The Matrix Equation x3 + y3 =223
The diophantine equation

x4y =27 ey
arises when one considers cubes in arithmetic progression: if x3 < z3 < y3 are in
arithmetic progression, then y3 — z3 = z3 — x3, which yields (1). Euler [1, Art. 247],
Mordell [2, Ch. 15, Thm. 3], and Sierpinski [3, Ch. 2, p.79] showed that (1) has no
solutions in integers except for the frivial solutionsx = —yandz = 0;orx =y = z.
In particular, one cannot find three positive cubes in arithmetic progression.

We consider the matrix analogue X3+Y3=2730f(1),where X, Y, Zaren x n
matrices with integer entries. Whereas the corresponding scalar diophantine equation
has no nontrivial solutions, we construct two families of nontrivial solutions to the
matrix analogue.

We look for solutions of the foom X = P+ Q,Y = P — Q, and Z = P. This
yields the matrix equation 7(P) = Q?P + QPQ + PQ? = 0.

We first take Q = [8 (1)], the companion matrix of the polynomial x2, so that
Q? = 0. A calculation shows that 7(P) = 0 if and only if P is upper triangular.

We next take Q = [(]) :{ ], the companion matrix of x% + x 4 1, which has eigen-
values A = ¢*/3 and p = ¢*"/3. If Ox = Ax with x # 0 and y*Q = uy* with
y # 0, then xy* # 0 and 7 (xy*) = (A> 4+ Au + u?)xy* = 0. Then, since Q has
integer entries, there must be a nonzero matrix P with integer entries such that
T(P) = 0. A direct calculation shows that 7 (P) = 0 if and only if P is of the
form [aib fa ].
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