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ABSTRACT 

As the need for accessible upper-body stroke rehabilitation grows, 
it becomes increasingly important to investigate how the difculty 
level of rehabilitation tasks can be personalized to a patient and 
automatically adapted based on the patient’s progress in therapy. 
We introduce a framework that uses Fitts’ Law to defne task dif-

culty and iteratively apply it to dynamically adjust difculty levels 
and to assign therapy tasks within the context of a cup-stacking 
occupational therapy activity. Our preliminary simulation results 
support the hypothesis that the model can adapt its difculty lev-
els based on a user’s time taken to stack a cup at various points 
on a table. Future work includes exploring the impact of diferent 
variables on the model’s adaptability and integrating personalized 
verbal feedback from a socially assistive robot. 

CCS CONCEPTS 

• Human-centered computing → Interaction design; • Com-

puting methodologies → Modeling and simulation. 
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1 INTRODUCTION 

Eighty percent of stroke patients experience impairment in their 
upper bodies post-stroke [1]. Without proper and consistent re-
habilitation therapy, patients may experience functional decline 
in their afected limb [6]. With 795,000 new stroke cases per year 
and a need for frequent training in the US alone, it is becoming 
increasingly important to create accessible rehabilitation devices 
that can administer therapy tasks to the patient at home or in a 
rehabilitation center [13]. 
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Figure 1: A depiction of the environment. In a rehabilitative 
therapy session, the Kinova JACO2 assistive arm (on the 
right) moves to various points across the table while holding 
a cup. The patient, sitting in front of the table and centered 
at the origin (the red box at the end of the table), stacks a cup 
on top of the robot’s cup using their paretic arm. The Lux AI 
QTRobot (on the left) provides instructions for the user. 

We focus on investigating the task difculty adaptation in the 
context of a cup-stacking task, as shown in Figure 1. Literature in 
the areas of task difculty adaptation and defning task difculty 
in rehabilitative tasks are addressed in various ways, but these 
approaches require signifcant human input [14] or focus on robots 
that maintain physical contact with their users [9]. 

In this paper, our contributions are twofold. We frst defne a 
difculty metric for cup-stacking using Fitts’ Law, which describes 
the relationship between the time required to move to a target in a 
graphical user interface and the distance to the target [4]. We then 
apply the same equation iteratively to produce tasks that adapt to 
the difculty level of the user. We perform an initial evaluation 
of this procedure in simulation. Our preliminary results indicate 
that the model can exhibit adaptive behavior throughout a therapy 
session. 

2 BACKGROUND 

A standard approach of administering the Fugl-Meyer Assessment 
on stroke patients is useful in defning task difculty and matching 
tasks to a patient’s ability, but the procedure is manual and requires 
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an occupational therapist to reassess and re-evaluate the patient’s 
difculty level and tasks every few sessions [14]. Other approaches 
require external equipment, such as a virtual component. Error 
amplifcation [10], for example, is shown to improve user correction 
and performance by using a screen to display a target to be a little 
more of-target than it truly is. Previous approaches use a robot that 
comes into contact with the subject to measure and assess motor 
recovery [9]. One study, however, leverages an equation, Fitts’ Law, 
to delineate between levels of task difculty [15]. It established 
three levels of difculty based on Fitts’ Law, but did not use an 
adaptation technique. This inspired us to use the same equation not 
only as a metric of task difculty, but also as a method of generating 
tasks that match the level of difculty. 

3 TECHNICAL APPROACH 

3.1 Estimating Difculty 

To defne our task difculty, we use Fitts’ Law, which is a linear 
predictive model of human movement in terms of time and distance 
[4, 15]: 

� 
� = � + � · ���2 (1 + )

� 
Here, � is the time it takes for the user to reach the target point, � is 
the distance of the target from the origin, and � is the width of the 
target. The Index of Difculty (��) is defned as the logarithmic term 
in the equation and represents the measurement of task difculty. 

� 
�� = ���2 (1 + )

� 
In our case, � will be the distance of the point the robotic arm 
moves to, which is where the patient must stack the cup. � is the 
width of the cup and � is the amount of time (in seconds) it takes 
for a stroke patient to stack a cup at a � distance away from the 
origin. When these values are given, � and � can be calculated with 
linear regression [15]. 

3.2 Adapting Difculty 

By adapting the difculty, we aim to personalize the therapy session 
of the user in real-time and task them with points that will challenge 
them at the right level based on their ongoing performance. Our 
proposed framework takes in a target time to reach a set of points, 
defned by a physical therapist, and the actual amount of time it 
takes the user to reach these points. It then outputs a new difculty 
level, that is defned by the distance of the next set of points from 
the origin. We describe our framework as follows: 

(1) Perform an initial assessment of the patient, where the robotic 
arm moves to points that are uniformly scattered throughout 
the table area. Measure the distance of these points and the 
time it took the patient to stack a cup at each point. 

(2) Calculate � and � with linear regression using the � , � , and 
� of these points. 

