Flavio Manenti, Gintaras V. Reklaitis (Eds.), Proceedings of the 34™ European Symposium on
Computer Aided Process Engineering / 15" International Symposium on Process Systems
Engineering (ESCAPE34/PSE24), June 2-6, 2024, Florence, Italy

© 2024 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/B978-0-443-28824-1.50584-6

Interactive Coding Templates for Courses and
Undergraduate Research Using MATLAB Live Scripts

Ashlee N. Ford Versypt*, Carley V. Cook, Austin N. Johns

Department of Chemical and Biological Engineering, University at Buffalo, The State
University of New York, 507 Furnas Hall, Buffalo, NY, 14228, USA
ashleefv@buffalo.edu

Abstract

Undergraduate students in core chemical engineering courses spend a significant
amount of time solving problems. For courses or research experiences early in
undergraduate study, students generally have not yet taken advanced mathematics,
numerical methods, or programming courses, making it challenging to address realistic
problems without such tools. The resources provided in this paper aim to enable
students, who are still in the early parts of their curriculum, to solve realistic problems
in their coursework or research with the aid of faculty-provided interactive coding
templates built in the MATLAB live script format. These files combine executable
MATLAB code, formatted explanatory text and equations, images, and code output
directly in a single file. Here, these MATLAB live scripts are referred to more
generically as interactive coding templates because they could alternatively be provided
in other coding languages (such as Jupyter Notebooks for Python or Julia). The paper
details a set of interactive coding templates for use in training undergraduate students in
the introductory chemical engineering material and energy balances course and in an
undergraduate research experience on the topic of biomedical applications of systems
engineering tools. Each interactive coding template provides background information
about the topic, the equations or a diagram defining the technique, an example problem
with worked solution, and fully functional code that can solve the example problem and
can be extended to new problems that use the same types of numerical methods.

Keywords: MATLAB live script, numerical methods, undergraduate education,
undergraduate research.

1. Introduction

Undergraduate students in core chemical engineering courses spend a significant
amount of time solving problems. Often assignments and examinations focus on
analytical solutions to simplified problems. More complicated realistic problems require
the use of computers to determine numerical solutions. For early courses such as
material and energy balances (MEB), students often have not yet taken advanced
mathematics, numerical methods, or programming courses; learning to program is
typically not an explicit learning objective of the core chemical engineering courses. We
aim to enable students to solve realistic problems early in the curriculum with
instructor-provided interactive coding templates built in the MATLAB live script
format. Interactive coding templates typically provide background information about the
topic, the equations or a diagram defining the technique, an example problem with a
worked solution, fully functional code that can solve the example problem, and a clear
pattern or instructional notes for interacting with or editing the code to solve new
problems of the same type. Several previous resources have provided interactive coding
templates for use in engineering courses, including a conference paper by our team that



3500 A. N. Ford Versypt et al.

focused on providing and surveying MATLAB and Python-based interactive coding
templates for courses across the chemical engineering curriculum and training faculty to
use these materials (Johns et al. 2023). Readers are encouraged to see the references and
detailed table surveying the literature in this previous publication (Johns et al. 2023) and
the associated repository of open-access materials that we developed featuring nine
interactive coding templates demonstrating numerical methods through examples from
MEB, fluid mechanics, heat transfer, separations, thermodynamics, and reaction
engineering (Ford Versypt et al. 2022). We also have previously developed graphical
user interfaces for use in engineering education (Eastep et al. 2019; Bara et al. 2020);
however, a disadvantage of these tools is that users cannot easily modify the original
problem statement to adapt to new problems, which is very straightforward using
interactive coding templates. Distinct from the previously published materials, our
emphasis here is on early undergraduates (first- and second-year students) and
providing templates that students can use to solve a variety of problems encountered in
their first core chemical engineering course, MEB. Beyond coursework, undergraduates
interested in joining research teams in computer-aided process engineering are often
discouraged from doing so until they have completed a suite of advanced mathematics
courses. To onboard students with limited mathematics and programming backgrounds
into research that involves describing dynamic processes through systems of ordinary
differential equations (ODEs), we provide the same type of interactive coding templates
to reduce the barrier to entry into mathematical systems engineering research.

