people to col-

laborate on the evolution of a given image by branching from

one another’s evolutionary paths. This type of collective in-

telligence can be seen as a form of goal-switching, where

the identification of stepping stones is made possible by in-

cluding various perspectives and objectives. While this is an

effective approach, Picbreeder scales poorly due to the large

amount of time and people involved, suggesting the need for

an alternative approach for automated algorithms.

In this work, we use a fitness function from deep learning

computer vision research: Learned Perceptual Image Patch

Similarity (LPIPS) (Zhang et al., 2018). Unlike traditional

pixel-matching functions like mean squared error between

the raw image and target, LPIPS more closely matches hu-

man perception by comparing latent feature representations

of the current and target images and has been used success-

fully in deep learning for image generation (Esser et al.,



2021; Rombach et al., 2022; Yi et al., 2019).

The introduction of open-ended novelty-seeking and

Quality Diversity algorithms has provided another way to

find stepping stones by exploring a broad spectrum of novel

solutions during search. These methods strive to discover

promising stepping stones by promoting diversity and may

combine this with a pressure to be fit within a wide variety

of behavioral/phenotype niches (Pugh et al., 2016; Lehman

and Stanley, 2011b; Pugh et al., 2015; Cully and Demiris,

2017; Lehman et al., 2008; Secretan et al., 2008; Stanley

et al., 2017; Soros and Stanley, 2014; Stanley et al., 2016).

These methods explicitly seek out diversity across the dif-

ferent individuals within a population in hopes of maintain-

ing enough breadth to stumble upon useful stepping stones.

Borrowing again from deep learning computer vision re-

search, we suggest that an alternative way to foster diver-

sity is to provide a greater breadth of input features to each

CPPN, enabling greater feature diversity within a single in-

dividual. In particular, using Fourier features as inputs to a

CPPN (Tancik et al., 2020) expands the set of images that

these models are capable of representing by improving their

ability to encode high-frequency details, a key limitation of

traditional CPPNs. This enables more diverse subnetworks

to grow within the model and allows evolution to select from

any one of the many subnetworks that are most useful for a

given image, reminiscent of the vast diversity of possible

solutions available within a single overparameterized neu-

ral network, as highlighted by the lottery ticket hypothesis

(Frankle and Carbin, 2018).

While diversity is an essential part of identifying useful

stepping stones, exploration alone is likely to yield solu-

tions close to promising stepping stones without fully ex-

ploiting them to discover the most viable solutions. Qual-

ity diversity algorithms aim to balance both this exploration

and exploitation (Lehman et al., 2008; Mouret and Clune,

2015). However the integration of gradient-based optimiza-

tion techniques presents a compelling avenue for address-

ing this limitation. By backpropagating error, we can pin-

point and refine useful stepping stones, potentially revealing

intermediary solutions that would otherwise remain undis-

covered due to their low fitness. This approach is efficient

at fine-tuning neural network weights and offers a potent

mechanism for rapid, local improvements.

Gradient-based optimization alone typically encourages

less diversity and more goal-directedness compared to tra-

ditional evolutionary algorithms. This shift can lead to

quicker convergence but risks missing good solutions by

over-exploiting local optima. Therefore, combining back-

propagation with NEAT allows for each method to over-

come the limitations of the other. This synergy leverages the

strengths of both evolution and gradient-based learning. Ide-

ally, the former excels in discovering innovative, diverse ar-

chitectures and the latter meticulously optimizes these struc-

tures to realize their potential as stepping-stones.

By using evolution to explore diverse CPPN network

topologies and backpropagation to finetune each network’s

weights to its new topology after each structural mutation,

we also implicitly generate a form of hierarchical search,

or psuedo-meta-learning. This approach enables evolution

to better assess the potential solution space around a large

structural mutation to the network. Consequently, it be-

comes easier to discover novel and diverse stepping stones

via the topology-mutation-then-weight-backpropagation in-

tegrated step than by hoping for subsequent mutations

to perform both exploration and exploitation in the areas

around this potential stepping stone.

