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Abstract

We continue our study of exponent semigroups of rational matrices. Our main result is that the matricial
dimension of a numerical semigroup is at most its multiplicity (the least generator), greatly improving
upon the previous upper bound (the conductor). For many numerical semigroups, including all symmetric
numerical semigroups, our upper bound is tight. Our construction uses combinatorially structured matrices
and is parametrised by Kunz coordinates, which are central to enumerative problems in the study of
numerical semigroups.
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1. Introduction

Let Md(·) denote the set of d × d matrices with entries in the set Z of integers or the set
Q of rational numbers, as indicated. Every (additive) subsemigroup of N = {0, 1, 2, . . .}
is the exponent semigroup

S(A) = {n ∈ N : An ∈ Md(Z)}
of some A ∈ Md(Q) by [6, Corollary 6.5]. In particular, every numerical semigroup
S, that is, a subsemigroup of N with finite complement [3, 15], is of the form
S = S(A) with A ∈ Mc(Q), in which c = c(S) = 1 +max(N\S) is the conductor of S
[6, Theorem 6.2]. This ensures that the matricial dimension

dimmat S = min{d ≥ 1 : there is an A ∈ Md(Q) such that S = S(A)}
of a numerical semigroup S ⊆ N is well defined and dimmat S ≤ c(S).

Each numerical semigroup S has a unique minimal system of generators, that
is, positive n1 < n2 < · · · < nk such that S = 〈n1, n2, . . . , nk〉 is the smallest additive
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subsemigroup of N containing n1, n2, . . . , nk. Here, e(S) = k is the embedding
dimension of S and m(S) = n1 is the multiplicity of S.

The main result of this paper is the following dramatic improvement of [6,
Theorem 6.2], in which m(S) = n1 replaces c(S).

THEOREM 1.1. If S is a nontrivial numerical semigroup with multiplicity (minimal
generator) m(S), there is an A ∈ Mm(S)(Q) such that S(A) = S. Thus, dimmat S ≤ m(S).

Theorem 1.1 gives an explicit construction in terms of Apéry sets [2], a mainstay
in the study of numerical semigroups [12, 17]. At the core of the proof lies a system
of inequalities that reflect the fine structure of Apéry sets; these were first introduced
by Kunz in [11], and have since been used in enumerative [1, 8, 16] and classification
[7, 9] problems in this area.

This paper is organised as follows. Section 2 contains the proof of Theorem 1.1.
Section 3 presents several illustrative examples and Corollary 3.6, which extends
Theorem 1.1 to arbitrary semigroups in N. We close by computing the matricial
dimension for irreducible numerical semigroups in Section 4.

2. Proof of Theorem 1.1

This section contains the proof of Theorem 1.1 and some preliminary remarks.
Recall that the Apéry set of a numerical semigroup S with multiplicity m is the set

Ap(S) = {n ∈ S : n − m ! S}.

Each element of Ap(S) is the smallest element of S in its equivalence class modulo m,
so one often writes

Ap(S) = {a0, a1, . . . , am−1},

in which a0 = 0 and each ai ≡ i mod m. It is convenient to interpret the subscripts of
the ai modulo m. For example, it was shown by Kunz in [11] that

ai + aj ≥ ai+j for all i, j ∈ Z, (2.1)

and that this system of inequalities (along with the modular requirements and
minimality of m) characterise Apéry sets of numerical semigroups.

Before proceeding to the proof of Theorem 1.1, let us first illustrate the matricial
structure employed in the proof. Suppose z0, z1, z2, z3 " 0 and

A =




0 z1 0 0
0 0 z2 0
0 0 0 z3
z0 0 0 0



∈ M4(Q),
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[3] Numerical semigroups from rational matrices II 3

which is a generalised permutation matrix or, equivalently, the adjacency matrix of a
weighted directed cycle graph on four vertices. Observe that

A4q =




(z0z1z2z3)q 0 0 0
0 (z0z1z2z3)q 0 0
0 0 (z0z1z2z3)q 0
0 0 0 (z0z1z2z3)q


 ,

A4q+1 =




0 z1(z0z1z2z3)q 0 0
0 0 z2(z0z1z2z3)q 0
0 0 0 z3(z0z1z2z3)q

z0(z0z1z2z3)q 0 0 0


 ,

A4q+2 =




0 0 z1z2(z0z1z2z3)q 0
0 0 0 z2z3(z0z1z2z3)q

z3z0(z0z1z2z3)q 0 0 0
0 z0z1(z0z1z2z3)q 0 0


 and

A4q+3 =




0 0 0 z1z2z3(z0z1z2z3)q

z3z0z2(z0z1z2z3)q 0 0 0
0 z3z0z1(z0z1z2z3)q 0 0
0 0 z0z1z2(z0z1z2z3)q 0


 .

