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Abstract—Deep learning methods have recently been used
to construct non-linear codes for the additive white Gaussian
noise (AWGN) channel with feedback. However, there is limited
understanding of how these black-box-like codes with many
learned parameters use feedback. This study aims to uncover
the fundamental principles underlying the first deep-learned
feedback code, known as Deepcode, which is based on an RNN
architecture. Our interpretable model based on Deepcode is built
by analyzing the influence length of inputs and approximating
the non-linear dynamics of the original black-box RNN encoder.
Numerical experiments demonstrate that our interpretable model
— which includes both an encoder and a decoder — achieves com-
parable performance to Deepcode while offering an interpretation
of how it employs feedback for error correction. '

I. INTRODUCTION

Although it is known that feedback does not increase the
capacity of memoryless channels, it can reduce the cod-
ing complexity and improve reliability. Moreover, for finite
blocklengths and fixed rates, constructing codes that achieve
the smallest bit or block error rate remains open. This has
motivated the construction of deep-learned error-correcting
codes (DL-ECC) [1]-[8] in which the encoding and decoding
functions are parameterized by a (usually) very large number
of parameters in a neural network architecture, which are then
learned by adjusting these to numerically minimize a loss func-
tion. This approach differs markedly from previous feedback
coding schemes [9]-[13] which are analytically constructed.

Due to the increasing model complexity, it is difficult to
understand how these codes accomplish error correction, and
this leads us to perceive learned models as “black boxes”. Such
an understanding is important to a) build trust in these models,
b) identify their weaknesses, and c) reveal how feedback is
used, potentially pointing us in the direction (similar in spirit
to [14]) of new (possibly non-linear) coding schemes. We aim
to open the black box and interpret a prominent early example
of the learned feedback encoders and decoders: Deepcode [1].

Deepcode is a recurrent neural network (RNN)-based non-
linear coding scheme for AWGN channels with passive feed-
back. Its experimental error performance was shown [1] to
outperform that of Schalkwijk-Kailath (SK) [9] and Chance-
Love (CL) [12] schemes in the case of passive noisy feedback.
More recently, a state propagation-based non-linear feedback
code based on RNNs has emerged [8] which encompasses SK,
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CL, and Deepcode and is especially robust to feedback noise
levels; but it is still unclear exactly how this scheme utilizes
the feedback symbols for error correction.

The relevant notion of interpretation depends on context.
Here we aim to provide an understanding of the deep-learned
models similar to the analytically constructed feedback coding
schemes. Deepcode [1] was the first to offer a limited inter-
pretation of the underlying functioning of encoders / decoders
through scatter-plots and coupling. We significantly expand
the understanding of how Deepcode works here.

Some approaches have been proposed to understand RNNs
[15]-[17], but none is immediately applicable in this novel
DL-ECC setting. The validity of explanations can be contro-
versial as well [18], [19]. Unlike previous classification tasks,
we focus on understanding a pair of RNNs, an encoder and a
decoder, which are jointly learned in the presence of channel
noise, to transmit and decode exponentially many messages.
Our prior work [20]-[23] has focused on interpreting TurboAE
[24] — a deep-learned forward error-correcting code based on
convolutional neural networks (CNNs) placed into a Turbo-
code-like architecture with an interleaver, in the absence of
feedback. The coding structure of the feed-forward, CNN-
based model with an interleaver varied markedly from the
RNN and feedback structure of Deepcode, and while some
methods carry over, new techniques must be developed for
interpretation in the feedback setting.

Contributions. We suggest several tools for understanding
how Deepcode works, including simplifying RNN through di-
mension reduction and pruning, outlier analysis, architecture-
based insights, influence length, and nonlinear input-output
map approximations. Our interpretation efforts culminate by
proposing an interpretable encoder and decoder approximation
yielding an understanding” of how feedback is used to correct
errors in Deepcode, with competitive, and sometimes even
superior BER performance in noisy or noiseless feedback.

