
Temporal Logic Specification-Conditioned Decision Transformer
for Offline Safe Reinforcement Learning

Zijian Guo 1 Weichao Zhou 2 Wenchao Li 2

Abstract
Offline safe reinforcement learning (RL) aims to
train a constraint satisfaction policy from a fixed
dataset. Current state-of-the-art approaches are
based on supervised learning with a conditioned
policy. However, these approaches fall short in
real-world applications that involve complex tasks
with rich temporal and logical structures. In this
paper, we propose temporal logic Specification-
conditioned Decision Transformer (SDT), a novel
framework that harnesses the expressive power
of signal temporal logic (STL) to specify com-
plex temporal rules that an agent should follow
and the sequential modeling capability of Deci-
sion Transformer (DT). Empirical evaluations on
the DSRL benchmarks demonstrate the better ca-
pacity of SDT in learning safe and high-reward
policies compared with existing approaches. In
addition, SDT shows good alignment with respect
to different desired degrees of satisfaction of the
STL specification that it is conditioned on.

1. Introduction
Offline safe reinforcement learning (RL) is the problem of
learning a policy to achieve high rewards while keeping
the cost of constraint violation below a specified threshold
from a fixed dataset without further interactions with the
RL environment. It is preferable to online safe RL when
data collection is expensive and inefficient (Gu et al., 2022b;
Guo et al., 2023). Various methods have been proposed and
shown promising performance in attaining high rewards and
satisfying relatively simple constraints in applications such
as autonomous driving (Gu et al., 2022a; Lin et al., 2023),
robotics (Brunke et al., 2022), and healthcare (Kondrup
et al., 2023; Zhang et al., 2024). However, real-world tasks

1Division of Systems Engineering, Boston University
2Department of Electrical and Computer Engineering, Boston Uni-
versity. Correspondence to: Zijian Guo <zjguo@bu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

often require agents to follow complex temporal and logical
constraints. For example, autonomous-driving vehicles must
come to a complete halt at an intersection with a stop sign,
pause briefly, and proceed through it only if no other cars
are present. It is challenging to define cost functions that
appropriately capture such constraints.

Temporal logic (TL), on the other hand, provides a formal-
ism for expressing the behaviors of systems over time, such
as safety (e.g. never visit a bad state), liveness (e.g. even-
tually visit a good state), sequentiality (e.g. visit state A
before visiting state B), and their arbitrarily elaborate com-
binations (Donzé, 2013; Tabuada & Neider, 2015; Coogan
et al., 2017; Vasile et al., 2017; Madsen et al., 2018). Signal
temporal logic (STL) is a variant of TL that can be used to
specify properties over dense-time real-valued signals such
as trajectories (Maler & Nickovic, 2004). A unique charac-
teristic of STL is that it admits a quantitative semantics – a
robustness value that quantifies the degree to which a given
trajectory satisfies an STL formula (Fainekos & Pappas,
2009; Donzé & Maler, 2010). Due to this quantitative se-
mantics and its expressiveness, STL has found a wide range
of applications ranging from controller verification and syn-
thesis (Eddeland et al., 2017; Sahin et al., 2020; Kurtz & Lin,
2021; Dawson & Fan, 2022; Zhang & Haesaert, 2023) to
reinforcement learning (Balakrishnan & Deshmukh, 2019;
Bozkurt et al., 2020; Zhang et al., 2021).

In this paper, we propose to leverage STL to solve offline
safe RL problems that involve complex temporal constraints.
To tackle the challenges of learning from a fixed dataset,
we build on the Decision Transformer (DT) model (Chen
et al., 2021) which leverages the self-attention mechanism in
Transformers (Vaswani et al., 2017) to handle long-range de-
pendencies and has demonstrated competitive performance
in offline RL settings. A crucial insight of our work is that,
while the notions of goals, returns, and costs are tied to
RL, the sequence modeling and generation framework of
DT is more general. Our novel framework, called tempo-
ral logic Specification-conditioned Decision Transformer
(SDT), judiciously combines the sequential modeling ca-
pability of DT with the expressive power of STL to learn
high-performance and safe policies. Our main contributions
are summarized as follows.

1

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

• We study the offline safe RL problem from the super-
vised learning perspective and propose SDT which en-
ables conditioning on STL specifications in DT. SDT is
the first work that incorporates STL to satisfy temporal
constraints in offline safe RL settings.

• We examine the capacity of autoregressive learning
with the quantitative semantics of STL. Our method
introduces two key input tokens: the prefix and suffix
robustness values that leverage different portions of a
trajectory to provide complementary information.

• Our comprehensive experiments show that i) SDT out-
performs multiple baselines both in safety and task
performance by a large margin; ii) SDT can generalize
to different robustness value thresholds and configura-
tions without re-training the policy.

2. Related Work
Constrained optimization for offline safe RL. Offline safe
RL is the intersection of safe RL (Achiam et al., 2017; Xu
et al., 2021) and offline RL (Levine et al., 2020; Prudencio
et al., 2023), where agents aim to balance safety and effi-
ciency with reward, cost, and cost threshold information by
learning from fixed trajectories. Most of the recent works
formulate the safe RL problem as a constrained optimization
problem. The Distribution Correction Estimation (DICE)
family of RL algorithms (Kostrikov et al., 2021; Lee et al.,
2021; 2022) optimizes the policy based on explicitly es-
timating the distributional shift between the target policy
and the offline data distribution. The primal-dual method
with function approximation optimizes iteratively between
the policy and the lagrangian multiplier used to penalize
constraint violations (Le et al., 2019; Chen et al., 2022; Xu
et al., 2022; Polosky et al., 2022; Hong et al., 2023). How-
ever, the aspect of addressing temporal constraints remains
underexplored.

Conditioned RL. Reward-Conditioned Supervised Learn-
ing (RCSL) represents a burgeoning category of algorithms
that learn action distribution based on future return statis-
tics via supervised learning. This idea is first proposed for
the online RL setting (Schmidhuber, 2019; Kumar et al.,
2019b; Peng et al., 2019). Decision Transformer (DT) and
its variants (Chen et al., 2021; Furuta et al., 2022; Zheng
et al., 2022; Yamagata et al., 2023; Wang et al., 2023; Hu
et al., 2023) extend this idea to the offline RL setting by
using return-to-go, i.e., cumulative future reward, as the
conditional inputs and modeling trajectories with casual
transformers (Vaswani et al., 2017). Instead of complex
models, recent findings show that with careful policy tuning,
simple multi-layered neural networks can match transform-
ers’ performance (Emmons et al., 2021; Brandfonbrener
et al., 2022). Several works extend reward-conditioned RL
methods in the offline safe RL setting by additionally con-

ditioning on cost-to-go, i.e., cumulative future cost, and
achieve not only safety and performance but also general-
ization to different cost thresholds (Liu et al., 2023b; Zhang
et al., 2023). Our work adopts formal specifications in the
conditions to characterize temporal properties that are diffi-
cult to be captured by standard reward or cost functions.

STL as reward (or cost) functions in RL. A well-defined
reward (or cost) function is essential for RL agents to ac-
complish the underlying tasks (Amodei et al., 2016; Zhou
& Li, 2022). Due to its rich syntax, STL can be used to
specify high-level goals and safety requirements in RL tasks
and also evaluate the behaviors of agents in conforming to
the specifications combined with model-free methods (Li
et al., 2017; Toro Icarte et al., 2018; Camacho et al., 2019;
Balakrishnan & Deshmukh, 2019). Several model-based
methods have been proposed (Kapoor et al., 2020; Cohen
& Belta, 2021) to improve sample efficiency and promote
safe training, but the inherent trial-and-error process of RL
still poses a significant risk of performing unsafe actions.
This work focuses on the offline setting to avoid unsafe
explorations during training.

3. Preliminaries
3.1. Offline Safe RL

We consider learning in a finite horizon Markov deci-
sion process (MDP) which can be described by the tuple
(S,A,P, r), where S is the state space, A is the action
space, P is the transition function and r is the reward func-
tion. A trajectory comprises a sequence of states and actions
⌧ = {st, at}Tt=1 with length |⌧ | = T . The goal of RL is
to learn a policy ⇡ that maximizes the expected cumulative
reward E⌧⇠⇡

⇥PT
t=1 r(st, at)].

A Constrained MDP (CMDP) (Altman, 2021) augments
MDP with a cost function c, and is commonly used to model
safe RL whose goal is to maximize the cumulative reward
while limiting the cumulative cost to a threshold d:

max
⇡

E⌧⇠⇡

⇥ TX

t=1

r(st, at), s.t. E⌧⇠⇡

⇥ TX

t=1

c(st, at)]  d. (1)

In the offline setting, the agent cannot interact with the envi-
ronment and can only access a fixed dataset D = {⌧i}ni=1

consisting of trajectories collected by unknown policies.

