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CGAP: A Hybrid Contrastive and Graph-based

Active Learning Pipeline to Detect Water and

Sediment in Multispectral Images
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Abstract—We develop a contrastive graph-based active
learning pipeline (CGAP) to identify surface water and
near-water sediment pixels in multispectral images. CGAP
enhances the graph-based active learning pipeline (GAP)
(10.1109/IGARSS52108.2023.10282009), which outperforms
methods such as CNN-Unet, support vector machine (SVM),
and random forest (RF), while requiring less training data.
Active learning plays an important role for training data
reduction, resulting in an order of magintude less training
data compared with conventional methods and three or more
orders of magnitude less compared with CNN-Unet. Our
improvements focus on boosting both the pipeline’s robustness
and efficiency by integrating a feature-embedding neural
network prior to graph construction. This neural network,
trained using contrastive learning, performs effective data
dimension reduction by projecting high-dimensional raw
features into a lower-dimensional space, thereby facilitating
more efficient graph learning. The training process incorporates
specialized augmentations to bolster the embedded features’
resilience to geometric transformations, varying resolutions, and
light cloud cover. Moreover, we develop a Python-based demo,
GraphRiverClassifier (GRC), that uses the Google Earth Engine
and our enhanced pipeline to provide a user-friendly tool for
rapid and accurate surface water and sediment analyses and
rapid testing of algorithm performances.

Index Terms—Remote Sensing, Surface Water Detection,
Graph Learning, Active Learning, Contrastive Learning

I. INTRODUCTION

MAPPING surface water dynamics is crucial for a host

of environmental, engineering, and management prob-

lems, including flood monitoring and mitigation, freshwater

resource management, water quality analyses, and earth sci-

ence research [1]–[4]. New technologies are needed to take
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advantage of the rise of global, remotely sensed surface water

observations [5]–[7]. Rivers provide freshwater and ecologic

resources that support human development, agriculture, and

transportation worldwide. Many rivers are highly dynamic to

environmental conditions [8], [9], and inferring these dynamics

from remotely-sensed images has been a major focus in

Earth Sciences over the previous decade [10]. The importance

of automated surface water detection from remotely-sensed

images is highlighted by significant efforts that have published

global datasets or pre-trained models of surface water [6], [11],

[12].

Global surface water datasets and models are effective at

capturing the majority of surface water, yet often lack the local

precision required for specific applications such as measuring

river widths [13], [14] or estimating river migration rates [10],

[15], where the targeted features may be as narrow as 1-2

pixels along the river boundary. To address this, researchers

typically develop local models that involve labor-intensive

manual data labeling and lack generalizability. For some river

studies, an additional class representing in-channel sediment or

highly-turbid water may be desired [10], [16]. In our case, we

aim to identify rivers at their so-called “bankfull” state [17],

which we define as the union of water and active (unvegetated)

in-channel sediment bars [10].

Our work builds upon the RiverPIXELS dataset [18], a high-

quality, hand-labeled collection of water and in-river, unveg-

etated sediment from Landsat multispectral images. Although

RiverPIXELS covers various river types and environmental

settings, it represents only a small fraction of global surface

water. Therefore, our goal is to develop a robust, accurate,

and efficient machine learning algorithm that can leverage the

RiverPIXELS dataset to detect surface water and sediment

pixels in multispectral satellite images on a global scale.

A. Related Work and Motivation

Several datasets and models exist for surface water detec-

tion. The Global Surface Water dataset [6] uses a Support

Vector Machine (SVM) model [19] with post-processing to

identify water pixels in Landsat images, accounting for con-

founding features like ice and snow. The USGS’s Dynamic

Surface Water Extent product [20] employs spectral mixing

methods for Landsat imagery. Among pre-trained models,

Deepwatermap [11] stands out, utilizing a convolutional neural

network (CNN) U-net architecture [21] trained on extensive

public datasets. While these approaches effectively capture
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overall surface water dynamics, they often lack the precision

required for specific applications (particularly in labeling in-

and near-channel sediment) and necessitate large amounts of

training data, especially for state-of-the-art neural network

models.

The identification of surface water from satellite images

can be treated as an image segmentation problem, wherein

labels are given to each pixel in an image such that pixels

with the same label share certain characteristics. Image seg-

mentation has been approached from many angles. There are

partial differential equation (PDE)-based methods [22]–[24]

for unsupervised segmentation, and deep learning methods like

U-Net [21] for supervised segmentation on extensive annotated

training datasets.

The RiverPIXELS dataset comprising 104 patches of 256 x

256 pixels, motivates us to explore semi-supervised methods

capable of high performance with small training datasets.

In this paper, we consider graph learning, a quintessential

semi-supervised learning approach. This approach has proven

successful in noisy image recovery [25]–[27], image or video

segmentation [28]–[30], studies using remotely-sensed images

to combine LIDAR and optical images [31], hyperspectral

unmixing [32], [33], and SAR imagery classification [34],

[35]. Additionally, graph convolutional networks (GCN) have

been utilized for wetland classification, outperforming CNN

models [36].

A general graph learning approach for image segmentation

is based on a similarity graph generated from pixel features,

with each pixel’s feature vector serving as a node and the edge

weights representing the similarity between nodes. To enhance

the efficiency of graph learning, we previously introduced

a graph-based active learning pipeline (GAP) [12], which

does not require constructing a graph on the millions of

pixels corresponding to the 104 patches in the RiverPIXELS

dataset—a process that would be computationally inefficient.