Writing p = 4q + r, with q, r ∈ Z and 0 ≤ r ≤ 3, the nonzero entries of Ap are

(z0z1z2z3)q
r−1∏

!=0

zi+! for 0 ≤ i ≤ 3, (2.2)

in which the subscripts are interpreted modulo m.
For the proof of Theorem 1.1, we generalise (2.2) to the m × m setting, and let each

zi take the form bxi with b ∈ Z\{−1, 0, 1} and xi ∈ Z, so that the multiplicative structure
of (2.2) becomes additive.

PROOF OF THEOREM 1.1. Suppose S is a numerical semigroup with multiplicity
m ≥ 2 and Apéry set Ap(S) = {a0, a1, . . . , am−1}, in which a0 = 0 and ai ≡ i (mod m)
for each i. For each i = 0, 1, . . . , m − 1, let

xi = m−1(ai−1 − ai + 1),

where the subscripts of the xi are, like those of the ai, interpreted modulo m. Notice
that each xi ∈ Z since ai−1 − ai + 1 ≡ 0 (mod m), and telescoping yields

x0 + x1 + · · · + xm−1 = m−1(am−1 − a0 + 1) + · · · + m−1(am−2 − am−1 + 1)

= m−1(1 + · · · + 1︸!!!!!!︷︷!!!!!!︸
m times

) = 1. (2.3)

Fix a base b ∈ Z\{−1, 0, 1} and let A ∈ Mm(Q) denote the matrix

A =




0 bx1 0 0 · · · 0
0 0 bx2 0 · · · 0
0 0 0 bx3 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · bxm−1

bx0 0 0 0 · · · 0




. (2.4)
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By (2.2), for each p ≥ 0, writing p = qm + r with q, r ∈ Z and 0 ≤ r ≤ m − 1, the
exponent of b in each nonzero entry of Ap has the form

q +
r−1∑

!=0

m−1(ai+! − ai+!+1 + 1) for some i = 0, 1, . . . , m − 1.

As such, to prove S(A) = S, we must show that the condition

q + m−1(ai − ai+r + r) ≥ 0 for every i = 0, 1, . . . , m − 1, (2.5)

holds if and only if p ∈ S(A). This clearly holds whenever m | p since in this case,
r = 0 and q ≥ 0. By the definition of the Apéry set, it suffices to prove that for each
j = 1, . . . , m − 1, we have

(a) aj ∈ S(A) and
(b) aj − m ! S(A).

Indeed, if p = aj, then for each i = 0, 1, . . . , m − 1, (2.5) becomes

m−1(aj − j) + m−1(ai − ai+j + j) = m−1(aj + ai − ai+j) ≥ 0,

wherein nonnegativity follows from (2.1). Additionally, if p = aj − m, then choosing
i = 0,

m−1(aj − m − j) + m−1(a0 − aj + j) = m−1(a0 − m) = −1,

so condition (2.5) does not hold. This completes the proof. !

3. Examples and remarks

This section contains several remarks and illustrative examples of Theorem 1.1
that demonstrate the effectiveness of our main result, along with an extension of
Theorem 1.1 to arbitrary subsemigroups of N. We begin with a careful analysis of
how things play out for the so-called McNugget semigroup.

EXAMPLE 3.1. Consider S = 〈6, 9, 20〉. Then, m(S) = 6 and c(S) = 44, so the con-
struction of [6, Theorem 6.2] produces a B ∈ M44(Q) such that S(B) = S. In contrast,
Theorem 1.1 produces an A ∈ M6(Q) such that S(A) = S. Indeed, one can check that
Ap(S) = {0, 49, 20, 9, 40, 29}, so the proof of Theorem 1.1 yields




x0
x1
x2
x3
x4
x5




=




5
−8

5
2
−5

2




and A =




0 1
256 0 0 0 0

0 0 32 0 0 0
0 0 0 4 0 0
0 0 0 0 1

32 0
0 0 0 0 0 4
32 0 0 0 0 0




.

