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Abstract

‘We continue our study of exponent semigroups of rational matrices. Our main result is that the matricial
dimension of a numerical semigroup is at most its multiplicity (the least generator), greatly improving
upon the previous upper bound (the conductor). For many numerical semigroups, including all symmetric
numerical semigroups, our upper bound is tight. Our construction uses combinatorially structured matrices
and is parametrised by Kunz coordinates, which are central to enumerative problems in the study of
numerical semigroups.
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1. Introduction

Let M(+) denote the set of d X d matrices with entries in the set Z of integers or the set
Q of rational numbers, as indicated. Every (additive) subsemigroup of N = {0, 1,2, ...}
is the exponent semigroup

SA) ={neN:A" e My(2)}

of some A € M;(Q) by [6, Corollary 6.5]. In particular, every numerical semigroup
S, that is, a subsemigroup of N with finite complement [3, 15], is of the form
S = S(A) with A € M (Q), in which ¢ = ¢(S) = 1 + max(N\S) is the conductor of S
[6, Theorem 6.2]. This ensures that the matricial dimension

dimpy,c S = min{d > 1 : there is an A € M,(Q) such that S = S(A)}

of a numerical semigroup S C N is well defined and dimy, S < ¢(S).
Each numerical semigroup S has a unique minimal system of generators, that
is, positive n; < np < --- < ng such that S = (ny,ny,...,n;) is the smallest additive

The second author is partially supported by NSF grant DMS-2054002.

© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc.

()

Check fc
https://doi.org/10.1017/50004972724001035 Published online by Cambridge University Press Updates.


http://dx.doi.org/10.1017/S0004972724001035
https://orcid.org/0000-0002-2125-8559
https://orcid.org/0000-0001-8971-5448
https://orcid.org/0000-0001-7505-8184
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972724001035&domain=pdf
https://doi.org/10.1017/S0004972724001035

2 A. Chhabra, S. R. Garcia and C. O’Neill [2]

subsemigroup of N containing nj,ny,...,n;. Here, e(S) =k is the embedding
dimension of S and m(S) = ny is the multiplicity of S.

The main result of this paper is the following dramatic improvement of [0,
Theorem 6.2], in which m(S) = n; replaces c(S).

THEOREM 1.1. If S is a nontrivial numerical semigroup with multiplicity (minimal
generator) m(S), there is an A € M,5)(Q) such that S(A) = S. Thus, dimp, S < m(S).

Theorem 1.1 gives an explicit construction in terms of Apéry sets [2], a mainstay
in the study of numerical semigroups [12, 17]. At the core of the proof lies a system
of inequalities that reflect the fine structure of Apéry sets; these were first introduced
by Kunz in [11], and have since been used in enumerative [1, 8, 16] and classification
[7, 9] problems in this area.

This paper is organised as follows. Section 2 contains the proof of Theorem 1.1.
Section 3 presents several illustrative examples and Corollary 3.6, which extends
Theorem 1.1 to arbitrary semigroups in N. We close by computing the matricial
dimension for irreducible numerical semigroups in Section 4.

2. Proof of Theorem 1.1

This section contains the proof of Theorem 1.1 and some preliminary remarks.
Recall that the Apéry set of a numerical semigroup S with multiplicity m is the set

ApS)={neS:n—-m¢S}.

Each element of Ap(S) is the smallest element of § in its equivalence class modulo m,
so one often writes

Ap(S) = {a()’ al’ e 7am—1},

in which ag = 0 and each a; = i mod m. It is convenient to interpret the subscripts of
the a; modulo m. For example, it was shown by Kunz in [11] that

aj+a; > a;; foralli,jeZ, 2.1

and that this system of inequalities (along with the modular requirements and
minimality of m) characterise Apéry sets of numerical semigroups.

Before proceeding to the proof of Theorem 1.1, let us first illustrate the matricial
structure employed in the proof. Suppose 29, z1, 22,23 # 0 and

2
22

\ € My(Q),

<0
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which is a generalised permutation matrix or, equivalently, the adjacency matrix of a
weighted directed cycle graph on four vertices. Observe that

[ (0z12223)7
AY = (20212223)7
(z0212223)7 >

(20212223)7 }
21(z0212223)7

A4q+l _ 22(20212223)7

23(20212223)7 | °

L 20(z0212223)¢

2122(20212223)7
4q+2 _
A | »320(20212223)7 and

2223(20212223)7 ]
2021(20212223)¢

Ada+3 232022(20212223)7
232021(20212223)7
202122(20212223)7

212223(20212223)7 }

Writing p = 4¢g + r, with ¢, r € Z and 0 < r < 3, the nonzero entries of A” are

r—1

(z0712023)1 ]—[ zie for0<i<3, 2.2)
=0

in which the subscripts are interpreted modulo .

For the proof of Theorem 1.1, we generalise (2.2) to the m X m setting, and let each
z; take the form b* with b € Z\{-1,0, 1} and x; € Z, so that the multiplicative structure
of (2.2) becomes additive.

