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Biological systems often choose actions without an explicit reward signal, a phenomenon known as intrinsic

motivation. The computational principles underlying this behavior remain poorly understood. In this study, we

investigate an information-theoretic approach to intrinsic motivation, based on maximizing an agent’s empower-

ment (the mutual information between its past actions and future states). We show that this approach generalizes

previous attempts to formalize intrinsic motivation, and we provide a computationally efficient algorithm for

computing the necessary quantities. We test our approach on several benchmark control problems, and we

explain its success in guiding intrinsically motivated behaviors by relating our information-theoretic control

function to fundamental properties of the dynamical system representing the combined agent-environment

system. This opens the door for designing practical artificial, intrinsically motivated controllers and for linking

animal behaviors to their dynamical properties.
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I. INTRODUCTION

A. Motivation

Living organisms are able to generate behaviors that solve

novel challenges without prior experience. Can this ability

be explained by a single, generic mechanism? One proposal

is that novel, useful behaviors can be generated through in-

trinsic motivation [1], which is defined informally as a set

of computational algorithms that are derived directly from

the intrinsic properties of the organism-environment dynamics

and not specifically learned.
Increasingly, there is a move away from reinforcement

learning and its extrinsically specified reward structure [2,3]
in the theory and practice of artificial agents, robots, and ma-
chine learning more generally [4–20]. A specific class of such
intrinsic motivation algorithms for artificial systems is known
as empowerment maximization. It proposes that agents should
maximize the mutual information [21] between their potential
actions and a subsequent future state of the world [22]. This
corresponds to maximizing the diversity of future world states
achievable as a result of the chosen actions, potentiating a
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broader set of behavior options in the future. This measure
replaces the traditional value function of reinforcement learn-
ing. However, importantly, it does not assume the definition of
a problem-specific cost function, which would, for instance,
encode additional domain knowledge. Instead, empowerment
derives from the intrinsic properties of the system dynamics
itself.

Intrinsically motivated synthetic agents develop behaviors
that are atypical for inanimate engineered systems and of-
ten resemble those of simple living systems. Interestingly,
potentiating future actions is also a key part of the success
of modern reward-based training algorithms [8,23,24]. As an
example relevant to the current work, consider a pendulum at
the up-vertical orientation. Here, the agent can kick it easily
in both directions—the information between the actions and
the future states is now high, as the entropy of futures is high,
while the variety of end states still can be controlled by the
actions. Compare this to the pendulum pointing down. Here
the futures are basically fluctuating around the equilibrium
point. As any actions have to work uphill, the variety of end
states is lower than for an up-pendulum.

Despite the successes of empowerment maximization, it

remains unclear how well it can be used as a general intrinsic

motivation principle. There are many different versions of

intrinsic motivation related to empowerment, and their rela-

tion to each other is unknown [20,23,25]. Additionally, most

work on empowerment maximization has relied on simula-

tional case studies and ad hoc approximations, and analytical

results are scarce. To gain insight, it is important to link

empowerment to other, better-understood characterizations of

the systems in question. Finally, calculating the mutual infor-

mation between two interlinked processes in the general case
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is a challenging task [26,27], which has so far limited the use

of empowerment maximization to simple cases.

In this work, we unify different versions of intrin-

sic motivation related to the empowerment maximization

paradigm. Here our main contribution is in showing ana-

lytically that empowerment-like quantities are linked to the

sensitivity of the agent-environment dynamics, which is mea-

sured by the generalization of Lyapunov exponents that we

introduce. This connects empowerment maximization to well-

understood properties of dynamical systems. Since highly

sensitive regions of the dynamics potentiate many diverse

future behaviors, the connection to dynamical systems also

explains why empowerment-based intrinsic motivations suc-

ceed in generating behaviors that resemble those of living

systems.

The analytical results allow us to develop a practical

computational algorithm for calculating empowerment for

complex scenarios in continuous space and the continuous

time limit, which is the second major contribution of the

paper. We apply the algorithm to standard benchmarks used

in intrinsic motivation research [14,16,28]. Specifically, a

controller based on the efficient calculation of empowerment

manages to balance an inverted pendula without extrinsic

rewards, and without fine-tuning the control strategy to the

dynamical equations describing the system. This opens the

door for designing complex robotic intrinsically motivated

agents with systematically computed—rather than heuristi-

cally estimated—empowerment.