In fact, this establishes dimmat S = 6 by Corollary 4.2 below.
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EXAMPLE 3.2. If S = 〈5, 11〉, then Ap(S) = {0, 11, 22, 33, 44}, so Theorem 1.1 yields

A =




0 b−2 0 0 0
0 0 b−2 0 0
0 0 0 b−2 0
0 0 0 0 b−2

b9 0 0 0 0




.

More generally, if S = 〈m, km + 1〉 with k ∈ N, then Ap(S) comprises integer multiples
of km + 1, so ai = i(km + 1) for i = 1, 2, . . . , m − 1. The only nonzero integral entry
of the resulting matrix is in the lower-left corner; the remaining nonzero entries are
identical to each other.

REMARK 3.3. The values of x0, x1, . . . , xm−1 in the proof of Theorem 1.1 can also be
expressed in terms of the so-called Kunz coordinates (k1, k2, . . . , km−1) of S, which are
defined so that ai = kim + i for each i = 1, 2, . . . , m − 1 [11]. In particular,

xi =




−k1 if i = 1,
ki−1 − ki if i = 2, 3, . . . , m − 1,
km−1 + 1 if i = 0.

Translating (2.1) in terms of Kunz coordinates requires the use of cases; this motivates
the choice of expression for xi in the proof of Theorem 1.1.

REMARK 3.4. The parameter b ∈ Z\{−1, 0, 1} in the proof of Theorem 1.1 is arbitrary.
Laplace (cofactor) expansion of (2.4) and using (2.3) ensure that det A = (−1)m−1b,
so det A is arbitrary in Z\{−1, 0, 1} and essentially independent of S. However,
det A = ±1 implies that S is cyclic [6, Theorem 4.2]. Moreover, det A = 0 whenever
A is nilpotent, and [6, Theorem 6.2] ensures that every numerical semigroup is the
exponent semigroup of a nilpotent matrix.

EXAMPLE 3.5. A small adjustment to the proof of Theorem 1.1 permits one to find a
representing matrix for any given subsemigroup ofN, numerical or not. Let us consider
S = 〈6, 8, 10〉. Since S = 2T , in which T = 〈3, 7, 11〉 is a numerical semigroup, we have
T = S(A) and S = S(B) for

A =




0 2−2 0
0 0 2−1

24 0 0


 and B =




0 1
3 0 0 0 0

0 0 3 · 2−2 0 0 0
0 0 0 1

3 0 0
0 0 0 0 3 · 2−1 0
0 0 0 0 0 1

3
24 0 0 0 0 0




.

We record this observation here.
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COROLLARY 3.6. If S ⊆ N is an additive subsemigroup, then dimmat S ≤ min(S\{0}).
PROOF. Suppose S = dT , where T is a numerical semigroup and d ∈ N is positive. Let
m = m(T). As in the proof of Theorem 1.1, fix x0, x1, . . . , xm−1 ∈ Z such that

A =




0 2x1 · · · 0
...

...
. . .

...
0 0 · · · 2xm−1

2x0 0 · · · 0




has S(A) = T . Let B ∈ Mdm(Q) be the matrix

B =




0 z1 · · · 0
...

...
. . .

...
0 0 · · · zdm−1
z0 0 · · · 0




defined by

zi =




3d−12xk if i = kd with k ∈ Z,
1
3 otherwise.

By (2.2), for any p ∈ N, the nonzero entries in Bpd are precisely those that appear in Ap,
so pd ∈ S(B) if and only if p ∈ S(A). However, any power of B not divisible by d has
at least one noninteger entry with a power of 3 in the denominator, so gcd(S(B)) = d.
As such, we conclude S(B) = S. !

4. Irreducible numerical semigroups

Fix a numerical semigroup S and let F = c(S) − 1. Recall that:

(a) S is symmetric if x ∈ Z\S implies F − x ∈ S;
(b) S is pseudosymmetric if F is even and x ∈ Z\S implies F − x ∈ S or x = F/2;
(c) S is irreducible if S cannot be written as an intersection of finitely many numerical

semigroups properly containing it.

