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CGAP: A Hybrid Contrastive and Graph-based
Active Learning Pipeline to Detect Water and
Sediment in Multispectral Images

Bohan Chen*({), Kevin Miller

Abstract—We develop a contrastive graph-based active
learning pipeline (CGAP) to identify surface water and
near-water sediment pixels in multispectral images. CGAP
enhances the graph-based active learning pipeline (GAP)
(10.1109/IGARSS52108.2023.10282009), which  outperforms
methods such as CNN-Unet, support vector machine (SVM),
and random forest (RF), while requiring less training data.
Active learning plays an important role for training data
reduction, resulting in an order of magintude less training
data compared with conventional methods and three or more
orders of magnitude less compared with CNN-Unet. Our
improvements focus on boosting both the pipeline’s robustness
and efficiency by integrating a feature-embedding neural
network prior to graph construction. This neural network,
trained using contrastive learning, performs effective data
dimension reduction by projecting high-dimensional raw
features into a lower-dimensional space, thereby facilitating
more efficient graph learning. The training process incorporates
specialized augmentations to bolster the embedded features’
resilience to geometric transformations, varying resolutions, and
light cloud cover. Moreover, we develop a Python-based demo,
GraphRiverClassifier (GRC), that uses the Google Earth Engine
and our enhanced pipeline to provide a user-friendly tool for
rapid and accurate surface water and sediment analyses and
rapid testing of algorithm performances.

Index Terms—Remote Sensing, Surface Water Detection,
Graph Learning, Active Learning, Contrastive Learning

I. INTRODUCTION

APPING surface water dynamics is crucial for a host
of environmental, engineering, and management prob-
lems, including flood monitoring and mitigation, freshwater
resource management, water quality analyses, and earth sci-
ence research [1]-[4]. New technologies are needed to take
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advantage of the rise of global, remotely sensed surface water
observations [5]-[7]. Rivers provide freshwater and ecologic
resources that support human development, agriculture, and
transportation worldwide. Many rivers are highly dynamic to
environmental conditions [8], [9], and inferring these dynamics
from remotely-sensed images has been a major focus in
Earth Sciences over the previous decade [10]. The importance
of automated surface water detection from remotely-sensed
images is highlighted by significant efforts that have published
global datasets or pre-trained models of surface water [6], [11],
[12].

Global surface water datasets and models are effective at
capturing the majority of surface water, yet often lack the local
precision required for specific applications such as measuring
river widths [13], [14] or estimating river migration rates [10],
[15], where the targeted features may be as narrow as 1-2
pixels along the river boundary. To address this, researchers
typically develop local models that involve labor-intensive
manual data labeling and lack generalizability. For some river
studies, an additional class representing in-channel sediment or
highly-turbid water may be desired [10], [16]. In our case, we
aim to identify rivers at their so-called “bankfull” state [17],
which we define as the union of water and active (unvegetated)
in-channel sediment bars [10].

Our work builds upon the RiverPIXELS dataset [18], a high-
quality, hand-labeled collection of water and in-river, unveg-
etated sediment from Landsat multispectral images. Although
RiverPIXELS covers various river types and environmental
settings, it represents only a small fraction of global surface
water. Therefore, our goal is to develop a robust, accurate,
and efficient machine learning algorithm that can leverage the
RiverPIXELS dataset to detect surface water and sediment
pixels in multispectral satellite images on a global scale.

A. Related Work and Motivation

Several datasets and models exist for surface water detec-
tion. The Global Surface Water dataset [6] uses a Support
Vector Machine (SVM) model [19] with post-processing to
identify water pixels in Landsat images, accounting for con-
founding features like ice and snow. The USGS’s Dynamic
Surface Water Extent product [20] employs spectral mixing
methods for Landsat imagery. Among pre-trained models,
Deepwatermap [11] stands out, utilizing a convolutional neural
network (CNN) U-net architecture [21] trained on extensive
public datasets. While these approaches effectively capture
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overall surface water dynamics, they often lack the precision
required for specific applications (particularly in labeling in-
and near-channel sediment) and necessitate large amounts of
training data, especially for state-of-the-art neural network
models.

The identification of surface water from satellite images
can be treated as an image segmentation problem, wherein
labels are given to each pixel in an image such that pixels
with the same label share certain characteristics. Image seg-
mentation has been approached from many angles. There are
partial differential equation (PDE)-based methods [22]-[24]
for unsupervised segmentation, and deep learning methods like
U-Net [21] for supervised segmentation on extensive annotated
training datasets.

The RiverPIXELS dataset comprising 104 patches of 256 x
256 pixels, motivates us to explore semi-supervised methods
capable of high performance with small training datasets.
In this paper, we consider graph learning, a quintessential
semi-supervised learning approach. This approach has proven
successful in noisy image recovery [25]-[27], image or video
segmentation [28]-[30], studies using remotely-sensed images
to combine LIDAR and optical images [31], hyperspectral
unmixing [32], [33], and SAR imagery classification [34],
[35]. Additionally, graph convolutional networks (GCN) have
been utilized for wetland classification, outperforming CNN
models [36].

A general graph learning approach for image segmentation
is based on a similarity graph generated from pixel features,
with each pixel’s feature vector serving as a node and the edge
weights representing the similarity between nodes. To enhance
the efficiency of graph learning, we previously introduced
a graph-based active learning pipeline (GAP) [12], which
does not require constructing a graph on the millions of
pixels corresponding to the 104 patches in the RiverPIXELS
dataset—a process that would be computationally inefficient.
Instead, it employs an active learning approach [37], [38]
to select representative samples from the training set. Our
previous GAP method has outperformed SVM [19], Random
Forest (RF) [39], and the CNN-based model DeepWaterMap
[11].

B. Our Contributions

In this paper, we enhance our previously developed GAP by
pre-training a feature-embedding neural network to improve
both the method’s performance and efficiency. Instead of
using raw neighborhood patches as feature vectors for graph
construction, we now preprocess them through this network.
The feature embedding neural network is trained using the
contrastive learning approach [40], [41], which has previously
shown impressive results in SAR image classification when
combined with graph learning [34]. Our proposed method
is called the contrastive graph-based active learning pipeline
(CGAP), with both a basic (B-CGAP) and adaptive (A-CGAP)
version. The flowchart of the basic version (B-CGAP) is
illustrated in Figure 1

Our main contributions are as follows:

1) We introduce a new CGAP method that combines

our previous GAP approach with contrastive learning.

Compared to previous methods, CGAP demonstrates
better performance and higher efficiency and exhibits
robustness to different resolutions and potential cloud
cover.

2) We propose two versions of the CGAP method: basic (B-
CGAP) and adaptive (A-CGAP). B-CGAP is based on a
fully labeled training dataset, whereas A-CGAP allows
us to train without any ground-truth label information
initially. The A-CGAP process includes using active
learning to guide a human-in-the-loop labeling process,
requiring labels for only about 0.1% of the total pixels.

3) We provide a Python-based tool, GraphRiverClassifier
(GRO), that leverages Google Earth Engine and Colab
to deploy our pre-trained models to detect surface water
and sediment within any Landsat image. This tool is
highly flexible, mostly automated, and user-friendly.

The experimental results presented in this paper may be
reproduced using the code available in our GitHub reposi-
tory'. For a quick start with our tool, visit the GRC GitHub
repository 2.

II. BACKGROUND INFORMATION

This section reviews the methods integral to our pipeline
(Section III-C), including contrastive learning, similarity graph
construction, graph-based Laplace learning, and active learn-
ing.

A. Contrastive Learning

Contrastive Learning is a powerful technique for train-
ing deep neural networks, particularly for learning low-
dimensional representations without extensive labeled datasets.
At its core, contrastive learning aims to learn embeddings
by maximizing the similarity between augmented views of
the same data point while minimizing the similarity between
embeddings of different data points. Chen et al. introduce
a framework for contrastive learning of visual representa-
tions (SimCLR), which simplifies the contrastive learning
paradigm by eliminating the need for specialized architectures
or a memory bank [40]. This framework is further expanded
in [42], demonstrating the effectiveness of large-scale self-
supervised learning for improving semi-supervised learning
performance. For a neural network f and a minibatch of
m data {x1,X2,...,X;,}, each x; is augmented into pairs
Xok—1,X2k Which are processed through the neural network
as Zop_1 = f(f(gkfl), Zo) = f(f(gk) The SimCLR loss is

1 m
LsimCLr = % Z[£(2k7 2k — 1) + K(Zk -1, 2k)]7

= (M
exp(9(2i,2;)/7)

D) ;
Zk}:l’k;ﬁi exp(g(zi, zk)/T)

g(la.j) = - lOg

where 7 is a constant parameter, and ¢(z;,z;) =
z; z;/(||z:]|||z;]|) is the angular (cosine) similarity.

