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ABSTRACT

As the need for accessible upper-body stroke rehabilitation grows,
it becomes increasingly important to investigate how the difficulty
level of rehabilitation tasks can be personalized to a patient and
automatically adapted based on the patient’s progress in therapy.
We introduce a framework that uses Fitts’ Law to define task diffi-
culty and iteratively apply it to dynamically adjust difficulty levels
and to assign therapy tasks within the context of a cup-stacking
occupational therapy activity. Our preliminary simulation results
support the hypothesis that the model can adapt its difficulty lev-
els based on a user’s time taken to stack a cup at various points
on a table. Future work includes exploring the impact of different
variables on the model’s adaptability and integrating personalized
verbal feedback from a socially assistive robot.

CCS CONCEPTS

+ Human-centered computing — Interaction design; « Com-
puting methodologies — Modeling and simulation. Figure 1: A depiction of the environment. In a rehabilitative
therapy session, the Kinova JACO2 assistive arm (on the
right) moves to various points across the table while holding
a cup. The patient, sitting in front of the table and centered
at the origin (the red box at the end of the table), stacks a cup
on top of the robot’s cup using their paretic arm. The Lux AI

QTRobot (on the left) provides instructions for the user.
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context of a cup-stacking task, as shown in Figure 1. Literature in
the areas of task difficulty adaptation and defining task difficulty
in rehabilitative tasks are addressed in various ways, but these
approaches require significant human input [14] or focus on robots
that maintain physical contact with their users [9].

In this paper, our contributions are twofold. We first define a
difficulty metric for cup-stacking using Fitts’ Law, which describes
the relationship between the time required to move to a target in a
graphical user interface and the distance to the target [4]. We then
apply the same equation iteratively to produce tasks that adapt to
the difficulty level of the user. We perform an initial evaluation
of this procedure in simulation. Our preliminary results indicate
that the model can exhibit adaptive behavior throughout a therapy
session.

1 INTRODUCTION

Eighty percent of stroke patients experience impairment in their
upper bodies post-stroke [1]. Without proper and consistent re-
habilitation therapy, patients may experience functional decline
in their affected limb [6]. With 795,000 new stroke cases per year
and a need for frequent training in the US alone, it is becoming
increasingly important to create accessible rehabilitation devices
that can administer therapy tasks to the patient at home or in a
rehabilitation center [13].
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2 BACKGROUND

A standard approach of administering the Fugl-Meyer Assessment
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on stroke patients is useful in defining task difficulty and matching
tasks to a patient’s ability, but the procedure is manual and requires
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an occupational therapist to reassess and re-evaluate the patient’s
difficulty level and tasks every few sessions [14]. Other approaches
require external equipment, such as a virtual component. Error
amplification [10], for example, is shown to improve user correction
and performance by using a screen to display a target to be a little
more off-target than it truly is. Previous approaches use a robot that
comes into contact with the subject to measure and assess motor
recovery [9]. One study, however, leverages an equation, Fitts’ Law,
to delineate between levels of task difficulty [15]. It established
three levels of difficulty based on Fitts’ Law, but did not use an
adaptation technique. This inspired us to use the same equation not
only as a metric of task difficulty, but also as a method of generating
tasks that match the level of difficulty.

3 TECHNICAL APPROACH
3.1 Estimating Difficulty

To define our task difficulty, we use Fitts’ Law, which is a linear
predictive model of human movement in terms of time and distance
[4, 15]:

D
T:a+b-logg(1+W)

Here, T is the time it takes for the user to reach the target point, D is
the distance of the target from the origin, and W is the width of the
target. The Index of Difficulty (ID) is defined as the logarithmic term
in the equation and represents the measurement of task difficulty.

D
ID =loga(1+ W)

In our case, D will be the distance of the point the robotic arm
moves to, which is where the patient must stack the cup. W is the
width of the cup and T is the amount of time (in seconds) it takes
for a stroke patient to stack a cup at a D distance away from the
origin. When these values are given, a and b can be calculated with
linear regression [15].

3.2 Adapting Difficulty

By adapting the difficulty, we aim to personalize the therapy session
of the user in real-time and task them with points that will challenge
them at the right level based on their ongoing performance. Our
proposed framework takes in a target time to reach a set of points,
defined by a physical therapist, and the actual amount of time it
takes the user to reach these points. It then outputs a new difficulty
level, that is defined by the distance of the next set of points from
the origin. We describe our framework as follows:

(1) Perform an initial assessment of the patient, where the robotic
arm moves to points that are uniformly scattered throughout
the table area. Measure the distance of these points and the
time it took the patient to stack a cup at each point.

(2) Calculate a and b with linear regression using the T, D, and
W of these points.

(3) Select randomly N points throughout the task space and for
each point, use the Fitts’ Law equation to find an estimated
time given the point’s distance from the origin (D), a, and
b. This results in a mapping of N points to their estimated
times.