Notation: subscripts ¢,j represent time and bit indices,
respectively. Vectors of random variables are expressed in
bold, with superscripts indicating their lengths. KX and N
represent the lengths of message bits and codewords, respec-
tively. The coding rate is r = K/N. SNR; and SNRy,
represent the forward and feedback channel Signal-to-Noise
Ratios, respectively. R™ represents n-dimensional real vectors.
IF5 denotes the finite field with elements O or 1 and addition

2An explicit scheme with a small number of learnable parameters and an
interpretation of how error-correction is performed at the encoder and decoder.

ATrorged SGHsEA 82k iMdd $3 Ve E© @R WifdIEChicago Library. Downlip4@gi on September 04,2025 at 21:40:02 UTC from IEEE Xplore. Restrictions apply.



b T . y b
Yi—1
Yi—1
®
ﬁi—l ~ N(Oa O-J%b)

Fig. 1: AWGN channel with passive noisy feedback.

€P. Function I(x) = 1 if the argument is true (non-negative),
0 else.

II. SYSTEM MODEL

Fig. 1 shows the AWGN channel with passive noisy feed-
back. The message bits b € FI are sent through N time steps.
At each time instant ¢ € {1,..., N}, the forward channel is
characterized by y; = x; +n;, where x; € R is the transmitted
symbol, and n; ~ N (0, a;) is the Gaussian noise, independent
and identically distributed (iid) across time steps. The receiver
sends channel outputs back to the transmitter with one unit
delay through the noisy channel: ¢, = y,—1 + n;,—1. Here,
ni—1 ~ N(0, U?‘b) is also an iid Gaussian noise.

Encoding functions f; map the message bits and feedback to
transmitted codewords (joint coding and modulation), denoted
as z; = fi(b,y'"!). The decoding function g maps the
channel outputs to estimated message bits b = g(yV) € FX.
We impose an average power constraint 1 [[|x[|3] < 1 where
x = (v1,--,xN). Performance is measured through the bit
error rate BER = & 3" P(b; # by).

Deepcode [1] is a DL-ECC designed for this AWGN
channel with rate 1/3 (Fig. 2). The encoding scheme con-
tains two phases. In the first phase, the K message bits
b under BPSK modulation ¢ = 2b — 1 € {-1,1}¥
are transmitted, uncoded, through the channel, yielding the
feedback ¥ = [f1, - ,¥K]. The encoder stores noises in
the first phase n + © = § — ¢ € RX for later use.
In the second phase, the encoder uses a directional RNN
with a tanh activation function and linear combination layer
to sequentially generate 2K parity bits c; 1 and c¢; > where
i€ {l,...,K}. At time instant 4, we define the input to the
RNN as P; = [b;,n; + 7, ni—11 + i—1,1,Mi—1,2 + 1,2
which contains the current message bit (b;), the noise in the
first phase (n;+n;), and the feedback noises resulting from the
transmission of parity bits in the second phase (n;,_1 j +7;_1 ;
=Ui—1,j — Ci—1,5- j € {1,2}). The codewords are denoted as
XN = [e1,-+ ek, e, 012,021,622, ¢, CK 1, CK 2] The
decoding scheme uses a two-layered bidirectional gated re-
current unit (GRU) to estimate message bits b from the noisy
codewords Y. In what follows, we initially focus on the
noiseless feedback case, where n; = n;—11 = nj—12 = 0.
We later extend our scheme to noisy feedback.

In Deepcode, zero padding is applied to the last message
bit to reduce the error. Codewords are assigned different

learned power weighting parameters w and a to balance errors.
Finally, the codewords are normalized to satisfy the power
constraint (Fig. 2). The encoder and decoder are trained jointly
to minimize the binary cross-entropy (BCE). “TensorFlow
Deepcode” will refer to the original Deepcode implementation
with N, = 50 hidden states. We implemented our “Pytorch
Deepcode” based on the TensorFlow Deepcode?.

Deepcode

i ]
Wi power |
C; L@
Encoder b BPSK =3 allocation|
i _
:W2 a; i Ci
o e ®——® ‘—‘: Normalization }—~ &1
RNN ' ! .
1 (tanh) W3 i G2
- — Ci,24_®7|_ _________ i
Deepcode b, b, by ignore
Decoder :
4—-[ Dense }-—-{ Dense ‘
T f
——{bi-GRU ———{bi-GRU |
T T
] bi-GRU |- bi-GRU|
T T
Y1 Y10 Y1,2 Y2, Y2,1:Y2,2 Yo Yk Yk2  YE+1 YK+1,0VK+12

Fig. 2: Deepcode encoder (above) and decoder (below). Here,
i €{1,..., K +1} because the message bits are padded with
a zero. When ¢ = 1, the initial value for phase 2 noises is 0.