Uhttps://github.com/wispcarey/CGAP- SurfaceWaterDetection
Zhttps://github.com/wispcarey/GraphRiverClassifier
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Fig. 1. The flowchart of our basic contrastive graph-based active learning pipeline (CGAP): 1. (Red Boxes) A neural network is trained with contrastive
learning to convert raw images into feature vectors. 2. (Yellow Box) Condense the labeled feature vector set into a smaller representative set (RepSet) using
active learning approaches. 3. (Cyan Box) Build a graph based on the union of the RepSet and the unlabeled feature set. Then, apply graph learning approaches

to predict labels for unlabeled features.

Khosla et al. [41] extend SimCLR from self-supervised
learning to supervised contrastive learning (SupCon) by lever-
aging label information. SupCon enhances the discriminative
power of the learned embeddings by encouraging embed-
dings from the same class to cluster together, significantly
outperforming traditional cross-entropy loss for supervised
learning in many cases. In the supervised setting, we have
the ground-truth labels {y1,¥y2,...,%2m}, Yok—1 = Yo for
{21,22,...,22,,}. Based on (1), the supervised contrastive
loss is defined by
ESupCon = 2Zm _1 5 exp(g(Zi’Zj)/T)

i=1 |P(0)] Zkfl,k# eXp(g(Zi7Zk)/T)

D

JEP()
2m 1
= ‘ £(i, ),
; PO 2
JEP(1)

)

where P(i) = {k # i : yr = y;} is the set of indices with
the same label of z;, and ¢ is defined in (1). The SimCLR
loss (1) only considers augmented pairs zoj_1, Zop While the
SupCon loss (2) considers all pairs with the same label in the
minibatch. In this work, we set 7 = 0.5 for both the SimCLR
loss (1) and the SupCon loss (2) in the preprocessing step of
our proposed pipelines (Section III-A) and our experiments
(Section IV).

B. Graph Construction

We construct a graph G = (X, W) to model the rela-
tionships within a dataset X = {xi,Xs,...,xy} C R? of
d-dimensional feature vectors. We consider X to be the set
of vertices and construct a non-negative edge weight matrix
W € RNXN_ An edge between vertices x; and x; (@ # J)

exists if and only if the corresponding weight is non-zero (i.e.,
Wi; > 0). W;; > 0 measures the similarity measure between
two feature vectors x; and x;:

74("“‘”2) , 3)

VHEiRj

where Z(x;,x;) represents the angular distance between x;

Wij = exp <—

and x;, computed by arccos (ﬁ”’;“) The normalization
constant x; for each vertex x; is determined by its angular
distance to the K" nearest neighbor, x;, .

To facilitate efficient computations over the graph, we em-
ploy a sparse representation for W. Only connections between
each vertex x; and its K-nearest neighbors are considered.
This is achieved using an approximate nearest neighbor search
algorithm [43]. The K -nearest neighbors of x;, denoted as x;,
for k =1,2,..., K (excluding x; itself), are determined ac-
cording to the corresponding angular distances. Consequently,
a sparse version of W, denoted Wij, is defined by:

Wij: Wij) ifj:?I;iQ)"'aiKa (4)

0, otherwise.
It is important to select a large enough K to ensure the
graph G is connected; in this paper, K = 30 is sufficient for
our experiments. Furthermore, W is symmetrized as W;; :=
(Wi; +Wj;)/2 to guaranteeing that W is sparse and symmet-
ric, possessing non-negative edge weights (W;; > 0). In both
the contrastive learning approach discussed in Section II-A
and the graph construction methodology presented in this
section, we utilize the angular distance as a similarity measure.
This deliberate choice facilitates the natural application of the
embedding features produced by contrastive learning in the

graph-based Laplace learning classifier.



SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 4

C. Graph Learning

With a graph G = (X, W) constructed as described in the
previous section, we now describe a graph-based approach
for semi-supervised learning and present previous work in
this field. Assume we have the ground-truth labels on a
subset of vertices X; C X. Let y; € {1,2,...,n.} be the
ground-truth label of x; € X;, with corresponding one-hot
vector y; € R"™. Important geometric information about the
dataset X is encoded in graph Laplacian matrices [44], [45]
of the graph G. Define d; = Zxke x Wi to be the degree
of node j and let D be the diagonal matrix with diagonal
entries dy,do,...,dy. While there are various scalings for
graph Laplacians [45], we use the symmetric normalized graph
Laplacian Ly := D™/2(D—W)D~'/2. Compared with the
unnormalized graph Laplacian L = D — W, it is less sensitive
to the size of the graph and has all eigenvalues in [0, 2].

The inferred classification of unlabeled vertices comes
from thresholding a continuous-valued node function u :
X — R, Specifically, the predicted label of x; € X is
y; = argmax{uy(i),u2(4),...,u,,(4)}, where u(7) is the
k™ entry of u(i). Consider a N x n, matrix U, whose i row
is u(7); that is, each node function u can be identified by a
matrix U whose i represents the output of u at node i. Our
graph-based semi-supervised learning (SSL) model obtains the
matrix U* (and the corresponding node function 1) by solving
an optimization problem of the form:

1
argmin —(U, LymU)F,
Ue]RNXnC

s.t.u(z;) = yi, Vo € Xy,

U=
o)

where (-, -)r is the Frobenius inner product for matrices. This
hard-constraint u(z;) = y;, Va; € X, forces the minimizer
U™ to be the same as the ground-truth y on the labeled node
set X; C X. This SSL scheme was introduced in [46] and
we refer to it as Laplace learning. We can reorder the vertices
U
o]
of U whose rows correspond to the labeled set X; and U,
similarly corresponds to the unlabeled set X \ X;. Likewise,
we can split the graph Laplacian matrix Ly, into labeled and
unlabeled submatrices as

Ly L,
Lsym N |:Lul Luu:| '

As a result of the hard-constraint labeling of Laplace learning,
the labeled part U of U™ is fixed as the one-hot encodings
of the ground-truth labels on Xj; that is

to write U = , where U; corresponds to the submatrix

(6)

Ul = . s 11,12,...,Z‘XZ‘EXZ.

yi\xz\
From the harmonic property of the optimized node function
u* (or U*) of (5), U;; of Laplace learning can be calculated
explicitly as

Up = =Ly LuU; (7)

D. Active Learning based on Uncertainty

Active learning is a technique to enhance the performance
of underlying semi-supervised learning (SSL) techniques by
strategically selecting which unlabeled data points to label,
utilizing an oracle or human-in-the-loop approach. As men-
tioned above, we adopt Laplace learning [46] as the underlying
semi-supervised classifier. When the labeled set size is fixed
(i.e., |X;] = Np), the goal of active learning is to identify
which X; € X would be most beneficial for improving the
classifier’s performance. Alternatively, active learning can be
viewed as a method for choosing a subset X; C X that (in
some sense) optimally represents the geometric structure of
the entire dataset X [35], [47].

Active learning implements an iterative approach to select-
ing a labeled set X; from X. Starting with an initial labeled
subset X; C X and a target final size N, the method
proceeds by iteratively selecting a query set @ C X \ X;
and updating the labeled set as X; < X; U Q in each
round. The query set Q is selected according to an acquisition
Sunction A : X \ X; — R, which quantitatively evaluates how
informative each unlabeled data point is to the learning model.

In this paper, we consider the smallest-margin uncertainty
(UC) [48]-[50] acquisition function. Let u* denote the current
Laplace learning node function computed with the currently
labeled set X;. Then, the UC acquisition function is defined
by:

Ave(xi) =1— (uko (xi) — . max

=1,2,...,nc;k#ko

wix)). ®)

where uy(x;) denotes the k™ element of u(x;), and kg =
argmax;_y o ., We(xXi).