Instead, it employs an active learning approach [37], [38]

to select representative samples from the training set. Our

previous GAP method has outperformed SVM [19], Random

Forest (RF) [39], and the CNN-based model DeepWaterMap

[11].

B. Our Contributions

In this paper, we enhance our previously developed GAP by

pre-training a feature-embedding neural network to improve

both the method’s performance and efficiency. Instead of

using raw neighborhood patches as feature vectors for graph

construction, we now preprocess them through this network.

The feature embedding neural network is trained using the

contrastive learning approach [40], [41], which has previously

shown impressive results in SAR image classification when

combined with graph learning [34]. Our proposed method

is called the contrastive graph-based active learning pipeline

(CGAP), with both a basic (B-CGAP) and adaptive (A-CGAP)

version. The flowchart of the basic version (B-CGAP) is

illustrated in Figure 1

Our main contributions are as follows:

1) We introduce a new CGAP method that combines

our previous GAP approach with contrastive learning.

Compared to previous methods, CGAP demonstrates

better performance and higher efficiency and exhibits

robustness to different resolutions and potential cloud

cover.

2) We propose two versions of the CGAP method: basic (B-

CGAP) and adaptive (A-CGAP). B-CGAP is based on a

fully labeled training dataset, whereas A-CGAP allows

us to train without any ground-truth label information

initially. The A-CGAP process includes using active

learning to guide a human-in-the-loop labeling process,

requiring labels for only about 0.1% of the total pixels.

3) We provide a Python-based tool, GraphRiverClassifier

(GRC), that leverages Google Earth Engine and Colab

to deploy our pre-trained models to detect surface water

and sediment within any Landsat image. This tool is

highly flexible, mostly automated, and user-friendly.

The experimental results presented in this paper may be

reproduced using the code available in our GitHub reposi-

tory1. For a quick start with our tool, visit the GRC GitHub

repository 2.

II. BACKGROUND INFORMATION

This section reviews the methods integral to our pipeline

(Section III-C), including contrastive learning, similarity graph

construction, graph-based Laplace learning, and active learn-

ing.

A. Contrastive Learning

Contrastive Learning is a powerful technique for train-

ing deep neural networks, particularly for learning low-

dimensional representations without extensive labeled datasets.

At its core, contrastive learning aims to learn embeddings

by maximizing the similarity between augmented views of

the same data point while minimizing the similarity between

embeddings of different data points. Chen et al. introduce

a framework for contrastive learning of visual representa-

tions (SimCLR), which simplifies the contrastive learning

paradigm by eliminating the need for specialized architectures

or a memory bank [40]. This framework is further expanded

in [42], demonstrating the effectiveness of large-scale self-

supervised learning for improving semi-supervised learning

performance. For a neural network f and a minibatch of

m data {x1,x2, . . . ,xm}, each xk is augmented into pairs

x̃2k−1, x̃2k which are processed through the neural network

as z2k−1 = f(x̃2k−1), z2k = f(x̃2k). The SimCLR loss is

LSimCLR =
1

2m

m
∑

k=1

[ℓ(2k, 2k − 1) + ℓ(2k − 1, 2k)],

ℓ(i, j) = − log
exp(g(zi, zj)/τ)

∑2m
k=1,k ̸=i exp(g(zi, zk)/τ)

,

(1)

where τ is a constant parameter, and g(zi, zj) =
z
⊤
i zj/(∥zi∥∥zj∥) is the angular (cosine) similarity.

1https://github.com/wispcarey/CGAP-SurfaceWaterDetection
2https://github.com/wispcarey/GraphRiverClassifier
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C. Graph Learning

With a graph G = (X,W ) constructed as described in the

previous section, we now describe a graph-based approach

for semi-supervised learning and present previous work in

this field. Assume we have the ground-truth labels on a

subset of vertices Xl ⊂ X . Let yi ∈ {1, 2, . . . , nc} be the

ground-truth label of xi ∈ Xl, with corresponding one-hot

vector yi ∈ R
nc . Important geometric information about the

dataset X is encoded in graph Laplacian matrices [44], [45]

of the graph G. Define dj =
∑

xk∈X Wjk to be the degree

of node j and let D be the diagonal matrix with diagonal

entries d1, d2, . . . , dN . While there are various scalings for

graph Laplacians [45], we use the symmetric normalized graph

Laplacian Lsym := D−1/2(D−W )D−1/2. Compared with the

unnormalized graph Laplacian L = D−W , it is less sensitive

to the size of the graph and has all eigenvalues in [0, 2].