PROOF OF THEOREM I.I. Suppose S is a numerical semigroup with multiplicity
m > 2 and Apéry set Ap(S) = {ap,ay,...,an-1}, in which gy = 0 and a; = i (mod m)
foreachi. Foreachi=0,1,...,m—1, let

xi=m aiy —a; + 1),

where the subscripts of the x; are, like those of the a;, interpreted modulo m. Notice
that each x; € Z since a;,_; — a; + 1 = 0 (mod m), and telescoping yields

Xo+X]+ o Xy = m_l(am_l —apg+1)+--- +m_1(am_2 —apm_1 + 1)

= -1 oo =
=m (1+ | +1)=1 2.3)
m times
Fix abase b € Z\{-1,0, 1} and let A € M,,,(Q) denote the matrix
b"
b*
b
A= ) (2.4)
bxm—]
b ]
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By (2.2), for each p >0, writing p =gm+r with g, r€Z and 0 <r <m— 1, the
exponent of b in each nonzero entry of A” has the form

r—1
g+ ) m @i~ aiper + 1) forsomei=0,1,...,m~1.
=0

As such, to prove S(A) = S, we must show that the condition
g+m (i —ayu,+r)>0 foreveryi=0,1,...,m—1, (2.5)

holds if and only if p € S(A). This clearly holds whenever m | p since in this case,
r =0 and ¢ > 0. By the definition of the Apéry set, it suffices to prove that for each
j=1,...,m—1, we have

(@) aj € S(A) and
(b) @ —m ¢ SA).

Indeed, if p = a;, then foreachi =0,1,...,m -1, (2.5) becomes

m™Na; = j) + m N a; - aij +j) = m~ (@ + a; — aixj) > 0,
wherein nonnegativity follows from (2.1). Additionally, if p = a; — m, then choosing
i=0,

m’l(aj -m—j)+ m’](ao —a;j+j) = m’](ao -m) =—1,

so condition (2.5) does not hold. This completes the proof. |

3. Examples and remarks

This section contains several remarks and illustrative examples of Theorem 1.1
that demonstrate the effectiveness of our main result, along with an extension of
Theorem 1.1 to arbitrary subsemigroups of N. We begin with a careful analysis of
how things play out for the so-called McNugget semigroup.

ExXAMPLE 3.1. Consider S = (6,9,20). Then, m(S) = 6 and c(S) = 44, so the con-
struction of [6, Theorem 6.2] produces a B € My4(Q) such that S(B) = S. In contrast,
Theorem 1.1 produces an A € Mg(Q) such that S(A) = S. Indeed, one can check that
Ap(S) ={0,49,20,9, 40, 29}, so the proof of Theorem 1.1 yields

Xo 5 1

256
X1 -8 32
22 X and A= 4 1
X3 2 33
X4 -5 4
X5 2 32

In fact, this establishes dimp,, S = 6 by Corollary 4.2 below.
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EXAMPLE 3.2. If § = (5, 11), then Ap(S) = {0, 11,22, 33,44}, so Theorem 1.1 yields

b72

b9

More generally, if S = (m, km + 1) with k € N, then Ap(S) comprises integer multiples
of km+1, so a; =i(km+1) for i = 1,2,...,m — 1. The only nonzero integral entry
of the resulting matrix is in the lower-left corner; the remaining nonzero entries are
identical to each other.

REMARK 3.3. The values of xg, x,...,x,-; in the proof of Theorem 1.1 can also be
expressed in terms of the so-called Kunz coordinates (ky, ks, . . ., k,,—1) of S, which are
defined so that a; = k;m + i foreachi=1,2,...,m — 1 [11]. In particular,

—k, ifi=1,
Xi = k,'_l—kl' ifi:2,3,...,m—l,
kny+1 ifi=0.

Translating (2.1) in terms of Kunz coordinates requires the use of cases; this motivates
the choice of expression for x; in the proof of Theorem 1.1.

REMARK 3.4. The parameter b € Z\{-1,0, 1} in the proof of Theorem 1.1 is arbitrary.
Laplace (cofactor) expansion of (2.4) and using (2.3) ensure that detA = (=1)""'b,
so detA is arbitrary in Z\{-1,0,1} and essentially independent of S. However,
detA = %1 implies that S is cyclic [6, Theorem 4.2]. Moreover, detA = 0 whenever
A is nilpotent, and [6, Theorem 6.2] ensures that every numerical semigroup is the
exponent semigroup of a nilpotent matrix.

EXAMPLE 3.5. A small adjustment to the proof of Theorem 1.1 permits one to find a
representing matrix for any given subsemigroup of N, numerical or not. Let us consider
S =(6,8,10). Since S = 2T, in which T = (3,7, 11) is a numerical semigroup, we have
T = S(A) and S = S(B) for

=
1l
[\S)
[~}
=
o
=
Il
W=

3.271

We record this observation here.
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COROLLARY 3.6. If S C N is an additive subsemigroup, then dimp, S < min(S\{0}).