For a given acquisition function, we consider a method
for selecting a batch of query points (i.e., |Q] > 1) from
the set of acquisition function values on the unlabeled set
({Avc(x4)}iex\x,) in each iteration of the active learning
cycle. In contrast to most active learning methods, which
sequentially selects Q = {x;} where x; = argmax, A(x;),
we implement the LocalMax [35], [51] batch active learning
strategy for selecting multiple query points per iteration. It
selects a query set Q@ C X \ X; comprising multiple unlabeled
nodes that meet a local maximum criteria of the acquisition
function .4 within the graph G = (X, W). This batch approach
accelerates the active learning sampling rate in proportion
to the batch size, without significantly compromising model
performance, as assessed by test accuracy in each iteration.

III. SURFACE WATER AND SEDIMENT DETECTION PIPELINE

This section introduces our contrastive graph-based active
learning pipeline (CGAP). There are two versions of the
CGAP method, namely the basic CGAP (B-CGAP), for train-
ing based on the fully labeled RiverPIXELS dataset [18],
and the adaptive CGAP (A-CGAP) for additional unlabeled
data to be labeled in a human-in-the-loop process using active
learning. Consider the training image setZ = {I1, Is, ..., I, }
and the test image set 7 = {I~1,I~2,...,I~nu}. In training
via the B-CGAP on Z, it is assumed that all ground-truth
labels of pixels in Z are available. In contrast, in training
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via the A-CGAP, a priori knowledge of labels in Z is not
required. In both pipelines, we first preprocess the pixels
in each image into feature vectors by training a feature-
embedding neural network by contrastive learning. We then
sample a training feature vector set, termed the representative
set (RepSet) R, as a subset of the entire preprocessed feature
set X = {x1,x9,...,2n}. Each feature vector in R has its
ground-truth label available (for A-CGAP, it could be obtained
by human experts).

Our pipeline’s core idea is to use this RepSet for classifying
the pixels in each test set image in 7. For each test set image
fj € T with Ny pixels and correspondmg unlabeled feature
vector set X; = {x17x2, ..., X}, }, We generate a weighted
graph G = (R U X, W) accordlng to section II-B and then
apply Laplace learning (Section II-C) to classify the unlabeled
feature vectors in X;.

A. Contrastive Learning for Feature Preprocessing

For every image I within the set Z U Z, we extract
a patch neighborhood centered around each pixel to form
the raw feature vectors, considering all Ny pixels in the
image. The raw feature cube for each pixel is of the size
9 X 9 x 6. Denote the set of raw feature cubes of I by
{x (1), x5V(I), ..., x{(I)} € R9*9%6, Before training the
feature embedding neural network, we design some transfor-
mations for those neighborhood patches of the size k x k:

1) Horizontal Flip: Horizontally flip the patch.

2) Vertical Flip: Vertically flip the patch.

3) Rotation: Select a random angle and rotate the patch
clockwise. Then crop the output into k£ x k. This might
introduce some zero values in the output patch.

4) RandomPixelAugmentation: Randomly select some
pixels and set their values to 1 for all six channels.

5) CenterCropResize: Crop the image from the center
based on a random scale and then resize the image to
k x k.

6) Gaussian Reweight: Reweight the patch by a k X k
Gaussian kernel matrix.

Each of these six transformations is applied simultaneously
to each channel of the patch. The final random augmenta-
tion design for contrastive learning consists of a sequential
combination of these six transformations, where the first five
are applied with a 50% probability of being executed, while
the last transformation, Gaussian Reweight, is guaranteed to
be applied. The first three transformations, Horizontal Flip,
Vertical Flip, and Rotation, are standard goemetric image
transformations. The fourth one, RandomPixel Augmentation,
is designed for potential cloud coverage. The fifth one, Center-
CropResize, is designed for the robustness of different (higher)
resolutions. The last one, Gaussian Reweight, emphasizes
pixels near the center and is inspired by the Non-local Means
[52] model in image processing.

We use a shallow convolutional neural network for feature
embedding. The network architecture is shown in Figure 2.

The loss function £(6) is the SupCon loss(2) for B-CGAP
and is the SimCLR loss(1) for A-CGAP, since we don’t have
the ground-truth label information in the feature preprocessing

[ Structure ] [ Feature Size J

[ Input Patch ][ 9x9x6 ]
v

| Conviayer1 || 9x9x12 )
v

| MaxPooling || 4x4x12 ]
v

[ Conv Layer 2 ][ 4x4x24 ]
v

| Fclayer1 || 128 )
v v

| FcLayer2 |[ 32 |
v v

[ Normalize ] [ 32 ]

Fig. 2. The architecture of our feature embedding neural network which
embeds 9 X 9 X 6 neighborhood cubes into 32-dimensional feature vectors
with 57836 trainable parameters. The Conv Layer denotes the convolutional
layer and FC layer denotes the fully connected layer. There is a ReLU layer
after each of Conv Layer 1, Conv Layer 2, and FC Layer 1. Conv Layer
1 has a kernel size of 5 and padding 2 while Conv Layer 2 has the a kernel
size of 3 and padding 1. The final layer normalizes the L2 norm of the output
feature vector to one, which makes it easier for the angular similarity in the
loss function (1), (2) of contrastive learning.

stage of the A-CGAP. The respective training processes are
described in Section II-A. Denote the trained parameters by 0.
Finally, let the set of preprocessed feature vectors correspond-
ing to image I be written as {x;(I) = f(x™(I),0) | i =
1,2,...,No}.

B. Create the Representative Set

Including a massive set of all training feature vectors can be
extremely inefficient in graph-based learning. For example, the
label images of the Kolyma, Yana, Waitaki, and Colville Rivers
in the RiverPIXELS dataset are comprised of 42 multispectral
images of size 256 x 256 x 6, consisting of over 2.7 million
pixels. Generating a graph based on this extensive set of
feature vectors would be prohibitively costly.

Denote X, as the preprocessed feature vector set of the
training image I; € Z. We downselect from X = U}, X, to
create a much smaller RepSet R C X to be used to classify
the pixels in the unlabeled images. Such a selection process
removes redundant feature vectors while keeping significant
feature vectors. We find a RepSet R; for each image I; € 7
and take the union to obtain R = U}’ R;. In the case
that ground-truth labels are not available when generating
the RepSet R (i.e. the A-CGAP case), pixels need to be
labeled by human experts in a human-in-the-loop process. To
determine the RepSet for a certain image I; € Z, we follow 3
steps: Initialization, Active learning loop, and Termination.
Algorithm 1 provides an overview of such a process.

We now present the details of these 3 steps:

1) Initialization: Initialize the RepSet RY.

There are two methods for initialization, random initial-
ization and core-set initialization.
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Algorithm 1 Create the Representative Set (RepSet) for Image I;

INPUT: A set of labeled feature vectors X; of Image I;
OuTPUT: The RepSet with corresponding labels.

GRAPH CONSTRUCTION (Section II-B): Graph G; = (X;, W;).
INITIALIZATION: Initialize R; = RY with corresponding labels.

WHILE Terminal Conditions are not triggered:

Apply Laplace learning [46] on G; with labels of R; to classify the remaining feature vectors in X; \ R;.
Calculate the Uncertainty acquisition function [48]-[50] value for each feature vector in X; \ R;.
Sample a query set Q C X; \ R; via the LocalMax [35] batch active learning approach.

Obtain the labels of the query set Q.
Update the RepSet R; < R; UQ
END WHILE
RETURN: The RepSet R; C X, and corresponding labels.

In the random initialization, feature vectors in the initial
RepSet RY are randomly chosen from the set X;. If all ground-
truth labels of feature vectors in X; are available, we can ran-
domly sample the same number of feature vectors within each
class to achieve a class-balanced initialization. If all ground-
truth labels for the current image are not available, then the
randomly sampled initial set will be highly imbalanced across
labels. In many images in our dataset, land pixels account
for over 80% of the image while sediment pixels account
for less than 5%. Random initialization likely yields little
to no sediment pixels, exacerbating class imbalances in the
subsequent active learning loop.

