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Abstract Schur’s inequality states that the sum of three special terms is always
nonnegative. This note is a short review of inequalities for the sum of the reciprocals
of these terms and of extensions of the latter inequalities to an arbitrary number of
terms and thus to higher-order divided differences.

A favorite and central topic of Ilya Spitkovsky’s work is several kinds of fac-
torizations of scalar or matrix functions. A prominent representative of these
factorizations is the Wiener-Hopf factorization introduced by Norbert Wiener and
Eberhard Hopf in their paper [19] of 1931. Since then the name of Eberhard Hopf
is well known in the communities of integral equations, mathematical physics, and
operator theory; see, e.g., [7, 13]. The intention of this note is to highlight the result
of Eberhard Hopf’s dissertation [5], defended in 1926, in which he ultimately solved
another important problem and which seems to be less known in our present days.
This result concerns the positivity of higher-order divided differences and leads us
back to an inequality that is commonly attributed to Issai Schur.
Schur’s inequality says that
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for x, y,z > 0 and arbitrary s € R, with equality if and only if x = y = z. The
reciprocal version of this inequality states that, for distinct x, y, z > 0,
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is positive if s > Qor s < —1, negative if —1 < s < 0, and zeroif s = Qors = —1.
It is well known that extension of Schur’s inequality to arbitrarily many variables
X1, ..., X, is impossible without imposing additional constraints on the variables;
see, e.g., [8, 20]. However, the reciprocal Schur inequality may be extended to an
arbitrary number of variables without any additional requirements. Here it is.

Theorem 1 Let x1, ..., x, (n > 2) be distinct positive real numbers and let s € R.
Then the sum
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is zero if and only if s € {0, —1, =2, ..., —(n — 2)} and otherwise the sign of this
sum equals the sign of (=1)"Tls(s +1)--- (s +n —2).

Thus, if, for example, n = 4, then the sum (3) is zero for s € {0, —1, —2}, it is
positive if s € (—o0, —2) U (—1, 0), and it is negative if s € (-2, —1) U (0, 00).
Theorem 1 is actually a special case of the following theorem.

Theorem 2 Let —00o <a < 8 <00, letn > 2, andlet f : (o, ) > Rben — 1
times continuously differentiable in (a, B). Then

n

J(x))
_ J I 4)
= Hk¢j(xj — Xk)
is nonnegative (resp. nonpositive) for arbitrary distinct x1, . .., x, in (a, B) if and

only if £~V is nonnegative (resp. nonpositive) on («, B).

Clearly, Theorem 1 follows from taking (o, 8) = (0, 00) and f(t) = 1/¢°, in
which case
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The sum (4) is known as the nth divided difference of the function f and is
usually denoted by f[x1,...,x,]. In [1] and [3], Theorem 2 is proved as follows.
The Curry—Schoenberg B-spline associated with x; < --- < x,, is the function

n

n—1Z|xj—z|(xj—t)"—3

F(t;xq,..., =
(#; x1 Xn) ) Hk?gj (xj — x0)

j=1
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This is actually a probability density supported on [x1, x,,]. We have in particular,
F(t; x1,...,x,) = O0for¢ € [x1, x,]. An identity known as Peano’s formula says
that if f : [x1, x,] = Risin C"!, then

FIX1, oy Xn] = : /x" FO DO x1, ..., xp)dr. (5)
(n =D Jy

See, for instance, [2, Theorem 3.7.1]. This formula implies the “if” portion of the
theorem. As for the “only if” part, notice that if £~V (zy) < 0 for some 7y, then, by
the already proved “if” part, f[x1,...,x,] < O for all x1, ..., x, sufficiently close
to the point #p.

Requiring that f be n — 1 times continuously differentiable is actually too much.
The ultimate answer to the question about minimal conditions needed for a result
like Theorem 2 was given by Eberhard Hopf in his dissertation [5], defended in
1926. Incidentally, the referees of the dissertation were Erhard Schmidt and Issai
Schur.

Hopf first notes that Theorem 2 is true if only the existence of "~ on (a, B)
is required. He refers to a theorem by H. A. Schwarz [15], according to which for
an n — | times differentiable function f thereis at € (x1, x;) such that

(n—1)
FlXt ] = % ©)

See also equality (1.33) in [11]. Obviously, this formula shows that f[x, ..., x,] >
0if f"=D() > 0 on («, B). To tackle the case where "~V (1y) < 0 for some
fo and continuity of £~ at £y is not guaranteed, Hopf has recourse to a result
by T. J. Stieltjes [16], which says that f[xi, ..., x,] converges to f"~D(z)/n!
whenever xi,...,x, converge to fy with the additional condition that 7y stays
between the minimum and the maximum of x1, ..., x,.

Here is Hopf’s final theorem on the positivity of divided differences.

Theorem 3 Let —0co < @ < B < oo, letn > 3, and let f : (o, 8) > R bea
function. Then

n

fxj)

= Hk;éj(xj — Xk)
is nonnegative (resp. nonpositive) for arbitrary distinct x1, . .., x, in («, B) if and
only if f is n—3 times differentiable and =3 is convex (resp. concave) on («, B).

