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the Bateman–Horn
Conjecture?

Stephan Ramon Garcia

For a given family of univariate polynomials with integer
coefficients, how often should we expect their values at
positive integer arguments to be simultaneously prime?
The Bateman–Horn conjecture, first formulated by Paul
T. Bateman and Roger A. Horn in 1962 [BH62, BH65],
proposes a complete answer to this question. It can be
thought of as a successor to the First Hardy–Littlewood
conjecture [HL23] (1923), which considers the asymptotic
distribution of prime values assumed by tuples of linear
polynomials, and Schinzel’s hypothesis H [SS58] (1958),
which conjectures the infinitude of simultaneously prime
values assumed by certain tuples of polynomials.

To understand where the Bateman–Horn conjecture
comes from, we start with the prime number theorem. The
exposition below follows [AZFG20].
Prime number theorem. Let 𝜋(𝑥) denote the number of
primes at most 𝑥. The prime number theorem, proved
independently by Hadamard and de la Vallée Poussin in
1896, says that 𝜋(𝑥) ∼ Li(𝑥), in which

Li(𝑥) = ∫𝑥
2

𝑑𝑡log 𝑡 (1)

is the logarithmic integral and ∼ is asymptotic equivalence;
that is, 𝑓 ∼ 𝑔 means lim𝑥→∞ 𝑓(𝑥)𝑔(𝑥) = 1.
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The prime number theorem suggests the possibility of
a random model for the prime numbers: the probabil-
ity that 𝑛 is prime is about 1/ log 𝑛. The Bateman–Horn
conjecture follows by pursuing this to its logical extreme,
while adjusting for congruence obstructions (for example,2 is the only even prime).
A single polynomial. Let ℤ[𝑥] denote the set of polyno-
mials in 𝑥 with coefficients in ℤ, the set of integers. For𝑓 ∈ ℤ[𝑥], define𝑄(𝑓; 𝑥) = #{𝑛 ≤ 𝑥 ∶ 𝑓(𝑛) is prime},
in which #𝑆 denotes the cardinality of a set 𝑆 and 𝑛 is a
natural number. What conditions must 𝑓 satisfy if it gen-
erates infinitely many distinct primes?

First, 𝑓 should be nonconstant and its leading coeffi-
cient must be positive. Second, 𝑓 should be irreducible inℤ[𝑥]. Less obvious is that 𝑓 should not vanish identically
modulo any prime. For example, 𝑓(𝑥) = 𝑥3 − 𝑥 + 3 is irre-
ducible, but 𝑓(𝑥) ≡ 𝑥3 − 𝑥 ≡ 0 (mod 3), so 𝑓(𝑛) is always
divisible by 3.

Suppose 𝑓 ∈ ℤ[𝑥] is nonconstant, irreducible, and does
not vanish identically modulo any prime. Let 𝑑 = deg 𝑓
and suppose that 𝑓 has leading coefficient 𝑐 ≥ 1. Then𝑓(𝑥) ∼ 𝑐𝑥𝑑 and our heuristic suggests that the probability𝑓(𝑛) is prime is 1log 𝑓(𝑛) ∼ 1log(𝑐𝑛𝑑) ∼ 1𝑑 log 𝑛 , (2)

so we expect that

𝑄(𝑓; 𝑥) ∼ ⌊𝑥⌋∑𝑛=2 1𝑑 log 𝑛 ∼ 1deg 𝑓 ∫𝑥
2

𝑑𝑡log 𝑡 . (3)

However, this is incorrect since we failed to take into ac-
count how likely it is that 𝑓(𝑛) ≡ 0 (mod 𝑝) (the letter 𝑝
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will always denote a prime number). If we assume for the
sake of our heuristic argument that divisibility by distinct
primes are independent events, then we should weight our
prediction by

𝐶(𝑓) =∏𝑝 (1 − 1𝑝)−1 (1 − 𝜔𝑓(𝑝)𝑝 ) , (4)

in which 𝜔𝑓(𝑝) is the number of solutions to 𝑓(𝑥) ≡ 0(mod 𝑝), since 1 − 𝜔𝑓(𝑝)/𝑝 is the probability that 𝑓(𝑛) is
divisible by 𝑝 and 1−1/𝑝 is the probability that a random
integer is divisible by 𝑝. Thus, for a single polynomial 𝑓,
we suspect that

𝑄(𝑓; 𝑥) ∼ 𝐶(𝑓)deg 𝑓 ∫𝑥
2

𝑑𝑡log 𝑡 .
Multiple polynomials. Suppose 𝑓1, 𝑓2, … , 𝑓𝑘 ∈ ℤ[𝑥] are
distinct, nonconstant, irreducible polynomials with pos-
itive leading coefficients. Although maybe no single 𝑓𝑖
vanishes identically modulo a prime, the product 𝑓 =𝑓1𝑓2 ⋯𝑓𝑘 might. For example, neither 𝑓1(𝑥) = 𝑥 nor𝑓2(𝑥) = 𝑥 + 1 vanish identically modulo any prime, but
their product 𝑥(𝑥 + 1) vanishes identically modulo 2. This
“congruence obstruction” prevents 𝑛 and 𝑛+ 1 from being
simultaneously prime infinitely often. Consequently, we
must require that 𝑓 does not vanish identically modulo
any prime.