We developed a set of MATLAB live scripts for training undergraduate students in the
introductory chemical engineering MEB course and in an undergraduate research
experience on the topic of biomedical applications of systems engineering tools. The
MATLARB live script files combine executable MATLAB code, formatted explanatory
text and equations, images, and code output directly in a single file. Students are
instructed on the interactive coding template and then are assigned various problems to
work on their own, starting from the interactive coding template rather than from a
blank MATLAB file. The pedagogical emphasis is on the covered topic rather than on
learning to program or the details of the numerical methods. For the MEB course, our
interactive coding templates focus on solving linear systems of equations. For
undergraduate research, the topic is applying conservation balances to populations of
cells and amounts of chemical species in living organisms and solving these dynamic
problems with systems of ODEs. Undergraduates with a wide range of mathematics and
programming backgrounds have successfully used interactive coding templates as they
study realistic applications with linear systems of equations and systems of ODEs.

2. MATLAB live scripts for material and energy balances course

Classically in the MEB course systems of linear equations are solved algebraically by
hand or via spreadsheets as in three popular textbooks (Felder, Rousseau, and Bullard
2016; Liberatore 2019; Murphy 2023). The material developed here supplements the
section in the Liberatore (2019) textbook titled Systems of linear equations, specifically
as a MATLAB Live Script-based alternative to the subsection titled “Solving systems of
linear equations in a spreadsheet.”

In the MEBLinearSystems repository (Johns and Ford Versypt 2022a), we have three
MATLARB live script files for use directly in MEB courses or for introducing systems of
linear equations more broadly. The first file is Systems_of Linear Equations.mlx
(Figure 1), which includes explanatory text and instructions, a worked example, and an



Interactive Coding Templates for Courses and Undergraduate Research Using 3501

MATLAB Live Scripts

interactive example. The second file contains the corresponding solution to the
interactive example and is named Systems of Linear Equations sol.mlx. We have
created an explanatory video (Johns and Ford Versypt 2022b) narrating the solution.
Systems_of Linear Equations.mlx includes an interactive example section (Figure 1)
that can also be used as a template for solving other systems of linear equations, such as
those encountered in homework assignments in MEB courses.

Systems of Linear Equations
The examples in this MATLAB Live Script are adapted from examples from the Systems of linear equations
section from M. W, Liberatore, Material and Energy Balances ZyBook. Electronic, Interactive textoook: ZyBooks,
2019.

Finally, use the backslash operator to solve for the values of 1, 12, and +1. The solution will take the form of a
Code authors: Dr. Ashlee Ford Versypt and Austin Johns

column vector, x. wilh the first, second, and third rows representing the vaiues of 41, 2, and 1 respectively.
fu@buttalo ed

Corresponding author: ashiee

Table of Contents

1
1
1
3
Note: If the first and second column of the coefficient matrix a were exchanged, the solution would take the
Learning Objectives form of & comn vecor, x, with the frst, second, and third Fows representing the values of 1z, 11, and x
« Salve a system of inear equations using the backsiash operator in MATLAB. respectively. The order of the columns in the coeflicient matrix determines the order of the rows in the sokution
vecor
Systems of Linear Equations in MATLAB hetls
Systems of linear equations consist of coefficients, constants, and variables, which can be arranged into
matrices. The matrix form to express a system of linear equations is matrix A for the coefficients, matrix x for
the variables, and matrix b for the constants, which yleids the formula Ax = b. Solving for the variables Involves. b lo

taking the transpose of A multiplied by 5 or A™'b = x_ Salving for the variables of a system of iinear equations
In MATLAB involves using the backslash operator,

= A\b will retumn the solution to x = A~'h

Worked Example
For example, let's look at the following system of linear equations.

Interactive Example / Template
This example can be used as a tempiate to solve system of lnear equations of any size. Using the same
procedure as the worked example. solve the following system of inear equations.