While CPPN-NEAT has been used to great effect in nu-

merous artificial life applications, including the evolution of

virtual creatures and evolutionary robotics (Auerbach and

Bongard, 2010, 2012; Blackiston et al., 2021; Cheney et al.,

2013; Clune et al., 2011; Lai et al., 2021; Pugh et al., 2017;

Veenstra and Glette, 2020), we aim to investigate the evo-

lutionary and optimization dynamics of CPPN-NEAT to be

able to better navigate the complex fitness landscapes asso-

ciated with artificial life.

Additionally, performing experimentation in the space of

image generation, we are interested in the artistic application

of these algorithms. The search for novelty is not only scien-

tifically important, but also necessary for creativity and gen-

erative art. Integrating perceptual assessment, Fourier fea-

tures, and backpropagation with NEAT not only enhances

the algorithm’s ability to navigate through complex, high-

dimensional problem spaces but also significantly enriches

its capacity to generate a wide array of unique, visually com-

pelling patterns. By striking a balance between evolutionary

diversity and the directedness of gradient-based optimiza-

tion, we hope to introduce a method for generating art that

is not only novel but also detailed and responsive to specific

objectives.

Therefore, the primary contributions of this work are to:

• incorporate a deep-neural-network based perceptual fit-

ness function that is not commonly used for evolutionary

computation.

• explore the use of additional Fourier feature inputs to

overcome the bias towards few low-frequency input sig-

nals in CPPN-NEAT.

• integrate backpropagation of error into the NEAT algo-

rithm to set the weights for candidate CPPN architectures

for image generation.

• demonstrate that population diversity can be maintained

even with the increased exploitation offered by gradient-

based optimization.

• generate a diversity of detailed visually compelling pat-

terns with CPPNs, despite the use of a traditionally chal-

lenging goal-directed target pattern reconstruction tasks,

instead of the divergent open-ended image generation

setup employed in the original collective human-in-the-

loop Picbreeder framework.



Related work

NeuroEvolution of Augmenting Topologies (NEAT)

(Stanley and Miikkulainen, 2002) is a genetic algorithm that

evolves neural networks by mutating both their topology and

weights. NEAT uses explicit fitness sharing within species

to maintain diversity while exploiting discovered optima.

In order to overcome the competing conventions problem,

NEAT uses historical markings to quantify the compatibility

between genomes without expensive topological analysis.

An effective genetic encoding to use within NEAT is

the Compositional Pattern Producing Network (CPPN)

(Stanley, 2007). CPPNs are generative (indirect) encodings

that compose various activation functions in a feed-forward

artificial neural network to transform geometric spatial data.

In the case of image generation, the input spatial data are co-

ordinates, and the output data are the R,G,B values at each

coordinate. CPPNs compress high-dimensional image data

allowing evolution to search in fewer dimensions.

Due to their unconstrained topology and wide expres-

sive capability, CPPNs make great representations for open-

ended search processes like those with Interactive Evolu-

tionary Computation, such as Picbreeder (Secretan et al.,

2008). Furthermore, there has been notable progress in de-

veloping differentiable versions of CPPNs. For instance,

Differentiable Pattern Producing Networks (DPPNs) in-

troduced by Fernando et al. (2016), have evolvable archi-

tectures and differentiable weights. Similarly, Mordvint-

sev et al. (2018) applied differentiable CPPNs to visual-

ize deep neural network features, adopting a fixed convolu-

tional structure that does not evolve. Adding differentiability

opens new avenues for the generative potential of CPPNs,

greatly enhancing their utility in complex image generation.

Previous attempts have been made to integrate this ef-

ficient gradient-based optimization with the diverse evolu-

tionary search of NEAT. Chen and Alahakoon (2006) intro-

duced Learning-NEAT, which backpropagates error to per-

form efficient local search within NEAT. Ha (2016) also de-

veloped a similar methodology called Backprop NEAT and

solved simple regression problems by backpropagating error

through networks evolved with NEAT. His implementation

of NEAT used k–medoids to speciate genomes instead of

the method from Stanley and Miikkulainen (2002). We em-

pirically found the original speciation methodology outper-

formed k–medoids and was used for the reported data. Ha

also incorporated interactive evolutionary computation, but

in this work we attempt to develop a system for balancing

exploitation and exploration without a human in the loop.