Reasoning as above suggests the probability that all of
the 𝑓𝑖(𝑛) are simultaneously prime is

𝑘∏𝑖=1 1log 𝑓𝑖(𝑛) ∼ 𝑘∏𝑖=1 1𝑑𝑖 log 𝑛 = 1(∏𝑘𝑖=1 deg 𝑓𝑖)(log 𝑛)𝑘 .
Thus, the expected number of 𝑛 ≤ 𝑥 such that𝑓1(𝑛), 𝑓2(𝑛), … , 𝑓𝑘(𝑛) are prime is around

∫𝑥
2

1(∏𝑘𝑖=1 deg 𝑓𝑖)(log 𝑛)𝑘 = 1∏𝑘𝑖=1 deg 𝑓𝑖 ∫
𝑥

2
𝑑𝑡(log 𝑡)𝑘 .

As before, this prediction is off by a constant factor. Instead
of dividing by 1 − 1/𝑝 in (4), we now divide by (1 − 1/𝑝)𝑘,
the probability that a randomly selected 𝑘-tuple of integers
has no element divisible by 𝑝.
The conjecture. Putting this all together yields the final
conjecture (the convergence of the infinite product below
is not obvious; see [AZFG20, Sect. 5] for a proof).

Bateman–Horn conjecture. Let 𝑓1, 𝑓2, … , 𝑓𝑘 ∈ ℤ[𝑥] be dis-
tinct, nonconstant, irreducible polynomials with positive leading
coefficients, and let𝑄(𝑓1, 𝑓2, … , 𝑓𝑘; 𝑥)= #{𝑛 ≤ 𝑥 ∶ 𝑓1(𝑛), 𝑓2(𝑛), … , 𝑓𝑘(𝑛) are prime}. (5)
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Figure 1. Landau’s conjecture: 𝑄(𝑓; 𝑥) (orange) versus the
Bateman–Horn prediction 𝐶(𝑓)2 Li(𝑥) (blue). Although it is
possible to plot such images at a larger scale, one loses sight
of the discreteness of the underlying counting function.

Suppose that 𝑓 = 𝑓1𝑓2 ⋯𝑓𝑘 does not vanish identically modulo
any prime. Then

𝑄(𝑓1, 𝑓2, … , 𝑓𝑘; 𝑥) ∼ 𝐶(𝑓1, 𝑓2, … , 𝑓𝑘)∏𝑘𝑖=1 deg 𝑓𝑖 ∫𝑥
2

𝑑𝑡(log 𝑡)𝑘 , (6)

in which

𝐶(𝑓1, 𝑓2, … , 𝑓𝑘) =∏𝑝 (1 − 1𝑝)−𝑘 (1 − 𝜔𝑓(𝑝)𝑝 ) (7)

and 𝜔𝑓(𝑝) is the number of distinct solutions modulo 𝑝 to𝑓(𝑥) ≡ 0 (mod 𝑝).
Only a few special cases of the conjecture, such as the

prime number theorem for arithmetic progressions, are
known to be true. However, an upper bound compara-
ble to the conjectured asymptotic is provided by the Brun
sieve [Ten15, Thm. 3, Sect. I.4.2]. Thus, the prediction af-
forded by the Bateman–Horn conjecture is not unreason-
ably large.
Applications. Landau asked if there are infinitely many
primes of the form 𝑥2 + 1. The Bateman–Horn conjecture
with 𝑓1(𝑥) = 𝑥2 + 1 suggests that the answer is yes. Indeed,

𝜔𝑓(𝑝) = ⎧⎨⎩
1 if 𝑝 = 2,2 if 𝑝 ≡ 1 (mod 4),0 if 𝑝 ≡ 3 (mod 4),

where 𝑓 = 𝑓1, so 𝐶(𝑓) ≈ 1.37281 and we expect that𝑄(𝑓; 𝑥) ∼ 𝐶(𝑓)2 Li(𝑥); see Figure 1.
Applying the Bateman–Horn conjecture to 𝑓1(𝑥) = 𝑥

and 𝑓2(𝑥) = 𝑥+2 suggests the truth of the twin-prime con-
jecture. Indeed, 𝑓1(𝑥) and 𝑓2(𝑥) are simultaneously prime
if and only if 𝑥 is the least prime in a twin-prime pair. For𝑓 = 𝑓1𝑓2, 𝜔𝑓(𝑝) = {1 if 𝑝 = 2,2 if 𝑝 ≥ 3,
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Figure 2. Counting functions of the twin primes (orange) and
Sophie Germain primes (green) versus 2𝐶2 ∫𝑥2 (log 𝑡)−2 𝑑𝑡 (blue).
The Bateman–Horn conjecture asserts that these three
functions are asymptotically equivalent.

so the corresponding Bateman–Horn constant is

𝐶(𝑓1, 𝑓2) =∏𝑝 (1 − 1𝑝)−2 (1 − 𝜔𝑓(𝑝)𝑝 )
= 2∏𝑝≥3 𝑝(𝑝 − 2)(𝑝 − 1)2 = 2𝐶2,

in which 𝐶2 ≈ 0.660161815 is the twin primes constant. The
Bateman–Horn conjecture predicts that

𝑄(𝑓1, 𝑓2; 𝑥) ∼ 2𝐶2∫𝑥
2

𝑑𝑡(log 𝑡)2 .
In fact, we get the same prediction for 𝑓1(𝑥) = 𝑥 and𝑓2(𝑥) = 𝑥 + 2𝑘 with 𝑘 ≥ 2.

A Sophie Germain prime is a prime 𝑝 such that 2𝑝 + 1
is prime. The Bateman–Horn conjecture with 𝑓1(𝑥) = 𝑥
and 𝑓2(𝑥) = 2𝑥 + 1 yields the same prediction as in the
twin-prime case; see Figure 2. The Bateman–Horn even
explains the presence of curious patterns in theUlam spiral
[AZFG20, Sect. 6.6]!
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