A numerical semigroup is irreducible if and only if it is symmetric or pseudosym-
metric [14], and these two families of numerical semigroups are each of interest in
commutative algebraic settings (see [4, 10], respectively).

REMARK 4.1. Every numerical semigroup can be written as an intersection of finitely
many irreducible numerical semigroups, and such expressions are often far from
unique [5, 13]. In some cases, one can use this fact and [6, Theorem 2.3(a)] to obtain
a more optimal construction than Theorem 1.1. For example, Theorem 1.1 identifies
A ∈ M15(Q) with exponent semigroup S(A) = 〈15, 20, 21, 25, 26〉, but

S(A) = T ∩ T ′ with T = 〈3, 11〉 and T ′ = 〈5, 16〉,
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[7] Numerical semigroups from rational matrices II 7

so one can obtain a block-diagonal matrix A′ ∈ M8(Q) with S(A′) = S(A) by applying
Theorem 1.1 to T and T ′. Note that this strategy would be ineffective with the
construction in [6, Theorem 6.2] since c(T ∩ T ′) = max(c(T), c(T ′)), while m(T ∩ T ′)
can be much larger than m(T) + m(T ′).

Remark 4.1 does not aid in obtaining the matricial dimension of irreducible
numerical semigroups, since they cannot be written as an intersection of finitely
many other numerical semigroups. Luckily, Theorem 1.1 and [6] together identify the
matricial dimension of nearly all such semigroups. We record this here.

COROLLARY 4.2. If S is a symmetric numerical semigroup, then dimmat S = m(S).
In particular, if e(S) = 2, then dimmat S = m(S).

PROOF. This follows from Theorem 1.1 since dimmat S ≥ m(S) by [6, Theorem 5.3].
Additionally, e(S) = 2 implies S is symmetric by [15, Corollary 4.7]. !

COROLLARY 4.3. Let S be a nontrivial pseudosymmetric numerical semigroup.

(a) If c(S) ≤ m(S), then dimmat S = 2.
(b) If m(S) < c(S) ≤ 2m(S), then m(S) − 1 ≤ dimmat S ≤ m(S).
(c) If c(S) > 2m(S), then dimmat S = m(S).

PROOF. Combine Theorem 1.1 with the inequalities in [6, Theorem 5.6]. !

EXAMPLE 4.4. The semigroup S = 〈3, 5, 7〉 is pseudosymmetric with m(S) = 3 and
c(S) = 5. One can readily check that S(A) = S for

A =
[

1 − 3
16

16 1

]
,

so dimmat S = 2 = m(S) − 1. We conjecture that dimmat S = m(S) − 1 whenever S is
pseudosymmetric and m(S) < c(S) ≤ 2m(S).

EXAMPLE 4.5. Consider S = 〈7, 54, 66〉, which has m(S) = 7, c(S) = 192 and

Ap(S) = {0, 120, 198, 66, 186, 54, 132}.
Since S is neither symmetric or pseudosymmetric, the previous corollaries do not
determine dimmat S. Theorem 1.1 ensures that dimmat S ≤ 7, whereas [6, Theorem 6.2]
provides the much weaker bound dimmat S ≤ 192. However, we can prove that
dimmat S = 7 as follows. Suppose towards a contradiction that S = S(A), in which
A ∈ Md(Q) with 1 ≤ d ≤ 6. Then, 185, 186, 187, 188, 189, 190 ∈ S ensures that S(A)
contains all successive natural numbers [6, Theorem 5.1]. This contradicts the fact
that c(S) − 1 = 191 ! S. Therefore, dimmat S ≥ 7, so dimmat S = 7.

EXAMPLE 4.6. These methods are insufficient to compute the matricial dimension
of all numerical semigroups. For example, the longest string of consecutive elements
in S = 〈39, 40, 47〉 below c(S) = 390 is {351, 352, . . . , 381}, which has length 31. Thus,
32 ≤ dimmat S ≤ 39 by [6, Theorem 5.1] and Theorem 1.1. Since S is neither symmetric
nor pseudosymmetric, we cannot appeal to the corollaries above.