Although CPPNs are powerful encodings, they tend to

be biased towards low-frequency signals. Fourier features

(Tancik et al., 2020) help to overcome this bias. They re-

semble positional encodings and contribute to higher per-

formance on computer vision tasks. These features map

the input coordinates of an image through a Fourier trans-

formation, effectively converting spatial coordinates into a

rich, high-dimensional space of sine and cosine functions.

This transformation allows the network to more easily learn

high-frequency functions by representing these complex pat-

terns through simple transformations. These features are a

natural fit for coordinate networks like CPPNs. Fourier-

CPPNs (Tesfaldet et al., 2019) apply Fourier features to

CPPNs but, unlike in this work, they use the convolutional

approach from (Mordvintsev et al., 2018).

Our work is the first to combine all of these approaches

into one algorithm. We take the traditional CPPN-NEAT al-

gorithm from Stanley (2007) and incorporate both gradient-

based optimization and Fourier features. We evolve our

CPPNs to solve a high-dimensional image-replication prob-

lem where solution diversity is desirable and use a deep

neural network perceptual fitness function that more closely

matches human evaluation.

Methods

We modify the classic NEAT algorithm to enhance the ca-

pabilities of CPPNs through Fourier features, meta-learning,

backpropagation, and an appropriate fitness function. We

use Fourier features to expand the representational range of

CPPNs to include high-frequency signals essential for en-

coding diverse images. Then we leverage backpropagation

to fine-tunes CPPN weights for efficient local optimization.

We adopt a meta-learning framework that separates the op-

timization process into an outer loop for evolving network

structures and an inner loop for refining those structures’

weights through backpropagation. Additionally, we employ

the Learned Perceptual Image Patch Similarity (LPIPS) met-

ric as a fitness function, chosen for its ability to guide search

through evolutionary stepping-stones while avoiding decep-

tive local optima often associated with pixel-matching.

CPPN-NEAT

We used a variation of the NEAT-Python library McIntyre

et al. (2024) that we modified to allow error to be back-

propagated through networks on the GPU using Pytorch’s

Autograd Paszke et al. (2017). CPPNs started with no hid-

den nodes and 1% of initial possible input to output con-

nections. The input coordinates and targets were scaled to

64 pixels squared. There was a 15% chance to add a node

and a 15% chance to add a connection to offspring CPPNs.

Additionally, a number of connections equal to three plus

1% of each offspring’s connections were added to the off-

spring and 1% of connections were removed, starting with

the lowest magnitude connections. Three connections were

added to each offspring to accelerate the increase in network

complexity. Connections with magnitudes below 1e−3 were

also removed. This approach allows NEAT to grow net-

works much more quickly than is typical (see Fig. 5).



Fourier Features

CPPNs traditionally only transform a few fixed spatial di-

mensions and can be biased towards low-frequency pat-

terns (Tesfaldet et al., 2019). By providing additional

Fourier transformations of the input coordinates, we can bias

CPPNs to represent a wider range of frequencies, including

the high frequency patterns found in image data. The fea-

tures are generated using a different random seed for each

run and are added to the CPPNs as additional input nodes.

Fourier features work well in combination with backprop-

agation since the additional inputs require additional param-

eters, growing the networks beyond the size of what can be

effectively evolved via random weight mutations. By us-

ing backpropagation for the weight updates, selection in the

outer loop can focus exclusively on topology, creating a sim-

pler search landscape for NEAT despite having larger net-

works. The Fourier feature mapping of input x is given by

µ(x) = [sin(2ÃBx), cos(2ÃBx)]T

where B is the matrix of frequencies sampled from N (0, Ã2)
and Ã is chosen by a hyperparameter sweep. We used Ã =
2.0 and 64 features for all trials with Fourier features.