B. Overview of the method

Consider the mutual information between a control process

of a given duration (“time horizon”) and a subsequent result-

ing process dynamics. If we start in a given system state x0

and maximize the mutual information over all possible control

processes, we obtain the empowerment in state x0 for the

given time horizon. While the computation of this quantity is,

in principle, a numerically solvable problem in systems with

discrete time and state spaces, its computational complexity

scales exponentially with the time horizon, and transferring

this to continuous time and space poses significant additional

challenges.

In this paper, we propose an efficient method for the

computation of empowerment in continuous space and the

continuous time limit, under some assumptions. For this,

we discretize time and consider the analyzed system in the

linear regime approximation for small Gaussian control and

perturbation signals around an unperturbed trajectory. This

approximation allows us to formulate the mutual information

maximization as calculating the capacity of a linear Gaussian

channel, with the channel properties computed from the lin-

earization of the dynamics around the zero-control trajectory.

This capacity can be computed efficiently, and our numerical

experiments show that its values converge benignly as the

discretization time step interval approaches zero, thereby ob-

taining a numerical value for empowerment in the continuum.

To match the discretized representation with the formula-

tion of the original continuous system, we introduce a parallel

notation for the continuous versus the discretized version of

the system in the next section.

II. RESULTS

A. Preliminaries

1. Notation

We consider an agent that takes on states x(t ) ∈ X := R
dx ,

evolving in time under the dynamics f with (small) stochastic

perturbations η(t ) ∈ R
dx . Via its (small) actions, a(t ) ∈ A :=

R
da filtered through the control gain g, the agent can affect the

dynamics of the system:

dx(t ) = f (x(t ))dt + g(x(t ))da(t ) + dη(t ) . (1)

Here dη denotes the system noise, modeled as a Wiener

process. The agent’s actions a(t ) are modeled by a stochastic

control process with variance σ 2
t controlled by the agent and

with a mean of zero. This models the potential effect of actions

centered around the null action.

To compute various quantities of interest, we will consider

a discretized version of this system, for which we adopt a

modified notation. To distinguish it from the continuous ver-

sion, we replace the continuous time in parentheses by an

integer index, xk := x(t + k · �t ). Here �t denotes the phys-

ical time step, and we adopted the convention that x0 = x(t ),

so that the index corresponding to the current physical time,

t , is chosen as 0. We will consider trajectories of a fixed

duration, and the agent will apply actions over a part of that

trajectory. Note that we switch between referring to action as

da or a depending on whether we consider the continuous or

the discrete case, and we hope this does not lead to confusion.

We denote by Te the time index of the very last state of the

trajectory, which we also refer to as the time horizon. We

further use Ta to denote the (discretized) duration of the action

sequence. Then state, control, and perturbation trajectories

at finite equidistant times, {t + k · �t}T
k=0, are denoted by

x
Te

0 ≡ {xk}
Te

k=0, a
Ta

0 ≡ {ak}
Ta

k=0, and η
Te

0 ≡ {ηk}
Te

k=0, respectively.

For consistency with the control theory literature, we write a

trajectory in the reverse order, e.g., x
Te

0 = (xTe
, . . . , x0). When

we wish to emphasize the continuous nature of the underlying

process, we will write te ≡ t + Te · �t and ta ≡ t + Ta · �t for

explicitly continuous times.

2. Reinforcement learning vs intrinsic motivation

To elicit a desired behavior in an agent, one typically uses

reinforcement learning (RL). RL is task-specific, and an agent

needs an extrinsic feedback about its performance from a re-

ward function to learn the behavior. The precise construction

of this reward function is critical to achieve a desired perfor-

mance in a short training time [2]. Some of the complications

include a significant degree of arbitrariness when choosing

among reward functions with equivalent performance [29] and

the difficulty of translating an often vague desired behavior

into a concrete reward function. Furthermore, complex behav-

iors consist of combinations of shorter sequences. Designing a

reward function capable of partitioning the solution into such

parts and hence learning it in a realistic time is hard [30]. In

contrast to this, in living systems, acquisition of skills often

starts with task-unspecific learning. This endows organisms

with potentiating skills, which are not rewarding on their

own. This is then followed by task-oriented specialization,

which combines task-unspecific behaviors into complex and
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explicitly rewarding tasks [1,31]. While specific tasks are

often refined with the help of an extrinsic reinforcement, the

potentiating tasks usually are intrinsically motivated [9,32].