3.2. Decision Transformers

The Decision Transformer (DT) model (Chen et al., 2021)
tackles offline RL as a sequential modeling problem. Un-
like the majority of prior RL approaches that estimate
value functions and parameterize a single state-conditioned
policy ⇡(a|s), DT outputs predicted actions from a se-
quence of return-to-go Rt�K:t = {Rt�K , ..., Rt}, where
Rt =

PT
t0=t rt(st0 , at0) is the cumulative reward from time-

2

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

step t and K is the context length; states st�K:t = {st�K ,
..., st}; and actions at�K:t = {at�K , ..., at}. A DT’s pol-
icy is parametrized by the GPT architecture (Radford et al.,
2018) with a causal self-attention mask. It generates a deter-
ministic action ⇡DT (Rt�K:t, st�K:t, at�K:t) at each time-
step t. The policy is trained by minimizing the loss between
the predicted and ground-truth actions.

3.3. STL Specification

Signal Temporal Logic (STL) is a formal logic used to
specify and monitor temporal properties of continuous sig-
nals (Donzé & Maler, 2010). In this paper, we consider
states at discrete time-steps as signals under discrete-time
sampling. The syntax of STL is as follows.

� := > | µc | ¬� | � ^ | � _ | �) |
G[t1,t2]� | F[t1,t2]� | �U[t1,t2]

(2)

where µc is a predicate of the form µ(s) < c where µ(·) :
S �! R and c 2 R is a constant; � and are STL formulas;
t1, t2 2 Z+ denote two sequential time steps. > represents
True. The temporal operators G, F, and U refer to Globally
(i.e., always), Finally (i.e., eventually), and Until.

The quantitative semantics (Donzé & Maler, 2010) of STL
as shown in Eq. (3) quantifies the degree to which a trajec-
tory ⌧ satisfies or violates an STL formula � at each time
step t through the robustness value, denoted as ⇢(⌧, t,�).

⇢(⌧, t,>) = ⇢max where ⇢max > 0

⇢(⌧, t, µc) = c� µ(st)

⇢(⌧, t,¬�) = �⇢(⌧, t,�)
⇢(⌧, t,�1 ^ �2) = min

�
⇢(⌧, t,�1), ⇢(⌧, t,�2)

�

⇢(⌧, t,�1 _ �2) = max
�
⇢(⌧, t,�1), ⇢(⌧, t,�2)

�

⇢(⌧, t,�)) = max
�
�⇢(⌧, t,�), ⇢(⌧, t,)

�

⇢(⌧, t,G[t1,t2]�) = min
t02[t+t1,t+t2]

�
⇢(⌧, t0,�)

�

⇢(⌧, t,F[t1,t2]�) = max
t02[t+t1,t+t2]

�
⇢(⌧, t0,�)

�

⇢(⌧, t,�U[t1,t2]) = max
t02[t+t1,t+t2]

min
�
⇢(⌧, t0,),

min
t002[t,t0]

⇢(⌧, t00,�)
�

(3)

The sign of the robustness value indicates whether the spec-
ification is satisfied or not, while a higher value indicates
stronger satisfaction and vice versa. A specification can
contain multiple predicates whose values can be arbitrarily
scaled, yet the value of the overall specification maintains
strict semantics.

4. Method
In this section, we first outline the formulation to solve
the offline safe RL problem through supervised learning.
Then, we present our novel framework, temporal logic
Specification-conditioned Decision Transformer (SDT), and

explain the rationale behind our specific approach of incor-
porating STL specification in DT.

4.1. Offline RL via Supervised Learning

Motivated by RCSL (Emmons et al., 2021; Brandfonbrener
et al., 2022), we extend the supervised learning formulation
to the offline safe RL setting. Instead of solving the con-
strained optimization problem in Eq. (1), the objective is to
find an autoregressive model to simulate sampled trajecto-
ries conditioned on both reward and cost:

max
✓

Es⇠⌧,⌧⇠D

h
log ⇡✓

�
a|s, r(⌧), c(⌧)

�i
+Lreg (4)

where Lreg is the regularization term; s = {st�K , ..., st} is
a sequence of states with a context length K; r(⌧) and c(⌧)
represent the rewards and costs of the trajectory. This for-
mulation captures a range of methods, as detailed in Table 1.
RvS (Emmons et al., 2021) uses MLP policy with K = 1
and uses the r(⌧) function to compute either the average
future reward or future goal states. DT (Chen et al., 2021)
adopts a transformers-based policy with K > 1 and uses
r(⌧) to specify return-to-go. ODT (Zheng et al., 2022) and
QDT (Yamagata et al., 2023) follow similar principles as
DT, but ODT incorporates stochastic policies and entropy
regularization, and QDT learns Q-functions to relabel return-
to-go. CDT (Liu et al., 2023b) extends to offline safe RL,
utilizing cost-to-go in the c(⌧) function. SaFormer (Zhang
et al., 2023) estimates the cost-to-go to filter unsafe ac-
tions. Despite the variety, these existing methods center
on Markovian rewards and costs. Our approach combines
non-Markovian policies (transformers) with non-Markovian
costs (robustness values of STL specifications).

Method Architecture r c Lreg

RvS-R (Emmons et al., 2021) MLP average reward � �

RvS-G (Emmons et al., 2021) MLP goal state � �

DT (Chen et al., 2021) Transformers return-to-go � �

ODT (Zheng et al., 2022) Transformers return-to-go � Entropy

QDT (Yamagata et al., 2023) Transformers relabeled
return-to-go

� �

CDT (Liu et al., 2023b) Transformers return-to-go cost-to-go Entropy

SaFormer (Zhang et al., 2023) Transformers return-to-go estimated
cost-to-go

�

SDT(ours) Transformers return-go-to robustness values Entropy

Table 1: A brief comparison of methods with different ar-
chitectures conditioned on different types of inputs. r (or c):
reward (or cost) function.

4.2. Specification-Conditioned Decision Transformers

Our framework, named temporal logic Specification-
conditioned Decision Transformer (SDT), as illustrated
in Figure 1, extends the Decision Transformer (DT)

3

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

model (Chen et al., 2021) by incorporating two extra ro-
bustness value tokens, prefix and suffix, as defined in Defi-
nition 4.1. The intuition is to generate actions conditioned
on both the reward and the trajectory’s robustness in sat-
isfying the specification. In this work, we focus on safety
specifications1 and preserve the reward token to measure
performance. We employ a stochastic policy with entropy
regularization, which has been shown to be effective in the
literature (Zheng et al., 2022; Liu et al., 2023b).

Figure 1: The SDT framework. It takes the prefix and suffix
robustness values, return-to-go, states, and actions as inputs
and predicts the next actions using a Gaussian policy.

Definition 4.1. (Prefix and suffix robustness value) Given a
trajectory ⌧ = {s1, s2, ..., sT } with length |⌧ | = T and
a STL specification �, the prefix and suffix robustness
value at time-step t are ⇢pre(⌧, t,�) := ⇢(⌧1:t, 1,�) and
⇢suf (⌧, t,�) := ⇢(⌧t:T , 1,�) respectively. For convenience,
we will abbreviate “prefix and suffix robustness values” as
“prefix” and “suffix” respectively.

Specifically, the input sequence ot for SDT at time-
step t includes prefix Ppre = {⇢pre(⌧, t � K,�), ...,
⇢pre(⌧, t,�)}, suffix Psuf = {⇢suf (⌧, t � K,�), ...,
⇢suf (⌧, t,�)}, rewards Rt�K:t, states st�K:t, and ac-
tions at�K:t; the Gaussian policy parameterized by ✓ is
⇡✓(·|ot) = N (µ✓(ot),⌃✓(ot)); and the Shannon entropy
regularizer is Lreg = H[⇡✓(·|o)] with weight � 2 [0,1).
After plugging them into Eq. (4), the objective of SDT is:

max
✓

Eo⇠⌧,⌧⇠D
⇥
log ⇡✓(a|o) + �H[⇡✓(·|o)]

⇤
(5)

Training and evaluation. SDT generally follows the train-
ing and evaluation schemes of RCSL (Emmons et al., 2021;
Brandfonbrener et al., 2022). The training procedure is as
follows: sample a batch of sequences {o,a} from the offline
dataset D, and then compute the loss in Eq. (5) to optimize
the policy ⇡✓ via gradient descent. In terms of evaluation,
the procedure for SDT is presented in Algorithm 1. Updates
to the return-to-go and the prefix occur in response to new

1In formal logic parlance, all specifications over finite trajec-
tories are safety specifications. We use the term “safety” here to
differentiate safety constraints from performance goals.

Algorithm 1 Evaluation procedure for SDT
Input: trained Transformer policy ⇡✓, STL specification �,
episode length T , context length K, target reward R and
target suffix Psuf , environment env

1: Get the initial state: s1 env.reset() and initial
action: at 0 and initial input sequence: o ;.