The inferred classification of unlabeled vertices comes

from thresholding a continuous-valued node function u :
X → R

nc . Specifically, the predicted label of xi ∈ X is

yi = argmax{u1(i),u2(i), . . . ,unc
(i)}, where uk(i) is the

kth entry of u(i). Consider a N ×nc matrix U , whose ith row

is u(i); that is, each node function u can be identified by a

matrix U whose ith represents the output of u at node i. Our

graph-based semi-supervised learning (SSL) model obtains the

matrix U∗ (and the corresponding node function û) by solving

an optimization problem of the form:

U∗ = argmin
U∈RN×nc

1

2
⟨U,LsymU⟩F ,

s.t. u(xi) = yi, ∀xi ∈ Xl,

(5)

where ⟨·, ·⟩F is the Frobenius inner product for matrices. This

hard-constraint u(xi) = yi, ∀xi ∈ Xl forces the minimizer

U∗ to be the same as the ground-truth y on the labeled node

set Xl ⊂ X . This SSL scheme was introduced in [46] and

we refer to it as Laplace learning. We can reorder the vertices

to write U =

[

Ul

Uu

]

, where Ul corresponds to the submatrix

of U whose rows correspond to the labeled set Xl and Uu

similarly corresponds to the unlabeled set X \Xl. Likewise,

we can split the graph Laplacian matrix Lsym into labeled and

unlabeled submatrices as

Lsym =

[

Lll Llu

Lul Luu

]

. (6)

As a result of the hard-constraint labeling of Laplace learning,

the labeled part U∗
l of U∗ is fixed as the one-hot encodings

of the ground-truth labels on Xl; that is

U∗
l =











yi1

yi2
...

yi|Xl|











, i1, i2, . . . , i|Xl| ∈ Xl.

From the harmonic property of the optimized node function

u
∗ (or U∗) of (5), U∗

u of Laplace learning can be calculated

explicitly as

U∗
u = −L−1

uuLulU
∗
l . (7)

D. Active Learning based on Uncertainty

Active learning is a technique to enhance the performance

of underlying semi-supervised learning (SSL) techniques by

strategically selecting which unlabeled data points to label,

utilizing an oracle or human-in-the-loop approach. As men-

tioned above, we adopt Laplace learning [46] as the underlying

semi-supervised classifier. When the labeled set size is fixed

(i.e., |Xl| = NL), the goal of active learning is to identify

which Xl ∈ X would be most beneficial for improving the

classifier’s performance. Alternatively, active learning can be

viewed as a method for choosing a subset Xl ⊂ X that (in

some sense) optimally represents the geometric structure of

the entire dataset X [35], [47].

Active learning implements an iterative approach to select-

ing a labeled set Xl from X . Starting with an initial labeled

subset Xl ⊂ X and a target final size NL, the method

proceeds by iteratively selecting a query set Q ⊂ X \ Xl

and updating the labeled set as Xl ← Xl ∪ Q in each

round. The query set Q is selected according to an acquisition

function A : X \Xl → R, which quantitatively evaluates how

informative each unlabeled data point is to the learning model.

In this paper, we consider the smallest-margin uncertainty

(UC) [48]–[50] acquisition function. Let u∗ denote the current

Laplace learning node function computed with the currently

labeled set Xl. Then, the UC acquisition function is defined

by:

AUC(xi) = 1−

(

uk0
(xi)− max

k=1,2,...,nc;k ̸=k0

uk(xi)

)

, (8)

where uk(xi) denotes the kth element of u(xi), and k0 =
argmaxj=1,2,...,nc

uk(xi).
For a given acquisition function, we consider a method

for selecting a batch of query points (i.e., |Q| > 1) from

the set of acquisition function values on the unlabeled set

({AUC(xi)}i∈X\Xl
) in each iteration of the active learning

cycle. In contrast to most active learning methods, which

sequentially selects Q = {xk} where xk = argmax
xi
A(xi),

we implement the LocalMax [35], [51] batch active learning

strategy for selecting multiple query points per iteration. It

selects a query set Q ⊂ X \Xl comprising multiple unlabeled

nodes that meet a local maximum criteria of the acquisition

functionA within the graph G = (X,W ). This batch approach

accelerates the active learning sampling rate in proportion

to the batch size, without significantly compromising model

performance, as assessed by test accuracy in each iteration.

III. SURFACE WATER AND SEDIMENT DETECTION PIPELINE

This section introduces our contrastive graph-based active

learning pipeline (CGAP). There are two versions of the

CGAP method, namely the basic CGAP (B-CGAP), for train-

ing based on the fully labeled RiverPIXELS dataset [18],

and the adaptive CGAP (A-CGAP) for additional unlabeled

data to be labeled in a human-in-the-loop process using active

learning. Consider the training image set I = {I1, I2, . . . , Inl
}

and the test image set Ĩ = {Ĩ1, Ĩ2, . . . , Ĩnu
}. In training

via the B-CGAP on I, it is assumed that all ground-truth

labels of pixels in I are available. In contrast, in training
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Algorithm 1 Create the Representative Set (RepSet) for Image Ii
INPUT: A set of labeled feature vectors Xi of Image Ii
OUTPUT: The RepSet with corresponding labels.

GRAPH CONSTRUCTION (Section II-B): Graph Gi = (Xi,Wi).
INITIALIZATION: Initialize Ri = R0

i with corresponding labels.

WHILE Terminal Conditions are not triggered:

Apply Laplace learning [46] on Gi with labels of Ri to classify the remaining feature vectors in Xi \Ri.

Calculate the Uncertainty acquisition function [48]–[50] value for each feature vector in Xi \Ri.

Sample a query set Q ⊂ Xi \Ri via the LocalMax [35] batch active learning approach.

Obtain the labels of the query set Q.

Update the RepSet Ri ← Ri ∪Q
END WHILE

RETURN: The RepSet Ri ⊂ Xi and corresponding labels.

