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Distributed Thompson Sampling Under
Constrained Communication

Saba Zerefa

Abstract—In Bayesian optimization, a black-box func-
tion is maximized via the use of a surrogate model. We
apply distributed Thompson sampling, using a Gaussian
process as a surrogate model, to approach the multi-
agent Bayesian optimization problem. In our distributed
Thompson sampling implementation, each agent receives
sampled points from neighbors, where the communication
network is encoded in a graph; each agent utilizes their
own Gaussian process to model the objective function.
We demonstrate theoretical bounds on Bayesian aver-
age regret and Bayesian simple regret, where the bound
depends on the structure of the communication graph.
Unlike in batch Bayesian optimization, this bound is appli-
cable in cases where the communication graph amongst
agents is constrained. When compared to sequential
single-agent Thompson sampling, our bound guarantees
faster convergence with respect to time as long as the com-
munication graph is connected. We confirm the efficacy
of our algorithm with humerical simulations on traditional
optimization test functions, demonstrating the significance
of graph connectivity on improving regret convergence.

Index Terms—Distributed control, optimization, machine
learning.

[. INTRODUCTION

LACK-BOX stochastic optimization involves solving
B problems where the objective function is not explicitly
known and can only be accessed through noisy evaluations [1].
These challenges frequently arise in domains where the
evaluation process is costly and uncertain, such as hyperpa-
rameter tuning in machine learning [2], [3], simulation-based
optimization [4], and experimental design [5]. A variety
of methods have been developed to tackle these prob-
lems, including evolutionary algorithms [6], particle swarm
optimization [7], and finite-difference methods [8]. Among
these, Bayesian optimization (BO) [9], [10], has emerged
as a particularly powerful framework. In contrast to the
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aforementioned black-box stochastic optimization algorithms
which tend to be model-free, by leveraging a probabilistic
surrogate model, often a Gaussian process (GP) [11], BO not
only handles the stochastic nature of the evaluations but also
balances exploration and exploitation given an appropriately
chosen surrogate-based sampling strategy. This data-efficient
approach makes BO especially well-suited for optimizing
expensive, noisy black-box functions [12]. Moreover, theoret-
ically, BO is also known to satisfy finite-time convergence
guarantees to global optima (which we note comes at the cost
of a dependence on a term that depends on the complexity
of the kernel used to model the underlying function) [12].
To the best of our knowledge, apart from BO, finite-time
convergence rates in stochastic optimization are only available
for finite-difference type methods. However, due to the local
nature of finite-difference type methods, the corresponding
finite-time convergence rates for such methods only guarantee
convergence to stationary points [8], [13], in contrast to the
convergence to global optima achieved by BO algorithms.

In BO, the generation of new sampling points is based on
the current surrogate model. A good sampling strategy should
balance exploration and exploitation of the current surrogate,
which is key for efficient optimization. Common sampling
strategies include acquisition function-based approaches such
as expected improvement (EI) [10] and BO-upper confidence
bound (UCB) [14]. Another popular sampling strategy is
Thompson sampling, where the next query point is selected
as the optimizer of a random function realization sampled
from the current posterior [15], [16]. To evaluate algorithm
performance, regret is studied, which quantifies the gap between
the performance of sampled points and the global optimum [17].
Types of regret include simple regret, which measures the gap
between the optimal value and the performance of the best
queried point [18], and cumulative regret, which measures the
sum of the gaps between the optimal value and the performance
of each queried point [19], [20].

We are interested in multi-agent BO, where multiple agents
can sample the objective function at a single timestep. Much
of existing multi-agent BO literature studies batch BO, in
which a central coordinator has access to each agent’s acquired
information [21], [22]. It then computes the sampling deci-
sions for all agents, and communicates these decisions to each
agent. These decisions are disseminated in batches, allowing
multiple agents to simultaneously sample points, parallelizing
the optimization process [23], [24].
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Centralized approaches are inapplicable in distributed cases,
in which there is no centralized coordinator and each agent
must possess a local instance of the optimization algo-
rithm [25]. Additionally, they often do not scale well, as they
require a central coordinator to manage the processing of all
agents’ data. Distributed networks are prevalent in real-world
applications, such as in multi-robot source seeking and sensor
networks [21], [26]. It may not be the case that all agents
have access to all prior sampled points as in the batch setting
- communication may be constrained, where some agents are
only able to communicate with specific other agents [27].
These constraints may be due to limited communication
capacity or computational capacity of the agents, or due
to physical proximity constraints. Prior literature providing
theoretical guarantees for distributed Bayesian optimization
require fully connected communication graphs, even in asyn-
chronous cases [22], [28], and thus are inapplicable in settings
with constrained communication. In this letter, we study the
distributed setting with constrained communication, in which
at each round, agents send their sampled points to their
neighbors and receive points sampled by their neighbors.