Meta-learning

We employed an inner loop/outer loop framework similar to

meta-learning approaches, where the inner loop focuses on

rapid adaptation to the problem domain and the outer loop

searches for structures that learn effectively. This framework

facilitates a dynamic balance between exploring diverse so-

lutions and exploiting known good strategies to navigate

complex fitness landscapes. In the outer loop, we leverage

the capability of CPPN-NEAT to evolve structure without

expensive topological analysis. This process facilitates fast

adaptation as in meta-learning, as NEAT selects for individ-

uals that quickly learn to perform well. The inner loop, on

the other hand, focuses on the detailed optimization and re-

finement of individual solutions using backpropagation. By

structuring the optimization process into two loops, the al-

gorithm systematically explores the search space to identify

promising regions and then exploits these regions to refine

solutions that are not only locally optimal but also diverse

across the fitness landscape.

Backpropagation

We use backpropagation to fine-tune each new CPPN’s

weights. While the evolutionary aspect of NEAT allows

the exploration of new solution spaces through topological

mutations, backpropagation allows for the precise adjust-

ment of solutions via gradient descent. We use the Adam

optimizer (Kingma and Ba, 2017) with a learning rate of

µ = 0.01, ´1 = 0.9, ´2 = 0.999, and ϵ = 1e−8. Backprop-

agation was applied for 2000 steps or until a CPPN’s loss

did not decrease for 5 steps. Weights were decayed with an

L2 penalty of 3e−3.

The integration of backpropagation into the evolutionary

process allows the algorithm to exploit gradient information,

enhancing optimization efficiency and leveraging the bene-

fits of modern GPU hardware. This is particularly effective

in high-dimensional optimization landscapes, where the gra-

dient can guide search towards promising regions that might

be difficult to discover through random mutations alone.

Fitness Function

We used the Learned Perceptual Image Patch Similarity

(LPIPS) metric (Zhang et al., 2018) as the fitness function

in these experiments. LPIPS uses the difference between

features extracted by a trained deep neural network from the

target and candidate image to compare perceptual similar-

ity. Previous research has found that CPPN-NEAT strug-

gles to replicate images when using naive similarity met-

ric such as mean squared error (Gaier et al., 2019). Fit-

ness was measured as 1 − LPIPS(x) so that higher values

were better, while LPIPS(x) was used for backpropagation.

Our goal when choosing a fitness function was to create a

fitness landscape that facilitates the discovery of stepping-

stones. A perceptual fitness function, as opposed to a pixel-

matching function, has a better chance of rewarding interme-

diate adaptations that might not directly resemble the target

image but are perceptually closer to the target. In this case,

slight genetic changes can result in significant but construc-

tive phenotypic variation, rather than catastrophic failure as

in the case of pixel-matching. We compared LPIPS to Mean

Squared Error (MSE) to test this hypothesis.

We aim to leverage the nuanced measure of image sim-

ilarity that deep neural networks offer, moving beyond the

limitations of traditional metrics that do not account for how

humans perceive visual information. While common in deep

learning computer vision tasks, LPIPS is rarely used in evo-

lutionary computation or artificial life.

Results

We tested four configurations of NEAT which incremen-

tally incorporate more of our suggested improvements. As a

baseline, we test the original CPPN-NEAT algorithm Stan-

ley (2007). Then, we test CPPN-NEAT with Fourier features

followed by CPPN-NEAT with backpropagation. Finally,

we test a configuration incorporating both Fourier features

and gradient-based optimization. All configurations were

tested on the five images in Figure 1 and quantitative results

were averaged over 40 replication trials. Significance was

measured using the Wilcoxon rank-sum test and ³ = 0.05.

Replication Success

To evaluate the efficacy of our proposed modifications to

CPPN-NEAT, we systematically compare NEAT configura-

tions on their perceptual similarity to target images.

NEAT with both Fourier features and gradient-based op-

timization (LPIPS= 0.71 ± 0.01) consistently matched the



Target NEAT-Classic NEAT-Classic NEAT-FFT NEAT-SGD NEAT-Both-FFT-SGD

MSE LPIPS LPIPS LPIPS LPIPS

Figure 1: The images for representatives of the top four species from the best run of each NEAT configuration. The first

column shows the target images. The second column shows a naive classic NEAT approach using MSE as the fitness function,

producing simple, blurry images. NEAT-Classic and NEAT-SGD usually find the correct general shape but lack high-frequency

variation and detail. NEAT with Fourier features finds more variation in frequencies, but lacks details. Finally, NEAT with both