In the random initialization, feature vectors in the initial

RepSet R0
i are randomly chosen from the set Xi. If all ground-

truth labels of feature vectors in Xi are available, we can ran-

domly sample the same number of feature vectors within each

class to achieve a class-balanced initialization. If all ground-

truth labels for the current image are not available, then the

randomly sampled initial set will be highly imbalanced across

labels. In many images in our dataset, land pixels account

for over 80% of the image while sediment pixels account

for less than 5%. Random initialization likely yields little

to no sediment pixels, exacerbating class imbalances in the

subsequent active learning loop.

The coreset initialization select a core-set that follows the

geometric distribution of the feature vector set X0. Here we

use the Dijkstra Annulus Core-Set (DAC) [35], which pro-

vides a good initialization for the graph-based active learning

process. Compared with the random initialization, it is not

efficient since it needs to construct a graph structure on Xi

and down-sample according to this graph.

2) Active learning loop: Following the guidance of active

learning approaches II-D, add feature vectors from Xi and

corresponding labels one by one to the RepSet.

The Active learning loop is illustrated within the WHILE

section of Algorithm 1: Construct a graph Gi on Xi and

initialize the RepSet to be R0
i . Apply Laplace learning on

Gi with the initially labeled set R0 to make predictions for

feature vectors in Xi \R
0. Then based on the predicted labels,

calculate the acquisition function A(x) for x ∈ Xi \ R
0

according to (8). Then select a query set Q with the given

batch size |Q| = B according to the LocalMax batch sampling

approach [35]. Update the RepSet as R1
i = R0

i ∪ Q. Repeat

this process for each iteration t until reaching a certain

terminal condition, to be explained in the next bullet entitled

Termination. The final Rt
i then is the RepSet of image Ii,

denoted as Ri.

3) Termination: Stop the active learning loop when a

certain terminal condition is satisfied. When ground-truth

labels of all feature vectors are available, the accuracy-based

terminal condition can be applied. Otherwise, the label-

change terminal condition is applied.

In iteration t of the active learning loop step for image

Ii, let Xi be the preprocessed feature set of pixels in Ii and

Rt
i be the RepSet in the current iteration. We apply Laplace

learning on the graph built with nodes Xi with labels on Rt
i to

make predictions on Xi \R
t. Let Q be the query set to obtain

labels by active learning and Rt+1
i = Rt

i ∪ Q. The labels are

either (1) already available if the training set images are fully

labeled or (2) hand-labeled by a human in the loop. Denote

the Laplace learning prediction label on x ∈ Xi at iteration t
by yt(x).

With a hyperparameter Kmax, ϵ, these terminal conditions

are based on the predicted labels on X \ Rt
i, X \ R

t+1
i at

iterations t, t+ 1. Define the δ-function:

δ(x, y) =

{

1, x = y

0, x ̸= y
(9)

We present two kinds of terminal conditions to check if we

need to terminate the process at iteration t+ 1:

1) Accuracy-based terminal condition: If the ground-

truth label y(x) is available for feature vector x ∈ Xi,

we can terminate the active learning loop according

to the change in prediction accuracy. The accuracy at

iteration t is calculated by:

at =

∑

x∈Xi\Rt
i
δ(yt(x), y(x))

|Xi \Rt
i|

. (10)

Terminate the active learning loop if:

|at − at+1| < ϵ or t > Kmax. (11)

Practically, we further penalize low accuracy by apply-

ing a lower ϵ when at+1 is relatively small. Given a

fixed parameter γ, we use the terminal condition:

|at − at+1| < ϵ exp

(

−
100(1− at+1)

γ

)

or t > Kmax.

(12)

2) Label-change terminal condition: If the ground-truth

labels for feature vectors are not available, we can ter-

minate the active learning loop according to the change

of predicted labels. At iteration t, define the label-change

value:

ct =

∑

x∈Xi\Rt
i
δ(yt(x), yt−1(x))

|Xi \Rt
i|

. (13)

Terminate the active learning loop if:

ct+1 < ϵ or t > Kmax. (14)
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Algorithm 2 Contrastive Graph-based Active Learning Pipelines (B-CGAP & A-CGAP)

INPUT: Training image set I, Test image set Ĩ
OUTPUT: Predicted labels for all pixels in Ĩ
PREPROCESSING & ACTIVE LEARNING:

If all ground-truth labels of the I are available (Use B-CGAP – Condensing Task):

Train feature embedding neural network using supervised contrastive loss (2) (Sections II-A, III-A)

Extract feature vectors Xi for each Ii ∈ I and X̃j for each Ĩj ∈ Ĩ (Section III-A)

For each Ii ∈ I:

(Section III-B)

Condense RepSet Ri from Xi using class-balanced random initialization and accuracy-based terminal condition

Construct RepSet R = ∪nl

i=1Ri

Else (Use A-CGAP – Human-in-the-loop Labeling):

Train feature embedding neural network using SimCLR contrastive loss (1) (Sections II-A, III-A)

Extract feature vectors Xi for each Ii ∈ I and X̃j for each Ĩj ∈ Ĩ (Section III-A)

For each Ii ∈ I:

(Section III-B)

Condense RepSet Ri from Xi using coreset initialization and label-change terminal condition

Construct RepSet R = ∪nl

i=1Ri

TESTING:

For each Ĩj ∈ Ĩ:

Extract feature vectors X̃j for Ĩj using the pretrained feature embedding neural network (Section III-A)

Construct graph Gj = (R∪ X̃j ,Wj) (Section II-B)

Apply Laplace learning on Gj to get classifier matrix Uj and corresponding node function uj (Section II-C)

For each x̃j
k ∈ X̃j :

Predict label ỹjk = argmaxuj(x̃
j
k)

RETURN: Predicted labels for all pixels in Ĩ

The accuracy-based terminal condition provides a clearer

measure of how well a RepSet Rt
i is for the task of classifying

the pixels in image Ii but requires the ground-truth labels for

all pixels.