3y 44y -9 = 2x
S = dny - 6ry 42

2= Sry - fay =4 =0
— K

First, separate the constant terms and the variable terms resulting the following system of linear equations,

B4+ =9
A AT
Sy = Bxy =4

Second, create the coefficient matrix . Each row of the coefficient matrix represents the coefficients of one of

the linear equations and each column represents the coefficients of one of the variables across al thvee linear
equations. A has the same number of rows and columns, which is equal to the total unknown variables and the

™

2e 44

As there are four equations and four unknowns, A wil have four rows and four columns, bwill have four
tows, and x will return the solutions to the four unknown variables. Enter in the corresponding vakies below
(expanding the number of rows or columns, if needed for new probiems) and press run.

number of equations in the system
[
1
Next, create column vector of constant terms, matrix & Each row of the column vector represents the isolated

constant term of a linear equation.

Note: The order of the represented inear equations is arbirary but should match the order of the rows seen in
the coefficient matrix

Figure 1. Screenshots of the MATLAB live script Systems_of Linear Equations.mlx:

explanatory text and instructions, a worked example, and an interactive example.
Content is split into two columns to fit within this manuscript.

The third file Lecture With Examples.mlx is a lecture to introduce the topic, even
before students learn about material balances. The lecture includes the explanatory text
and worked examples from Systems of Linear Equations.mlx and five additional
examples from three MEB textbooks: (Liberatore 2019; Felder, Rousseau, and Bullard
2016; Murphy 2023). The GitHub repository includes a README.md file for
summarizing the information above and two additional files for viewing on GitHub or
static sharing: Lecture_With_Examples.pdf and Systems_of Linear Equations_sol.pdf.
The .mlx files can be run interactively via MATLAB after downloading from GitHub.

3. MATLARB live scripts for onboarding undergraduate researchers

We have had 51 undergraduate research scholars in the Ford Versypt Lab since it started
in fall of 2014. Since spring of 2022, 14 new undergraduate researchers were trained
using the MATLAB live scripts and onboarding materials described in this section.
Prior to that four 1% year students helped write the solution codes, and one graduate



3502 A. N. Ford Versypt et al.

student drafted the instructional portions of the interactive coding templates.
Collectively, these 18 undergraduate students studied chemical engineering, biomedical
engineering, and nursing, with a wide range of mathematics and programming
backgrounds. Generally, these students had no prior knowledge of MATLAB or ODEs.

The Ford Versypt Lab uses applied mathematics and process systems engineering
methods to model tissues, treatments, and toxicology. We introduce new undergraduate
students to a suite of techniques for these topics in mathematical systems biology. We
start with training on applying conservation balances to populations of cells and
amounts of chemical species in living organisms and solving these problems with
systems of ODEs. During the training period, students meet weekly with Dr. Ford
Versypt as a group. They learn from each other’s issues and receive feedback about
their progress. Then we provide guidance for an open exploration period for the students
to investigate topics of their interest that use the techniques and templates.

The first training assignment is to use the Write system of ODEs.mlx (Figure 2)
interactive coding template, available from our UGResearch repository (Ford Versypt
2023). We introduce material balances through the acronym IOGA for In — Out +
Generation = Accumulation. We provide a worked example of a system of ODEs for
tracking the concentrations of three chemical species (Figure 2). Students are tasked
with using the interactive coding template to solve numerous ODEs from chemical
engineering to practice adapting the template for new problems. We use Chapter 10 of
the Felder, Rousseau, and Bullard (2016) textbook, which provides several examples
with worked solutions to ODEs from dynamic chemical engineering applications.

IOGA and Differential Equations

(ODES) are the result when the system is not at steady state, so that the accumulation term may be non-zero.
Other fields may call development of these ODES as compartment analysis or population dynamics.

Cc = 0. Positive values account for in or generation terms, and negative values account for consumption
(degradation) and out terms.

= dC.
1-:0+G=A A B CACa -«
di h
I=How much comes into the system
O=How much is going out from the system 4 = b CaCr ¢
G=How much is generated/consumed In the system

dCc
A=How much is accumulated In the system R X
di

System

"a Let's write this in cade and solve t for a 6 hour period.