Fourier features and SGD finds both the correct shape and some details, while maintaining interesting diversity between species

and producing the closest LPIPS match for all targets (p < 0.01). Target images other than the sunrise are from Picbreeder.

target images more closely than other configurations (p <

0.001, Fig. 2, 1). As found by Chen and Alahakoon (2006),

NEAT with backpropagation (0.62 ± 0.02) performs better

than the original NEAT (0.44 ± 0.01). Adding Fourier fea-

tures (0.43 ± 0.01) to CPPN inputs decreased performance

compared with the original NEAT (p < 0.001). Classic

NEAT with mean squared error fitness fails to escape an

early local optima and produces simple, blurry images.

Images in Figure 2 are from runs with 200 generations

each. Therefore, the runs with backpropagation do much

more computation than NEAT-Classic and NEAT-FFT, as

there is an average of 3202.27 (±6.45) forward passes per

generation in NEAT with both Fourier features and back-

propagation. To ensure this did not bias our results, we also

tested the conditions without backpropagation for an equal

number of CPPN forward passes by extending those runs

to 6,500 generations. We find that in this case, NEAT-FFT

(0.51± 0.03) and NEAT-Classic (0.50± 0.03) still perform

much worse than NEAT with backpropagation and NEAT

with both backpropagation and Fourier features.
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Figure 2: The fitness of the best solution found over gener-

ations with 95% bootstrapped confidence intervals. Adding

Fourier features to NEAT without backpropagation hurt per-

formance. Backpropagation resulted in much higher perfor-

mance than NEAT with only random mutations. The most

effective strategy was using both Fourier features and back-

propagation, as networks were more expressive with the ad-

ditional inputs and backpropagation was able to exploit that

larger input space.

In trials with backpropagation, the inner loop acts as a

tool for improving the specificity of fitness evaluations in

the outer loop. By optimizing the new offspring network

weights, the outer loop receives more accurate information

about the quality of those solutions and makes informed se-

lection decisions based on a network’s ability to learn.

Figure 1 shows qualitative results from the best runs of

each configuration and target. In the case of the skull im-

age, NEAT-SGD finds visual approximations of the target,

although their LPIPS score is still lower than NEAT with

both Fourier features and SGD on average. The dolphin im-

age proved consistently difficult to replicate, and the but-

terfly image was difficult to replicate for all configurations

other than NEAT with both Fourier features and backprop-

agation. Certain local optima were very difficult for NEAT-

Classic to overcome, for example the red circle in the case of

the apple and the white background in the case of the butter-

fly. Notably, the images from NEAT with backpropagation

have the most visual diversity (see Fig. 3). As predicted,

runs using MSE as a fitness function got stuck in early local

optima, resulting in simple, blurry images.

Fourier Features We find that NEAT using CPPNs with

Fourier features performs worse than the original CPPN-

NEAT (p < 0.001, Fig. 2). However, with the addition of

gradient-based optimization the opposite is true and we see

an increase in fitness compared to NEAT with just backprop-

agation (p < 0.001). This suggests that simply increasing

the size of the input space, and by extension the number of

parameters (see Fig. 5), is not enough to increase the rep-

resentational capacity of CPPNs. The combination of richer

inputs with an appropriate optimization technique provides

the greatest benefit. Additionally, we find that backpropa-

gation is useful for identifying which input features are the

most valuable for a given target image (see Fig. 5).

Diversity

With backpropagation, one might expect the whole popula-

tion to converge more quickly towards particular solutions,

resulting in less diversity. Here, we investigate the genetic

and phenotypic diversity within populations to understand

how different configurations of NEAT influence the variety

of solutions. We plot the overall effect of the NEAT con-

figuration on diversity in Figure 3. Perhaps surprisingly,

backpropagating error to update the CPPN weights results in

increased genetic diversity. We find that NEAT with back-

propagation (2.88± 0.02) and NEAT with backpropagation

and Fourier features (2.83 ± 0.02) had more diversity that

classic NEAT (2.62±0.03) and NEAT with Fourier features

(2.59 ± 0.03, p ≤ 0.01). There was not a significant differ-

ence at the end of evolution associated with adding Fourier

features to classic NEAT (p = 0.19).