3. Empowerment

The type of intrinsic motivation we focus on is em-

powerment. Empowerment is based on information-theoretic

quantities [4,20,23,32–39]. It defines a pseudoutility function

on the state space, based on the system dynamics only, without

resorting to a reward. Formally, we express the dynamics of

the system by the conditional probability distribution p(xTe
|

a
Te−1
0 , x0) of the resulting state when one starts in a state x0 and

subsequently carries out an action sequence a
Te−1
0 (recall that

the notation is defined in the Notation section above). Then the

empowerment C(x0) is a function of the starting state, x0. It is

given by the maximally achievable mutual information (the

channel capacity [21]) between the control action sequence of

length Te and the final state when starting in the state x0:

C(x0) := max
p(aTe−1

0 |x0 )

I
(

XTe
; A

Te−1
0

∣

∣x0

)

. (2)

Here p(·) denotes a probability density or a probability distri-

bution function, and I is the mutual information [21]

I
(

XTe
; A

Te−1
0

∣

∣x0

)

= H
(

XTe

∣

∣x0

)

− H
(

XTe

∣

∣A
Te−1
0 , x0

)

. (3)

H is the entropy, and conditioning an entropy on a random

variable means the entropy of the conditional distribution,

averaged over the conditioning variable.

In effect, empowerment measured information that the ac-

tion sequence has about the end state. High empowerment

requires high entropy of the end state, but also small entropy

of the states conditional on the action sequence producing the

final state. In other words, it is not enough to have diverse end

states, but these must have been induced by the actions. Vari-

ability only counts in the empowerment if it can be specifically

caused by the agent.

In contrast, if only the end state entropy were important,

an agent would be induced to seek out, say, staying in front of

a white-noise TV screen. However, unless the “pixels” of the

screen are controllable by the agent, this white noise would

not contribute to the empowerment.

The empowerment C(x0) depends on both the state, x0, and

the time horizon, Te. However, for notational convenience, we

omit all parameters from the notation except for the depen-

dency on x0.

Locally maximizing empowerment (e.g., by following its

gradient over x0) guides an agent to perform actions atypi-

cal within the natural dynamics of the system. Indeed, since

empowerment measures the diversity of achievable future

states, maximizing it increases this diversity (“empowers” the

agent—hence the name). Thus it is expected to be particularly

useful for learning potentiating tasks [9]. Crucially, empow-

erment quantifies the relation between the final state and the

intentional control, rather than the diversity of states due to

the stochasticity of the system. In particular, it is not just the

entropy of a passive diffusion process in the state variables,

but of the subprocess that the agent can actively generate.

Furthermore, it quantifies diversity due to potential future

action sequences, which are not then necessarily carried out.

Empowerment is typically used in conjunction with a sen-

sor through which the agent observes the states resulting from

an action sequence. In the continuum, this can be modeled via

observation noise applied to the outcome states.

Empowerment is typically used in the form of the empow-

erment maximization principle [17], where C(x0) is treated as

a pseudoutility function. At each time step, the agent chooses

an action to greedily optimize its expected empowerment at

the next time step, climbing up in its empowerment landscape,

to eventually achieve a local maximum of C,

a∗(x(t )) = argmax
a∈A

Eη[C(x(t ) + f (x(t ))�t ′

+ g(x(t ))a�t ′ + η�t ′ )]. (4)

Here A is the set of permitted actions, �t ′ is a small time step

used to simulate the actual behavior of the system, a ∈ A is

the candidate action kept fixed for the duration of �t ′, and η�t ′

is the Wiener process integrated over the time interval �t ′.

An empowerment-maximizing agent generates its behavior

by repeating this action selection procedure for each decision

step it takes.

The time step �t ′ for the empowerment-greedy action is

selected as a small fixed value. Note that it is selected inde-

pendently from the time step �t that is used to discretize (1)

for the purpose of computing empowerment. Empowerment

in continuous scenarios will be computed by letting �t → 0.

Crucially, no general analytical solutions or efficient algo-

rithms for numerical estimation of empowerment for arbitrary

dynamical systems are known, limiting adoption of the em-

powerment maximization principle. Our goal is to provide a

method to calculate it under specific approximations.

B. Empowerment in dynamical systems

1. The linear-response approximation

To relate empowerment to traditional quantities used to

describe dynamical systems, we assume that the control signal

a and process noise η in (1) are small. This is true in some of

the most interesting cases, where the challenge is to solve a

problem with only weak controls that cannot easily “force”

a solution. Under this assumption, (1) is approximated by a

linear time-variant dynamics around the trajectories of the

autonomous dynamics (i.e., for a = 0 and η = 0). To proceed,

we now introduce the following notation. We define x̄s as the

sth step of the trajectory in the discretized approximation of

the dynamics (1), with f̄ (x̄) := x̄ + f (x̄)�t , ḡ(x̄) := g(x̄)�t ,

and h̄(x̄) := �t [40]:

x̄s = f̄ (x̄s−1) + ḡ(x̄s−1)as−1 + h̄(x̄s−1)ηs−1, (5)

where x̄0 = x0 ≡ x(t ). For example, x̄3 = f̄ ( f̄ ( f̄ (x̄0) +
ḡ(x̄0)a0+ h̄(x̄0)η0) + ḡ(x̄1)a1+h̄(x̄1)η1) + ḡ(x̄2)a2+h̄(x̄2)η2.