This is Satz 1 on page 24 of [5]. Repeating Hopf’s full proof here is beyond the
scope of this note. We therefore confine ourselves to its basic steps.
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Forn =3 and x| < x» < x3, the inequality f[x, x2, x3] > 0 reads

X2 — X1

fx2) < fx1)

X3 — X2

+ f(x3) ;
X3 — X X3 — X1
and this holds for all x; < xp < x3 if and only if f is convex. So let n > 4 and
suppose the theorem is true for n — 1. Without loss of generality assume that & and

B are finite and that x; < --- < x,. Let f[xy,...,x,] > 0 forall xq,...,x,. The
first goal is to prove that then f is differentiable. Take 0 < § < (8 — «)/2 and
fixn — 1 points ay, ..., a,—1 in (o, @ + ) as well as n — 1 points by, ..., b,_1 in

(B — 6, B). A simple identity for divided differences gives

n—1

{f[xl, vy Xp—1] = flar, -~-,an—1]}

n

=@y —a))fla, x1, ..., xp—1]+ -+ Gue1 —an—1) flar, ..., an—1, Xp—1]

for every choice of xi,...,x,-1 in (@ + 8,8 — 8). As the right-hand side is
nonnegative, it follows that f[x1,...,x,-1] > flai, ..., a,—1]. It can be shown in
an analogous fashion that f[xy, ..., x,—1] < f[b1, ..., by—1]. Consequently, there
is a constant M such that | f[x{,...,x,—1]] < M for all xy, ..., x,. A Hilfssatz

proved on page 12 says that this implies that f is differentiable on (o + §, 8 — §),
and as § > 0 can be made arbitrarily small, one gets differentiability on all of («, 8).

Now the induction step. It is based on two remarkable theorems. The first of them
is a generalization of formula (6). This generalization, Satz 1 on page 9, states that
if f is differentiable, then there are 1, ..., #,—1 with#; € (x;, x; 1) for all j such
that

1
f[X1,...,xn]=;f’[tl,m,tnq]- )

The second of the two theorems, Satz 2 on page 11, says that if f is differentiable,
then there is a t € (x1, x;,;) such that

1
;f/[-xlv"'txn—l]zf[tv-xlv"'a-xn—l]' (8)

Using equalities (7) and (8) and the differentiability of f proved in the previous
paragraph, one gets that f[x;....,x,] > O for all xy,...,x, if and only if f
is differentiable and f'[x1,...,x,—1] > O for all x1, ..., x,—1. By the induction
hypothesis, the latter is equivalent to the requirement that the (n — 4)th derivative
of f’ exists and is convex, which is the same as requiring that £"*~3) exists and is
convex. This completes Hopf’s proof.

One of the marvels in divided differences is that f[xy, ..., x,] is a complete
homogeneous symmetric (CHS) polynomial if f is a monomial of sufficiently large
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degree; see, e.g., [9, Lemma 4] or [11, Theorem 1.2.1]. To be precise, if g is a
nonnegative integer and f(¢) = t9t"~!, then

Slxt, oo xnl =hg(xt, ..., x) = Z XjiXjy Xy

1<j12h = Zjg=n

with the convention that ig(xy, ..., x,) := 1. This is in fact Jacobi’s bialternant
formula, which says that, for every nonnegative integer ¢,

2 n—2 _q+n—1
1xy xi---x) 7 x

2 n—2 _q+n—1
hg(xy, x X)) V(x1, x x,) = det 1x2 %y e

q 1, X25 - .y Xp 1, X25 ... Xp) = . . . )
_ -1
1x, x2 - x" 2yt
where V (x1, x2,...,x,) = ]_[l<i</.<n (xj — x;) is the Vandermonde determinant.

In the case of even g = 2p, we have
@2P=H0=D — 24— 1D)QRp4+n—2)---Qp+ D’ >0

on («, B) = (—o0, 00), and hence Theorem 2 implies that

n x2p+n—l
J
= hyp(xr . ) ©)
= i (xj — x0)
is nonnegative for arbitrary distinct real numbers xi, ..., x,. In the discussion
of [17] it is shown that
1 q
hg(x1,x2, ..., X)) = EE((XIZI +x2Zo+ -+ xnZy) ) (10)
for arbitrary real numbers xi, x3,...,x,, where Zy, Zs,..., Z, are indepen-
dent and identically exponentially distributed random variables with parameter 1.
Clearly, this is another way to see that hg,(x1, x2,...,x,) > 0if g = 2p is even.