2: for t = 1, ..., T do
3: Compute prefix ⇢pre = ⇢(s1:t,�)
4: Set target suffix ⇢suf = Psuf [t]
5: Construct input sequence

o o \ {⇢suf , ⇢pre, Rt, st, at}
6: Get predicted action ât ⇠ ⇡(·|ot�K+1:t)
7: Execute the action: st+1, rt env.step(ât)
8: Compute target returns for the next step

Rt+1 = Rt � rt and set at ât

9: end for

rewards and state information from the environment. The
target suffix at each time-step is specified instead of autore-
gressively computed, as detailed in the following section
where we justify the usage of the suffix and prefix.

4.3. Suffix and Prefix Robustness Values

Suffix robustness value as desired future. Recall that
given a trajectory ⌧ of length T , the return-to-go (or cost-to-
go), at time-step t is computed by Rt =

PT
t0=t r(st0 , at0)

(or Ct =
PT

t0=t c(st0 , at0)). During training, they are con-
catenated with a sequence of states and actions and then
fed to DT to optimize Eq. (4). (Furuta et al., 2022) point
out that the conditional supervised learning approaches are
performing hindsight information matching: match the out-
put trajectories with future information statistics I(⌧) to
search for optimal actions. We introduce the suffix robust-
ness value in Definition 4.1, which can be viewed as a
particular form of I(⌧), as an alternative to cost-to-go. For
example, given a trajectory ⌧ and a simple specification
�1 = F[1,10](s > 0) describing that the states in a trajectory
⌧ should eventually be greater than 0 within the next 10
steps. The corresponding suffix at time-step t can be com-
puted as ⇢suf (⌧, t,�1) = maxt02[t+1,t+10] st0 . The suffix
can capture the statistics of future states. Moreover, STL
suffix is strictly more expressive than cost-to-go (or return-
to-go), as one can define a predicate as the sum of cost
(or negative sum of reward) and the resulting suffix will
be equivalent to negative cost-to-go (or return-to-go), e.g.,
µ0(st) := Ct < 0) ⇢(⌧, t, µ0) = �Ct. However, chal-
lenges arise in training and evaluation due to the following
sparsity issue and the updates of STL robustness values.

Sparsity. The compliance or violation of STL specifications
of a trajectory might be determined by a relatively small
number of critical states or intervals within the trajectory. As

4

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

highlighted by the quantitative semantics of STL in Eq. (3),
the suffix, or even a sequence of suffix can offer sparse
information on its corresponding states. For example, given
the STL formula �1, there may exist a trajectory ⌧ whose
states do not satisfy s > 0 until the end of or near the end
of ⌧ . Consequently, a large portion of the suffix robustness
values {⇢suf (⌧, 1,�), ..., ⇢suf (⌧, T,�)} equal to a constant.
In this case, the agent cannot gain meaningful information
due to limited feedback on robustness values.

Updates of STL robustness values. The cost-to-go (or return-
to-go) can be updated autoregressively when a new cost
(or reward) is obtained, i.e., Ct+1 = Ct � c(st, at) (or
Rt+1 = Rt � r(st, at)). However, the robustness value
does not possess this additive property, i.e., ⇢suf (⌧, t,�) 6=
⇢suf (⌧, t+1,�)� ⇢(⌧t, 1,�), Although the relation of two
suffixes ⌧t:T and ⌧t+1:T of a given trajectory ⌧ can be ex-
pressed as ⇢suf (⌧, t,�) = f(⇢suf (⌧, t+ 1,�), ⇢(⌧t, 1,�)),
f is a complex recursive mapping that depends on the speci-
fication, i.e., nested min()/max() operations (Donzé et al.,
2013; Dokhanchi et al., 2014; Deshmukh et al., 2017). Thus,
the target suffix for each time-step has to be set in advance
instead of computing the target reward and cost in an autore-
gressive manner. Empirically, we test and validate several
different target suffix configurations in Section 5.3.

Prefix robustness value as achieved past. To deal with the
sparsity issue of the suffix robustness value, we introduce
the prefix robustness value, derived from the states of a
trajectory up to time-step t, supplementary to the suffix.
The intuition is that different segments of the trajectory, i.e.,
⌧1:t and ⌧t:T , can provide complementary information on
this trajectory. While the prefix itself is subject to sparsity,
we argue that the comparison between the prefix and the
suffix offers additional information about how robust the
action is in terms of specification satisfaction. Suppose that
the prefix and suffix of a trajectory in the offline dataset at
time-step t are ⇢pre and ⇢suf . When both ⇢pre and ⇢suf
are positive, it indicates safety in both previous and future
actions. Conversely, negative values for both suggest unsafe
actions throughout the trajectory. A positive ⇢pre and a
negative ⇢suf implies that while past actions have been
safe, a future action at a certain time-step t

0 will be unsafe.
In contrast, a negative ⇢pre and a positive ⇢suf indicate
unsafe past actions but safe future actions. These insights
can extend beyond the context length, aiding the policy in
inferring the safety of both past and future states and actions
even if they fall outside the current context, which cannot
be achieved by cost-to-go (or return-to-go). Therefore, the
combination of the prefix and suffix addresses the sparsity
issue by providing comprehensive information about the
trajectory. The ablation study in Section 5.3 shows that
including both the prefix and suffix token is not only crucial
for our SDT to learn a safe and high-reward policy but also
can improve the performance of the standard DT framework,

which uses only return-to-go.

5. Experiment
We use the following environments and STL specifications
to evaluate SDT and baseline approaches and aim to answer
the following questions:

• Can SDT learn policies that satisfy a given STL speci-
fication from offline datasets?

• Can SDT align with different target suffixes?

• How important are the prefix and suffix inputs in SDT?

• What is the influence of different target suffix configu-
rations on the performance of SDT?

• Is SDT robust to rescaling individual predicates?

Environments. The Bullet-Safety-gym (Gronauer,
2022) is a public benchmark that includes a variety
of robot locomotion tasks commonly used in previous
works (Achiam et al., 2017; Chow et al., 2019). We consider
three specific environments, Run, Circle, and Reach,
where different types of robots, Ball, Car, Drone,
and Ant, are trained. In the Run environment, agents earn
rewards for achieving high speeds between two boundaries
but incur penalties if they cross the boundaries or exceed an
agent-specific velocity threshold. In the Circle environ-
ment, agents are rewarded for moving in a circular pattern
but are constrained within a safe region smaller than the ra-
dius of the target circle. In the Reach environment, besides
performing the same task as in the Circle environment,
agents have an additional task of reaching goals in sequence.
This setup of rewards and costs creates a dual influence
on the agents’ behaviors, where rewards motivate specific
actions and costs act as deterrents for those actions. More
details of the environments can be found in Appendix A.

Temporal behaviors. To evaluate the capability of SDT to
satisfy temporal requirements, we consider the following
STL specifications.

�run = G
⇣
 bndry ^

�
¬ vel) F[1,5] vel

�⌘
(6)

�circle = G
⇣
¬ bndry) F[1,5] bndry

⌘
(7)

�reach = �circle ^ F
⇣
¬ goalBU goalA

⌘
(8)

where bndry : st < dlim is the predicate for staying within
the safety boundary denoted as dlim, vel : st < vlim is the
predicate for maintaining a safe velocity denoted as vlim,
and goal

2 is the specification for reaching a small square
region (since the predicates are linear) near a goal position

2 goal is defined as �st < d � x ^ st < x + d ^ �st <
d � y ^ st < y + d with goal = [x, y] and ⇢(⌧, t, goal) =
min(�st + x� d, st � x� d,�st + y � d, st � y � d).

5

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

sgoal. Note that the state of the agent st contains the position
and velocity information. In the Run environment, the agent
is required to always stay between the boundaries, and if it
exceeds the velocity threshold, it should slow down within
the next 5 steps. In the Circle environment, the agent
must leave the unsafe region within the next 5 steps once
it enters the unsafe region. In the Reach environment, the
agent must leave unsafe regions within a certain number of
steps but also reach two goals in sequence, both located in
the safe region, at least once. Although the specifications
relax the original cost as it allows agents to enter the unsafe
region as long as they can re-enter the safe region, they com-
pletely change the Markovian property of the original cost,
making it challenging to learn safe policies. The correspond-
ing robustness values of the prefix and suffix at time-step t

can be calculated as:

⇢(⌧, t,�run) = min
t02[t1,t2]

✓
min

⇣
dlim � st0 ,

max
�
(vlim � st0), max

t002[t0+1,t0+5]
(vlim � st00)

�⌘◆ (9)

⇢(⌧, t,�circle) = min
t02[t1,t2]

⇣
max

�
(dlim � st0),

max
t002[t0+1,t0+5]

(dlim � st00)
�⌘ (10)

⇢(⌧,t,�reach) = min

✓
⇢(⌧, t,�circle), max

t02[t1,t2]

⇣
max

t002[t0,t2]

min
�
⇢(⌧, t00, goalA), min

t0002[t0,t00]
⇢(⌧, t000,¬ goalB)

�⌘◆ (11)

where I = [t1, t2] is the interval. By setting I to be [1, t] or
[t, T], we can obtain the prefix and suffix, respectively.