We denote this recursive mapping from x̄0 to x̄s by F ,

x̄s = F (x̄0; as−1
0 , ηs−1

0 ). Then the sensitivity of the state at the

time step s to the action at the time step r can be calculated

via the iterated differentiation chain rule applied to the state

derivative of the dynamics F at a = 0 and η = 0:

∂ x̄s

∂ar

=

s
∏

τ=r+2

∇x̄ f̄ (x̄τ−1) ḡ(x̄r ), (6)
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FIG. 1. Unified view on information theoretical intrinsic motivation, for discretized process sequences XT (states) and AT (actions). Starting

at time x0 [i.e., x(t )], potential actions AT are applied for Ta times. Following that, after waiting for �T time steps, the future system trajectory

is considered until Te. A controlled Lyapunov exponent is a Lyapunov exponent, but only in directions controlled by the agent; cf. (11). “Kicked

CEF” refers to a variant of Causal Entropic Forcing [20], with the addition that an action kicks the system at the beginning of a trajectory. The

dashed-line blocks illustrate the correspondence in time between state and action sequences. For more details, see the section on Generalized

Empowerment.

where ∇x̄ f̄ (x̄τ ) is the dx × dx Jacobian matrix of f̄ . Specifi-

cally, the (i, j)th entry of ∇x̄ f̄ (x̄τ ) is
∂ f̄i (x̄τ )

∂ x̄τ, j
, where indices i, j

stand for components of the vectors x and f . For s = r + 1,

the expression in (6) evaluates to
∂ x̄r+1

∂ar
= ḡ(xr ). Analogously,

the sensitivity of x̄s to the perturbation, ηr , is given by ∂ x̄s

∂ηr
=

∏s
τ=r+2∇x̄ f̄ (x̄τ−1) h̄(x̄r ).

Now we finally define the linear response of the sequence

of the system’s states xs2
s1

to a sequence of small actions δar2
r1

by the agent

(7)

where s = s2 − s1 + 1, r = r2 − r1 + 1, s + �T + r − 1 =
Te, and the entries are computed via (6). Usually we consider

situations in which the agent applies its controls for r time

steps, and then after a gap observes the state for s steps.

That is, s1 = r2 + 1 + �T , where �T � 0 is the gap between

the end of the control sequence and the start of the observa-

tions, as defined in Fig. 1. Analogously to Eq. (7), we define

Hs1,s2
r1,r2

(x0) with the corresponding entries, ∂ x̄s

∂ηr
.

Notice that traditional definitions of sensitivity of a dy-

namical system to its controls are blocks F
s′

1,s
′
2

r′
1,r

′
2

in this overall

sensitivity matrix, F s1,s2
r1,r2

. For example, if r′
1 = r′

2 = 0, �T ′ =
Te − 1, and s′

1 = Te, then s′
2 = Te, and the sensitivity matrix

collapses to just the entries that measure the sensitivity of the

current state to the controls during the immediately preceding

time step, FTe,Te

0,0 (x0) =
∂ x̄Te

∂a0
. This is also the blue block of the

overall sensitivity matrix, (7). Other colored boxes in (7) will

be explained later.

With the definitions above, in the linear-response regime,

the effect of a sequence of (small) actions and perturbations

on a sequence of states becomes

δxs2

s1
= F

s1,s2

r1,r2
(x0) δar2

r1
+ η̃, (8)

where δa and δx are the reverse-time-ordered vectors of small

actions and the induced deviations of states (which themselves

can be vectors).

Here η̃ = Hs1,s2
r1,r2

(x0) δηr2
r1

+ ηo models the effect of per-

turbation noise, δη, and the noise, ηo, of the subsequent

observation of the state perturbation δxs2
s1

, which we assume is

Gaussian. The choice of observation noise takes into account

the imperfect observation of the outcome states by the agent.

This observation noise effectively determines the resolution at

which the end state is considered.

We note that the approximation is linear with respect to

variations in the trajectory only; the calculation remains non-

linear with respect to state.