On the other hand, the label-change terminal condition does

not require ground-truth labels so that one can create the

RepSet from scratch. This terminal condition is met when the

addition of labeled points to the current image’s RepSet Rt
i

changes the predicted labels of the unlabeled points X \ Rt
i

from Laplace learning at a very slow rate. In a sense, this

gives a measure of when there is no significant marginal

gain for adding more labeled points to the RepSet. Such a

process requires manually labeling only a few feature vectors

to construct a RepSet.

The effectiveness of our representative set is closely tied to

the active learning process which uses graph Laplace learning

as a semi-supervised classifier. The active learning process

selects a RepSet that represents well both the clustering

structure and the difficult decision boundary regions [35],

[37], [53] in each training image. By selecting a RepSet of

limited size that performs well on each of the training set

images, we directly verify the effectiveness of the RepSet for

the pixel classification task. Therefore, as long as the testing

set of images is not too dissimilar to the training set, our

proposed framework ensures efficient and accurate results. In

addition, for our B-CGAP method, the active learning process

reduces redundancy in the set of pixels that the human in the

loop must label to maximize information gain with minimal

labeling effort. In practice, we can adjust the parameters in the

terminal condition to balance the effectiveness and efficiency

of the active learning process.

Our experiments in the next section suggest that the size of

the resulting RepSet is usually less than 1% of the original

set of pixels in the training image set. Moreover, our pipeline

consistently outperforms a range of fully-supervised methods

in multiple experiments, despite such a small labeled dataset.

C. Pipeline Structure

This subsection presents an overview of our proposed B-

CGAP and A-CGAP approaches. Both pipelines are designed

to classify pixels in a test image set Ĩ based on training con-

ducted on a training image set I. Algorithm 2 describes these

pipelines, highlighting that the primary differences between

B-CGAP and A-CGAP lie in the preprocessing and active

learning stages, while the testing phase remains identical.

The key distinctions are emphasized in bold italic within the

algorithm.

At the outset of both pipelines, we preprocess each image

in I and Ĩ into sets of feature vectors, as detailed in Section

III-A. For any image Ii ∈ I, we denote its extracted feature

set as Xi = xi
1, x

i
2, . . . , x

i
N0

. Similarly, for each test image

Ĩj ∈ Ĩ, we represent its feature set as X̃j = x̃j
1, x̃

j
2, . . . , x̃

jN0.

Here, N0 = 2562 = 65536 is the number of pixels in each

image, constant across all images in both sets. The following

paragraphs provide more details about both pipelines.
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The B-CGAP requires all ground-truth labels in I in the

training process. Figure 1 presents the flowchart of the B-

CGAP. We train the feature embedding neural network with

the supervised contrastive loss (2). For each Ii ∈ I, since

all ground-truth labels of feature vectors in its feature set Xi

are given, the RepSet Ri can be condensed from Xi with

the class-balanced random initialization and the accuracy-

based terminal condition according to III-B. The RepSet of

I is R = ∪nl

i=1Ri. For each test image Ĩj ∈ Ĩ with feature

set X̃j , construct a graph Gj = (R∪ X̃j ,Wj), where R∪ X̃j

is the vertex set of size Nj = |R ∪ X̃j | and Wj is the weight

matrix generated from feature vectors in R ∪ X̃j according

to Section (II-B). Apply Laplace learning on Gj to get the

classifier matrix Uj ∈ R
Nj×nc according to Section II-C. Let

uj be the corresponding node function of the classifier matrix

Uj . The predicted label ỹjk of each unlabeled feature vector

x̃j
k ∈ X̃j is given by

ỹjk = argmaxuj(x̃
j
k), k = 1, 2, . . . , N0, (15)

where the argmax of a vector u is the (first) index of u’s

largest element.

In addition, we include an extension of the B-CGAP, called

the adaptive CGAP (A-CGAP). The training process of the

A-CGAP does not require a priori access to the ground-truth

labels for all pixels in each training image Ii ∈ I. We apply the

SimCLR contrastive loss (1) to train the feature embedding

network. The creation of RepSet requires the coreset initial-

ization and the label-change terminal condition according

to III-B to sample RepSets Ri for Ii ∈ I. With the aid of

a human in the loop during this process, feature vectors in

Ri are manually labeled in the active learning process. Let

R = ∪nl

i=1Ri. The rest steps of the A-CGAP are the same as

the B-CGAP. We construct a graph on R∪ X̃j and use graph

Laplace learning to classify feature vectors in X̃j .

Note that the A-CGAP provides flexibility for applications

where there is no predefined training image set I, but rather

just a test image set Ĩ. In such a case, the A-CGAP extracts a

RepSet R̃ of Ĩ from scratch and applies Laplace learning with

the human-in-the-loop labels for R̃ to classify the other pixels

in Ĩ. Furthermore, A-CGAP could be applied to reinforce the

B-CGAP. Suppose one has access to all ground-truth labels

for pixels in I. In that case, we can apply the B-CGAP, and

the A-CGAP to respectively extract the RepSets R and R̃ of

I and Ĩ. Let Rnew = R∪R̃ be the new RepSet. For an image

Ĩj ∈ Ĩ, applying Laplace learning on the graph with vertices

Rnew ∪ X̃ with labeled set Rnew to classify feature vectors in

X̃ \Rnew. Such a process allows us to expend limited human-

in-the-loop effort to expand our labeled feature set (RepSet)

by including some feature vectors from the test image set.