Our contribution: We propose a distributed Thompson
sampling algorithm for the multi-agent Bayesian optimization
problem under constrained communication. In the algorithm,
each agent uses their own GP model to pick sampling points
via Thompson sampling, and shares the queried points with its
neighbors. We provide provable guarantees for the proposed
distributed BO. In Theorem 1, we establish a Bayesian
average regret bound of 6(%), where M is the number
of agents, ¢ is the number of optimization rounds, and 6(G)
represents the clique cover number of G, i.e., 8(G) is the
smallest number L such that the graph G can be decomposed
into L disjoint complete subgraphs. This implies then that
the average regret bound is smaller for graphs with higher
connectivity, which can be decomposed into a few large

disjoint complete subgraphs. We also characterize Bayesian

1 ), where

simple regret, demonstrating a bound of O( VT

max
|Vinax| 1s the size of the largest complete subgraph of the com-
munication network G. We note that this convergence speed

is O(v/|Vimax|) times better than the best known simple regret

rate for sequential single-agent BO, which is 6(\/;) [14]. We
numerically test our algorithm on two standard optimization
test functions [29] with Erd6s-Rényi graphs, demonstrating
the efficiency of our algorithm. We find that lower regret is
achieved with graphs of higher connectivity, supporting our
theoretical results.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Problem Formulation

For a compact set X C R4, consider an unknown continuous
function f : X — R, with optimizer x*. The goal is to find the
maximum of this function, where we are only able to sample
f through expensive and noisy evaluations. We assume any of
M agents can query f at any point and receive a noisy value
y =f(x)+¢, with € ~ N(0, 062). Agents query f throughout a
total of T iterations. For agent i € {1, ..., M} and iteration t €

{1,..., T}, xs; is the query point, and y; ; is the corresponding
evaluation. Define X;; = {x1,;, ..., xi}, Yii = O1iv -0 Y0}
to be the queries and evaluations made by agent i up to time ¢.
The communication network of M agents is described by graph
G = (V,E), where |V| =M, and E C {{i,j} : i,j € V,i#j}.
An unordered pair {i,j} € E if agents i and j are able to
communicate with each other. Additionally, we denote the set
of neighbors of agent i as N(i) = {j : {i,j} € E}. The data
accessible to agent i at time ¢ is Dy; = {(X¢j, Yz.j) }jeN(i)Ui,c <i-
The set D, ; contains all sampled points up to time 7 by agent i
and its neighbors. We do not make any assumptions regarding
the structure of the communication network. The graph may
even be unconnected. Our analysis will show how the graph
structure affects the algorithm’s performance.

B. Gaussian Process

We use a Gaussian process (GP) to model our unknown
objective function f in our BO setting. Recall the unknown
continuous objective function f : X — R. Let Xp, =
{x1,x2,...,x}, where x; is the jth evaluated point, and let
k : X2 — R be a kernel function. Define

—1
up,(x) = k;(x)T (KD, + o,,zl) YD,
-1
kp, (x, ) = k(x, ') = kp, (0T (Kp, +21) K, (¥),

where Kp, = [k(X,X")]v vexp,, Kp,(¥) = [k, 0)]vex),
and yp, = {f() + €'}rexp,, where € ~ N(O, o2).
Thus we can define our GP, in which we denote f|Fp, ~
GP(up,(x), kp, (x, x')). Note that due to the nature of the GP, it
is the case that for any x € X, f(x)|Fp, ~ N(up,(x), agt x)),
where alz)t(x) = kp,(x,x) [11]. Furthermore, recall the dis-
tributed multi-agent setting, where each of M agents have
access to queried points in set D;;, where D;; and D;; may
not be equal for distinct agents i and j. In our distributed
setting, each agent i has a unique GP model of f at time ¢,
GP,.i, since the data D, ; available to each agent i is different.
Thus we denote f | Fp,; ~ GP:i(up,;(x), kp,;(x, x’)). In the
GP framework, x*, the optimizer of f, is treated as a random
variable. As a result, x* has a posterior distribution x*|Dy,
which is the optimal value of the GP f|D;. This structure is
leveraged in our algorithm.