2. Generalized empowerment

Since the entire dynamics is now linear, cf. Eq. (8), we can

consider formally the effects of arbitrary length sequences of

actions on arbitrary length sequences of future states. In other

words, we can define the generalized empowerment,

C
Te,Ta,�T (x0) := max

p(�a|x0 )
I
(

X
Te

Ta+�T ; A
Ta−1
0

∣

∣x0

)

. (9)

Here, Ta denotes the number of time steps at which ac-

tions are performed, �T is the time gap between the action

sequence and the beginning of the observation of the result-

ing states, and Te is the last step in that observed sequence.

That is, CTe,Ta,�T measures the maximum mutual information

contained in the state sequence, X
Te

Ta+�T , about the preceding

action sequence, A
Ta−1
0 , rather than in the final state only, XTe

,

like empowerment does; cf. Eq. (2).

We observe that computing the generalized empowerment

in discretized time with an arbitrary discretization step and an

arbitrary time horizon Te reduces to a traditional calculation of

the channel capacity of a linear Gaussian channel [21], though

with a large number of dimensions reflecting both the duration
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of the signal and the duration of the response. Specifically,

C
Te,Ta,�T (x0) = max

σi�0
∑

iσi=P

1

2

dx
∑

i=1

ln (1 + ρi(x0)σi ). (10)

Here ρi(x0) are the singular values of the appropriate sub-

matrix F
s′

1,s
′
2

r′
1,r

′
2

(x0); for example, the traditional empowerment

corresponds to the red-dashed submatrix in (7). Further, P is

the power of the control signal �a over the whole control

period, and σi � 0 is that part of the overall power of the

control signal that is associated with the ith singular value

(called channel power). The channel power can be computed

by the usual water-filling procedure [21]. Note that here we

denote P as power, as per control-theoretic convention, but

since we fix the time interval over which it is applied, the units

of P are those of energy. As per our weak control assumption,

we assume P to be suitably small.

With (10), calculation of any generalized empowerment

becomes tractable, at least in principle. This also shows ex-

plicitly that the (generalized) empowerment is a function of

the sensitivity matrix F , and with it of quantities used to

characterize dynamics, such as the Lyapunov exponents.

To compute CTe,Ta,�T (x0) efficiently for an arbitrary dy-

namical system (1) and arbitrary long time horizons and

arbitrary small discretization steps, we start by discretizing

the time and calculating the linear-response matrix F . While

in this paper we do this by analytical differentiation, numerical

differentiation can be used whenever f is unknown. We then

calculate the singular values of F ; this is straightforward

on modern computers for dimensionalities of up to a few

hundred. Finally, we apply the “water filling” procedure to

find the set of channel powers σi to match the available total

power P in (10), and from there we calculate the (generalized)

empowerment value.

To determine the action of the agent, we finally use (8) to

compute (10) and plug this into (4) to select the actual action

of the agent. Because of the linear approximation assumption,

the effect of the noise averages out through the expectation in

(4). We can therefore just drop the expectation and the noise

term in the algorithm below. In all our examples below, the

agent will employ this approach.

ALGORITHM 1. In the numerical experiments, we use the

simplest possible control law, greedy control, for maximizing the

empowerment, which is summarized by the pseudocode below and

implemented in [41].

Intrinsically-motivated control

Require: x, f , P, Te, Ta, �T

1: Repeat

2: Calculate sensitivity gain, F (x) Eq. (7)

3: Calculate channel capacity, C(x) Eq. (10)

// Derive an optimal action, random process

averages out in linear approximation:

4: a∗(x) = argmax
a∈A

C(x + f (x)�t ′ + g(x)a�t ′) Eq. (4)

5: x ← f (x, a∗(x)) // Ascend empowerment

6: until ‘convergence to a locally

maximally-empowered state’

3. Connecting generalized empowerment to related quantities

Generalized empowerment with different durations of ac-

tion and observation sequences is related to various quantities

describing dynamical systems, including those defining in-

trinsic motivation [8,20,23,42]. For example, Causal Entropic

Forcing (CEF) [20] is defined as actions that maximize the

entropy of future trajectories of a system. With Ta = 1 and

�T = 0, CTe,Ta,�T in (9) measures the immediate conse-

quences of a single action on a trajectory with a fixed time

horizon Te. Maximizing CTe,Ta,�T is then equivalent to choos-

ing actions that maximize susceptibility, and not the entropy

of trajectories with a given time horizon. In other words,

one can interpret CTe,1,0 as a “kicked,” or agent-controllable,

version of CEF, where just the first action can be selected by

the agent at any time, and uncontrolled future variability is

discarded in action planning (see Fig. 1 for an illustration).