IV. EXPERIMENTS AND RESULTS

This section includes experiments of both methods on the

RiverPIXELS dataset. We choose five rivers from the dataset:

the Kolyma, Yana, Waitaki, Colville, and Ucayali Rivers. We

train on images chosen from the first four rivers while the

algorithms are tested on all five rivers. There are 42 images

belonging to the first four river regions and the Ucayali River

includes 54 images. For each region, we randomly sample

75% of the labeled data as the training set and use the

remaining 25% as the test set. The training set I has 32 labeled

images while the test set Ĩ has 10 labeled images, which are

considered unlabeled in our experiments. In Section IV-B, the

test set image set Ĩex is formed by 54 images of the Ucayali

river.

Various metrics are provided to evaluate the performance of

different methods and schemes. Each unlabeled image Ĩj ∈ Ĩ
has M2 pixels {pjk,l}

M
k,l=1 with ground-truth labels {yjk,l}

M
k,l=1

and predicted labels {ȳjk,l}
M
k,l=1, where M = 256. We define

db to be the distance to the boundary for each pixel pjk,l of

coordinate k, l of image Ĩj by

db(p
j
k,l) = min

{(k̂,l̂):yj

k,l
̸=yj

k̂,l̂
}

√

(k − k̂)2 + (l − l̂)2, (16)

which is the Euclidean distance to the nearest pixel with a

different ground-truth label.

For the test set Ĩ (or Ĩex) with the size |Ĩ| = nu, we define

following metrics:

1) Overall Accuracy: The overall accuracy is the average

accuracy of all pixels.

Overall =

∑nu

j=1

∑M
k,l=1 δ(y

j
k,l, ȳ

j
k,l)

nuM2
(17)

2) Class Accuracies: We consider the true positive rate

(TPR), false positive rate (FPR), and the normalized

false positive rate (NFPR) of each class. For class index

c:

TPR(c) =

∑nu

j=1

∑M
k,l=1 δ(y

j
k,l, c)δ(ȳ

j
k,l, c)

∑nt

j=1

∑M
k,l=1 δ(y

j
k,l, c)

(18)

FPR(c) =

∑nu

j=1

∑M
k,l=1 δ(ȳ

j
k,l, c)(1− δ(yjk,l, c))

∑nu

j=1

∑M
k,l=1(1− δ(yjk,l, c))

.

(19)

3) Boundary Accuracy The boundary accuracy of distance

d is the average accuracy of pixels whose distance to the

boundary is less or equal to d.

BA(d) =

∑nu

j=1

∑

{(k,l):db(pk,l)≤d} δ(y
j
k,l, ȳ

j
k,l)

∑nu

j=1 |{(k, l) : db(pk,l) ≤ d}|
(20)

The land, water, and sediment classes in both our selected

images and in general are imbalanced, with land pixels ac-

counting for 70% to 90% of each image. Therefore, a naive

classifier that tends to simply classify pixels primarily as land

may still report an excellent overall accuracy. Furthermore, a

method will rarely have both the best TPR and FPR for every

single class – i.e. the best performance in each of the class

accuracies metrics. We suggest that the boundary accuracy

metric is the most indicative of model performance.

We compare B-CGAP and A-CGAP to various other meth-

ods, such as our previous graph-based active learning pipeline

(GAP) [12], without contrastive learning, and DeepWaterMap

(DWM) [11], support vector machine (SVM) [19] and random

forest (RF) [39]. After feature preprocessing (Section III-A),
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TABLE I
INFORMATION ON TRAINING AND TEST DATASETS

Method
Original Set Network Sampled Training Set Test Set

Dataset Num Images Embedding Dataset Num Pixels Dataset Num Images

B-CGAP (Ours)

I
|I| = 32

(2.1M Pixels)

SupCon [41] RepSet 3.71K Ĩ for
Section IV-A

——————
Ĩex for

Section IV-B
——————
No test set for

Sections IV-C, IV-D

|Ĩ| = 10

(650K Pixels)
——————
|Ĩex| = 54

(3.5M Pixels)

A-CGAP (Ours) SimCLR [40] RepSet 2.99K
GAP [12] No RepSet 3.27K
SVM [19] No P 42.6K

SVM-E [19] SupCon [41] P 42.6K
RF [39] No P 42.6K

RF-E [39] SupCon [41] P 42.6K
DWM-R [11] No I 2.1M
DWM-O [11] IDWM 100K No IDWM 6.55B

Information of training and test datasets of different methods implemented in Section IV. Methods implemented here are our B-CGAP, A-CGAP, previously
proposed GAP, SVM, RF, retained DWM (DWM-R), and original DWM (DWM-O). The suffix “-E” of SVM and RF corresponds to using the neural
network embedding features. The training set of DWM-O is the original training set of DeepWaterMap while other methods use training sets sampled from
RiverPIXELS. K, M, and B refer to a thousand, million, and billion respectively.