(3) Select randomly � points throughout the task space and for 
each point, use the Fitts’ Law equation to fnd an estimated 
time given the point’s distance from the origin (�), �, and 
�. This results in a mapping of � points to their estimated 
times. 

(4) Set a lower and upper time bound that represent the points 
of “just right” difculty of appropriate knowledge, using 

therapist domain knowledge. From the mapping, select the 
points that are within this time bound. These will be the 
tasks for the patient in this round. 

(5) Continue storing the distances of these points and the ac-
tual time it took for the user to reach them. Then, use this 
information and the data from all previous points reached 
to recalculate and update � and �. This step is meant to im-

prove the predictive model as more data is gathered about 
the patient’s movements throughout the therapy session. 

Fig. 2 displays a fowchart of the framework. 

Figure 2: Flowchart of task adaptation framework 

4 SIMULATED EXPERIMENT 

We preliminarily tested our approach in virtual simulation. We 
established 3 experimental groups: faster, slower, and control. The 
faster group would represent a user that is improving and stack-
ing the cup with greater ease, meaning that they are reaching the 
points faster at each session. The slower group would represent 
a user that is having difculty or is being challenged by the se-
lected points, meaning that they are reaching the points slower at 
each session. In the control group, the user’s performance is not 
changing signifcantly, meaning that they are reaching the points 
at similar speeds. To simulate these groups, we frst empirically 
selected a time bound of 4.08-4.73 seconds by conducting an initial 
assessment with a non-stroke patient user on the physical robot and 
fnding the range of the slowest 25 points in the generated mapping, 
out of � = 100 points. We then simulate the control group with a 
Normal distribution with �� = 4.41, the midpoint of the time bound 
range, and � = 0.12, to represent the entire time bound, as Normal 
distributions have been shown to ft the variance in reaching times 
accurately [3]. We specify the �� of the faster group to be 6 standard 
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deviations below �� and the �� of the slower group to be 6 standard 
deviations above �� , to minimize overlap between the three distri-
butions. All three distributions have the same standard deviation. 
Thus, we have that the faster group is N(3.69, 0.12), the control 
group is N(4.41, 0.12), and the slower group is N(5.13, 0.12). We 
then performed the procedure as follows: 

(1) For a given group, 10 points along the Normal distribution 
of that group were selected from the generated mapping. 
These points represent the points that the user would reach 
for that round and the time for each point represents the 
amount of time it would take the user to reach that point (in 
simulation). 

(2) These 10 points were added to the data of the initial assess-
ment. � and � were recalculated from this updated dataset 
and a new mapping was generated. The average � of the 10 
points was also calculated and used for analysis. 

(3) Steps 1 and 2 were repeated for fve rounds. 
(4) Steps 1-3 were performed on each experimental group. 

We hypothesized that the average index of difculty (��) of the 
faster group would increase at each round, simulating that the al-
gorithm would detect that the user needs to be challenged. Along 
similar lines, we hypothesized that the average �� of the slower 
group would decrease at each round, simulating that the algorithm 
would detect that the user is having difculty in the session. We 
expected the average �� of the control group to not change signif-
cantly between rounds. 

5 PRELIMINARY RESULTS 

To evaluate our approach, we examine how well Fitts’ Law describes 
task difculty, and how well our framework can adapt to diferent 
users. 

5.1 Evaluating the Efcacy of Fitts’ Law 

First, we evaluate that Fitts’ Law extends to the cup reaching task. 
To do this, we collected the time for a non-stroke user to reach each 
point in the initial assessment and had the user perform the initial 
assessment three times to observe the ftness. 

We visualize the ftness of Fitts’ Law, in Figure 3. We found that 
the Index of Difculty (ID) signifcantly predicted the time taken to 
reach a point (�2 

= 0.467, � = 1.56, � = 0.000032). This indicates 
that Fitts’ Law is a reasonable approximation for time to complete 
the cup stacking task. 

5.2 Evaluating Adaptivity with Simulated Users 

Figure 4 shows the behavior of the average distance of each group 
as the rounds progressed. We show the average distance � as the 
metric of difculty because the width� of the cup remains constant 
since the same cup is used in all rounds. The trends in the graph 
support our hypotheses for each group. In the faster group, the 
average distance is constantly increasing from round to round, 
which implies that the level of difculty is increasing. Analogously, 
the average distance of the slower group is constantly decreasing, 
implying that the level of difculty is decreasing, and the average 
distance/difculty of the control group remains about the same. 

Figure 5 shows the behavior of the average Index of Difculty 
(��) of each group throughout the rounds. Here, we observe a slight 

Figure 3: Linear ftness of the Index of Difculty (��) over 
three runs of the initial assessment. 

Figure 4: Average Distance (m) per round 

decrease in �� for the faster group from round 3 to round 4, but 
this is expected because the simulated times are stochastic. 

It is important to address some other observations and limitations 
of our design. In both the “faster” and “slower” groups, the number 
of selectable points at each round will eventually be zero. This 
means that after a certain number of rounds, there are no points 
from the latest mapping that exist within the 4.08-4.73 second time 
bound. Specifcally, we determined outside of the experiment that 
the “faster” group runs out of selectable points after approximately 
80 points (8 rounds) and the “slower” group runs out of selectable 
points after approximately 40 points (4 rounds). This is why there 
is no data for Round 5 of the “smaller” group in Figure 4. 