We want to note that (10) is the case g(t) = t4/q! of the more general identity
E(g(x1Z1 +x2Zo 4 -+ + xpZy)) = Hlx1, X2, ..., X4]

where H(s) = s"2G(1 /s) and G(s) is the Laplace transform of g(¢). More about
the latter identity will be said elsewhere.
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Actually a sharp lower bound for CHS polynomials of even degree is known.
Namely, a famous theorem by Hunter [6] says that

hop (X1, ...y Xn) = (xF 4 FxHP (11)

— 2rp!

for arbitrary (x1,...,x,) € R". Combining (9) and (11) we see that Hunter’s
inequality is actually the following reciprocal Schur inequality.

Theorem 4 Let x1,...,x, (n > 2) be distinct real numbers and let p be a
nonnegative integer. Then

2p+n—1
n
X 2

1
J > (x +"'+)C2)p.
= Tl — w0~ 20p! !

The following theorem of Farwig and Zwick [3] provides us with another lower
bound for f[xi,..., x,]. Itis applicable if f (n—1) exists and is convex (and thus, in
particular, continuous).

Theorem 5 Let xy, ..., x, (n > 2) be distinct real numbers and let f : (¢, B) — R
be a function whose (n — 1)th derivative exists and is convex. Then, for distinct
X1, ..., Xy in (a, B),

n

) L gkt
=1 Hk;ej'(xj —xx) ~ (n—=1)! :

For example, if f(t) = 19, then Theorem 4 (with p = 2 and n = 3) and
Theorem 5 deliver the lower bounds

(f + 53 +x3)°

5
S and 2—7(x1 + X3 + x3)%,

respectively. If x; + x> + x3 = 0, then the first of the bounds is better than the
second, but if x, xp, x3 are very close to one another, then the second of the two
bounds is larger than the first.

The proof of Theorem 5 given in [3] starts with the fact that

n Xy 4+ x
/ tF(t;x1, .. x)dt = ———" =i ¢
X1 n
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for x; < --- < x,. Since "D is convex, we may invoke Jensen’s inequality to
obtain

Xn
FO D) = f("_1)</ tF(@;x,.. .,xn)dt>
X1
Xn
5/ FOD@O F(tix, .. xp)dt,
x1

and Peano’s formula tells us that the right-hand side of this inequality is nothing but
(n — D! flx1, ..., x,]. This completes the proof.

Interestingly, Pecari¢ and Zwick [10] proved that existence and convexity of
f (n—=1) implies that f[xi, ..., x,] is Schur convex. We first want to notice that if
f (n=1) i5 continuous on (, B), then f[x, ..., x,] may be continuously extended to
a symmetric function on all of (¢, 8)". Schur convexity means that f[x1, ..., x,] <
fIy1, ..., yn] whenever x < y, where x < y in turn means that x; > --- > x,,
vz 2y Y x < Yy forl <k <n—land Y5 x =35,y
For example, if x; > - -+ > x,,, then

< (XL e s Xp). (12)

gy e ooy

(xl+"'+xn x1+...+xn)
n n
Taking into account that f[c,...,c] = F@=D(c)/(n — 1)!, we conclude from (12)
and the Schur convexity of f that f(”_l)(c)/(n — D! < flx1, ..., x,] with ¢ equal
to (x; + - - - + x,,)/n for arbitrary points x, ..., x,,. This is the proof of Theorem 5
presented in [10].

Our interest in the topic of this note was aroused by the question on whether
the positivity of one of the exotic expressions in our recent paper [1] is related
to Schur’s inequality (1) of math contest fame. We could not prove extensions
or generalizations of Schur’s original inequality and rather became aware that we
entered the business of inequalities for divided differences. The interpretation of
these inequalities as reciprocal Schur inequalities seemed us worth exposing them
in a note.

We remark that Schur’s original inequality (1) is known to hold with x*, y*, z*
replaced by f(x), f(y), f(z) witha function f : (¢, B) > Randfora < x <y <
z < B if and only if f belongs to the so-called class Q on («, 8). The class Q was
introduced in [4] and is defined as the set of all functions f : (o, 8) — R satisfying

F=Dx4+712) £ ——FO) + £ (D)
1—1 T

whenever « < x < y < z < Band 0 < t < 1. Obviously, for nonnegative
functions f, this condition is weaker than the convexity condition

fd=-—vx+712) = —-1)f(x) + 7).
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It is readily seen that, besides the nonnegative convex functions, the class Q also
contains all nonnegative monotone functions and all nonnegative functions f for
which sup, f(¢) < 4inf; f(2).

Two more occurrences of reciprocal Schur inequalities we want to mention
are [14, 18]. Roventa and Temereanca [14] proved that f[xy,...,x,] > 0if fisa
polynomial such that £~ > 0, referring to [12] in this connection. Paper [18] by
G. N. Watson contains a reciprocal Schur inequality in exactly our understanding.
There it is proved that if ¢ > 0 and xi, ..., x, are distinct real numbers, then

X

> izt m is positive for a > 1, of the same sign as (—1)"*!1if0 < a < 1,

and zero for a = 1. Watson’s proof is via representing the sum as determinant and
then proceeding by induction on n. Obviously, the result follows from Theorem 2

with f(t) = a, in which case f"~V(¢) = a’ (loga)" .
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