Such a kicked CEF corresponds to the green submatrix in (7).

Now consider the top right corner (blue) of (7) with Te =
Ta = 1, or, equivalently, s′

2 = s2 and s′
1 = s′

2 − 1. In the limit

of a very long horizon, s2 → ∞, the appropriate submatrix of

F becomes

	 ≡ lim
s2→∞

((

∂ x̄s2

∂ar1

)(

∂ x̄s2

∂ar1

)†) 1
s2

, (11)

where † is the transpose, and
∂ x̄s2

∂ar1

is given by (6). In the

special case that the control gain is the identity, g(x) = x,

the logarithm of the eigenvalues of 	 reduces to the usual

characteristic Lyapunov exponents of the dynamical system

[43]. However, once a more general control gain is applied,

the action-controlled perturbation, ar1
may be able to affect

only a part of the state space. This means that 	 not only is a

generalized empowerment with specific indices, but it is also

a specialization of the concept of Lyapunov exponents to the

controllable subspace. Thus we refer to the log-spectrum of 	

as the control Lyapunov exponents; cf. Fig. 1.

In summary, (9) and the linearization, (7), provide a unified

view of various sensitivities of the dynamics to the controls,

and hence on various versions of intrinsic motivation.

C. Intrinsic motivation in power-constrained agents

An agent controlling a system with unconstrained actions

can trivially reach any state in a controllable dynamical sys-

tem [44] by simply forcing their desired outcome without

sophisticated control. Thus to render the setup interesting,

we consider only power-constrained or weak agents. To show

that empowerment maximization, in the linearized regime, is

an efficient control principle, we use it to stabilize a family

of inverted pendula (single pole, double pole, and cart-pole),

which are simple, paradigmatic models of important phenom-

ena, such as human walking [45].

Solutions for the stabilization problem are known. They

require the accumulation of energy by swinging the pendulum

back and forth into resonance without overshooting and then

to keep the pendulum upright. When details of the system are

not specified a priori, this solution needs to be learned by the

agent. Finding such an indirect control policy by traditional

reinforcement learning is nontrivial [3], since the increasing

oscillations require a long time for the balancing to take
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FIG. 2. Intrinsic motivation based control in the power-constrained regime. Top row: generalized empowerment landscapes in the linear

approximation for empowerment (left), controlled Lyapunov exponent (middle), and kicked CEF (right) versions of the problem, plotted

against θ (horizontal axis) and θ̇ (vertical axis), measured in rad and rad/s, respectively. The color bars indicate the empowerment values in

bits. Black dots in each panel are the final state, and white lines are the trajectories of the pendulum, starting at the bottom denoted by the red

dots. Bottom row: the control signals chosen from the generalized empowerment maximization as a function of time. Here the time horizon is

te = 0.5 s.

place, and the acquisition of informative rewards indicating

success is significantly delayed. As we will show, it is pre-

cisely in such situations that intrinsic motivation based on

empowerment is especially useful, since it is determined from

only comparatively local properties of the dynamics along the

present trajectory and its potential future variations.

Here x, f , P, Te, Ta,�T are the initial state, the system

dynamics, the power of the control signal, and the time win-

dow parameters for state and action sequences, as explained

in the paragraph after Eq. (9). The actions used to calculate

empowerment (hypothetical futures) are stochastic. However,

when actually taking the action (line 4 in the pseudocode), the

specific deterministic action derived in Eq. (4) is chosen in a

greedy fashion. The dynamics, f , is used as a forward model

for the projected actions to calculate empowerment of the

successor states; only after choosing the action that maximizes

the empowerment of the successor state is it used, in line 4, to

actually carry out the step.

Note that empowerment maximization provides the ef-

fective utility function, which is computed for the given

dynamics of the system. No hand-crafted reward is required

to generate the behavior. Instead empowerment defines the

utility structure without knowing the dynamics as an input.

In the following, we demonstrate the proposed general

formalism in dynamical control systems, where control, a,

and perturbation, η, represent controllable and uncontrollable

forces, affecting the state through the control gain g(x).

1. Inverted pendulum

We start with a relatively simple task of swinging up and

stabilizing an inverted pendulum without an external reward.

With an angle of θ (in radians) from the upright vertical, the

equations of motion of the pendulum are

(

dθ (t )

d θ̇ (t )

)

=

(

θ̇ (t )dt
g

l
sin (θ (t )) dt + da(t )

ml2 + dW (t )

ml2

)

, (12)

where θ̇ is the angular velocity of the pendulum, m= 1 kg is

its mass, l= 1 m is the length, a(t ) is the torque applied by the

agent, g = 9.8 m/s2 is the free fall acceleration, and dW (t ) is

a Wiener process.