(4) Set a lower and upper time bound that represent the points
of “just right” difficulty of appropriate knowledge, using
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therapist domain knowledge. From the mapping, select the
points that are within this time bound. These will be the
tasks for the patient in this round.

(5) Continue storing the distances of these points and the ac-
tual time it took for the user to reach them. Then, use this
information and the data from all previous points reached
to recalculate and update a and b. This step is meant to im-
prove the predictive model as more data is gathered about
the patient’s movements throughout the therapy session.

Fig. 2 displays a flowchart of the framework.

‘ Initial assessment of user

A 4

Calculate a, b
(linear regression)

}

Create mapping of N points
to estimated times

A 4

Select “just right” points
(informed by therapist)

Measure time for user to
reach the selected points

Figure 2: Flowchart of task adaptation framework

4 SIMULATED EXPERIMENT

We preliminarily tested our approach in virtual simulation. We
established 3 experimental groups: faster, slower, and control. The
faster group would represent a user that is improving and stack-
ing the cup with greater ease, meaning that they are reaching the
points faster at each session. The slower group would represent
a user that is having difficulty or is being challenged by the se-
lected points, meaning that they are reaching the points slower at
each session. In the control group, the user’s performance is not
changing significantly, meaning that they are reaching the points
at similar speeds. To simulate these groups, we first empirically
selected a time bound of 4.08-4.73 seconds by conducting an initial
assessment with a non-stroke patient user on the physical robot and
finding the range of the slowest 25 points in the generated mapping,
out of N = 100 points. We then simulate the control group with a
Normal distribution with y. = 4.41, the midpoint of the time bound
range, and o = 0.12, to represent the entire time bound, as Normal
distributions have been shown to fit the variance in reaching times
accurately [3]. We specify the yif of the faster group to be 6 standard
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deviations below i and the pg of the slower group to be 6 standard
deviations above fi¢, to minimize overlap between the three distri-
butions. All three distributions have the same standard deviation.
Thus, we have that the faster group is N (3.69,0.12), the control
group is NV (4.41,0.12), and the slower group is N'(5.13,0.12). We
then performed the procedure as follows:

(1) For a given group, 10 points along the Normal distribution
of that group were selected from the generated mapping.
These points represent the points that the user would reach
for that round and the time for each point represents the
amount of time it would take the user to reach that point (in
simulation).

(2) These 10 points were added to the data of the initial assess-
ment. a and b were recalculated from this updated dataset
and a new mapping was generated. The average D of the 10
points was also calculated and used for analysis.

(3) Steps 1 and 2 were repeated for five rounds.

(4) Steps 1-3 were performed on each experimental group.

We hypothesized that the average index of difficulty (ID) of the
faster group would increase at each round, simulating that the al-
gorithm would detect that the user needs to be challenged. Along
similar lines, we hypothesized that the average ID of the slower
group would decrease at each round, simulating that the algorithm
would detect that the user is having difficulty in the session. We
expected the average ID of the control group to not change signifi-
cantly between rounds.

5 PRELIMINARY RESULTS

To evaluate our approach, we examine how well Fitts’ Law describes
task difficulty, and how well our framework can adapt to different
users.

5.1 Evaluating the Efficacy of Fitts’ Law

First, we evaluate that Fitts’ Law extends to the cup reaching task.
To do this, we collected the time for a non-stroke user to reach each
point in the initial assessment and had the user perform the initial
assessment three times to observe the fitness.

We visualize the fitness of Fitts’ Law, in Figure 3. We found that
the Index of Difficulty (ID) significantly predicted the time taken to
reach a point (R = 0.467, f = 1.56, p = 0.000032). This indicates
that Fitts’ Law is a reasonable approximation for time to complete
the cup stacking task.

5.2 Evaluating Adaptivity with Simulated Users

Figure 4 shows the behavior of the average distance of each group
as the rounds progressed. We show the average distance D as the
metric of difficulty because the width W of the cup remains constant
since the same cup is used in all rounds. The trends in the graph
support our hypotheses for each group. In the faster group, the
average distance is constantly increasing from round to round,
which implies that the level of difficulty is increasing. Analogously,
the average distance of the slower group is constantly decreasing,
implying that the level of difficulty is decreasing, and the average
distance/difficulty of the control group remains about the same.
Figure 5 shows the behavior of the average Index of Difficulty
(ID) of each group throughout the rounds. Here, we observe a slight
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Figure 3: Linear fitness of the Index of Difficulty (ID) over
three runs of the initial assessment.

0.45
0.4 [

035 I l
0.3 {

025 I !
0.2

-

Average Distance (m)

0.1
0.05

Round1 Round2 Round3 Round4 Round5

—Control Faster Slower

Figure 4: Average Distance (m) per round

decrease in ID for the faster group from round 3 to round 4, but
this is expected because the simulated times are stochastic.