Offline dataset. We use the dataset from DSRL (Liu et al.,
2023a), a comprehensive benchmark specialized for offline
safe RL. Note that although this dataset contains the behav-
iors defined in the STL specifications, it is not designed
for tasks with temporal constraints. For Run and Circle
environments, to be consistent with the STL specifications,
we define a new cost function to relabel the original cost c
in the dataset:

c0t =

8
><

>:

1 if cpt = 1 or [cvt�5 , ..., cvt�1] = 1 for Run envs
1 if [cpt�5 , ..., cpt�1] = 1 for Circle envs
0 otherwise

where c
0
t is the relabeled cost at time-step t and cpt and

cvt denote the costs related to the position and velocity of
agents, respectively, in the original dataset. The cumulative
relabeled cost captures the violations against an STL spec-
ification, i.e., C 0

t =
PT

1 c
0
t = 0 , ⇢(⌧1:T , T,�) > 0 for a

trajectory ⌧ = {st, at, rt, c0t}Tt=1. The relabeled cost-reward
plots and suffix-reward plots are presented in Appendix A.
For Reach environment, it is challenging to devise a cost
function to capture the constraint precisely, i.e. relabel the
cost in the offline dataset. Thus, we only train and evaluate
the baselines that do not require costs. Moreover, it high-

lights the benefits of STL and the versatility of our method,
which is applicable in broader scenarios, including both
Markovian and non-Markovian constraints.

Metrics. Our evaluation metrics include (i) normalized
cumulative reward, (ii) cumulative relabeled cost, which are
consistent with the offline RL literature (Fu et al., 2020; Liu
et al., 2023a), and (iii) the satisfaction rate that indicates the
ratio of episodes in which the STL specification is satisfied
within a maximum number of time-steps. We use the actual
cumulative relabeled cost instead of the normalized one
since d = 0. The normalized cumulative reward is:

Rnormalized =
R⇡ � rmin(D)

rmax(D)� rmin(D)

where R⇡ is the evaluated cumulative reward of policy ⇡ and
rmax(D) and rmin(D) are the maximum cumulative reward
and the minimum cumulative reward of the trajectories that
satisfy the cost threshold in dataset D. For convenience, we
will abbreviate “normalized cumulative reward” as “reward”
and “cumulative relabeled cost” as “cost”.

Baselines. We present our results by comparing SDT with
two categories of baselines: (i) constrained optimization
methods and (ii) conditioned RL methods.

For the constrained optimization RL baselines, we consider
two Lagrangian-based methods that use adaptive PID-based
Lagrangian multipliers (Stooke et al., 2020) to penalize con-
straint violations: BCQ-Lagrangian (BCQ-Lag) and BEAR-
Lagrangian (BEAR-Lag), which is built upon BCQ (Fuji-
moto et al., 2018) and BEAR (Kumar et al., 2019a), respec-
tively. We also include CPQ (Xu et al., 2022), designed
to learn safe policy by conservative cost estimations, and
CoptiDICE (Lee et al., 2022), which learns safe policies via
stationary distribution correction.

For the conditioned RL baselines, we consider CDT (Liu
et al., 2023b) and construct two variants of the reward-
conditioned RvS-R (Emmons et al., 2021): RvS-RC with an
additional cost token and RvS-R⇢ with two additional pre-
fix and suffix tokens. We also include a Behavior Cloning
baseline (BC-Safe) that only uses trajectories that satisfy
the specifications to train the policy. Following the safe RL
setting criteria (Ray et al., 2019), we prioritize safety: a pol-
icy that maintains a high satisfaction rate is preferred over
ones that do not. The methods with a higher satisfaction rate
than BC-safe are considered safe since strict zero-constraint
violation is difficult if not impossible in a model-free setting.
We use a small, fixed target suffix above zero at each time-
step for methods trained on robustness values, except for
the ablation study on SDT about target suffix configuration.

5.1. Can SDT learn specification-satisfying policies?

The evaluation results for different trained policies are pre-
sented in Table 2.These results reflect the average perfor-

6

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

Run-Average Circle-Average Reach-Average
Methods

Reward " Cost # Rate " Reward " Cost # Rate " Reward " Rate "
SDT(ours) 0.96±0.01 0.33±2.04 0.97±0.04 0.89±0.08 0.94±3.73 0.86±0.1 0.75 ± 0.13 0.76 ± 0.19

RvS-R⇢ 0.79±0.28 8.89±20.28 0.79±0.32 0.81±0.11 1.09±3.19 0.8±0.14 0.55 ± 0.25 0.65 ± 0.22

CDT 0.96±0.03 0.32±1.62 0.92±0.12 0.92±0.03 2.23±4.2 0.49±0.09 - -
RvS-RC 1.27±0.63 20.34±26.69 0.53±0.41 0.75±0.26 9.65±29.64 0.62±0.1 - -
BC-safe 0.78±0.29 3.18±8.5 0.78±0.25 0.62±0.28 5.75±10.51 0.49±0.13 0.58 ± 0.3 0.34 ± 0.15

BCQ-Lag 0.9±0.3 30.08±39.49 0.3±0.36 0.99±0.34 33.32±21.25 0.08±0.13 - -
BEAR-Lag 0.85±1.16 60.3±46.47 0.33±0.47 1.07±0.18 33.2±18.3 0.0±0.0 - -

CPQ 1.16±1.33 50.29±48.38 0.33±0.47 0.59±0.35 5.73±18.94 0.72±0.36 - -
COptiDICE 0.9±0.13 21.83±27.68 0.41±0.46 0.66±0.13 12.41±17.57 0.17±0.13 - -

Table 2: Evaluation results of reward, cost, and satisfaction rate. ": the higher the reward, the better. #: the lower the cost
(closer to 0), the better. Agents with a higher satisfaction rate than BC-safe are considered safe. Gray: unsafe agents. Bold:
the best (highest reward, highest specification satisfaction rate, and lowest cost) in the respective metric. The satisfaction
rates of the trajectories in the offline dataset are 20.0%, 8.52%, and 3.47% for Run, Circle, and Reach environments.
For Reach environment, it is challenging to devise a cost function to capture the constraint precisely, i.e. relabel the cost in
the offline dataset. Thus, we only train and evaluate the baselines that use robustness values for this environment.

mance, with each plot aggregating data from 3 random seeds
and 20 trajectories per seed. Complete results for each en-
vironment are included in AppendixB due to page limit.
Our method demonstrates the best performance compared
to the baselines in terms of reaching the highest rate of
specification satisfaction and lowest costs. Also, it pro-
duces comparable or higher rewards compared to the safe
baselines, indicating that SDT performs effective learning.

The results of CDT and RvS-RC show that merely relabel-
ing the cost to reflect STL specifications cannot obtain safe
policies. Such cost function introduces a level of stochastic-
ity (Paster et al., 2022), where taking the same action in the
same states can lead to inconsistent cost due to the temporal
constraint. Note that in the Run environments, RvS-RC
even outperforms the best safe trajectory’s reward in the
dataset; however, the satisfaction rate is low and the cost is
high. This pattern, observed in most of the baselines, where
a high reward often correlates with a high cost, underscores
the inherent trade-off between rewards and costs (Liu et al.,
2022; Li et al., 2023). RvS-R⇢ shows improved results over
RvS-RC, as it benefits from training with the prefix and
suffix. Our method still outperforms it due to the sequential
structure of transformers, which is adept at capturing the
temporal properties in robustness values, states, and actions.

The Lagrangian-based baselines, BCQ-Lag and BEAR-Lag,
as well as CPQ and COptiDICE methods that are tailored
for offline safe RL, struggle to ensure safety in most environ-
ments. This indicates that directly applying widely used safe
RL techniques to satisfy temporal specifications does not
work well. A key factor for the poor performance is the non-
Markovian nature of the relabeled cost since these methods

are designed to estimate value functions based on Marko-
vian costs. As the reward is unchanged in the dataset, the
baselines manage to secure high rewards. We can also notice
that the reward of CPQ in the Run environments and the
reward of BEAR-Lag in the Circle environments exceed
the maximum reward of the safe trajectories in the dataset,
which shows the stitching property of the Q-learning-based
methods (Yamagata et al., 2023; Wang et al., 2023). The
poor safety performance of the baselines highlights the chal-
lenges posed by the temporal constraints. In comparison,
our proposed SDT method successfully learns both safe and
rewarding policies in these challenging environments.

5.2. Can SDT adapt to different target suffixes?

One of the critical attributes of transformers is the ability
to align with the variables on which they are conditioned.
To illustrate this, we vary the target reward and target suffix
for evaluation rollouts and obtain the results in Figure 2.
It is evident that the baselines introduced previously, ex-
cept RvS, lack this capability because they depend on a
constant and pre-defined threshold to solve a constrained
optimization problem and need re-training for adaptation
to new constraints. Therefore, our comparison is focused
on SDT and RvS-R⇢. The results show a strong correlation
between the actual and target suffixes for SDT. We can also
observe that the actual suffix of SDT is above the dashed
threshold line when the target suffix is less than zero in most
of the environments, which means that SDT can achieve
safer actions even under conditions that demand otherwise.
While there is a saturation point in the curves at specific
target suffixes, SDT consistently upholds safety even when
extrapolating over target suffixes and rewards that represent

7

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

Figure 2: Results of alignment with different target suffixes. The top-row plots show the evaluated reward and the bottom-row
plots show the evaluated suffix. The solid line and the light shade area represent the mean and mean ± standard deviation.

conflicting objectives. For example, setting both a high
target reward and a high target suffix is unreachable since
the former encourages agents to stay close to the safety
boundary while the latter advises against it. In contrast,
RvS-R⇢ struggles to meet the target reward when the target
suffix is either large or small, further showcasing the strong
alignment capabilities of our method.