III. MODEL REDUCTION

Since Deepcode has Nj = 50 hidden states, the model
becomes relatively complex, with over 65,000 parameters.
This makes direct interpretation challenging. In this section,
we perform model reduction (through dimension reduction and
pruning) to find a model of much smaller dimension / fewer
parameters without sacrificing performance.

A. Dimension Reduction

The term “dimension” here refers to the number of hidden
states in both the encoder and decoder. We tried two known
model reduction techniques (Appendix A-A of [25]), but
their BER performance was much poorer than directly re-
training models of smaller dimension. In Deepcode’s linear
combination with 50 hidden states (which generate parity bits),
only around 13 out of the 50 trained weights had significant
absolute values; we thus pursued training models of dimension
< 13 directly using the following technique: we initially
trained Deepcode with reduced dimension using a block length
of 100 without power allocation and then re-trained with a
block length of 50 with power allocation inspired by [4]. The
corresponding performance is shown in Fig. 3. The parameters
are trained at various forward SNRs, defined as —101log; aj%.
It turns out that a reduced dimension can approximate the per-
formance of Deepcode with 50 hidden states quite effectively.
When the SNR; is low, larger dimension codes exhibit better
performance. Conversely, when the SNRy is high, smaller
dimensions perform better. This may occur because training
a large dimension becomes challenging in the presence of a
small number of errors (small BER, small BCE). We expand
on this in Section V.

3Code is available at https:/github.com/zyy-cc/Deepcode-Interpretability
and https://github.com/hyejikim1/Deepcode.
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Fig. 3: BER performance vs. forward SNR, different dimen-
sions (number of hidden states in RNNSs), noiseless feedback

B. Pruning

We observed that in the trained parameters, some values
have significantly smaller magnitude than others. Our next
approach was simple: to prune (set to zero) the weights with
small absolute values. It turns out that pruning smaller weights
(up to a certain amount) has minimal impact on the model’s
BER performance, while yielding a more compact and efficient
model (see Appendix A-B in [25]).

In the following sections, “reduced Deepcode (Ny)” refers
to the model obtained by retraining from scratch with N},
hidden states in PyTorch. This process includes pruning the
encoder and retraining the decoder. To ensure validity, we gen-
erate scatter plots illustrating the relationship between parity
bits and phase 1 noises (Appendix E of [25]), demonstrating
consistency with Deepcode [1]. We focus on the simplest
reduced Deepcode (5) later.

IV. OPENING THE BLACK BOX

In this section, we open the black box of Deepcode’s
encoder by looking first at the influence length of the learned
encoder RNNs based on different input perturbations, and then
dig further to understand the actual function learned through
the use of scatter plots and regression.

A. Influence Length

For a specific input 3, we define the expected L, difference
of parity bits at time instant ¢ as L; 3 an = E|f(P;) —
f(Pl(ﬂ’A))Hl. Here, P; is the RNN input, and the vector
PEB “A) s obtained by perturbing the element 5 in the
vector P; by A. E.g., flipping the message bit results in
Pi(bi’A) = [bi@l,ni,m_lyl,ni_l)g], where A =1 € Fo
or perturbing one of the noise components gives PE”“A) =
[bi, n; — A,ni_171,n¢_17g], for A € R the perturbation.