The coreset initialization select a core-set that follows the
geometric distribution of the feature vector set X,. Here we
use the Dijkstra Annulus Core-Set (DAC) [35], which pro-
vides a good initialization for the graph-based active learning
process. Compared with the random initialization, it is not
efficient since it needs to construct a graph structure on X;
and down-sample according to this graph.

2) Active learning loop: Following the guidance of active
learning approaches II-D, add feature vectors from X; and
corresponding labels one by one to the RepSet.

The Active learning loop is illustrated within the WHILE
section of Algorithm 1: Construct a graph G; on X; and
initialize the RepSet to be RY. Apply Laplace learning on
G; with the initially labeled set R" to make predictions for
feature vectors in X;\ R°. Then based on the predicted labels,
calculate the acquisition function A(x) for x € X; \ R
according to (8). Then select a query set Q with the given
batch size |Q| = B according to the LocalMax batch sampling
approach [35]. Update the RepSet as R} = RY U Q. Repeat
this process for each iteration ¢ until reaching a certain
terminal condition, to be explained in the next bullet entitled
Termination. The final R! then is the RepSet of image I,
denoted as R;.

3) Termination: Stop the active learning loop when a
certain terminal condition is satisfied. When ground-truth
labels of all feature vectors are available, the accuracy-based
terminal condition can be applied. Otherwise, the label-
change terminal condition is applied.

In iteration ¢ of the active learning loop step for image
I;, let X; be the preprocessed feature set of pixels in I; and
R! be the RepSet in the current iteration. We apply Laplace

learning on the graph built with nodes X; with labels on R! to
make predictions on X; \ R'. Let Q be the query set to obtain
labels by active learning and Rf“ = R! U Q. The labels are
either (1) already available if the training set images are fully
labeled or (2) hand-labeled by a human in the loop. Denote
the Laplace learning prediction label on x € X; at iteration ¢
by y'(x).

With a hyperparameter Ky, €, these terminal conditions
are based on the predicted labels on X \ Rf, X \ RI™' at
iterations ¢, ¢ + 1. Define the J-function:

1, z=y

We present two kinds of terminal conditions to check if we
need to terminate the process at iteration ¢ + 1:

1) Accuracy-based terminal condition: If the ground-
truth label y(x) is available for feature vector x € X,
we can terminate the active learning loop according
to the change in prediction accuracy. The accuracy at
iteration ¢ is calculated by:

e O (), y(x)

9)

= 10
“ X\ o

Terminate the active learning loop if:
|ar — ag1] < € or t > K- (11)

Practically, we further penalize low accuracy by apply-
ing a lower € when a;y; is relatively small. Given a
fixed parameter 7y, we use the terminal condition:

100(1 — at41)

) or t > Kpax.
Y

(12)

2) Label-change terminal condition: If the ground-truth
labels for feature vectors are not available, we can ter-
minate the active learning loop according to the change

of predicted labels. At iteration ¢, define the label-change

|az — az+1] < eexp (—

value:
D xexame 0y (%), y 7 (x))
“ XA -
Terminate the active learning loop if:
i1 < €ort > K. (14)
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Algorithm 2 Contrastive Graph-based Active Learning Pipelines (B-CGAP & A-CGAP)

INPUT: Training image set Z, Test image set 7
OUTPUT: Predicted labels for all pixels in Z
PREPROCESSING & ACTIVE LEARNING:

If all ground-truth labels of the Z are available (Use B-CGAP — Condensing Task):
Train feature embedding neural network using supervised contrastive loss (2) (Sections II-A, 1II-A)
Extract feature vectors X; for each I; € Z and X for each I; € Z (Section III-A)

For each I, € T:
(Section III-B)

Condense RepSet R; from X; using class-balanced random initialization and accuracy-based terminal condition

Construct RepSet R = U | R;
Else (Use A-CGAP — Human-in-the-loop Labeling):

Train feature embedding neural network using SimCLR contrastive loss (1) (Sections II-A, 1II-A)
Extract feature vectors X; for each I; € 7 and X for each I el (Section III-A)

For each I, € T:
(Section III-B)

Condense RepSet R; from X; using coreset initialization and label-change terminal condition

Construct RepSet R = U | R;
TESTING: ~ ~
For each I; € I:

Extract feature vectors X ; for I ; using the pretrained feature embedding neural network (Section III-A)

Construct graph G; = (R U X;, W;) (Section II-B)

Apply Laplace learning on G to get classifier matrix U; and corresponding node function u; (Section II-C)

For each Z], € X
Predict label 7 = arg max u, (:ck)
RETURN: Predicted labels for all pixels in Z

The accuracy-based terminal condition provides a clearer
measure of how well a RepSet R! is for the task of classifying
the pixels in image I; but requires the ground-truth labels for
all pixels.

On the other hand, the label-change terminal condition does
not require ground-truth labels so that one can create the
RepSet from scratch. This terminal condition is met when the
addition of labeled points to the current image’s RepSet R!
changes the predicted labels of the unlabeled points X \ R!
from Laplace learning at a very slow rate. In a sense, this
gives a measure of when there is no significant marginal
gain for adding more labeled points to the RepSet. Such a
process requires manually labeling only a few feature vectors
to construct a RepSet.

The effectiveness of our representative set is closely tied to
the active learning process which uses graph Laplace learning
as a semi-supervised classifier. The active learning process
selects a RepSet that represents well both the clustering
structure and the difficult decision boundary regions [35],
[37], [53] in each training image. By selecting a RepSet of
limited size that performs well on each of the training set
images, we directly verify the effectiveness of the RepSet for
the pixel classification task. Therefore, as long as the testing
set of images is not too dissimilar to the training set, our
proposed framework ensures efficient and accurate results. In
addition, for our B-CGAP method, the active learning process
reduces redundancy in the set of pixels that the human in the
loop must label to maximize information gain with minimal

labeling effort. In practice, we can adjust the parameters in the
terminal condition to balance the effectiveness and efficiency
of the active learning process.

Our experiments in the next section suggest that the size of
the resulting RepSet is usually less than 1% of the original
set of pixels in the training image set. Moreover, our pipeline
consistently outperforms a range of fully-supervised methods
in multiple experiments, despite such a small labeled dataset.

C. Pipeline Structure

This subsection presents an overview of our proposed B-
CGAP and A-CGAP approaches. Both pipelines are designed
to classify pixels in a test image set 7 based on training con-
ducted on a training image set Z. Algorithm 2 describes these
pipelines, highlighting that the primary differences between
B-CGAP and A-CGAP lie in the preprocessing and active
learning stages, while the testing phase remains identical.
The key distinctions are emphasized in bold italic within the
algorithm.

At the outset of both pipelines, we preprocess each image
in Z and 7 into sets of feature vectors, as detailed in Section
III-A. For any image I; € Z, we denote its extracted feature
set as X; = 1,75, .. xN Slmllarly, for each test image
I € 7, we represent its feature set as Xj = &, 4, ..., No.
Here Ny = 2562 = 65536 is the number of plxels in each
image, constant across all images in both sets. The following
paragraphs provide more details about both pipelines.
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The B-CGAP requires all ground-truth labels in Z in the
training process. Figure 1 presents the flowchart of the B-
CGAP. We train the feature embedding neural network with
the supervised contrastive loss (2). For each I; € Z, since
all ground-truth labels of feature vectors in its feature set X;
are given, the RepSet R; can be condensed from X; with
the class-balanced random initialization and the accuracy-
based terminal condition according to III-B. The RepSet of
Zis R = U R,. For each test image f € 7 with feature
set X, construct a graph G; = (RUXJ, W ), where RU X
is the vertex set of size N; = |R U X;| and W} is the Welght
matrix generated from feature vectors in R U Xj according
to Section (II-B). Apply Laplace learning on G; to get the
classifier matrix U; € RYi*"e according to Section II-C. Let
u; be the corresponding node function of the classifier matrix
U;. The predicted label g;. of each unlabeled feature vector
z € X is given by

§l = argmaxu; (i), k=1,2,..., N, (15)

where the argmax of a vector u is the (first) index of u’s
largest element.