5.3. Ablation studies

How important are the prefix and suffix inputs in SDT?
To assess the influence of the prefix and suffix, we conduct
experiments by removing each of them from SDT. The left
plot in Figure 4 shows the averaged performance of SDT,
with the cost normalized against the highest cost among the
corresponding experiments. The results indicate that both
the prefix and suffix are essential for good performance, as
their removal leads to noticeable drops in safety and perfor-
mance. In addition, the suffix has a more pronounced effect
on the safety performance than the prefix, evidenced by a
significant reduction in the satisfaction rate when the suffix
is excluded since the prefix lacks hindsight information.

Following the insights in Section 4.3 that the relation be-
tween prefix and suffix can provide additional information,
we re-assess the efficacy of DT with an additional reward
prefix token Rpre =

Pt
i=1 ri while keeping all the other

aspects unchanged. More details about the experiments of
DT can be found in Appendix C. From Figure 3, we can see
that DT with reward prefix achieves higher rewards than the
standard DT. Although the reward prefix is implicitly em-
bedded in the return-to-go, i.e., given the return-to-go of a
trajectory at each time-step, we can fully recover the reward
prefix, explicitly supplying the past information to trans-
formers shows advantageous for policy learning. On the
other hand, we cannot extract prefix from suffix in general
for STL robustness values, thus necessitating explicit in-

puts in SDT. Recent studies have explored how transformers
process explicit inputs versus implicit inputs, with varying
conclusions as it largely depends on the specific nature of
the data and the task (Zhao et al., 2019; Chu et al., 2021;
Gui et al., 2021). In our opinion, given enough capacity
and data, transformers can learn effectively regardless of the
input type, but in practice, transformers tend to learn better
with explicit inputs.

Figure 3: Evaluation results of normalized rewards in D4RL
Gym environments. Each value is averaged over 3 seeds. m:
medium, mr: medium-replay, me: medium-expert.

How do different target suffix configurations influence
the performance of SDT? As mentioned in Section 4.2, the
suffix offers versatility in evaluations, as we can specify the
target suffix for each time-step of the trajectory instead of
the auto-regressive manner of return-to-go (or cost-to-go).
We test SDT using the same target reward but different tar-
get suffix configurations: i) SDT(linear), where the target
suffix linearly increases each step until it matches the fixed

8

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

Figure 4: Ablation study. Left: the effect of the prefix and the suffix. Right: influence of different target suffix configurations.

target; ii) SDT(mean), employing the average suffix from
safe trajectories in the dataset; iii) SDT(max), using the max-
imum suffix from these trajectories. SDT(linear) is selected
as the suffix is monotonically increasing for trajectories in
the dataset due to the G operation in the STL specification
in Eq. (6) and (7). SDT(mean) aims to mimic the average
performance of the safe trajectories, whereas SDT(max) is
expected to behave conservatively by emulating the trajec-
tory with the highest suffix. Details of the prefix and the
suffix for dataset trajectories are in Appendix A. As shown
in Figure 4, we can observe that SDT(ours) achieves the
best safety performance with a fixed target suffix. Other
target suffix configurations lead to reduced satisfaction rates
and increased costs because: i) a low target suffix makes the
agent more aggressive, i.e., SDT(linear), and ii) conflicting
objectives of achieving a high target suffix and high target
reward at the same time, i.e., SDT(mean) and SDT(max).
However, it is worth noting that these suffix configurations
still outperform the baselines in terms of satisfaction rate.

Methods Reward Rate
SDT(↵b = 1, ↵v = 1) 0.96 ± 0.01 0.97 ± 0.04

SDT(↵b = 1, ↵v = 10) 0.95 ± 0.02 0.97 ± 0.06
SDT(↵b = 1, ↵v = 100) 0.95 ± 0.03 0.99 ± 0.02
SDT(↵b = 10, ↵v = 1) 0.95 ± 0.02 0.96 ± 0.07

SDT(↵b = 100, ↵v = 1) 0.93 ± 0.03 0.98 ± 0.03

Table 3: Evaluation results of reward and satisfaction rate
with varying scaling factors.

Is SDT robust to rescaling individual predicates?
Though scaling individual predicates does not change the
sign of a specification, in practice, it is possible that certain
predicates are dominated if they are scaled down, leading
to a violation of the specification. To evaluate the rescaling
effect, we incorporate two scaling factors into Eq. (6):

�run = G
⇣
↵b bndry ^

�
¬↵v vel) F[1,5]↵v vel

�⌘
(12)

We explore various pairings of ↵b and ↵v , and the results are

shown in Table 3. Our findings demonstrate that modifying
the scale of the predicates has a negligible impact on both
the task performance and the rate of property satisfaction,
which indicates that our method is robust to changes in
predicate scaling.

6. Conclusion
We study the offline safe RL problem through the lens of
supervised learning and point out the unique challenges as-
sociated with enforcing temporal constraints. We propose a
novel framework that utilizes the robustness value of STL
specifications to guide the trajectory modeling process in
DT. Our empirical results demonstrate that SDT is capable
of learning a safe and high-reward policy in challenging
offline safe RL tasks that involve temporal and logical re-
quirements, and can adapt to different target suffixes without
re-training and performs effectively across diverse target suf-
fix configurations. Future works will explore the use of STL
to specify both safety and performance objectives in DT.

Acknowledgement
The authors thank the anonymous reviewers for their invalu-
able feedback and constructive suggestions. This material is
based upon work supported by the National Science Foun-
dation under Grant No. CCF-2340776.

Impact Statement
This paper presents a novel framework within the realm of
reinforcement learning, aiming to advance the field through
innovative approaches and applications. First of all, the
methods, experiments, and results outlined in this paper do
not pose any ethical concerns. Secondly, it’s crucial for
researchers to proceed with care, especially when setting
specifications and conducting tests in real-world settings,
since misspecified specifications may result in serious and
unforeseen consequences. Lastly, we hope our findings
can provide fresh insights for extending the application of
reinforcement learning to broader domains.

9

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In International conference on ma-
chine learning, pp. 22–31. PMLR, 2017.

Altman, E. Constrained Markov decision processes. Rout-
ledge, 2021.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schul-
man, J., and Mané, D. Concrete problems in ai safety.
arXiv preprint arXiv:1606.06565, 2016.

Balakrishnan, A. and Deshmukh, J. V. Structured reward
shaping using signal temporal logic specifications. In
2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3481–3486. IEEE, 2019.

Bozkurt, A. K., Wang, Y., Zavlanos, M. M., and Pajic, M.
Control synthesis from linear temporal logic specifica-
tions using model-free reinforcement learning. In 2020
IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 10349–10355. IEEE, 2020.

Brandfonbrener, D., Bietti, A., Buckman, J., Laroche, R.,
and Bruna, J. When does return-conditioned supervised
learning work for offline reinforcement learning? Ad-
vances in Neural Information Processing Systems, 35:
1542–1553, 2022.

Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou,
S., Panerati, J., and Schoellig, A. P. Safe learning in
robotics: From learning-based control to safe reinforce-
ment learning. Annual Review of Control, Robotics, and
Autonomous Systems, 5:411–444, 2022.

Camacho, A., Icarte, R. T., Klassen, T. Q., Valenzano, R. A.,
and McIlraith, S. A. Ltl and beyond: Formal languages
for reward function specification in reinforcement learn-
ing. In IJCAI, volume 19, pp. 6065–6073, 2019.

Chen, F., Zhang, J., and Wen, Z. A near-optimal primal-
dual method for off-policy learning in cmdp. Advances
in Neural Information Processing Systems, 35:10521–
10532, 2022.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chow, Y., Nachum, O., Faust, A., Duenez-Guzman, E.,
and Ghavamzadeh, M. Lyapunov-based safe policy
optimization for continuous control. arXiv preprint
arXiv:1901.10031, 2019.

Chu, X., Tian, Z., Zhang, B., Wang, X., Wei, X., Xia, H.,
and Shen, C. Conditional positional encodings for vision
transformers. arXiv preprint arXiv:2102.10882, 2021.

Cohen, M. H. and Belta, C. Model-based reinforcement
learning for approximate optimal control with temporal
logic specifications. In Proceedings of the 24th Interna-
tional Conference on Hybrid Systems: Computation and
Control, pp. 1–11, 2021.