It is important to address some other observations and limitations
of our design. In both the “faster” and “slower” groups, the number
of selectable points at each round will eventually be zero. This
means that after a certain number of rounds, there are no points
from the latest mapping that exist within the 4.08-4.73 second time
bound. Specifically, we determined outside of the experiment that
the “faster” group runs out of selectable points after approximately
80 points (8 rounds) and the “slower” group runs out of selectable
points after approximately 40 points (4 rounds). This is why there
is no data for Round 5 of the “smaller” group in Figure 4.

This is expected behavior, since as the simulated user keeps per-
forming faster or slower, the times in the mapping will eventually
be completely below the time bound or completely above the time
bound, respectively. Therefore, there is a possibility that the algo-
rithm would not be able to adapt after a certain point if the user
is consistently reaching farther points even faster or if the user is
consistently reaching closer points even slower. The likelihood of
this scenario is something that we would like to observe in physical
experimentation. We hypothesize that it is unlikely that a user from
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Figure 5: Average Index of Difficulty (ID) per round

the faster/slower group will keep reaching increasingly challenging
points faster/slower than in the previous round. One method that
could potentially prevent the exhaustion of selectable points would
be to generate a mapping for more points at each round. Sampling
more than 100 points creates a denser set of candidate points that
are within the time bound.

The initial assessment was also not performed on a stroke patient,
and is hence not representative of a stroke patient’s performance.
On the non-stroke patient user, the time to reach a point in relation
to the point’s distance from the user does not vary as much. They
could reach closer and farther points at similar times (between
3-5 seconds), which is why the empirical time bound of 4.08-4.73
seconds is narrow. It is also important to note that the simulation
was performed on a single participant’s data and is therefore sus-
ceptible to bias resulting from a small sample size. We plan to run a
user study with more participants for future work in order to draw
stronger conclusions.

6 FUTURE WORK

We are interested in addressing our observations from the sim-
ulation by testing in the physical world with stroke patients. In
particular, we will pay attention to the evaluation of both the pro-
posed framework and the user experience from actual users of the
system.

We are interested in assessing if changing certain factors (e.g.,
the points used in the initial assessment, the linear regression score
from the initial assessment, the number of points selected at each
round, etc.) significantly influence when the groups will no longer
be able to select points from within the time bound and any other
results. We would want to observe when or if a plateau occurs in
the number of selectable points based on these changes. For one of
these variables, the time bounds, we are curious to see if setting a
threshold would be difficult for a physical therapist to determine
in reality or if there are other empirical methods for dynamically
determining a time bound of the “just right” points for a specific
user. We reason that a rehabilitation therapist is able to establish
a suitable time bound from observing the patient making reaches
to the cup. Rehabilitation therapists can monitor patient exertion
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levels and ask them qualitative questions (e.g., "Was it easier or
harder for you to reach this point compared to the previous point?")
during the initial assessment to establish an appropriate time bound
for the specific patient. Based on these inspections, the therapist
would determine a number of seconds to input as the target time
bound.

We are also interested in looking at other metrics for evalu-
ating the proposed framework beyond the time taken to reach
an object. Some potential metrics include effort assessed through
facial affect [2], attention assessed through gaze [7], enjoyment
assessed through physiological response [8], and arm function as-
sessed through the score from the Fugl-Meyer Assessment for upper
extremity [5].

In order to assess the user experience of the system, we will
conduct semi-structured interviews with the patients and therapists
from the physical experiment by asking questions to evaluate the
usability and effectiveness of our approach.

To expand these realms, we would also like to incorporate person-
alized verbal feedback from the socially assistive robot (QTRobot
pictured in Figure 1) in the therapy session along with task difficulty
adaptation. Research in Socially Assistive Robotics (SAR) investi-
gates approaches to automating verbal feedback to the patient that
will keep them motivated and engaged in the task. There exists sub-
stantial literature that examines the effect of certain types of verbal
feedback on user performance, such as normative feedback [11]
and personality-matching feedback [12]. We would like to design a
therapy session that provides verbal feedback (with the QTRobot)
to the patient based on how well they perform the task given by
the robotic arm and the task difficulty adaptation algorithm. This
is with the intention of comparing a session that combines both
components with ones that implement each component in isolation.
It would be interesting to determine if the combination is more
effective in increasing user engagement, motivation, and perfor-
mance.

7 CONCLUSION

This paper addresses the need for accessible and automated upper-
body rehabilitation for stroke patients, emphasizing the signifi-
cance of task difficulty adaptation in improving patient perfor-
mance. Leveraging Fitts’ Law, the proposed framework defines a
difficulty metric for a cup-stacking task and iteratively applies it
to dynamically adjust the task difficulty levels and the therapy
tasks. The simulation results show the adaptability of the model to
users’ varying performance levels. However, limitations, such as
the eventual exhaustion of selectable points in certain scenarios,
hint at the need to transition to physical experimentation in order
to determine if these behaviors would occur in real environments.
Future work aims to explore the impact of different variables on the
model’s adaptability and incorporate personalized verbal feedback
from a socially assistive robot to enhance user engagement and
motivation.
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