The kernel function k(-, -) can be selected to reflect prior
beliefs about the objective function f, such as function smooth-
ness [11]. Common selections of kernel functions include
Linear, Squared Exponential, and Matérn kernels, the latter
of which was used in the numerical implementations of our
algorithm. Note that the GP problem structure does not make
any assumptions regarding function convexity, and that for
common kernels, convexity is not reflected by kernel selection.

C. Regret

Our metric for algorithm performance is regret, which is
an assessment of the quality of sampled points. We consider
average regret, which quantifies the difference between the
optimal value of the function and the queried value for each
sampled point. In average regret, this difference is accumulated
across all agents and timesteps, and then averaged by the
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amount of sampled points. To account for randomness of f in
our regret expression, we take expectation of average regret
to yield the following expression, which we call Bayesian
average regret:

t M
Ryp(1) = % > Z E[f () = f(xe.i)] )

=1 i=1
We also consider the simple regret, which is the difference
between the optimal value of the function and the best value
achieved amongst the previous queried points. This definition
of regret is useful because optimization settings focus on
locating the extrema of a function, and the simple regret tracks
the smallest gap between the value at a sampled point and
the optimal value. We take the expectation of simple regret
to yield the following expression, which is called Bayesian

simple regret:

Rsp(t) = min
i€{1,2,...M},te{l1,2,....1}

E[f() —fxd)] @

In our theoretical analysis, we provide bounds on Bayesian
average regret and Bayesian simple regret.

D. Thompson Sampling

Thompson sampling is an algorithm for sequential decision
making that can be utilized in this context for determining the
next point of the objective function to query [15]. When using
Thompson sampling in our Bayesian optimization framework,
an acquisition function is sampled from the posterior distribu-
tion of the Gaussian process. The maximizer of this function is
the next query point at which the black-box objective function
is sampled. The Gaussian process is then updated with new
information from this sample, and the process repeats for the
duration of the experiment.

In sequential single-agent Thompson sampling, each sub-
sequent query point is determined based on a single model
updated on all prior sampled points. Alternatively, in batch
Thompson sampling, multiple query points are determined as
a set at each round, and the objective function is sampled in
parallel [22], [24]. Batch Thompson sampling is advantageous
in systems capable of parallelizing, e.g., multi-agent systems,
because it allows for convergence in fewer number of rounds
than sequential single-agent Thompson sampling.

Batch Thompson sampling is centralized, with all agents
having access to the same information. However, this may
not be realistic in real-world situations, where communica-
tion between agents may be constrained due to bandwidth
limitations, computational constrictions, or privacy concerns.
In these cases, agents may only have access to the sampled
points by few other agents, and thus datasets available to
distinct agents may differ. We propose a distributed Thompson
sampling algorithm for this constrained communication case,
and provide theoretical guarantees for the algorithm.

[1l. ALGORITHM: DISTRIBUTED THOMPSON SAMPLING

In our implementation of distributed Thompson sampling,
each of M agents have distinct Gaussian processes GP; for
modeling the objective function. At each time step ¢, all agents

Algorithm 1 Distributed Thompson Sampling
1: Place GP prior on f
2: fori=1,...,M do
3: Initial data Dl’ i

4: GPo.i < GP

5: end for

6: fortr=1,...,T do

7 fori=1,...,M do

8: Update posterior GP,; conditioned on D; ;

9: Sample f,,,- ~ GP;i

10: Choose next query point

11: Xpj < argmaxy f; ;(x)

12: Observe y; ;

13: Broadcast (x;;, y;,;) to neighbors N(i);

14: Collect evaluations C;; from neighbors N (i)

15: Update data history D;y1; < D;; U G U
{5 ye,0)}

16: end for

17: end for

update their GPs with the data history available to them. The
agent then queries the objective function at x;;, which is
the maximizer of the acquisition function sampled from the
posterior GP, f‘,,,- ~ GP,;. Each agent then communicates its
sampled point to its neighbors, receives the points sampled by
their neighbors, and updates their data history accordingly. The
collection of data received by neighbors of agent i at time ¢
is denoted as C;; = {(x/j, y1.j)}jen()- Our method is shown in
Algorithm 1. We stress that while we do assume a synchronous
global clock, there exists no centralized coordinator in our
algorithm that coordinates the queries of the different agents.