The influence length of input 8 captures the number of time
steps over which a change in the input affects the parity bits.
Given a small value § (set at 0.05) and a perturbation of the
input at position ¢ (randomly chosen as ¢ = 5), the influence
length is defined as:

K
L = I|L; >0 L .
B,A ; ( ,8,A keg_@f}(} k,ﬂ,A)

For each model, £y, A (Appendix B Table. IV [25]) remains
constant, while the influence length for the noise (Table. IIT of
Appendix B [25]) increases with A, but eventually levels off.
Together with BER plots, we conclude that longer influence
lengths are effective in addressing rare events when the noises
become extremely large. Based on our experimental maximum
influence lengths, it seems unnecessary to use 50 hidden states
(as in the original Deepcode) to achieve comparable influence
lengths and similar BER performance. As the noises follow a
Gaussian distribution, the probability of exceeding 3o is low.
Consequently, we establish our interpretation based on small
A deviations Ly, A = Lp,a=2and Ly, , A =Ly, , A =1

B. Nonlinear Dynamics

We now further peel open the black box and look at the
specific learned RNN functions directly. The RNN of Deep-
code’s encoder (original or reduced) is a discrete nonlinear
dynamical system h; = tanh(WypP; +Wnnh;_;+b) where
Whp, Whn, b are the learned parameters. After pruning, the
learned RNN parameters in the reduced Deepcode (5) have a
special structure:

- {Qp,l(biyni)a if p € {1,2,3}
(2y4 -

Qp2(ni—1,1,mi—12,hi_1), if p € {4,5}

where h;, represents the p-th element of hidden state
h;. In particular, each of the 5 hidden states is either a
non-recurrent ¢, function only of the message bits and
phase 1 noise, or is a recurrent g, function only of the
phase 2 noises and past hidden state. The parity bits are
linear combinations of the hidden state elements c¢;; =

3 5
Zp=1 ap ip,1(bi, 1) + Zp=4 Qpip2(Ni1,1,Mi—1,2, 1),
where oy, ; are the learned coefficients. We represent the non-
recurrent component of ¢; 1 as ¢; and that of ¢; 2 as ¢j.

Approximating the non-recurrent terms: Inspired by Deep-
code [1], for the non-recurrent terms, we consider the scatter-
plot (uniform message bits, phase 1 noises Gaussian) of
functions ¢; and ¢f (Fig. 7 of the Appendix C in [25]). They
show that functions ¢; and ¢} appear piecewise linear (PWL)
for each of the two possible message bits b; = 0 and b; = 1
(the original TensorFlow Deepcode has a very similar shape),
and hence these functions may be well approximated by two
segments. We will use the indicator function I to represent the
segments by adjusting the slopes later.

Understanding the recurrent terms through outlier analysis:
Unlike the non-recurrent terms, both %; 4 and h; 5 depend on
previous inputs. Consequently, we visualize the trajectory of
the hidden states over time. We plot the black box function
over Gaussian noises and true bits. From Fig. 4, we observe
that h; 4 predominantly takes the value of 1, while h; 5 is
mostly —1. Notably, h; 4 has outliers when the past message
bit is O (similarly h; s has outliers when the bit is 1), and
the noises are unusually large. In most cases, the values of
h;.4 and h; 5 cancel each other out when forming the parity
bits. However, outliers significantly impact both parity bits,
signaling and enabling error correction, as further interpreted
in Section V.
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Fig. 4: Outlier values of hidden states (left) and their impact on
parity bit ¢; 1 (right). The outliers cause deviations in the parity bits
from the regular values in the right figure.

V. INTERPRETABLE MODEL OF A DEEPCODE-LIKE
ENCODER AND DECODER

Having built up an understanding of the learned encoder
in the last sections, we now present an interpretable model
built on the reduced models. By interpretable model we mean
succinct non-linear expressions for the encoder f and decoder
g that yield BER that closely resembles that of Deepcode. We
consider the reduced Deepcode (5) that captures the essential
dynamics of Deepcode. The ideas carry over but become
more complex as the number of hidden states increases. The
interpretable models confirm that the encoder tries to use the
feedback to assist the decoder in error correction.

A. Encoder Interpretation

1) Reduced Deepcode (5): We suggest the following basic
interpretable model with 5 hidden states:

¢; = 2b; — 1 (Deepcode’s phase 1 — uncoded transmission)
non-recurrent outlier analysis

non-recurrer outleranaysis
cin = einl(—(2b; — 1)n;) — eah; 4 —eah;s (D
cio= —enl(—(2b; —1)n;) —esh;a —eah;s ()

where e; and es are learned coefficients.