We apply a (stochastically chosen) control signal a(t ) for

the duration Te and observe the final state θ̃ = θ + η̃obs, where

η̃obs is the standard Gaussian observation noise at the final

state. Empowerment is then given by the maximally achiev-

able mutual information between a(t ) and θ̃ at a given power

level for a(t ), i.e., the channel capacity between the two.

We now apply our empowerment-based control protocol,

(4), to the inverted pendulum. We calculate the empowerment

landscape by using the time-discretized version of Eqs. (1)

and (12). For this, we map the deterministic part of the dy-

namics [ f , g in (1)] onto discrete time as per (5). We then

compute the channel capacity by applying (10) using the sin-

gular values from (8), where states are given by (θ, θ̇ ) ∈ R
dx ,

and actions consist of applying a torque a. The landscapes for

the original empowerment, the controlled Lyapunov exponent,

and the kicked CEF versions of the problem, all with the time

horizons of te = 0.5 s and the discretization �t = 10−3, are

shown in Fig. 2. Then, from each state, we choose the control

action to greedily optimize the generalized empowerment.

The panels in the upper row in this figure also show trajec-

tories obtained this way. The lower row shows time traces

of the control signal derived from the generalized empow-

erment maximization. In all cases, initially, the agent drives

the pendulum at the maximum allowable torque, which we

set to be power-constrained to ±1 Nm. Around 13, 10, and

10 s after the start (for the three versions of the empowerment,

respectively), the pendulum accumulates enough energy to

reach the vertical, and the agents reduce the torques to very

small values, a � 1 Nm, which are now sufficient to keep the

pendulum in the upright position and prevent it from falling. It

is striking that the generalized empowerment landscapes and

their induced trajectories are qualitatively similar to those that

would be generated by an optimal value function for the stabi-

lization task, derived by standard optimal control techniques
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FIG. 3. Convergence of the method for �t → 0 and te = 0.5 s

at three different states “top with zero velocity,” “bottom with ve-

locity equal to 5 rad/s,” and “bottom with zero velocity” in blue,

red, and green, respectively. As time resolution is refined twofold

at every stage, one arrives at a well-defined value for the empow-

erment estimation as �t → 0. The numerical stability of this limit

approximation is consistent throughout the landscape.

based on a reward specifically designed to achieve the top

position [3].

In our analysis, we chose a particular discretization

�t = 10−3 s, and we need to show that our results depend

only weakly on this choice. For this, we repeat our analysis at

different �t . Figure 3 shows the dependence of the maximum

value of the original empowerment (black dot in the left panel

of Fig. 2) on �t . To the extent that the estimate converges

to a well-defined number linearly as �t → 0, the discrete

time dynamics provides a consistent approximation to the

continuous time dynamics.

2. Double pendulum

Now we show that the empowerment maximization for-

malism is capable of dealing with more challenging problems,

such as a power-constrained control of a (potentially chaotic)

double pendulum [16], Fig. 4, with equations of motion:

d θ̈1(t ) = −
1

d1(t )
(d2(t )θ̈2(t ) + φ1(t )),

d θ̈2(t ) =
1

m2�2
c2

+ I2 −
d2

2 (t )

d1(t )

(

da(t ) + dW (t ) +
d2

2 (t )

d1(t )
φ1(t )

− m2�1�c2
θ̇1(t )2 sin θ2(t ) − φ2(t )

)

, (13)

with

d1(t ) = m1�
2
c1

+ m2

[

�2
1 + �2

c2
+ 2�1�c2

cos θ2(t )
]

+ I1 + I2,

d2(t ) = m2

[

�2
c2

+ �1�c2
cos θ2(t )

]

+ I2,

φ1(t ) = − m2�1�c2
θ̇ (t )2 sin θ2(t ) − 2m2�1�c2

θ̇2(t )θ̇1(t )

× sin θ2(t ) + (m1�c1
+ m2�1)gcos θ1(t ) + φ2(t ),

φ2(t ) = m2�c2
gcos[θ1(t ) + θ2(t )].

We add Wiener noise, dW (t ), and permit the controller to

apply a scalar control signal |a(t )| � 1, at the joint between

the two links. In the equations of motion, mi= 1 kg, �i= 1 m,

�ci
= 0.5�i, and Ii stand for the mass, the length, the length

to center of mass, and the moment of inertia of the ith link,

i ∈ [1, 2], respectively. Figure 4 shows the landscape for the

original empowerment for selected slices of the phase space.