In step 11, we select the next sampling point of the objective
function by finding the argmax of a function drawn from
the posterior distribution of the GP. In our numerical imple-
mentation, we did so using gridsearch, but such an approach
is computationally expensive for higher dimensional search
spaces. Efficient computation of the argmax for Thompson
sampling in high dimensional spaces is an active area of
research, and a direction for future work.

A. Theoretical Result

We analyze the performance of the distributed Thompson
sampling algorithm on the Bayesian average regret and
Bayesian simple regret metrics. Our regret bound depends
on the number of timesteps 7 and the structure of the agent
communication graph G. As in prior work, we utilize notions
from information theory in our regret bound [30].

Our regret bound involves the Maximum Information Gain
(MIG), which is a constant that captures the complexity of the
objective function. MIG has been shown to be bounded for
several kernel functions commonly used with GPs, including
Squared Exponential and Matérn kernels, the latter of which
was used in our numerical implementation [14].

Let D = {x1,...,x} C X, and define yp =
€) : x € D}. The MIG is denoted as

{(x, f0) +

Authorized licensed use limited to: Harvard University SEAS. Downloaded on April 11,2025 at 02:17:57 UTC from IEEE Xplore. Restrictions apply.



3312

IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

¥, = max I(f;yp), 3)
DCX,|D|=t

where I is the Shannon Mutual Information. The MIG Y,
represents the largest mutual information gain from f by
sampling ¢ points. Additionally, for any positive integer n, we
define the constant &,, which bounds the information gain of
the current round of evaluations [22]. Suppose |D| = ¢ points
were already sampled, and i points are being queried in the
current round of evaluations, with i < n; denote these points
in set A, where A C X, and y4 = {(x,f(x)+¢€) : x € A}. Then
for i > 1, &, satisfies

max
ACX,|Al<n

14 yalvp) = 3 log (6. )
We next provide a bound for Bayesian average regret for an
M agent system with communication graph G.

Theorem 1: Suppose k(x,x’) < 1 for all x,x'. Let
{Gi}keq,...,ny be a collection of n disjoint complete subgraphs
of communication graph G = (V, E), where Gy = (Vi, Ey),
and Ugeq1,...nyVk = V. Then the Bayesian average regret

. . C
after ¢ timesteps satisfies Rap(f) < A%[ZZ—] |Vk|(m +

J PN here g, = 2log(2MI X)), €1 = Y227 and
2

log(1+0c%)”
Proof: The structure of our proof follows techniques from

Kandasamy et al. [22]. We aim to provide a bound on Bayesian
average regret. Our proof begins by noting that we can develop
an expression for Bayesian average regret by consider the
Bayesian average regret of specific subsets of agents. We
then decompose this into three sums, each of which utilize
a confidence function U;;(-). We bound each of these sums
using notions from information theory, allowing us to use
information gain constants introduced in Equations (3) and (4)
to analyze the efficacy of the sampling process.

We bound the Bayesian average regret affiliated with agents
in communication graph G by bounding the Bayesian average
regret within each complete subgraphs of graph G. Let G =
(V,E) be the communication graph for the M agents. We
can construct a collection of n disjoint complete subgraphs
{Gi}keqt,...,ny, where each Gy = (Vi, E) is a subgraph of G,
with Ugeq1,2,...m Vi = V.

Recall from Equation (1) that Bayesian average regret
Rag(t) = %/1 Zizl Zf‘il E[f (x*) — f (x7.;)]. We also introduce
Rag (1) = v Lrmy Liew, EF () — f(xr, )], which is the
Bayesian average regret affiliated with agents in Vj. Recalling
the partition of the vertex set V into {Vi}ieqi,...n}, We may
rewrite Bayesian average regret as follows:

ZZE

'L'lll

ZZZE

,,,,,

Rap(?)

f )]
Sxed)]

r 1 k=1 i€V
= ZZZE f(xe)]
k 1 t=1ieVy

1 n
= 7 2 IVilRap (@)

k=1

Thus, it suffices to focus on bounding Ry4p (f). Define
1/2
Upi0) = pp,,(x) + B;"*op,,(x). To upper bound Rap (1),
we can decompose the sum Zi:] Zievk E[f(x*) — f(x,1)] as
follows:

> Sl

t=1ieVy

= i > El(x*

=1ieVy

+ Ur,i(xr,i) _f(xr,i)]

3 SR

t=1ieVy

fled)]

) - Ur,i(x*) + Ut,i(x*) - Ur,i(xr,i)

— Uri(x*)] + E[Ur,i(x*) —
s1 52
+ E[Ur.i(xe.i) — f(xc.i) ]
53
By leveraging tools from information theory, we can upper

Ur,i(xr,i)]

bound each of these sums, finding that S1 < 2]”2 2 S2 =0,
[ 28, 111 VilBr e vy 2732
and S3 < ~ogterd Therefore, Rap r(f) < TV +

2 v . o .
M. A detailed derivation of these bounds is
1| Vil log(140¢ ")

available in our supplement [31].
Equipped with a bound on Rap(f), we can revisit our
expression for Rap(f).

1 n
77 2 [VelRas k(0

Rap(t) =
k=1
L Z' Ci SSNALALA ’
1|V I 1| V|
where C; = % and Cp = ﬁ Thus, we have
2 O¢

CrEv, 1BV
shown that Rap(t) < 4 Zk ] |Vk|<th \/%)7
|

concluding our proof.

The full proof of Theorem 1 is available in our supple-
ment [31]. By picking n to be the clique cover number of the
graph G, Theorem 1 yields the following corollary.

Corollary 1: Suppose k(x,x') < 1 for all x,x". Let 0(G)
and w(G) denote the clique cover number and clique number
of the graph G respectively. Then, the Bayesian average regret
after ¢ timesteps satisfies

VIG) /CrErcr BV
Rap() < Q0O | VOV GIY© yhere g, €, and C

are as defined in Theorem 2.

Proof: The proof of Corollary 1 follows from (i) apply-
ing Cauchy-Schwarz to bound the term > ;_, /[Vil <
VY h_1 Vil = ~/Mn, (ii) picking n to be the clique cover
number of G, 6(G), and (iii) the fact that for any clique Gy =
(Vk, Ex) in G, |Vi| < w(G), since w(G) denotes the clique
number of G (i.e., size of the largest clique in G). |

From Corollary 1, the average regret satisfies Rap(f) =

«/Q(G)SM(G)\I”M)(G

0509 7@y (recall w(G) denotes the clique number of

G). We note that the term Wy, (G) corresponds to the maximal
mutual information gain from fw (G) observations, and that this
quantity depends only logarithmically on tw(G) for standard
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kernels such as the squared exponential kernel. For more
details, see Appendix II in our supplement [31]. The term
&,(c) 1s the price we pay for the absence of coordination
within each of the subgraphs Gy in G, and is a standard
term that arises in multi-agent Bayesian optimization. By an
appropriate initialization phase, this term can be reduced to
0(1), (see [24, Appendix B.3]). Thus, compared to the sequen-
tial single-agent case with ¢ rounds which has average regret

é(ﬂ) [14], our algorithm satisfies a regret of @(%),
i.e., an improvement of ./ % (note this term is always smaller
than 1). Correspondingly, the average regret is smaller for
graphs with higher connectivity, whose clique cover number
6(G) is smaller. We next proceed to bound the Bayesian simple
regret.

Theorem 2: Suppose k(x,x’) < 1 for all x,x". Let Gy =
(Vs, E5) be a complete subgraph of G. Then the Bayesian

simple regret after ¢ timesteps satisfies Rgp(f) < I\CTIY\ +
C v, 3/2
| P where B, = 21og(P|Vy[|X]), €1 = Y22,

and C; = —2—.
log(1+0¢ ©)

We defer the proof of Theorem 2 to our supplement, and
note that it essentially follows from the observation that the
Bayesian simple regret is bounded by the Bayesian average
regret of any subset of agents. In particular, for any G; =
(Vs, Es) which is a complete subgraph of G, the simple regret
satisfies Rsp(f) < ﬁ 22:1 ZieVS E[f(x*) — f(x7,;)], where
the right hand side denotes the Bayesian average regret of the
subgraph G, which can then be bounded using our analysis in
the proof of Theorem 2. Picking G, to be the largest complete
subgraph of the communication network G then yields the
following corollary.