In addition, we include an extension of the B-CGAP, called
the adaptive CGAP (A-CGAP). The training process of the
A-CGAP does not require a priori access to the ground-truth
labels for all pixels in each training image I; € Z. We apply the
SimCLR contrastive loss (1) to train the feature embedding
network. The creation of RepSet requires the coreset initial-
ization and the label-change terminal condition according
to III-B to sample RepSets R; for I; € Z. With the aid of
a human in the loop during this process, feature vectors in
R; are manually labeled in the active learning process. Let
R = U | R;. The rest steps of the A-CGAP are the same as
the B-CGAP. We construct a graph on R U X and use graph
Laplace learning to classify feature vectors in X

Note that the A-CGAP provides flexibility for applications
where there is no predefined training image set Z, but rather
just a test image set Z. In such a case, the A-CGAP extracts a
RepSet R of T from scratch and applies Laplace learning with
the human-in-the-loop labels for R to classify the other pixels
in Z. Furthermore, A-CGAP could be applied to reinforce the
B-CGAP. Suppose one has access to all ground-truth labels
for pixels in Z. In that case, we can apply the B-CGAP, and
the A-CGAP to respectively extract the RepSets R and R of
7 and Z. Let Roew = RUR be the new RepSet. For an image
I i € 7, applying Laplace learning on the graph with vertices
Roew U X with labeled set Ruew to classify feature vectors in
X \ Rauew- Such a process allows us to expend limited human-
in-the-loop effort to expand our labeled feature set (RepSet)
by including some feature vectors from the test image set.

IV. EXPERIMENTS AND RESULTS

This section includes experiments of both methods on the
RiverPIXELS dataset. We choose five rivers from the dataset:
the Kolyma, Yana, Waitaki, Colville, and Ucayali Rivers. We
train on images chosen from the first four rivers while the
algorithms are tested on all five rivers. There are 42 images
belonging to the first four river regions and the Ucayali River

includes 54 images. For each region, we randomly sample
75% of the labeled data as the training set and use the
remaining 25% as the test set. The training set Z has 32 labeled
images while the test set 7 has 10 labeled images, which are
considered unlabeled in our experiments. In Section IV-B, the
test set image set Tey is formed by 54 images of the Ucayali
river.

Various metrics are provided to evaluate the performance of
different methods and schemes. Each unlabeled image I; € 7
has M? pixels {pk l}k ,—1 With ground-truth labels {y] l}k =1

and predicted labels {yk g ki1, Where M = 256. We define
dy to be the distance to the boundary for each pixel p{c,l of

Ve — o2

which is the Euclidean distance to the nearest pixel with a
different ground-truth label.

For the test set Z (or Z,) with the size |Z| = n,,, we define
following metrics:

coordinate k, ! of image I ; by

+ (=12,

min

db(pi:,l): LY .
{(kD)yg 77, o3

(16)

1) Overall Accuracy: The overall accuracy is the average
accuracy of all pixels.

Sy Zkl 1Yk Ti)
n M?

2) Class Accuracies: We consider the true positive rate
(TPR), false positive rate (FPR), and the normalized
false positive rate (NFPR) of each class. For class index

Overall = a7

C:
Ny J 6 —J
TPR(c) — Z Zkl 1 (yk,lvc) (yk,lvc) (18)
Zj:l Zk,l:l 6(yi,l> c)
pR(e) = oo izt 00O = (01 )
> Zkl (1= (yk:l’ c))
(19)

3) Boundary Accuracy The boundary accuracy of distance
d is the average accuracy of pixels whose distance to the
boundary is less or equal to d.

2?21 Z{(k,z):db(pk,,,)gd} 6(yi,l> gi,l)
ity (k1) = dy(pra) < d}

The land, water, and sediment classes in both our selected
images and in general are imbalanced, with land pixels ac-
counting for 70% to 90% of each image. Therefore, a naive
classifier that tends to simply classify pixels primarily as land
may still report an excellent overall accuracy. Furthermore, a
method will rarely have both the best TPR and FPR for every
single class — i.e. the best performance in each of the class
accuracies metrics. We suggest that the boundary accuracy
metric is the most indicative of model performance.

We compare B-CGAP and A-CGAP to various other meth-
ods, such as our previous graph-based active learning pipeline
(GAP) [12], without contrastive learning, and DeepWaterMap
(DWM) [11], support vector machine (SVM) [19] and random
forest (RF) [39]. After feature preprocessing (Section III-A),

BA(d) = (20)
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TABLE I
INFORMATION ON TRAINING AND TEST DATASETS

Method Original Set Network Sampled Training Set Test Set
Dataset | Num Images Embedding Dataset | Num Pixels Dataset [ Num Images
B-CGAP (Ours) SupCon [41] RepSet 3.71K 7 for
A-CGAP (Ours) SimCLR [40] RepSet 2.99K . : -
GAP [12] 7] = 52 No RepSet | 327K Section IV-A (65%1'(:13 i}(gls)
SVM [19] z 21M Pixels No P 126K 7. for (650K Pixels)
SVM-E [19] SupCon [41] i 42.6K Section IV-B Fu| =
RF [39] No P 426K 5 P
RF-E [39] SupCon [41] P 26K (3.5M Pixels)
p No test set for
DWMR [11] No L 2.1M Sections IV-C, IV-D
DWM-O [11] IpwMm 100K No Tpwm 6.55B ’

Information of training and test datasets of different methods implemented in Section IV. Methods implemented here are our B-CGAP, A-CGAP, previously
proposed GAP, SVM, REF, retained DWM (DWM-R), and original DWM (DWM-O). The suffix “-E” of SVM and RF corresponds to using the neural
network embedding features. The training set of DWM-O is the original training set of DeepWaterMap while other methods use training sets sampled from
RiverPIXELS. K, M, and B refer to a thousand, million, and billion respectively.

TABLE II
COMPARISON APPROACH: RETRAIN DEEPWATERMAP
ALL VALUES IN PERCENTAGE (%)

Importance 3rd Ist 2nd
Method Land Water Sediment Boundary Overall
TPR | FPR TPR | FPR | TPR | FPR || BA(3) | BA(10) OA

B-CGAP (ours) 98.57 5.63 9229 | 1.59 | 7849 | 0.75 88.85 92.29 96.61
A-CGAP (ours) 99.02 | 11.25 | 8693 | 1.36 | 64.28 | 0.77 84.51 90.35 95.35

GAP [12] 98.27 8.43 89.89 | 1.98 | 6572 | 0.86 81.90 90.41 95.50
SVM [19] 95.09 6.20 89.74 | 4.10 | 82.89 | 1.75 79.28 88.05 93.55
SVM-E [19] 91.78 0.63 | 93.84 | 6.61 | 96.70 | 2.42 78.52 85.26 92.38
RF [39] 93.72 2.65 9226 | 5.10 | 90.73 | 2.14 77.40 86.84 93.31
RF-E [39] 91.81 0.95 94.27 | 694 | 9249 | 2.06 80.23 86.32 92.38

DWM-R [11] 9738 | 1453 | 83.99 | 3.12 | 41.70 | 1.08 72.56 84.56 92.86

The comparison among different methods trained as 3-class classifiers of the land, water, and sediment. This table compares our B-CGAP, A-CGAP, previously
proposed GAP, SVM, RF, and retrained DWM (DWM-R). SVM and RF include both the non-local means feature vectors and the neural network embedding
feature vectors (-E). Accuracy metrics include the true positive rate (TPR), false positive rate (FPR) of each class, the boundary accuracy of distances 3 and
10 (BA(3), BA(10)), and the overall accuracy (OA). The first row “importance” indicates the important ranking of three different types of accuracy metrics.
The best one of each accuracy metric (each column) is bolded. Our B-CGAP performs the best on boundary accuracies and the overall accuracy.