Analysis: In the “red” portion, the parity bits ¢; 1 and ¢; o
are energy efficient: if the transmitted message bit is b; = 0,
and the noise in the first phase added to b; is negative, then
the parity bits will not send new information about n; (not
needed as a binary detection would yield the correct estimated
bit). Otherwise, the parity bits contain a scaled version of n;.
The case is similar for b; = 1 and positive phase 1 noises.
A similar interpertation was obtained in [1]. What is new
with respect to the limited interpretation of [1] are the “blue”
portions in (1) and (2). From our earlier studies, we know that
feedback noises affect the outputs for 1 time unit in reduced
Deepcode (5), i.e. Ly, ;.A = Ly, ,,o = 1. Therefore, h; 4 and
h; 5 convey information from the last time step, as follows:

If b1 =0, then h; 5 = —1 and

hia = tanh (—kini—1 + koni_11 — kani_12 + ka)
If b1 =1, then h; 4 =1 and

his = tanh (—kin;—1 + kani—1,1 — kani—1,2 — ka)

where k1, ko, k3, and k4 are learned coefficients.

Analysis of the blue portion: The blue portion serves as the
error correction for the previous bit, and its value depends on
the phase 1 and phase 2 noises from the last time step.

o Without Outlier: In small noise scenarios (as depicted in
Fig. 5, yellow for h; 4 or purple for h;s), h;4 (1) and h; 5
(—1) cancel each other out in the parity functions.

e With Outlier: For purple values in the left and yellow on
the right of Fig. 5 we have outliers:

hi.a: outliers (value < 1) occur when the message bit
b;—1 = 0, phase 1 noise n;_1 is too positive, and phase
2 noise n;_1,1 is too negative, or n;_1 2 is too positive.
h; 5: the situation is analogous to above, with b;_; = 1,
and with the noise signs and magnitudes reversed.

Fig. 5: Outlier analysis of the “blue” portions in (1) and (2).

2) Reduced Deepcode (7): The “enhanced” interpretable
encoder (for N; = 7 hidden states) is designed to address
more rare events and improve overall performance relative to
the N, = 5 interpretable encoder. It introduces two more
hidden states h;¢ and h;7 to match the longer observed
influence lengths. The details are in Appendix D in [25].

B. Decoder Interpretation

In the decoding process, we construct a simple non-linear
code for 5 hidden states using the symmetry of the parity bits.
Our decoder estimates the message bits as:

Oij = tanh(d; 16 — d;2(¢i1 — Gi2)
—d;3(Ciy11 + Civr,2) + dja)

= tanh(djvléi + dj,lni — dj,Q(Ei,l — 51'72)

—dj2(nin —ns2) — dj3(Cit1,1 + Cig1,2) 3)
T error correction
—dj3(Nit11 + Niv12) +dja)
) Ni=5
A 0 if D; < 0.5,
b = D= 5O | @
1 if D; > 0.5. 7 j;ﬂ i @

where o represents the sigmoid function, and all d and 1 values
are learned parameters, and post power-allocation normalized
parity bits are ¢;, ¢; 1 and ¢; 2. A linear combination of N; = 5
decoding results is used in the final decision.
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Here, we assume the positivity of learned parameters in the
encoder and decoder, except for the d; 4 bias; other cases are
addressed in symmetrically equivalent codes.

Analysis: the ” (“teal”) portion is used to eliminate
phase 1 (2) noise in (1) and (2).

e Phase 1 Noises: The ” portion in (3) eliminates
the noises added in the first phase by subtracting the
current parity bits.

o Phase 2 Noises: The “teal” portion in (3) eliminates phase
2 noises by adding future parity bits. Without outliers,
the sum is about 0. With outliers, error correction is
demonstrated in Table I:

— hit1,4(< 1): Consider the scenario where the mes-
sage bit b; = 0; we want O; ; to be negative for
correct detection. The outliers in h;;1 4 will push
the decoding value of O; ; to a negative value:

! n = E
- dj72(”i,1 - ”i,z) T - j,3(czT+1,1 -+ CZT+1,2) J’

— hit1,5(> —1): For b; = 1, the situation is reversed,
and O; ; needs to be positive for correct decoding.