Corollary 2: Suppose k(x,x') <1 for all x,x’. Let Gpux =
(Vinaxs Emax) be the largest complete subgraph of G. Then
the Bayesian simple regret after ¢ timesteps satisfies Rgp(f) <

C v,
il | Pl where B, = 210g(|Vinarl| X,

23 . 2
C) =¥55—, and Cp = Tog(LtoT) . . '
From the above corollary and our discussion following

6(,/ 1 Thus,

Corollary 1, we see that Rgp(f) = w1 )
compared to the sequential single-agent case with ¢ rounds

which has simple regret O % [14], our algorithm satisfies

1

a regret of 5( ﬁ , i.e.,, an improvement of e

max max
demonstrating the benefit of the network structure for the
simple regret case as well.

IV. NUMERICAL EXPERIMENTS
A. Simulation

In the numerical implementation, performance was assessed
utilizing the following regret metrics. We define the Instant
average regret R4, and its sum, Ry, as follows:

| M '
- * N Ra() —
Ra(t) = ~ Zj(f £(x0)). Ra(®) = > Ra(2).
i=1 =1

We also define the Instant simple regret Rg, and its sum Rs,

as follows:

t
f(xt0), Rs(d) = ) Rs(x),

Rs(t) =f*— max
i€{1,2,..M},
re{l,2,....1} =1
where f* = max,cyf(x). Numerical results were con-

structed in a Python implementation built upon the BOTorch
package [32]. The code used to generate the simulation
and corresponding Figure 1 is available at https://github.
com/sabzer/distributed-bo. The Gaussian processes utilized
the Matérn kernel with parameter v = % The numerical
simulations were run over 7 = 50 timesteps. Simulations were
run based on two test functions for the objective function:
Ackley, which has many local maxima and one global minima
in the origin, and Rosenbrock, which contains a large valley
in which the global minima is situated. The equations of
the aforementioned objective functions and their plots are
available in Appendix III in our supplement [31]. Since we
were solving a maximization problem, we multiplied the
canonical definitions of these functions by —1 for the purpose
of our simulation. For the communication networks in our
simulations, we used Erdés-Rényi random graphs of 20 agents
with connectivities of 0.2, 0.4, and 0.6 [33]. The connection
probabilities are the probability that each edge from the
complete graph of 20 agents appears in the corresponding
random graph.

B. Discussion

Our theoretical result bounds Bayesian average regret, R4p(f),
and Bayesian simple regret, Rsp(#), with the bound dependent
on the structure of the communication network between agents.
Our distributed Thompson sampling algorithm was able to
achieve the extrema of the Ackley and Rosenbrock objective
functions in numerical implementation, and thus is effective
at the Bayesian optimization task. Our theoretical results
suggests that the distributed Thompson sampling algorithm
implementation favors highly connected communication graphs.
This is apparent from a lower Bayesian average regret bound
when the communication graph can be decomposed into a
few large disjoint complete subgraphs, and a lower Bayesian
simple regret bound when the largest complete subgraph of
the communication graph has a larger number of agents.
Our numerical results support this intuition, for in Figure 1,
we see better regret convergence for Erdds-Rényi graphs of
higher connectivity. This result holds for both Ackley and
Rosenbrock objective functions, and for both Instant simple
and average regret.

V. CONCLUSION

In this letter, we proposed a distributed Thompson sampling
algorithm to address the multi-agent Bayesian optimization
problem under constrained communication. We develop
bounds on Bayesian average regret and Bayesian simple regret
for this approach, where the bound is dependent on properties
of the largest complete subgraph of the graph encoding
communication structure between agents. With our bound, we
show that in connected multi-agent communication networks,
both Bayesian average regret and Bayesian simple regret
will converge faster with distributed Thompson sampling than
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Fig. 1. Regret analysis of numerical simulations with 20 agents on Erd6s-Rényi random graphs with connectivity probability 0.2 (blue), 0.4 (orange),
and 0.6 (green), on Rosenbrock (left) and Ackley (right) objective functions.

in the sequential single-agent case, with the same number
of rounds. Additionally, we demonstrate the efficacy of our
algorithm with regret analysis on optimization test functions,
illustrating faster convergence with well connected communi-
cation graphs. Future work will focus on developing a tighter
regret bound, and further tailoring the distributed Thompson
sampling algorithm towards the constrained communication
case by leveraging the data communicated between agents.
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