Coogan, S., Arcak, M., and Belta, C. Formal methods
for control of traffic flow: Automated control synthesis
from finite-state transition models. IEEE Control Systems
Magazine, 37(2):109–128, 2017.

Dawson, C. and Fan, C. Robust counterexample-guided
optimization for planning from differentiable temporal
logic. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 7205–7212.
IEEE, 2022.

Deshmukh, J. V., Donzé, A., Ghosh, S., Jin, X., Juniwal,
G., and Seshia, S. A. Robust online monitoring of signal
temporal logic. Formal Methods in System Design, 51:
5–30, 2017.

Dokhanchi, A., Hoxha, B., and Fainekos, G. On-line moni-
toring for temporal logic robustness. In International Con-
ference on Runtime Verification, pp. 231–246. Springer,
2014.

Donzé, A. On signal temporal logic. In Runtime Verifi-
cation: 4th International Conference, RV 2013, Rennes,
France, September 24-27, 2013. Proceedings 4, pp. 382–
383. Springer, 2013.

Donzé, A. and Maler, O. Robust satisfaction of temporal
logic over real-valued signals. In International Confer-
ence on Formal Modeling and Analysis of Timed Systems,
pp. 92–106. Springer, 2010.

Donzé, A., Ferrere, T., and Maler, O. Efficient robust mon-
itoring for stl. In Computer Aided Verification: 25th
International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings 25, pp. 264–279.
Springer, 2013.

Eddeland, J., Miremadi, S., Fabian, M., and Åkesson, K.
Objective functions for falsification of signal temporal
logic properties in cyber-physical systems. In 2017 13th
IEEE Conference on Automation Science and Engineer-
ing (CASE), pp. 1326–1331. IEEE, 2017.

Emmons, S., Eysenbach, B., Kostrikov, I., and Levine, S.
Rvs: What is essential for offline rl via supervised learn-
ing? arXiv preprint arXiv:2112.10751, 2021.

10

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

Fainekos, G. E. and Pappas, G. J. Robustness of temporal
logic specifications for continuous-time signals. Theoret-
ical Computer Science, 410(42):4262–4291, 2009.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. D4rl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Fujimoto, S., Meger, D., and Precup, D. Off-
policy deep reinforcement learning without explo-
ration. corr abs/1812.02900 (2018). arXiv preprint
arXiv:1812.02900, 2018.

Furuta, H., Matsuo, Y., and Gu, S. S. Generalized decision
transformer for offline hindsight information matching.
In International Conference on Learning Representations,
2022.

Gronauer, S. Bullet-safety-gym: Aframework for con-
strained reinforcement learning. 2022.

Gu, S., Chen, G., Zhang, L., Hou, J., Hu, Y., and Knoll, A.
Constrained reinforcement learning for vehicle motion
planning with topological reachability analysis. Robotics,
11(4):81, 2022a.

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J.,
Yang, Y., and Knoll, A. A review of safe reinforce-
ment learning: Methods, theory and applications. arXiv
preprint arXiv:2205.10330, 2022b.

Gui, L., Wang, B., Huang, Q., Hauptmann, A., Bisk, Y., and
Gao, J. Kat: A knowledge augmented transformer for
vision-and-language. arXiv preprint arXiv:2112.08614,
2021.

Guo, S., Zou, L., Chen, H., Qu, B., Chi, H., Philip, S. Y.,
and Chang, Y. Sample efficient offline-to-online rein-
forcement learning. IEEE Transactions on Knowledge
and Data Engineering, 2023.

Hong, K., Li, Y., and Tewari, A. A primal-dual-critic al-
gorithm for offline constrained reinforcement learning.
arXiv preprint arXiv:2306.07818, 2023.

Hu, S., Shen, L., Zhang, Y., and Tao, D. Graph decision
transformer. arXiv preprint arXiv:2303.03747, 2023.

Ji, J., Zhou, J., Zhang, B., Dai, J., Pan, X., Sun, R., Huang,
W., Geng, Y., Liu, M., and Yang, Y. Omnisafe: An
infrastructure for accelerating safe reinforcement learning
research. arXiv preprint arXiv:2305.09304, 2023.

Kapoor, P., Balakrishnan, A., and Deshmukh, J. V. Model-
based reinforcement learning from signal temporal logic
specifications. arXiv preprint arXiv:2011.04950, 2020.

Kondrup, F., Jiralerspong, T., Lau, E., de Lara, N., Shkrob,
J., Tran, M. D., Precup, D., and Basu, S. Towards safe
mechanical ventilation treatment using deep offline re-
inforcement learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pp. 15696–
15702, 2023.

Kostrikov, I., Fergus, R., Tompson, J., and Nachum, O. Of-
fline reinforcement learning with fisher divergence critic
regularization. In International Conference on Machine
Learning, pp. 5774–5783. PMLR, 2021.

Kumar, A., Fu, J., Soh, M., Tucker, G., and Levine, S.
Stabilizing off-policy q-learning via bootstrapping error
reduction. Advances in Neural Information Processing
Systems, 32, 2019a.

Kumar, A., Peng, X. B., and Levine, S. Reward-conditioned
policies. arXiv preprint arXiv:1912.13465, 2019b.

Kurtz, V. and Lin, H. A more scalable mixed-integer en-
coding for metric temporal logic. IEEE Control Systems
Letters, 6:1718–1723, 2021.

Le, H., Voloshin, C., and Yue, Y. Batch policy learning un-
der constraints. In International Conference on Machine
Learning, pp. 3703–3712. PMLR, 2019.

Lee, J., Jeon, W., Lee, B., Pineau, J., and Kim, K.-E. Op-
tidice: Offline policy optimization via stationary distribu-
tion correction estimation. In International Conference
on Machine Learning, pp. 6120–6130. PMLR, 2021.

Lee, J., Paduraru, C., Mankowitz, D. J., Heess, N., Precup,
D., Kim, K.-E., and Guez, A. Coptidice: Offline con-
strained reinforcement learning via stationary distribution
correction estimation. arXiv preprint arXiv:2204.08957,
2022.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, J., Liu, X., Zhu, B., Jiao, J., Tomizuka, M., Tang, C.,
and Zhan, W. Guided online distillation: Promoting safe
reinforcement learning by offline demonstration. arXiv
preprint arXiv:2309.09408, 2023.

Li, X., Vasile, C.-I., and Belta, C. Reinforcement learning
with temporal logic rewards. In 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pp. 3834–3839. IEEE, 2017.

Lin, H., Ding, W., Liu, Z., Niu, Y., Zhu, J., Niu, Y., and Zhao,
D. Safety-aware causal representation for trustworthy
reinforcement learning in autonomous driving. arXiv
preprint arXiv:2311.10747, 2023.

11

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

Liu, Z., Guo, Z., Cen, Z., Zhang, H., Tan, J., Li, B., and
Zhao, D. On the robustness of safe reinforcement learn-
ing under observational perturbations. arXiv preprint
arXiv:2205.14691, 2022.

Liu, Z., Guo, Z., Lin, H., Yao, Y., Zhu, J., Cen, Z., Hu, H.,
Yu, W., Zhang, T., Tan, J., et al. Datasets and benchmarks
for offline safe reinforcement learning. arXiv preprint
arXiv:2306.09303, 2023a.

Liu, Z., Guo, Z., Yao, Y., Cen, Z., Yu, W., Zhang, T., and
Zhao, D. Constrained decision transformer for offline safe
reinforcement learning. arXiv preprint arXiv:2302.07351,
2023b.

Madsen, C., Vaidyanathan, P., Sadraddini, S., Vasile, C.-I.,
DeLateur, N. A., Weiss, R., Densmore, D., and Belta,
C. Metrics for signal temporal logic formulae. In 2018
IEEE Conference on Decision and Control (CDC), pp.
1542–1547. IEEE, 2018.

Maler, O. and Nickovic, D. Monitoring temporal proper-
ties of continuous signals. In International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant
Systems, pp. 152–166. Springer, 2004.

Paster, K., McIlraith, S., and Ba, J. You can’t count on luck:
Why decision transformers and rvs fail in stochastic en-
vironments. Advances in Neural Information Processing
Systems, 35:38966–38979, 2022.

Peng, X. B., Kumar, A., Zhang, G., and Levine, S.
Advantage-weighted regression: Simple and scalable
off-policy reinforcement learning. arXiv preprint
arXiv:1910.00177, 2019.

Polosky, N., Da Silva, B. C., Fiterau, M., and Jagannath,
J. Constrained offline policy optimization. In Inter-
national Conference on Machine Learning, pp. 17801–
17810. PMLR, 2022.

Prudencio, R. F., Maximo, M. R., and Colombini, E. L.
A survey on offline reinforcement learning: Taxonomy,
review, and open problems. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Ray, A., Achiam, J., and Amodei, D. Benchmarking safe ex-
ploration in deep reinforcement learning. arXiv preprint
arXiv:1910.01708, 7(1):2, 2019.