Concentration vs. t

Generation
AvBeC

nB Accumulation
ABC

out a8, ¢

Chemical engineers use IOGA to develop differential equations that allow them to predit what is in their
system. Differential equations are equations that relate a one or more functions and their derivatives. A
derivative s the rate some variable changes with respect to another. If we look at our system above, we
can create differential equations to describe how the system variables changes over time, We are focusing on
understanding how the concentration of each species (A, B, C) changes with time. That is assuming we know
the rate parameters: 3

Concentration (M)

0 m 062 b 06 e m 01 am02¥ o 02M 02 M
T

Figure 2. Screenshots of the MATLAB live script Write system_of ODEs.mlx:
problem statement and output figure.

The second assignment in the training period introduces the use of ODEs for systems
biology applications. Students are assigned to read Peskov et al. (2019), which reviews
the process of building mechanistic mathematical models for systems biology for
applications to cancer treatment via the immune system, so called “immuno-oncology”.
Figure 1 in Peskov et al. (2019) is particularly useful for students as it illustrates the
types of biological interactions in complex cancer systems that can be modeled with
ODEs to track the cell populations and chemical interactions relevant to cancer



-

Interactive Coding Templates for Courses and Undergraduate Research Using 3503
MATLAB Live Scripts

treatments. We ask students to explain how the population balance principles introduced
in assignment one apply to the illustrations for the cancer system (Peskov et al. 2019).

The third assignment tasks students with reading de Pillis, Gu, and Radunskaya (2006),
which is an in-depth published example for systems dynamics of cancer chemotherapy
and immunotherapy tracking the populations of four types of cells and the
concentrations of two types of treatments. We prompt them to connect the IOGA
concepts and the illustrations from Peskov et al. (2019) to the system of ODEs defined
in de Pillis, Gu, and Radunskaya (2006). The repository includes a file titled
Intro_to_Bio ODEs.mlx, which reproduces the results of Figure 7 of de Pillis, Gu, and
Radunskaya (2006). Students explore this file to see how a larger system of ODEs can
be solved in much the same way as the examples in the first assignment.

The fourth and final training assignment is for students to adapt a partial solution
available in our file dePillisSoln.mIx for the de Pillis, Gu, and Radunskaya (2006)
model into a full solution for various scenarios to match the results in Figures 6 — 14 of
the publication. The purposes of this exercise are for students to encounter issues with
reproducible research computing and to gain practice with editing interactive coding
templates to simulate other equations, parameter values, or conditions.

After the one-month training period, students enter the exploration period for the
remainder of the academic term. Here is the prompt to the students:

Using what you’ve learned so far about mathematical biology, MATLAB, and
using ODEs and IOGA to describe biological problems from a chemical
engineering perspective, you’ll spend the rest of the term working on a topic area of
your choice.

1. Choose a biomedical topic (note: this is likely an iterative process)

2. Search the literature to find two mathematical biology papers that involve ODE
models for your selected biomedical topics. These two papers should have
different equations. Each paper should list the full equations, parameters, and
show some output plots.

3. Your task by the end of the term is to use MATLAB to replicate the two
models that you find. You are encouraged to use the interactive coding
template Write_system_of ODEs.mlx available online (Ford Versypt 2023) to
solve the systems of ODEs for each model. In your final presentation and
report, you’ll discuss the pros/cons of each model for the biomedical topic and
any issues you encountered in reproducing them. You’ll think about future
directions that could involve merging the two models or otherwise expanding
them to address new aspects of the biomedical topic.

Weekly feedback on topic selection and candidate papers is provided by Dr. Ford
Versypt along with additional instruction in oral and poster presentations, searching the
literature, and writing technical reports. After students select their papers, they meet
weekly with graduate mentors to report on progress and to troubleshoot technical issues.
At the end of the term, they deliver written and oral reports on the topic background and
their progress in using MATLAB live scripts to explore published models and their
completed codes for the project and plans for future extensions. By using MATLAB
live scripts, students focus on the learning goals related to the research concepts instead
of being hindered by programming or analytical mathematics proficiency. Senior
students also appreciate that the templates enable them to quickly make progress
towards using advanced techniques.