TABLE III
COMPARISON APPROACH: MODIFY LABELS (SED — LAND)
ALL VALUES IN PERCENTAGE (%)

Importance 3rd Ist 2nd
Method Land | Water Sediment Boundary Overall
TPR FPR TPR | FPR | TPR | FPR || BA(3) | BA(I0) OA

B-CGAP(ours) 98.58 8.27 91.73 | 142 | N/A | N/A 89.73 93.66 97.03
A-CGAP(ours) 99.04 | 14.80 | 85.20 | 096 | N/A | N/A 85.46 91.17 95.90

GAP [12] 98.58 | 11.47 | 88.53 | 142 | N/A | N/A 83.75 91.66 96.30
SVM [19] 97.73 | 1249 | 87.51 | 227 | N/A | N/A 82.77 91.08 95.41
SVM-E [19] 94.09 6.10 9390 | 591 | NJA | N/A 81.67 87.80 94.04
RF [39] 96.37 9.37 90.63 | 3.63 | N/A | N/A 81.50 89.63 95.07

RF-E [39] 9344 | 593 | 94.07 | 6.56 | N/A | N/A 82.67 88.18 93.58
DWM-0O [11] 97.85 | 1426 | 85.74 | 2.15 | N/A | N/A 78.02 88.81 95.11

The comparison among different methods trained as 2-class classifiers of the land, and water. To compare with the original DeepWaterMap (DWM-0O), we
changed all ground-truth labels of sediment into land. This table compares our B-CGAP, A-CGAP, previously proposed GAP, SVM, RF, and retrained DWM
(DWM-R). Accuracy metrics include the true positive rate (TPR) and false positive rate (FPR) of each class, the boundary accuracy of distances 3 and 10
(BA(3), BA(10)), and the overall accuracy (OA). The first row “importance” indicates the important ranking of three different types of accuracy metrics. The
best one of each accuracy metric (each column) is bolded. Our B-CGAP performs the best on boundary accuracies and overall accuracy. It is a coincidence
that the B-CGAP and GAP have the same land TPR and Water FPR.
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the original extracted feature vector set X has over 2 million
feature vectors from the training set consisting of 32 labeled
images. Each method has a different amount of training data,
chosen to represent the best performance of each method.
The training and test datasets information for each method
are listed in Table I.

We now present the training set details for each method.
For SVM and RF, the training performances are almost the
same when the number of training feature vectors is relatively
large. To balance the training performance and the computa-
tional cost of model fitting, we randomly select a subset of all
labeled pixels to train SVM and RF. For each labeled image
in the training set Z, we randomly sample N pixels from
each class (if a class has less than 500 pixels, sample all) to
form a pixel set P. The pixel set P includes 42634 pixels
consisting of 16000, 14558, and 12076 pixels for land, water,
and sediment respectively.

For GAP, B-CGAP, or A-CGAP, the training set for the
graph Laplace learning is the RepSet R extracted from X
using LocalMax batch active with batch size B = 15. For B-
CGAP and GAP, the accuracy terminal condition (10)(12) is
applied with the ¢ = 1074, K. = 3000 (for each training
image), and v = 5 (for B-CGAP only). For A-CGAP, the
label-change terminal condition (13)(14) is applied with € =
5 x 107%, Kpax = 3000 (for each training image). To clarify,
the active learning process is only applied to our graph-based
methods to reduce graph size in B-CGAP and the previous
method GAP, and to reduce human labeling requirements in A-
CGAP. The other methods for comparison utilize much larger
training sets (Table I).

DeepWaterMap [11] only provides the classification of
water and land pixels, while RiverPIXELS patches include
water, bare sediment, and land. Here the “land” does not
follow a strict definition, which can include complicated
ground textures like buildings, mountains, and forests. In
binary classification results, such as DWM, “land” refers to
non-water pixels. In 3-class classification results including the
sediment, such as our pipeline, “land” refers to non-water and
non-sediment pixels. As a result, we cannot directly compare
our three-class model with DWM. Here, we provide two
approaches to compare the performance of the other methods
and DWM.

The first approach is to retrain DeepWaterMap (DWM-
R). We train a new neural network with the same structure
of DWM on our training set with 32 labeled images and
labels of water, sediment, and land. The resulting CNN thus
provides a classification of water, sediment, and land pixels.
The second approach is to modify labels. Inspection of the
original DeepWaterMap (DWM-O) training set shows that
nearly all sediment pixels are labeled as land. We modify the
labels of our training set and the ground-truth labels of our
test set by changing sediment labels to land labels. Based on
this modification, we train all methods as classifiers for water
and land and compare them with the original DeepWaterMap.

In light of these details regarding DWM, we consider two
types of training sets for DWM comparisons. DWM-R is
trained on the training image set Z that all of our other
comparison methods are trained on. DWM-O is trained on the

vast training set of the original DeepWaterMap 3. Furthermore,
note that the pixel-wise feature vectors for different methods
might differ. B-CGAP uses the supervised contrastive learning
(SupCon (2)) neural network embedding feature vectors while
A-CGAP uses the unsupervised feature vectors (SimCLR (1)),
according to Section II-A, III-A. We also provide experiments
with SVM and RF results, marked by the suffix “-E”, on the
SupCon feature vectors. The GAP, SVM, and RF are based
on the 294-dimensional Non-local means feature vectors [12],
[52] generated by 7 x 7 neighborhood patches centering at each
pixel. For DWM, the inputs are images rather than feature
vectors since DWM is a CNN-based method that takes the
whole image as input.

A. Comparison between different methods

We compare the classification performance of both our B-
CGAP and A-CGAP to GAP [12], DWM [11], SVM [19] and
RF [39] models. Information regarding training and test sets
is shown in Table I. For this subsection (Subsection IV-A),
the test set is denoted as Z and contains 10 images. It is
worth noting that our methods, B-CGAP, A-CGAP, and GAP,
use significantly less training data than the other methods
considered. The results are presented in two tables: Table II
shows the comparison to the retrained DWM (DWM-R) as
a 3-class classifier, while Table III compares to the original
DWM (DWM-O) when the sediment class in the RiverPIXELS
dataset is modified to be classified as land.

Figures 3, 4 and 5 are sampled images and experiment
results of the Waitaki, Colville, and Yana Rivers, respectively.

In summary, according to Tables II, III, our approach B-
CGAP has the best performance measured by BA(3), BA(10),
and OA. Our A-CGAP and the GAP we proposed in our pre-
vious paper [12] perform similarly and have the second good
result. According to Table I, compared with other methods, all
three methods, B-CGAP, A-CGAP, and GAP, are trained on a
much smaller training set, which only takes around 0.15%
pixels of the training set Z. Although A-CGAP performs
similarly to our previous pipeline, GAP, A-CGAP does not
require any ground-truth information at the beginning of the
training process.

Here we provide an analysis of the overall strengths of the
methods.

1) Comparison with DWM: In Table II, the retrained DWM
(DWM-R) has the worst performance in both BA(3) and
BA(10). This implies that our training set Z with 32 images
is not sufficient to train a good CNN-UNet. In Table III, the
original DWM (DWM-O) has a similar performance to the
SVM and RF. However, it cannot provide the prediction of
the sediment class.

2) The neural network embedding: The main difference
between our B-CGAP and the previous GAP is the network
embedding. According to Tables II, III, there is a big im-
provement from GAP to B-CGAP. However, the SVM-E and
RF-E perform worse than SVM and RF, respectively, based
on the same SupCon embedding used by B-CGAP. There are
significant increases in the water and sediment TPR and FPR

3https://github.com/isikdogan/deepwatermap
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(a) RGB (b) Ground-truth ~ (c) B-CGAP
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Fig. 3. Results for a Patch of Waitaki river. Original Patch name: Waitaki_River_1 2019-03-02 074 091 L8 413 landsat. This Patch contains an estuary and a
coastline. Panel (k) is the original DWM prediction for water and non-water pixels while other panels (b)-(j) are 3-class results of land, water, and sediment.

(a) RGB

I Land
B Water

Sediment

(g) SVM-E (h) RF

(f) SVM

(i) RF-E () DWM-R

(k) DWM-O

Fig. 4. Results for a Patch of the Colville River. Original Patch name: Colville_River_2 2015-07-11 076 011 L8 125 landsat. This Patch contains a complex
network of water, including a mainstream, some lakes and small tributaries. Panel (k) is the original DWM prediction for water and non-water pixels while

other panels (b)-(j) are 3-class results of land, water, and sediment.

when using the SupCon network embedding feature vectors. A
possible reason for this observation is that the graph learning
classifier based on the angular similarity aligns better with the
similarity metric in the contrastive loss functions (1), (2).