- dj72(”;,1 - ”ziQ) l - j,S(d+1,1 + d+1,2) T

bi | mi | i | ma2 | higia | hitis | Cigry | Oiy
0|+ | — + <1 -1 0 J
1 —- 1+ [= |1 > 1 |4 T
TABLE I: Error Control
C. Training

Our interpretable encoder and decoder, based on 5 hidden
states in equations (1), (2), (3), and (4), along with power
allocation, have parameters (e, k, d, w, a) that we learn rather
than use to approximate Deepcode’s outputs. During training,
we focus on a block length of K = 50. There are a total
of 43 parameters in our interpretable model, with 12 of them
(w and a) associated with power allocation. We optimize all
parameters to minimize BCE at different forward SNRs.

Table. II presents the BER performance when matching dif-
ferent interpretable / original encoders / decoders of Deepcode.
The results indicate that the interpretable encoder and decoder
perform comparably to the reduced code. The BER perfor-
mance of the interpretable model, based on 5 hidden states
across different SNRy, is shown in Fig. 3. Our interpretable
model exhibits better performance than the original Deepcode
at high SNR; but experiences decreased performance at low
SNR; due to what we believe is its limited influence length
for capturing unusual sequences of noise events (e.g. longer
sequences of phase 2 noises being unusually large). Moreover,
we experimentally demonstrate that our encoder with 7 hidden
states improves the BER performance by an order of magni-
tude, making it comparable to Tensorflow Deepcode (Table.
V in Appendix D [25]). We are working on developing an
Ny, = 7 interpretable decoder for our Nj = 7 encoder.

Encoder | Decoder | BER SNRy 0 | BER SNRy 2
original | original | 6.375e — 05 8.417e¢ — 09
interpret. | original | 7.616e — 05 1.300e — 09
original | interpret. | 7.498e — 05 5.350e — 09
interpret. | interpret. | 7.595e — 05 5.694e — 10

TABLE II: BER Performance of interpretable models of
dimension 5 (noiseless feedback).

D. Equivalent Codes

The interpretable encoder and decoder, based on 5 hidden
states as discussed earlier, provides one particular example of
possible codes. There are eight distinct equivalent combina-
tions involving (1) positive or negative signs of components
in the parity bits, and (2) the value selections in h; 4 and h; 5,
which can be either 1 or —1 (details are in Appendix F of [25]).
We verified (Appendix F Table. VI) that all 8 interpretable
models yield comparable performance in terms of BER.

E. Noisy Feedback

After analyzing noiseless feedback, we expand our study to
include noisy feedback. In the case of noisy feedback, reduced
Deepcode (5) has a structure similar to that in the noiseless
feedback, and all interpretation steps follow:

« PWL approximation: from the scatter points we observe
that the knee point shifts as the feedback SNR (SNR ¢;)
decreases (Appendix C Fig. 8 [25]). Based on these obser-
vations, we extend our interpretable model to incorporate
varying knee points and modify the non-recurrent part of
the encoder (n; + 72;)1(—(2b; — 1)(n; + 7)) slightly:

If b = 1, (ni + 7y — A2)I(—(20; — 1)(n; + 71 — A2))

where A\ and A, are learned parameters.
o Outlier analysis: The number of outliers increases as the
feedback SNR decreases. (Appendix G Fig. 13 [25]).
The BER performance is shown in Appendix G Fig. 14 [25].
With noisy feedback, the interpretable model with varying
knee points performs as well as the 5 hidden states Deepcode
and slightly outperforms the interpretable model with fixed
knee points. This suggests that the varying knee points adapt
to the feedback noises and attempt to mitigate their impact.

VI. CONCLUSIONS

We presented an interpretable model for the RNN-based
Deepcode. We demonstrated the impact of feedback on de-
coding through outliers and showed that our interpretable
model performs comparably to the original Deepcode with
significantly fewer parameters, both in noiseless and noisy
feedback scenarios. Notably, it outperforms Deepcode at high
forward SNR. However, at low SNR ¢, our interpretable model
exhibits reduced performance, suggesting that the short influ-
ence length of our interpretable model limits error correction.
Future research may focus on exploring the interpretation of
models with longer influence lengths, and on identifying an
algorithm for the construction of (analytical) feedback codes
with a given influence length.
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