3504 A. N. Ford Versypt et al.

4. Conclusions

MATLAB live script resources to enable MEB students to solve linear systems of
equations and for undergraduate researchers to solve systems of ODEs were developed
by the Ford Versypt Lab and have been shared in two GitHub repositories with links
provided in the References section (Johns and Ford Versypt 2022a; Ford Versypt 2023),
respectively. We acknowledge that many are shifting from MATLAB to alternative
software (Johns et al. 2023). We used MATLAB because of our institution’s adoption
of MATLAB. Transferring MATLAB live script content to Jupyter Notebooks is a
relatively straightforward process (Johns et al. 2023). The emphasis on the materials
presented here is on training students without advanced mathematics or programming
skills to use interactive coding templates for classes of problems routinely encountered
in first chemical engineering courses or in undergraduate research focused on dynamic
systems. Similar types of materials could be developed for onboarding new researchers
or industry professionals studying and solving realistic problems in contexts that do not
have programming or advanced mathematics as a learning objective or prerequisite.
Others are encouraged to reuse or adapt these materials as needed.

Acknowledgements

The authors acknowledge support of U.S. National Science Foundation grant 2133411
and the University at Buffalo. Ford Versypt Lab members are acknowledged for
participating in or mentoring for undergraduate research.

References

J. E. Bara, A. N. Ford Versypt, R. B. Getman, C. A. Kieslich, and R. S. Voronov. 2020. Apps for
chemical engineering education: off-the shelf and do-it-yourself development options. Chem
Eng Ed 54 (3):137-42.

L. G. de Pillis, W. Gu, and A. E. Radunskaya. 2006. Mixed immunotherapy and chemotherapy of
tumors: modeling, applications and biological interpretations. J Theoretical Biology 238
(4):841-62. doi: 10.1016/].jtbi.2005.06.037.

C. V. Eastep, G. K. Harrell, A. N. McPeak, and A. N. Ford Versypt. 2019. A MATLAB app to
introduce chemical engineering design concepts to engineering freshmen through a
pharmaceutical dosing case study. Chem Eng Ed 53 (2):85-90.

R. M. Felder, R. W. Rousseau, and L. G. Bullard. 2016. Elementary Principles of Chemical
Processes. 4th ed. Hoboken, NJ: John Wiley & Sons, Inc.

A.N. Ford Versypt. "UGResearch." https://github.com/ashleefv/UGResearch. doi:
10.5281/zenodo.10157864.

A.N. Ford Versypt, R. P. Hesketh, A. N. Johns, and M. D. Stuber. "ChESS2022."
https://github.com/ashleefv/ChESS2022. doi: 10.5281/zenodo.7477475.

A.N. Johns, and A. N. Ford Versypt. "MEBLinearSystems."
https:/github.com/ashleefv/MEBLinearSystems. doi: 10.5281/zenodo.10157856.

A. N. Johns, and A. N. Ford Versypt. "[YouTube Video] Solving Systems of Linear Equations
Using a MATLAB Live Script." https://youtu.be/78n8XaCBtw.

A.N. Johns, R. P. Hesketh, M. D. Stuber, and A. N. Ford Versypt. 2023. Numerical Problem
Solving across the Curriculum with Python and MATLAB Using Interactive Coding
Templates: A Workshop for Chemical Engineering Faculty. Proceedings of the ASEE
Annual Conference, Baltimore, MD. https://peer.asee.org/43749.

M. W. Liberatore. 2019. Material and Energy Balances ZyBook: Electronic textbook: ZyBooks.

R. M. Murphy. 2023. Introduction to Chemical Processes: Principles, Analysis, Synthesis. 2nd
ed. New York, NY: McGraw Hill.

K. Peskov, I. Azarov, L. Chu, V. Voronova, Y. Kosinsky, and G. Helmlinger. 2019. Quantitative
Mechanistic Modeling in Support of Pharmacological Therapeutics Development in
Immuno-Oncology. Frontiers in Immunology 10:924. doi: 10.3389/fimmu.2019.00924.