3��9��  0�4��:2 ������
 ������
�
�������	�� /54�310��75471�/"�
.�/:4021��74!1:�4�"��:1��

https://doi.org/10.1017/S0004972724001035


8 A. Chhabra, S. R. Garcia and C. O’Neill [8]

References
[1] E. Alhajjar, T. Russell and M. Steward, ‘Numerical semigroups and Kunz polytopes’, Semigroup

Forum 99 (2019), 153–168.
[2] R. Apéry, ‘Sur les branches superlinéaires des courbes algébriques’, C. R. Acad. Sci. Paris 222

(1946), 1198–1200.
[3] A. Assi, M. D’Anna and P. A. García-Sánchez, Numerical Semigroups and Applications, 2nd edn,

RSME Springer Series, 3 (Springer, Cham, 2020).
[4] V. Barucci, D. E. Dobbs and M. Fontana, Maximality Properties in Numerical Semigroups and

Applications to One-dimensional Analytically Irreducible Local Domains, Memoirs of the Ameri-
can Mathematical Society, 125(598) (American Mathematical Society, Providence, RI, 1997).

[5] T. Bogart and S. A. S. Fakhari, ‘Unboundedness of irreducible decompositions of numerical
semigroups’, Comm. Algebra, to appear. Published online (15 October 2024).

[6] A. Chhabra, S. R. Garcia, F. Zhang and H. Zhang, ‘Numerical semigroups from rational matrices I:
power-integral matrices and nilpotent representations’, Comm. Algebra, to appear. Published online
(30 September 2024).

[7] C. Elmacioglu, K. Hilmer, C. O’Neill, M. Okandan and H. Park-Kaufmann, ‘On the cardinality of
minimal presentations of numerical semigroups’, Algebr. Comb. 7(3) (2024), 753–771.

[8] N. Kaplan, ‘Counting numerical semigroups’, Amer. Math. Monthly 124(9) (2017), 862–875.
[9] N. Kaplan and C. O’Neill, ‘Numerical semigroups, polyhedra, and posets I: the group cone’,

Combin. Theory 1 (2021), Article no. 19, 23 pages.
[10] E. Kunz, ‘The value-semigroup of a one-dimensional Gorenstein ring’, Proc. Amer. Math. Soc. 25

(1970), 748–751.
[11] E. Kunz, Über die Klassifikation numerischer Halbgruppen, Regensburger mathematische

Schriften, 11 (Fakultät Mathematik der Universität Regensburg, 1987).
[12] J. C. Rosales, ‘Numerical semigroups with Apéry sets of unique expression’, J. Algebra 226(1)

(2000), 479–487.
[13] J. C. Rosales and M. B. Branco, ‘Decomposition of a numerical semigroup as an intersection of

irreducible numerical semigroups’, Bull. Belg. Math. Soc. Simon Stevin 9(3) (2002), 373–381.
[14] J. C. Rosales and M. B. Branco, ‘Irreducible numerical semigroups’, Pacific J. Math. 209(1) (2003),

131–143.
[15] J. C. Rosales and P. A. García-Sánchez, Numerical Semigroups, Developments in Mathematics, 20

(Springer, New York, 2009).
[16] J. C. Rosales, P. A. García-Sánchez, J. I. García-García and M. B. Branco, ‘Systems of inequalities

and numerical semigroups’, J. Lond. Math. Soc. (2) 65(3) (2002), 611–623.
[17] H. S. Wilf, ‘A circle-of-lights algorithm for the “money-changing problem”’, Amer. Math. Monthly

85(7) (1978), 562–565.

ARSH CHHABRA, Department of Mathematics and Statistics,
Pomona College, 610 N. College Ave., Claremont, CA 91711, USA
e-mail: acaa2021@mymail.pomona.edu

STEPHAN RAMON GARCIA, Department of Mathematics and Statistics,
Pomona College, 610 N. College Ave., Claremont, CA 91711, USA
e-mail: stephan.garcia@pomona.edu

CHRISTOPHER O’NEILL, Mathematics Department,
San Diego State University, San Diego, CA 92182, USA
e-mail: cdoneill@sdsu.edu

3��9��  0�4��:2 ������
 ������
�
�������	�� /54�310��75471�/"�
.�/:4021��74!1:�4�"��:1��

mailto:acaa2021@mymail.pomona.edu
mailto:stephan.garcia@pomona.edu
mailto:cdoneill@sdsu.edu
https://doi.org/10.1017/S0004972724001035

	1 Introduction
	2 Proof of Theorem 1.1
	3 Examples and remarks
	4 Irreducible numerical semigroups