PROOF. Suppose S = dT, where T is a numerical semigroup and d € N is positive. Let
m = m(T). As in the proof of Theorem 1.1, fix xo, x1,...,X,-1 € Z such that

2n

2—xm—]
2%

has S(A) = T. Let B € M;,,(Q) be the matrix

21

Zdm—-1
20

defined by

1 otherwise.

{3“2& if i = kd with k € Z,
Zi =
3

By (2.2), for any p € N, the nonzero entries in B”? are precisely those that appear in A?,
so pd € S(B) if and only if p € S(A). However, any power of B not divisible by d has
at least one noninteger entry with a power of 3 in the denominator, so gcd(S(B)) = d.
As such, we conclude S(B) = S. O

4. Irreducible numerical semigroups
Fix a numerical semigroup S and let ' = ¢(S) — 1. Recall that:

(a) Sis symmetric if x € Z\S implies F —x € S;

(b) Sis pseudosymmetric if F is even and x € Z\S implies F —x € Sorx = F/2;

(c) Sisirreducibleif S cannot be written as an intersection of finitely many numerical
semigroups properly containing it.

A numerical semigroup is irreducible if and only if it is symmetric or pseudosym-
metric [14], and these two families of numerical semigroups are each of interest in
commutative algebraic settings (see [4, 10], respectively).

REMARK 4.1. Every numerical semigroup can be written as an intersection of finitely
many irreducible numerical semigroups, and such expressions are often far from
unique [5, 13]. In some cases, one can use this fact and [6, Theorem 2.3(a)] to obtain
a more optimal construction than Theorem 1.1. For example, Theorem 1.1 identifies
A € M;5(Q) with exponent semigroup S(A) = (15,20, 21, 25, 26), but

SA)=TNT withT =(3,11)and T" = (5, 16),
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s0 one can obtain a block-diagonal matrix A” € Mg(Q) with S(A’) = S(A) by applying
Theorem 1.1 to T and 7”. Note that this strategy would be ineffective with the
construction in [6, Theorem 6.2] since ¢(T N T”") = max(c(T), c(T")), while m(T N T")
can be much larger than m(T) + m(T").

Remark 4.1 does not aid in obtaining the matricial dimension of irreducible
numerical semigroups, since they cannot be written as an intersection of finitely
many other numerical semigroups. Luckily, Theorem 1.1 and [6] together identify the
matricial dimension of nearly all such semigroups. We record this here.

COROLLARY 4.2. If S is a symmetric numerical semigroup, then dimpy, S = m(S).
In particular, if e(S) = 2, then dimy, S = m(S).

PROOF. This follows from Theorem 1.1 since dimy, S > m(S) by [6, Theorem 5.3].
Additionally, e(S) = 2 implies S is symmetric by [15, Corollary 4.7]. O

COROLLARY 4.3. Let S be a nontrivial pseudosymmetric numerical semigroup.

(@) Ifc(S) < m(S), then dimpy S = 2.
(b) Ifm(S) < c(S) < 2m(S), then m(S) — 1 < dimpy S < m(S).
(c) Ifc(S) > 2m(S), then dimpy S = m(S).

PROOF. Combine Theorem 1.1 with the inequalities in [6, Theorem 5.6]. O

EXAMPLE 4.4. The semigroup S = (3,5,7) is pseudosymmetric with m(S) = 3 and
¢(S) = 5. One can readily check that S(A) = S for

1 =2
= 16
2=l |
s0 dimyy S =2 = m(S) — 1. We conjecture that dimy,y, S = m(S) — 1 whenever S is
pseudosymmetric and m(S) < ¢(S) < 2m(S).

EXAMPLE 4.5. Consider S = (7, 54, 66), which has m(S) = 7, ¢(S) = 192 and
Ap(S) = {0, 120, 198, 66, 186, 54, 132}.

Since § is neither symmetric or pseudosymmetric, the previous corollaries do not
determine dim,, S. Theorem 1.1 ensures that dim,, S < 7, whereas [6, Theorem 6.2]
provides the much weaker bound dimp, S < 192. However, we can prove that
dimy,y, S = 7 as follows. Suppose towards a contradiction that S = S(A), in which
A € My(Q) with 1 <d <6. Then, 185, 186, 187, 188, 189, 190 € S ensures that S(A)
contains all successive natural numbers [6, Theorem 5.1]. This contradicts the fact
that ¢(S) — 1 = 191 ¢ S. Therefore, dimy S > 7, s0 dimpyac S = 7.

EXAMPLE 4.6. These methods are insufficient to compute the matricial dimension
of all numerical semigroups. For example, the longest string of consecutive elements
in S = (39,40,47) below ¢(S) = 390 is {351, 352, ..., 381}, which has length 31. Thus,
32 < dimpy S < 39 by [6, Theorem 5.1] and Theorem 1.1. Since S is neither symmetric
nor pseudosymmetric, we cannot appeal to the corollaries above.
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