TABLE II
COMPARISON APPROACH: RETRAIN DEEPWATERMAP

ALL VALUES IN PERCENTAGE (%)

Importance 3rd 1st 2nd

Method
Land Water Sediment Boundary Overall

TPR FPR TPR FPR TPR FPR BA(3) BA(10) OA

B-CGAP (ours) 98.57 5.63 92.29 1.59 78.49 0.75 88.85 92.29 96.61

A-CGAP (ours) 99.02 11.25 86.93 1.36 64.28 0.77 84.51 90.35 95.35

GAP [12] 98.27 8.43 89.89 1.98 65.72 0.86 81.90 90.41 95.50

SVM [19] 95.09 6.20 89.74 4.10 82.89 1.75 79.28 88.05 93.55

SVM-E [19] 91.78 0.63 93.84 6.61 96.70 2.42 78.52 85.26 92.38

RF [39] 93.72 2.65 92.26 5.10 90.73 2.14 77.40 86.84 93.31

RF-E [39] 91.81 0.95 94.27 6.94 92.49 2.06 80.23 86.32 92.38

DWM-R [11] 97.38 14.53 83.99 3.12 41.70 1.08 72.56 84.56 92.86

The comparison among different methods trained as 3-class classifiers of the land, water, and sediment. This table compares our B-CGAP, A-CGAP, previously
proposed GAP, SVM, RF, and retrained DWM (DWM-R). SVM and RF include both the non-local means feature vectors and the neural network embedding
feature vectors (-E). Accuracy metrics include the true positive rate (TPR), false positive rate (FPR) of each class, the boundary accuracy of distances 3 and
10 (BA(3), BA(10)), and the overall accuracy (OA). The first row “importance” indicates the important ranking of three different types of accuracy metrics.
The best one of each accuracy metric (each column) is bolded. Our B-CGAP performs the best on boundary accuracies and the overall accuracy.

TABLE III
COMPARISON APPROACH: MODIFY LABELS (SED → LAND)

ALL VALUES IN PERCENTAGE (%)

Importance 3rd 1st 2nd

Method
Land Water Sediment Boundary Overall

TPR FPR TPR FPR TPR FPR BA(3) BA(10) OA

B-CGAP(ours) 98.58 8.27 91.73 1.42 N/A N/A 89.73 93.66 97.03

A-CGAP(ours) 99.04 14.80 85.20 0.96 N/A N/A 85.46 91.17 95.90

GAP [12] 98.58 11.47 88.53 1.42 N/A N/A 83.75 91.66 96.30

SVM [19] 97.73 12.49 87.51 2.27 N/A N/A 82.77 91.08 95.41

SVM-E [19] 94.09 6.10 93.90 5.91 N/A N/A 81.67 87.80 94.04

RF [39] 96.37 9.37 90.63 3.63 N/A N/A 81.50 89.63 95.07

RF-E [39] 93.44 5.93 94.07 6.56 N/A N/A 82.67 88.18 93.58

DWM-O [11] 97.85 14.26 85.74 2.15 N/A N/A 78.02 88.81 95.11

The comparison among different methods trained as 2-class classifiers of the land, and water. To compare with the original DeepWaterMap (DWM-O), we
changed all ground-truth labels of sediment into land. This table compares our B-CGAP, A-CGAP, previously proposed GAP, SVM, RF, and retrained DWM
(DWM-R). Accuracy metrics include the true positive rate (TPR) and false positive rate (FPR) of each class, the boundary accuracy of distances 3 and 10
(BA(3), BA(10)), and the overall accuracy (OA). The first row “importance” indicates the important ranking of three different types of accuracy metrics. The
best one of each accuracy metric (each column) is bolded. Our B-CGAP performs the best on boundary accuracies and overall accuracy. It is a coincidence

that the B-CGAP and GAP have the same land TPR and Water FPR.
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the original extracted feature vector set X has over 2 million

feature vectors from the training set consisting of 32 labeled

images. Each method has a different amount of training data,

chosen to represent the best performance of each method.

The training and test datasets information for each method

are listed in Table I.

We now present the training set details for each method.

For SVM and RF, the training performances are almost the

same when the number of training feature vectors is relatively

large. To balance the training performance and the computa-

tional cost of model fitting, we randomly select a subset of all

labeled pixels to train SVM and RF. For each labeled image

in the training set I, we randomly sample Ns pixels from

each class (if a class has less than 500 pixels, sample all) to

form a pixel set P . The pixel set P includes 42634 pixels

consisting of 16000, 14558, and 12076 pixels for land, water,

and sediment respectively.

For GAP, B-CGAP, or A-CGAP, the training set for the

graph Laplace learning is the RepSet R extracted from X
using LocalMax batch active with batch size B = 15. For B-

CGAP and GAP, the accuracy terminal condition (10)(12) is

applied with the ϵ = 10−4, Kmax = 3000 (for each training

image), and γ = 5 (for B-CGAP only). For A-CGAP, the

label-change terminal condition (13)(14) is applied with ϵ =
5× 10−4, Kmax = 3000 (for each training image). To clarify,

the active learning process is only applied to our graph-based

methods to reduce graph size in B-CGAP and the previous

method GAP, and to reduce human labeling requirements in A-

CGAP. The other methods for comparison utilize much larger

training sets (Table I).