Figure 1 demonstrates that without backpropagation and

Fourier features, the best runs often converge to simple

shapes. These runs lack genetic diversity and their phe-

notypes have converged to more similar images as mea-

sured by LPIPS. We measured the pairwise similarity at six

points throughout evolution and report the results in Figure

3. NEAT-SGD had the highest phenotypic diversity at the

end of evolution (0.59 ± 0.01, p < 0.01). NEAT with both

Fourier features and gradient descent (0.55 ± 0.02) had the

second most phenotypic diversity, tied with classic NEAT

(0.54 ± 0.01, p = 0.40). NEAT-FFT (0.47 ± 0.02) had the

least phenotypic diversity (p < 0.01). Taken together, these

results indicate that adding backpropagation does not cause

premature convergence of phenotypes and, in fact, adding

just gradient-based optimization can directly increase phe-

notypic diversity over classic NEAT. We speculate that back-

propagation increases robustness, enabling a wider range of

mutations to become useful since any given mutation does

not need to simultaneously discover new topology and ap-

propriate weights for that topology, as in NEAT.

We observed that evolution, even with the exploitative

convergence of gradient-based optimization, discovers dis-

tinct phenotypic variations. This mirrors organic life, in

which diversity emerges amidst selective pressures. In a dif-

ferent but related setup using the butterfly image in Figure

4, the overall shape of the butterfly is consistent between

individuals while there is notable variation in coloration and

pattern, akin to the diversity observed in actual butterfly pop-

ulations. Unlike the runs presented in other figures, CPPNs
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Figure 3: Mean diversity by generation, measured using the historical marking genetic distance from Stanley and Miikkulainen

(2002) on the left and pairwise LPIPS on the right with 95% bootstrapped confidence intervals. Trials using backpropagation

had more genetic diversity than those without. There was no significant effect of Fourier features on genetic diversity. For

the phenotypes, backpropagation increased diversity over classic NEAT. NEAT with both Fourier features and backpropagation

had the same phenotypic diversity at the end of evolution as classic NEAT, despite having a much higher fitness (see Fig. 2).

in this run started with 50% of connections filled at the start

of evolution and 8 initial hidden nodes for an average 268

initial connections, much larger than the CPPNs in Figure 1.
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Figure 5: The number of connections per network over gen-

erations. We see that despite the number of hidden connec-

tions growing at a similar rate between NEAT with both

Fourier features and backpropagation as NEAT with just

Fourier features, the number of input connections grows less

quickly with backpropagation, suggesting that unhelpful in-

put connections are being decayed and pruned. Runs with

Fourier features have more input nodes and therefore start

with more connections.

Evolved Architectures

We see above that the inclusion of Fourier features and back-

propagation improves performance, but it’s not clear how

the additional features and the ability to easily ignore a given

connection with backpropagation may affect the topology of

the evolved networks. In Figure 5, we report the number of

connections, measured at six different generations. All net-

works grew quickly due to the three extra connections added

to each offspring, but the CPPNs with Fourier features have

more input nodes and therefore a higher number of valid

connections, facilitating their faster growth.

We split the data into connections originating from inputs

and those originating from hidden nodes. In NEAT with

both backpropagation and Fourier features, we see that the

number of input connections grows more slowly than it does

in NEAT with just Fourier features. NEAT with backpropa-

gation and NEAT with both Fourier features and backprop-

agation use L2 regularization and magnitude-based prun-

ing to remove unused connections. As a result, input fea-

tures that are unhelpful for the target are disconnected from

the network as their outgoing connections are pruned. This

highlights a major benefit of incorporating gradient infor-

mation in network topology search problems. Not only are

the weights fine-tuned, but the networks are also simplified,

creating a smoother search landscape for NEAT.

Discussion

Our results affirm that a perceptual similarity function like

LPIPS is capable of guiding evolution through this complex

search landscape to discover diverse, high-quality images.

Unlike pixel-matching, LPIPS selects for features that are

more aligned with human visual perception and reward in-

termediate solutions that may be perceptually similar to the

target even if they are not pixel-by-pixel matches.