Sahin, Y. E., Quirynen, R., and Di Cairano, S. Autonomous
vehicle decision-making and monitoring based on signal
temporal logic and mixed-integer programming. In 2020
American Control Conference (ACC), pp. 454–459. IEEE,
2020.

Schmidhuber, J. Reinforcement learning upside down:
Don’t predict rewards–just map them to actions. arXiv
preprint arXiv:1912.02875, 2019.

Stooke, A., Achiam, J., and Abbeel, P. Responsive safety
in reinforcement learning by pid lagrangian methods. In
International Conference on Machine Learning, pp. 9133–
9143. PMLR, 2020.

Tabuada, P. and Neider, D. Robust linear temporal logic.
arXiv preprint arXiv:1510.08970, 2015.

Toro Icarte, R., Klassen, T. Q., Valenzano, R., and McIlraith,
S. A. Teaching multiple tasks to an rl agent using ltl.
In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 452–
461, 2018.

Vasile, C.-I., Tumova, J., Karaman, S., Belta, C., and Rus, D.
Minimum-violation scltl motion planning for mobility-
on-demand. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1481–1488. IEEE,
2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, Y., Yang, C., Wen, Y., Liu, Y., and Qiao, Y. Critic-
guided decision transformer for offline reinforcement
learning. arXiv preprint arXiv:2312.13716, 2023.

Xu, H., Zhan, X., and Zhu, X. Constraints penalized q-
learning for safe offline reinforcement learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 8753–8760, 2022.

Xu, T., Liang, Y., and Lan, G. Crpo: A new approach for
safe reinforcement learning with convergence guarantee.
In International Conference on Machine Learning, pp.
11480–11491. PMLR, 2021.

Yamagata, T., Khalil, A., and Santos-Rodriguez, R. Q-
learning decision transformer: Leveraging dynamic pro-
gramming for conditional sequence modelling in offline
rl. In International Conference on Machine Learning, pp.
38989–39007. PMLR, 2023.

Zhang, B., Qiu, X., and Tan, X. Balancing therapeutic effect
and safety in ventilator parameter recommendation: An
offline reinforcement learning approach. Engineering
Applications of Artificial Intelligence, 131:107784, 2024.

Zhang, Q., Zhang, L., Xu, H., Shen, L., Wang, B., Chang, Y.,
Wang, X., Yuan, B., and Tao, D. Saformer: A conditional
sequence modeling approach to offline safe reinforcement
learning. arXiv preprint arXiv:2301.12203, 2023.

12

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

Zhang, X., Peng, Y., Luo, B., Pan, W., Xu, X., and Xie,
H. Model-based safe reinforcement learning with time-
varying state and control constraints: An application to
intelligent vehicles. arXiv preprint arXiv:2112.11217,
2021.

Zhang, Z. and Haesaert, S. Modularized control synthesis
for complex signal temporal logic specifications. arXiv
preprint arXiv:2303.17086, 2023.

Zhao, G., Lin, J., Zhang, Z., Ren, X., Su, Q., and Sun, X. Ex-
plicit sparse transformer: Concentrated attention through
explicit selection. arXiv preprint arXiv:1912.11637,
2019.

Zheng, Q., Zhang, A., and Grover, A. Online decision trans-
former. In international conference on machine learning,
pp. 27042–27059. PMLR, 2022.

Zhou, W. and Li, W. Programmatic reward design by
example. Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 36(8):9233–9241, Jun. 2022. doi:
10.1609/aaai.v36i8.20910.

13

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

A. Environment Setting
Reward and cost functions defined in the environments. We use the Bullet-safety-gym (Gronauer, 2022)
environments for this set of experiments. In the Run environments, agents receive rewards for high-speed movement
between two safety boundaries. However, they incur penalties when they either cross these boundaries or surpass a velocity
threshold that is specific to different types of robots. The reward and cost function are defined as:

r(st) =
�ytvx + xtvy

1 + ||
p

x
2
t + y

2
t � r|

c(st) = 1(|x| > xlim)

where st = [xt, yt, vx, vy], r is the radius of the circle, and xlim specifies the range of the safety region. In the Circle
environments, agents gain rewards for circular motion in a clockwise direction but are required to remain inside a designated
safe area, which is smaller than the circumference of the intended circle. The reward and cost functions are defined as:

r(st) = ||xt�1 � g||2 � ||xt � g||2
c(st) = 1(|y| > ylim or ||vt||2 > vlim)

where ylim is the safety boundary and vlim is the velocity limit. To establish the criteria that zero cost means no violations of
the specification, we relabel the cost. For the Circle environment, the relabeled cost of the current state is 1 if the costs
of its previous 5 steps are all 1. For the Run environment, the relabeled cost of the current state is 1 if the costs related to
speeding of its previous 5 steps are all 1 or the cost related to safe boundary crossing is 1.

Offline dataset visualization. The dataset suffix-reward and relabeled cost-reward plots for the training tasks Ant-Run,
Ball-Run, Drone-Run, Ball-Circle, Car-Circle, and Drone-Circle, are shown in Figure. 5. Analyzing the
figures provided, we can generally discern an increasing trend for the reward in relation to the cost. In other words, as cost
increases, so too might the reward return, underscoring the inherent trade-off between reward and cost. This phenomenon
aligns with findings discussed in previous works (Liu et al., 2023b; 2022), which is also one of the reasons that SDT
is evaluated in Bullet-Safety-Gym environments. In contrast, the same clear increasing trend is not observable in
SafetyGymnasium environments (Ray et al., 2019; Liu et al., 2023a; Ji et al., 2023), such as Goal, Button, and Push.
Moreover, highly stochastic environments pose unique challenges to the RCSL algorithms (Paster et al., 2022) and are
beyond the scope of this paper.

Figure 5: Illustration of the offline dataset. The first-row plots show the relabeled cost versus reward and the second-row
plots show the suffix (⇢suf (⌧1:T , 1,�)) versus reward. Each column represents an environment. Each point denotes a
collected trajectory (not necessarily to be unique) with corresponding episodic relabeled cost (or suffix) and reward value.

SDT and baselines implementation. Our implementation of SDT is built on the public codebase provided by the OSRL
library3, which offers a collection of elegant and extensible implementations of state-of-the-art offline safe RL algorithms.
We use the STLCG toolbox4 to compute the robustness value of the specification and add the corresponding prefix and suffix

3https://github.com/liuzuxin/OSRL
4https://github.com/StanfordASL/stlcg

14

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

tokens as input to the transformers. In our experiments, we train SDT and baselines 200000 steps to ensure convergence
and keep the rest of the hyperparameters used in the library unchanged. The constrained optimization RL baselines
are trained and evaluated using a cost threshold of d = 0. During evaluation, the target cost is 0 for CDT and RvS-
RC. The target suffix is {0.02, 0.01, 0.02, 0.09, 0.06, 0.02, 0.06, 0.06, 0.04} for SDT and RvS-R⇢ and the target reward
is {720, 440, 410, 610, 400, 650, 300, 300, 600} for SDT and the conditioned RL baselines in Ant-Run, Ball-Run,
Drone-Run, Ball-Circle, Car-Circle, Drone-Circle, Ball-Reach, Car-Reach, and Drone-Reach,
respectively.

B. Complete Results of SDT
The full evaluation results for different trained policies are presented in Table 4. The columns of average performance are
the same as Table 2. All values are averaged among 3 random seeds and 20 trajectories for each seed. SDT, CDT, RvS-R⇢,
and RvS-RC are all evaluated using the same target reward. Both SDT and RvS-R⇢ undergo evaluation with the same target
suffix, while CDT, RvS-RC, and other baseline methods are examined using the same target cost of zero. BC-Safe is fed
with solely the zero-violation trajectories, but it fails to learn zero-violation policies and exhibits conservative performance
and low reward. Our method shows high satisfaction rates, suggesting it consistently adheres to the safety specifications
throughout various environments. RvS-R⇢ also performs well but cannot realize consistent performance in all environments,
e.g. in Ball-Run environment, it only has marginal improvement over BC-safe. One reason is that RvS-R⇢ does not use
sequential modeling as transformers and thus falls short of learning temporal policies. The Q-learning-based algorithms,
including BCQ-Lag, BEAR-Lag, and CPQ, as well as COptiDICE, vacillate between excessive conservatism and riskiness.
For example, CPQ obtains perfect satisfaction in Car-Cricle environment but achieves zero satisfaction in Ball-Run
and Drone-Run environments; BEAR-Lag shows high rewards but also high costs in Circle environemnts, suggesting
it takes more risks that could lead to unsafe outcomes. However, they have the stitching ability and achieve higher rewards
than the conditioned RL baselines whose reward is less than the maximum reward of safe trajectories.