3) Comparison of B-CGAP v.s. A-CGAP: Our A-CGAP
does not require any ground-truth information at the beginning
of the training process (Section III-C). One major differ-
ence is the training process of the feature embedding neural
network—A-CGAP uses the self-supervised loss SimCLR(1)
while B-CGAP uses the supervised loss SupCon(2). In A-
CGAP, only the 2.99K training feature vectors in the RepSet
require ground-truth labeling, which can be processed by a
human-in-the-loop process.

B. Performance on other regions

In the previous Section IV-A, all methods are trained on
subsets of Z, and the performances are evaluated on the test
set Z. We note that Z and Z are segmented from the same
set, the Kolyma, Yana, Waitaki, and Colville rivers. For a
certain image I i € 7, there is another image in I; € Z that
belongs to the same region as I j» where the region refers to
either the Arctic or New Zealand. Since DeepWaterMap works
globally, we want to test if our models also retain accuracy in
other regions that may have different landscapes or geographic
features.

We consider images of the Ucayali River in our RiverPIX-
ELS dataset. The Ucayali River is a tributary to the Amazon
River and is mostly single-threaded with large in-channel bare
sediment bars. We apply the same comparison strategies as



SUBMITTED TO IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 12

(a) RGB

Il Land
B Wwater

Sediment

| (g) SVM-E | (h) RF

in section IV-A. The training information of each method
is the same as that in Section IV-A, Table I, while the test
set now is the set of images of the Ucayali river, which
includes 54 images. Table IV compares our B-CGAP and A-
CGAP to GAP, SVM, REF, the retrained DWM (DWM-R) and
original DWM (DWM-O) on the test set Z. Unlike Tables
IT and III, we have not included comparisons with SVM-E,
and RF-E methods here for brevity. This decision is based on
previous detailed analyses in Section IV-A: SVM-E and RF-
E underperformed compared to their direct counterparts due
to the mismatch of the embedding neural network. Similarly
to Section IV-A, we provided results on 3 classes of land,
water, and sediment, and 2 classes of water and non-water by
modifying the sediment labels into the land, to compare with
both the DWM-R and DWM-O. According to Table IV, our B-
CGAP has the best performance as we have the highest BA(3),
BA(10), and overall accuracy in both comparisons. A-CGAP
performs similarly to GAP while has a higher BA(3).

We sample two images of the Ucayali river and show those
results in figures 6 and 7. According to these figures and tables,
the random forest method (RF) completely fails, implying that
it may be unstable when applied to a region different from
its training set. In Figure 6, our B-CGAP detects the small
tributaries better than other methods. In Figure 7 with light
cloud haze, both our B-CGAP and previous GAP method
(panel (c), (d)) match well to the ground-truth labels (panel

(b)).

C. Computational Efficiency Analysis

From the previous section, we conclude that B-CGAP has
the best performance followed by A-CGAP and GAP. Now
we provide information on the time consumption of three
methods, B-CGAP, A-CGAP, and GAP, in both training and
deploying (see Table V). With the low-dimensional feature
vectors preprocessed by the neural network (B-CGAP and A-
CGAP), the active learning and model deploying processes are

(i RF-E

Fig. 5. Experiment on images of Yana river. Original image name: Yana_River_1 1991-08-13 122 012 L5 511 landsat. This Patch contains a complex network
of water, including a mainstream, some lakes and small tributaries. Panel (k) is the original DWM prediction for water and non-water pixels while other
panels (b)-(j) are 3-class results of land, water, and sediment.

() DWM-R (k) DWM-O

significantly accelerated. The model deploying is more than
10 times faster compared with our previous GAP method.
Here we train both the B-CGAP and A-CGAP preprocessing
network on the whole RiverPIXELS dataset of 104 images to
make a fair comparison. In previous Sections IV-A,IV-B, B-
CGAP is trained only on the training set Z of 32 images since
it is supervised. Since the whole dataset includes 6.8M pixels
and the dataset 7 includes 2.1M pixels, we use part of them
for the network training. Practically, we use all the sediment
pixels, randomly sampled 20% water pixels, and randomly
sampled 3% land pixels to train the neural network, which
is a subset of 0.48M pixels. As for the hyperparameters, we
choose the constant parameter 7 = 0.5 in the loss functions
(1),(2), learning rate 0.02, and batch size 2048 to train both
networks for 200 epochs.

D. Low-dimensional Visualization of Feature Vectors

Here we provide more details on how the feature embedding
neural network changes the feature vectors. Figure 8 shows
the low-dimensional visualization of different feature vectors
using UMAP [54] and t-SNE [55] methods. The pixels shown
in the panels are downsampled from the entire RiverPIXELS
dataset, which originally contains millions of pixels with an
imbalanced number of pixels per class. To ensure clarity, each
panel only includes a low-dimensional visualization of 59,475
pixels’ feature vectors, with approximately 20,000 pixels per
class. In Figure 8, panels (a) and (d) are visualizations of raw
neighborhood patches of pixels. We observe approximately
three cluster structures in (a) and (d), but there is a clear
mix and overlap at the center and between the boundaries of
each pair of classes. For the embeddings produced by SimCLR
(panels (b), (e)), the cluster structures are more defined, with
clearer distinctions between boundaries. However, the clusters
are a bit dispersed, for instance, the water class (cyan) is
divided into three smaller clusters in both visualizations. The
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TABLE IV
EXPERIMENTS ON IMAGES OF THE UCAYALI RIVER

Retrain DWM (%) Sed— Land(%)
BA(3) [ BA(10) T OA BA(3) | BA(I0) | OA
B-CGAP (ours) 90.63 95.29 98.31 91.57 95.40 98.60
A-CGAP (ours) 86.47 93.11 97.60 88.35 93.97 98.06

Method

GAP [12] 83.07 92.93 97.48 85.08 94.17 98.21
SVM [19] 79.08 90.29 96.26 77.49 90.96 97.23
RF [39] 26.41 26.79 12.52 76.01 89.09 96.21

DWM-R [11] 69.28 83.43 94.39 N/A N/A N/A
DWM-0O [11] N/A N/A N/A 79.42 91.14 97.29

This table shows the comparison of our B-CGAP and A-CGAP to GAP, SVM, RF, DWM-R, and DWM-O. Accuracy values in this table are based on the
extra test set Zex consisting of 54 images of the Ucayali river while methods in this table are trained on the training set Z of Arctic and New Zealand. More
details of the training set refer to Table I. Metrics are the boundary accuracy of distances 3 and 10 (BA(3), BA(10)), and the overall accuracy. The best one
of each accuracy metric (each column) is bolded. To compare with the retrained DWM (DWM-R) and the original DWM (DWM-O), we provide results on
3 classes (columns "Retrain DWM”) and 2 classes (columns Sed—Land). Our B-CGAP performs the best on boundary accuracies and overall accuracy.

(a) RGB (b) Ground:truth (c) B-CG;’;‘P (d) GAIS (e) SVM " (f) RF

Fig. 6. Results for the Ucayali River. Original Patch name: Ucayali_River_1 2018-09-11 006 066 LS 549 landsat. This Patch includes two mainstreams and
some small tributaries. Purple, cyan, and yellow represent land, water, and sediment respectively.

./J

(a) RGB (b) Ground-truth (c) B-CGAP (d) GAP (e) SVM

Fig. 7. Results from a Patch of the Ucayali River. Original Patch name: Ucayali_River_I1 2018-09-11 006 066 LS 316 landsat. This patch includes some
light clouds. Purple, cyan, and yellow represent land, water, and sediment respectively.