We also showed that including Fourier features as in-

puts to CPPNs enhances their capability to represent high-

frequency patterns in images. However, the results indicate

that simply adding Fourier features without gradient-based

optimization degrades performance compared with the orig-

inal NEAT. This result highlights the necessity of coupling

feature augmentation with appropriate optimization tech-

niques to fully leverage the increased representational ca-

pacity afforded by those features.



Figure 4: Images from the top genomes of one run using the

butterfly target with both Fourier features and backpropaga-

tion. This run used a higher resolution and different hyper-

parameters than those in Figure 1. Images are organized in

descending fitness order from the top left to the bottom right.

The significant variation in the phenotypes of the population

suggest the potential for the wide exploration of the search

space around this solution and/or the evolvability of diverse

artistic forms for generative art. Some features, like the but-

terfly’s shape, are canalized in the population while the wing

patterns and colors vary between individuals.

The ability of CPPNs to recover from significant net-

work topology mutations showcases the robustness of this

approach. Adaptability is crucial for maintaining a diverse

population capable of exploring various solution pathways

as some CPPNs are more able to maintain their performance

between topology mutations. We set out to establish a ro-

bust framework that balances exploration and exploitation

and pave the way for new applications in artificial life, evo-

lutionary art, and beyond, where the complexity and creativ-

ity of solutions are paramount. Although our experiments

were focused on image generation, many of the characteris-

tics of this problem are shared with research on virtual crea-

tures and robotics. Notably, these problems have deceptive

fitness landscapes with difficult-to-find stepping stones and

are benefited by maintaining robust population diversity.

Our approach successfully balances exploitation and ex-

ploration by integrating backpropagation with CPPN-NEAT.

This synergy ensures that the exploration of novel architec-

tures through NEAT is complemented by the precision and

efficiency of gradient-based optimization. The inclusion of

Fourier features and an appropriate fitness function, coupled

with this hybrid optimization strategy, allows for more ex-

pressive solutions and enables the generation of detailed im-

ages that were previously out of reach for CPPN-NEAT. We

hope that this work will inspire future artificial life and gen-

erative art leveraging backpropagation and Fourier features.

Limitations and Future work

The results in this paper are likely dependent on the specific

target images, objective function, encoding, and task chosen.

Future work could leverage speciation to explore different

parameters for backpropagation. Evolutionary Stochastic

Gradient Descent (ESGD) is a population-based optimiza-

tion algorithm that alternates between SGD and gradient-

free evolutionary algorithms (Cui et al., 2018). Much like

this work, ESGD leverages the exploration capabilities of

evolutionary algorithms and the exploitation efficiency of

gradient descent. They allowed evolution to learn differ-

ent optimizers per individual. That approach could integrate

well with an algorithm like NEAT, since each species may

benefit from customized learning parameters.

Even though we used a similar evolutionary structure to

generative art approaches like Picbreeder, this is not an

open-ended algorithm. Given the additional exploitation

provided by backpropagation, this approach might be ex-

pected to struggle to find stepping-stones or to overfit to the

target image, but instead we find that resulting images are

both diverse and relatively close to the target. We used a very

objective-focused approach in these experiments, but a more

open-ended version of this methodology could also produce

interesting results. For example, gradient-based optimiza-

tion could be used to push solutions towards a minimum

criterion (Stanley et al., 2016) while continuing to explore

novel solutions via evolution. Additionally, the richness pro-

vided by Fourier features and backpropagation could be used

to improve the methodology of approaches like Innovation

Engines (Nguyen et al., 2015) or multi-objective approaches

to image replication like Many-objective Optimization via

Voting for Elites (Dean and Cheney, 2023).

In this study, we found that our approach is capable of

generating high-quality, diverse solutions, but it is left to fu-

ture research to investigate the evolved structures in more

depth. For example, Huizinga et al. (2018) found that

Picbreeder produces CPPNs with canalization, hierarchy,

and modularity. They found that the dolphin target we used

in our study scored low on all three measures and was there-

fore not robust to mutations, suggesting an explanation for

why our approach had a hard time replicating the image. A

better understanding of these network characteristics, which

are associated with evolvability, would provide further in-

sights into automatic identification of stepping stones.
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