This is expected behavior, since as the simulated user keeps per-
forming faster or slower, the times in the mapping will eventually 
be completely below the time bound or completely above the time 
bound, respectively. Therefore, there is a possibility that the algo-
rithm would not be able to adapt after a certain point if the user 
is consistently reaching farther points even faster or if the user is 
consistently reaching closer points even slower. The likelihood of 
this scenario is something that we would like to observe in physical 
experimentation. We hypothesize that it is unlikely that a user from 
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Figure 5: Average Index of Difculty (��) per round 

the faster/slower group will keep reaching increasingly challenging 
points faster/slower than in the previous round. One method that 
could potentially prevent the exhaustion of selectable points would 
be to generate a mapping for more points at each round. Sampling 
more than 100 points creates a denser set of candidate points that 
are within the time bound. 

The initial assessment was also not performed on a stroke patient, 
and is hence not representative of a stroke patient’s performance. 
On the non-stroke patient user, the time to reach a point in relation 
to the point’s distance from the user does not vary as much. They 
could reach closer and farther points at similar times (between 
3-5 seconds), which is why the empirical time bound of 4.08-4.73 
seconds is narrow. It is also important to note that the simulation 
was performed on a single participant’s data and is therefore sus-
ceptible to bias resulting from a small sample size. We plan to run a 
user study with more participants for future work in order to draw 
stronger conclusions. 

6 FUTURE WORK 

We are interested in addressing our observations from the sim-

ulation by testing in the physical world with stroke patients. In 
particular, we will pay attention to the evaluation of both the pro-
posed framework and the user experience from actual users of the 
system. 

We are interested in assessing if changing certain factors (e.g., 
the points used in the initial assessment, the linear regression score 
from the initial assessment, the number of points selected at each 
round, etc.) signifcantly infuence when the groups will no longer 
be able to select points from within the time bound and any other 
results. We would want to observe when or if a plateau occurs in 
the number of selectable points based on these changes. For one of 
these variables, the time bounds, we are curious to see if setting a 
threshold would be difcult for a physical therapist to determine 
in reality or if there are other empirical methods for dynamically 
determining a time bound of the “just right” points for a specifc 
user. We reason that a rehabilitation therapist is able to establish 
a suitable time bound from observing the patient making reaches 
to the cup. Rehabilitation therapists can monitor patient exertion 

levels and ask them qualitative questions (e.g., "Was it easier or 
harder for you to reach this point compared to the previous point?") 
during the initial assessment to establish an appropriate time bound 
for the specifc patient. Based on these inspections, the therapist 
would determine a number of seconds to input as the target time 
bound. 

We are also interested in looking at other metrics for evalu-
ating the proposed framework beyond the time taken to reach 
an object. Some potential metrics include efort assessed through 
facial afect [2], attention assessed through gaze [7], enjoyment 
assessed through physiological response [8], and arm function as-
sessed through the score from the Fugl-Meyer Assessment for upper 
extremity [5]. 

In order to assess the user experience of the system, we will 
conduct semi-structured interviews with the patients and therapists 
from the physical experiment by asking questions to evaluate the 
usability and efectiveness of our approach. 

To expand these realms, we would also like to incorporate person-
alized verbal feedback from the socially assistive robot (QTRobot 
pictured in Figure 1) in the therapy session along with task difculty 
adaptation. Research in Socially Assistive Robotics (SAR) investi-
gates approaches to automating verbal feedback to the patient that 
will keep them motivated and engaged in the task. There exists sub-
stantial literature that examines the efect of certain types of verbal 
feedback on user performance, such as normative feedback [11] 
and personality-matching feedback [12]. We would like to design a 
therapy session that provides verbal feedback (with the QTRobot) 
to the patient based on how well they perform the task given by 
the robotic arm and the task difculty adaptation algorithm. This 
is with the intention of comparing a session that combines both 
components with ones that implement each component in isolation. 
It would be interesting to determine if the combination is more 
efective in increasing user engagement, motivation, and perfor-
mance. 

7 CONCLUSION 

This paper addresses the need for accessible and automated upper-
body rehabilitation for stroke patients, emphasizing the signif-
cance of task difculty adaptation in improving patient perfor-
mance. Leveraging Fitts’ Law, the proposed framework defnes a 
difculty metric for a cup-stacking task and iteratively applies it 
to dynamically adjust the task difculty levels and the therapy 
tasks. The simulation results show the adaptability of the model to 
users’ varying performance levels. However, limitations, such as 
the eventual exhaustion of selectable points in certain scenarios, 
hint at the need to transition to physical experimentation in order 
to determine if these behaviors would occur in real environments. 
Future work aims to explore the impact of diferent variables on the 
model’s adaptability and incorporate personalized verbal feedback 
from a socially assistive robot to enhance user engagement and 
motivation. 
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