TABLE V
TIME CONSUMPTION
Info Training Deploying

Method Feature Embedding NN Active Learning . Preprocessing Graph
CPU GPU Num Epochs | Total Time Batch Size | Total Time Image Size NN Embedding | Learning

B-CGAP (ours) Intel(R) Nvidia 200 14.34h 2023.21s 0.448s 10.76s
A-CGAP (ours) i7- RTX3070 200 13.87h 15 1710.55s 256 x 256 0.448s I1.15s
GAP [12] 11800H | Laptop N/A N/A 6881.73s N/A 135.31s

This table shows the time consumption for our B-CGAP, A-CGAP, and previous GAP. The neural network training and deploying stages use the GPU, and
all other processes are on the CPU. Although the neural network training takes a relatively long time, it reduces both the active learning time and model
deploying time significantly.

low-dimensional visualization by the SupCon method is the V. GRAPHRIVERCLASSIFIER: A GLOBAL CLASSIFIER FOR
best, with the clearest boundaries between classes and each WATER AND SEDIMENT PIXELS IN SATELLITE IMAGES

class generally forming a cohesive cluster. We provide a Python-based demo, called GraphRiverClas-

sifier (GRC), to classify any Landsat-5 image (GitHub repos-
itory*). For instructions on how to use the demo please refer

“https://github.com/wispcarey/GraphRiverClassifier
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(a) UMAP Raw

(d) t-SNE Raw

(e) +-SNE SimCLR

(f) t-SNE SupCon

Fig. 8. Low-dimensional visualizations of feature vectors using UMAP [54] (panels (a)-(c)) and t-SNE [55] (panels (d)-(f)). We compare low-dimension
representations of the raw neighborhood patch, SImCLR, and SupCon feature vectors of pixels in the whole RiverPIXELS dataset. Purple, cyan, and yellow
represent land, water, and sediment respectively. Each panel is a low-dimensional visualization of feature vectors of 59,475 pixels that are downsampled from

the entire RiverPIXELS dataset, with approximately 20,000 pixels per class.

to the readme.md file in the repository. In this section, we
describe some features of this tool.

A. Google Platforms

The tool described is implemented in Python and utilizes
Google Earth Engine (GEE) [56] 3 for identifying and down-
loading the requested Landsat scenes. Users can perform the
image extraction by simply providing the coordinates of the
center point along with the desired latitude and longitude range
of the bounding box. The selection method for Landsat scenes
(e.g. surface reflectance versus top of atmosphere) is fully
consistent with the RiverPIXELS dataset [18], to which their
readme can be referred for further information.

Once Landsat scenes are identified, the tool automatically
employs a pre-trained feature embedding neural network to
preprocess feature vectors. Subsequently, our B-CGAP method
is deployed to classify the pixels within the image into land,
water, and sediment. The neural network training and the

Shttps://earthengine.google.com/

selection of RepSet through graph-based active learning are
based on the RiverPIXELS dataset.

It is recommended that the tool be run on Google Colab
as it allows for a seamless connection with GEE and ensures
the automation of the entire process. Running the tool via a
Google Colab notebook also avoids large image downloads by
reading directly from a GEE-connected Google Drive account.
Users may run the tool locally, but Landsat scene identification
and downloading must be done manually. The tool also offers
an integration with ChatGPT that allows users to enter the
name of a place or river to return a bounding box. However,
this feature requires access to ChatGPT’s API and may incur
costs.

B. Global Classifier of Water and Sediment

The GRC tool offers advanced classification solutions for
water and sediment across the globe, leveraging the power
of remote sensing and machine learning. This tool stands out
for its exceptional flexibility, ease of use, and global scope,
allowing users not only to define custom geographic areas but
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: o aY
(b) Our prediction - 15m (¢) Our prediction - 30m

(a) RGB image (d) Qur prediction - 60m

Fig. 9. Results of our GraphRiverClassifier tool from an image of the Ucayali River, Peru which is not included in the RiverPIXELS dataset. Region
information: a rectangle centered at -73.4487, -4.45291 with a longitude range of 0.2 and a latitude range of 0.15. Panel (a) is the RGB visualization of the
30-meter resolution. Panels (b) - (d) are three predictions of the same region with different resolutions: (b) higher resolution (15 m), (c) native resolution
(30 m), (d) coarser resolution (60 m). Purple, cyan, and yellow represent land, water, and sediment respectively. Our predictions are robust among various
resolutions.

(€) Our prediction - 30m

(b) Our prediction - 15m

(a) RGB image (d) Our prediction - 60m |

Fig. 10. Results of our GraphRiverClassifier tool from an image of the Murray River, Australia which is not included in the RiverPIXELS dataset. Region
information: a rectangle centering at 138.88, -35.559 with a longitude range of 0.3 and a latitude range of 0.15. Panel (a) is the RGB visualization of the
30-meter resolution. Panels (b) - (d) are three predictions of the same region with different resolutions: (b) higher resolution (15 m), (c) native resolution
(30 m), (d) coarser resolution (60 m). Purple, cyan, and yellow represent land, water, and sediment respectively. Our predictions are robust among various

resolutions.

also to choose from a variety of Landsat datasets and temporal
ranges. Such versatility ensures that users can conduct detailed
and specific analyses tailored to their research or management
needs. We note that the workflow of the tool also enables rapid
development and testing of new classification algorithms.

In terms of processing speed, our GRC demonstrates im-
pressive efficiency. For an image with one million pixels, the
full process typically takes between 3 to 5 minutes. This
includes data identification and download from GEE and
storage to your Google Drive, which takes approximately 60
to 90 seconds, followed by feature embedding with a neural
network and classification via graph learning, taking around
180 seconds in total. Figures 9, 10 show the visualization of
two regions about the Ucayali and Murray Rivers that do not
belong to the RiverPIXELS dataset.

C. Robustness to Different Resolutions

According to Section III-A, the augmentations we designed
for contrastive learning allow the embedding feature vectors
to be robust with different resolutions. The parameter ’scale”
allows us to extract images of different resolutions on the same
region. In Figures 9, 10, we present results of three resolutions,
15-meter, 30-meter, and 60-meter. The classification results are
almost the same in panels (b)-(d), which verifies the robustness
of our feature preprocessing approach.

VI. CONCLUSION

We develop a contrastive graph-based active learning
pipeline (CGAP), which enhances the previously proposed

GAP [12] by incorporating contrastive learning to train a
shallow feature embedding neural network as a preprocessing
step. The contrastive learning method is compatible with both
supervised and unsupervised scenarios through the use of
SupCon and SimCLR loss functions. It offers two significant
advantages: first, based on our custom augmentations, the
processed embedding feature vectors become more robust to
different resolutions, cloud coverage, and geometric transfor-
mations; second, such a neural network significantly reduces
the dimensionality of the feature vectors, greatly improving
the efficiency of subsequent steps. Our methods’ most signif-
icant benefit is their minimal data requirement, using around
3 thousand training vectors to surpass the performance of
CNN neural networks trained with 2.1 million pixels, and
also outperforming SVM and RF models trained with larger
datasets. As shown here, the CGAP method has significant
improvements in efficiency and accuracy compared to GAP.
Furthermore, we introduced two versions, B-CGAP and A-
CGAP, where the former is suitable for situations with com-
plete ground-truth information, while the latter is useful for
training from scratch with no ground-truth information. A-
CGAP identifies the pixels most crucial to the graph-learning
model and asks a human-in-the-loop to provide these labels.
Experiments show that A-CGAP’s performance is similar to
our previously proposed GAP method, slightly inferior to B-
CGAP.

We provide a Python-based tool, GraphRiverClassifier
(GRC), to detect surface water and sediment globally. This
tool utilizes Google Earth Engine to identify and download
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Landsat scenes for a selected area and then applies our B-
CGAP method for pixel classification. The tool is designed for
ease of use and flexibility, allowing specifications of regions,
place names, and/or selected time periods.

For future work, we suggest two main areas for develop-
ment. The first area focuses on augmenting the datasets used
for training. Currently, the scarcity of annotations for urban
areas, such as cities and buildings, leads to misclassification of
these regions as sediment rather than land. Expanding datasets
like RiverPIXELS to include more comprehensive information
about urban areas or employing automatic annotation meth-
ods to generate pseudo-labels could help strengthen model
performance in these challenging scenarios. Furthermore, it
is imperative to expand the applicability of the models to
encompass a broader range of data modalities beyond the
current reliance on Landsat data. Researchers need to develop
techniques to align data from a diverse range of sensors, scales,
and channel characteristics to ensure the effective application
of the proposed methods.

The second area for future work concerns the development
of improved algorithms for the feature learning and active
learning components of the proposed pipeline. Firstly, one
could consider incorporating transfer learning by leverag-
ing newly acquired unlabeled images to refine our feature-
embedding neural network using the SimCLR loss. Secondly,
one could explore novel graph-based semi-supervised learning
methods to improve the classifier performance within our
pipeline. Methods such as p-Laplace learning [57], [58] or
reweighting the graph before processing the Laplace learning
[59], [60] could provide further improvement.
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