DeepWaterMap [11] only provides the classification of

water and land pixels, while RiverPIXELS patches include

water, bare sediment, and land. Here the “land” does not

follow a strict definition, which can include complicated

ground textures like buildings, mountains, and forests. In

binary classification results, such as DWM, “land” refers to

non-water pixels. In 3-class classification results including the

sediment, such as our pipeline, “land” refers to non-water and

non-sediment pixels. As a result, we cannot directly compare

our three-class model with DWM. Here, we provide two

approaches to compare the performance of the other methods

and DWM.

The first approach is to retrain DeepWaterMap (DWM-

R). We train a new neural network with the same structure

of DWM on our training set with 32 labeled images and

labels of water, sediment, and land. The resulting CNN thus

provides a classification of water, sediment, and land pixels.

The second approach is to modify labels. Inspection of the

original DeepWaterMap (DWM-O) training set shows that

nearly all sediment pixels are labeled as land. We modify the

labels of our training set and the ground-truth labels of our

test set by changing sediment labels to land labels. Based on

this modification, we train all methods as classifiers for water

and land and compare them with the original DeepWaterMap.

In light of these details regarding DWM, we consider two

types of training sets for DWM comparisons. DWM-R is

trained on the training image set I that all of our other

comparison methods are trained on. DWM-O is trained on the

vast training set of the original DeepWaterMap 3. Furthermore,

note that the pixel-wise feature vectors for different methods

might differ. B-CGAP uses the supervised contrastive learning

(SupCon (2)) neural network embedding feature vectors while

A-CGAP uses the unsupervised feature vectors (SimCLR (1)),

according to Section II-A, III-A. We also provide experiments

with SVM and RF results, marked by the suffix “-E”, on the

SupCon feature vectors. The GAP, SVM, and RF are based

on the 294-dimensional Non-local means feature vectors [12],

[52] generated by 7×7 neighborhood patches centering at each

pixel. For DWM, the inputs are images rather than feature

vectors since DWM is a CNN-based method that takes the

whole image as input.

A. Comparison between different methods

We compare the classification performance of both our B-

CGAP and A-CGAP to GAP [12], DWM [11], SVM [19] and

RF [39] models. Information regarding training and test sets

is shown in Table I. For this subsection (Subsection IV-A),

the test set is denoted as Ĩ and contains 10 images. It is

worth noting that our methods, B-CGAP, A-CGAP, and GAP,

use significantly less training data than the other methods

considered. The results are presented in two tables: Table II

shows the comparison to the retrained DWM (DWM-R) as

a 3-class classifier, while Table III compares to the original

DWM (DWM-O) when the sediment class in the RiverPIXELS

dataset is modified to be classified as land.

Figures 3, 4 and 5 are sampled images and experiment

results of the Waitaki, Colville, and Yana Rivers, respectively.

In summary, according to Tables II, III, our approach B-

CGAP has the best performance measured by BA(3), BA(10),

and OA. Our A-CGAP and the GAP we proposed in our pre-

vious paper [12] perform similarly and have the second good

result. According to Table I, compared with other methods, all

three methods, B-CGAP, A-CGAP, and GAP, are trained on a

much smaller training set, which only takes around 0.15%
pixels of the training set I. Although A-CGAP performs

similarly to our previous pipeline, GAP, A-CGAP does not

require any ground-truth information at the beginning of the

training process.

Here we provide an analysis of the overall strengths of the

methods.

1) Comparison with DWM: In Table II, the retrained DWM

(DWM-R) has the worst performance in both BA(3) and

BA(10). This implies that our training set I with 32 images

is not sufficient to train a good CNN-UNet. In Table III, the

original DWM (DWM-O) has a similar performance to the

SVM and RF. However, it cannot provide the prediction of

the sediment class.

2) The neural network embedding: The main difference

between our B-CGAP and the previous GAP is the network

embedding. According to Tables II, III, there is a big im-

provement from GAP to B-CGAP. However, the SVM-E and

RF-E perform worse than SVM and RF, respectively, based

on the same SupCon embedding used by B-CGAP. There are

significant increases in the water and sediment TPR and FPR

3https://github.com/isikdogan/deepwatermap
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Landsat scenes for a selected area and then applies our B-

CGAP method for pixel classification. The tool is designed for

ease of use and flexibility, allowing specifications of regions,

place names, and/or selected time periods.

For future work, we suggest two main areas for develop-

ment. The first area focuses on augmenting the datasets used

for training. Currently, the scarcity of annotations for urban

areas, such as cities and buildings, leads to misclassification of

these regions as sediment rather than land. Expanding datasets

like RiverPIXELS to include more comprehensive information

about urban areas or employing automatic annotation meth-

ods to generate pseudo-labels could help strengthen model

performance in these challenging scenarios. Furthermore, it

is imperative to expand the applicability of the models to

encompass a broader range of data modalities beyond the

current reliance on Landsat data. Researchers need to develop

techniques to align data from a diverse range of sensors, scales,

and channel characteristics to ensure the effective application

of the proposed methods.

The second area for future work concerns the development

of improved algorithms for the feature learning and active

learning components of the proposed pipeline. Firstly, one

could consider incorporating transfer learning by leverag-

ing newly acquired unlabeled images to refine our feature-

embedding neural network using the SimCLR loss. Secondly,

one could explore novel graph-based semi-supervised learning

methods to improve the classifier performance within our

pipeline. Methods such as p-Laplace learning [57], [58] or

reweighting the graph before processing the Laplace learning

[59], [60] could provide further improvement.
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