Ant-Run Ball-Run Drone-Run Average
Methods

Reward " Cost # Rate " Reward " Cost # Rate " Reward " Cost # Rate " Reward " Cost # Rate "
SDT(ours) 0.95±0.01 0.0±0.0 1.0±0.0 0.97±0.01 0.0±0.0 1.0±0.0 0.97±0.01 0.98±3.43 0.92±0.02 0.96±0.01 0.33±2.04 0.97±0.04

RvS-R⇢ 0.88±0.1 0.0±0.0 1.0±0.0 0.56±0.37 22.62±26.14 0.5±0.41 0.95±0.06 4.07±16.12 0.87±0.02 0.79±0.28 8.89±20.28 0.79±0.32

CDT 0.95±0.02 0.07±0.4 0.97±0.05 0.98±0.01 0.63±2.44 0.85±0.18 0.96±0.05 0.25±1.27 0.95±0.04 0.96±0.03 0.32±1.62 0.92±0.12

RvS-RC 0.87±0.17 0.43±0.99 0.8±0.15 2.02±0.56 49.9±19.22 0.03±0.05 0.91±0.1 10.68±20.09 0.75±0.32 1.27±0.63 20.34±26.69 0.53±0.41

BC-safe 0.92±0.06 0.25±0.77 0.88±0.05 0.52±0.36 9.18±12.72 0.48±0.24 0.88±0.12 0.12±0.78 0.97±0.02 0.78±0.29 3.18±8.5 0.78±0.25

BCQ-Lag 0.8±0.18 2.78±6.03 0.67±0.31 0.83±0.42 10.68±16.04 0.22±0.27 1.06±0.16 76.77±32.92 0.02±0.02 0.9±0.3 30.08±39.49 0.3±0.36

BEAR-Lag 0.01±0.03 0.0±0.0 1.0±0.0 1.91±1.32 87.67±0.47 0.0±0.0 0.63±0.63 93.23±31.76 0.0±0.0 0.85±1.16 60.3±46.47 0.33±0.47

CPQ 0.03±0.05 0.0±0.0 1.0±0.0 2.65±1.26 64.33±29.94 0.0±0.0 0.81±0.38 86.53±45.67 0.0±0.0 1.16±1.33 50.29±48.38 0.33±0.47

COptiDICE 0.78±0.07 0.88±3.7 0.9±0.04 0.87±0.04 5.0±4.55 0.33±0.47 1.05±0.08 59.62±10.71 0.0±0.0 0.9±0.13 21.83±27.68 0.41±0.46

Ball-Circle Car-Circle Drone-Circle Average
Methods

Reward " Cost # Rate " Reward " Cost # Rate " Reward " Cost # Rate " Reward " Cost # Rate "
SDT(ours) 0.86±0.03 0.48±1.02 0.77±0.06 0.86±0.02 2.27±6.15 0.85±0.07 0.94±0.12 0.07±0.4 0.97±0.02 0.89±0.08 0.94±3.73 0.86±0.1

RvS-R⇢ 0.75±0.06 0.87±1.59 0.68±0.15 0.76±0.09 1.93±4.85 0.82±0.09 0.93±0.03 0.47±1.8 0.9±0.07 0.81±0.11 1.09±3.19 0.8±0.14

CDT 0.89±0.02 1.08±1.42 0.5±0.07 0.91±0.01 4.53±6.37 0.42±0.08 0.95±0.02 1.07±1.52 0.55±0.04 0.92±0.03 2.23±4.2 0.49±0.09

RvS-RC 0.72±0.21 6.93±24.05 0.6±0.15 0.71±0.28 13.42±28.14 0.57±0.02 0.83±0.27 8.6±35.25 0.68±0.05 0.75±0.26 9.65±29.64 0.62±0.1

BC-safe 0.59±0.23 2.22±3.55 0.5±0.15 0.41±0.28 12.45±15.38 0.48±0.14 0.86±0.13 2.58±3.86 0.5±0.11 0.62±0.28 5.75±10.51 0.49±0.13

BCQ-Lag 0.95±0.14 19.78±7.58 0.0±0.0 0.66±0.27 21.8±17.81 0.25±0.11 1.37±0.04 58.38±5.96 0.0±0.0 0.99±0.34 33.32±21.25 0.08±0.13

BEAR-Lag 1.01±0.12 15.35±8.45 0.0±0.0 0.94±0.15 38.8±16.71 0.0±0.0 1.27±0.08 45.45±12.4 0.0±0.0 1.07±0.18 33.2±18.3 0.0±0.0

CPQ 0.79±0.05 2.28±4.01 0.67±0.47 0.86±0.03 0.0±0.0 1.0±0.0 0.12±0.17 14.92±30.51 0.5±0.22 0.59±0.35 5.73±18.94 0.72±0.36

COptiDICE 0.82±0.09 8.28±2.93 0.02±0.02 0.57±0.07 22.95±26.69 0.27±0.12 0.59±0.05 5.98±5.93 0.22±0.06 0.66±0.13 12.41±17.57 0.17±0.13

Methods
Ball-Reach Car-Reach Drone-Reach Average

Reward " Cost # Rate " Reward " Cost # Rate " Reward " Cost # Rate " Reward " Cost # Rate "

SDT(ours) 0.61 ± 0.03 0.01 ± 0.04 0.68 ± 0.02 0.72 ± 0.02 -0.01 ± 0.04 0.62 ± 0.18 0.91 ± 0.02 0.01 ± 0.01 0.98 ± 0.03 0.75 ± 0.13 0.0 ± 0.03 0.76 ± 0.19

RvS-R⇢ 0.55 ± 0.07 0.01 ± 0.03 0.7 ± 0.05 0.3 ± 0.18 -0.01 ± 0.12 0.75 ± 0.2 0.81 ± 0.14 -0.02 ± 0.12 0.5 ± 0.25 0.55 ± 0.25 -0.01 ± 0.1 0.65 ± 0.22

BC-safe 0.63 ± 0.26 -0.06 ± 0.09 0.22 ± 0.02 0.41 ± 0.29 -0.05 ± 0.19 0.45 ± 0.2 0.69 ± 0.29 -0.01 ± 0.04 0.35 ± 0.05 0.58 ± 0.3 -0.04 ± 0.12 0.34 ± 0.15

Table 4: Complete evaluation results of the normalized reward, cost, and satisfaction rate. ": the higher the reward, the
better. #: the lower the cost (closer to 0), the better. Agents with a higher satisfaction rate than BC-safe are considered safe.
Gray: unsafe agents. Bold: the best in the respective metric among safe agents.

Target suffix configurations. The different target suffix configurations used in section 5.3 are shown in Figure 6. Due to

15

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

the G in the specification defined in Eq. (6) and (7), the suffix is monotonically increasing. Recall that positive robustness
values indicate that the specification is satisfied and a higher value indicates stronger satisfaction. Therefore, we set positive
robustness values as our target suffix for evaluation. As shown in Figure 5, the suffix associated with safe trajectories yielding
high rewards is nearly 0, which aligns with the tempting concept in (Liu et al., 2022). This suggests that aiming for both a
high reward and a high target suffix may lead to reduced performance, as achieving such a combination is impractical. In the
environments, a high reward means navigation along the safety boundary, while a high suffix denotes maintaining distance
from it. This disparity explains why satisfaction rates of SDT(max) and SDT(mean) decrease compared to SDT(ours). In
the case of SDT(linear), a target suffix smaller than that in SDT(ours) is overwhelmed by a high target reward, thus resulting
in violations of satisfaction. Empirically, a fixed target suffix works best among these tested configurations.

Figure 6: Illustration of different target suffix configurations. i) SDT(ours): fixed target suffix ii) SDT(linear): linearly
increasing target suffix; iii) SDT(mean): average suffix from safe trajectories as target suffix; iiii) SDT(max): maximum
suffix from safe trajectories as target suffix.

Figure 7: Evaluation results of DT and DT with reward prefix during training. The solid line and the light shade area
represent the mean and mean ± standard deviation. The normalized reward follows the evaluation protocol in D4RL.

16

Temporal Logic Specification-Conditioned Decision Transformer for Offline Safe Reinforcement Learning

C. Experiments of Decision Transformers
To demonstrate the role of the prefix, we evaluate the performance of the Decision Transformers (DT) and DT with reward
prefix on the D4RL benchmark (Fu et al., 2020). We use the official codebase of DT5 and use the default hyperparameters
to train Halfcheetah, Walker2D, and Hopper on different types of dataset: medium that collected from a partially-
trained policy; medium-replay that consists of recording all samples in the replay buffer observed during training
until the policy reaches the medium level of performance; and medium-expert that contains equal amounts of expert
demonstrations and suboptimal data. DT and DT with reward prefix are evaluated every 10000 steps during training and
the results are shown in Figure 7. The reward prefix is beneficial not only to the performance after convergence but also to
facilitate the training process for most of the tasks since DT with reward prefix achieves higher reward. Another observation
is that the impact of the reward prefix is obvious in medium and medium-replay datasets, while the improvement is
marginal in medium-expert datasets, indicating that the reward prefix has greater importance in learning good policies
from suboptimal data. Empirically, the better performance of introducing the reward prefix supports our augments in
section 4.3 that the prefix is not redundant to the suffix but provides additional information that promotes policy learning.

5https://github.com/kzl/decision-transformer

17