This landscape is more complex than for the single-pendulum.

Nonetheless it retains the property that, following the local

gradient in the state space directly, one ultimately reaches the

state of the maximum empowerment, which is precisely where

both links of the pendulum are balanced upright. The vertical

position, however, is a priori not sufficient to guarantee the

balancing since the control only applies torque at the joint

linking the pendulum halves. That is, the controller cannot

move the pendulum in arbitrary directions through the state

space. Surprisingly, this concern notwithstanding, the algo-

rithm still balances the pendulum; cf. Fig. 4.

3. Cart-pole

We have additionally verified that the empowerment max-

imization also balances an inverted pendulum on a moving

cart; cf. Fig. 5. Here the control signal (force) is applied to the

cart. Thus the pendulum is now affected only indirectly. The

dynamics of this system is

dẍ(t ) =
m sin θ (t )[�θ̇2(t ) + gcos θ (t )] + da(t ) + dW (t )

M + m sin2 θ (t )
,

d θ̈ (t ) = − da(t ) cos θ (t ) − m�θ̇2(t ) cos θ (t ) sin θ (t )

− (M + m)g sin θ (t ), (14)

where x(t ), θ (t ), m = 1 kg, M = 10 kg, � = 1 m, g, |a(t )| � 1

are the x coordinate of the center of mass of the cart, the angle

of the pole, the pole mass, the cart mass, the pole length, the

free fall acceleration, and the force applied to the cart.

III. DISCUSSION

In this study, we focused on a class of intrinsic motivation

models that mimic decision-making abilities of biological

organisms in various situations without explicit reward sig-

nals. We used an information-theoretic formulation in which

the controller starts with knowledge of the (stochastic) dy-

namical equations describing the agent and the environment,

and then selects actions that “empower” the agent. That

is, the controller improves its ability to affect the system

in the future, as measured by the mutual information be-

tween the action sequence and the subsequent responses. This

leads the system to the most sensitive points in the state

space—quite generally, and without relying on the details

of the dynamics being controlled—which we showed solves

a problem known to be difficult for simple reinforcement

learning algorithms: balancing inverted pendula. Depending

on which subsets of the past actions and future responses

are used to drive the intrinsic motivation, our approach in-

terpolates between the original formulation of empowerment

maximization, maximization of the “kicked” version of causal

entropic forcing, and maximization of the “controlled” subset

of the Lyapunov exponents of the agent-environment pair.
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FIG. 4. Top left: Double pendulum with control torque on the joint between the links with dynamics given by (13). Top right: Slices through

the empowerment landscape of a double pendulum. Each subplot shows a particular slice in the 4D landscape, when two other coordinates are

zero. For example, the plot with axes θ̇2, θ̇1 is shown for θ2 = 0 rad and θ1 = 0 rad. Bottom: Traversing the state space of the double pendulum

according to (4). The first and the second 15 s are shown with different scale for the instantaneous empowerment. The initial and the final

positions are both links down and both links up, respectively. Torque is applied to the middle joint only. When the pendulum is depicted in

green (red), it is absorbing (releasing) the energy from (against) the driving force.

This provides insight into which properties of the dynamical

system are responsible for the behaviors produced by these

different motivation functions.

Notably, there is an essential difference between empow-

erment maximization and optimal control approaches for the

derivation of the optimal action policy. Empowerment-based

FIG. 5. Left: Cart-Pole system with control force, �a(t ), applied to the cart only, which moves on the rail (or on the edge of a table),

allowing the pole to rotate in the x-y plane. Its dynamics is given by (14). Right: Traversing the state space of the pendulum on a cart according

to empowerment maximization. The initial and the final state of the pole are down and up, respectively. The horizontal axis is time in seconds,

t ∈ [0, 20] s.
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policy is derived from local properties of the dynamics, while

optimal control policy is globally derived from an external

reward by solving the Hamiltonian-Jacobi-Bellman equa-

tion [44]. Understanding a direct connection between these

two alternatives requires further investigation.

One big challenge in using information-theoretic quantities

is computing them, which can be difficult to do either analyti-

cally or from data. Our paper makes a significant contribution

to solving this problem in the context of empowerment by pro-

viding an explicit algorithm for computing various versions of

empowerment, for arbitrary lengths of pasts and futures, using

the small noise/small control approximation to the dynamics,

while still treating the dynamics as nonlinear. This is often the

most interesting regime, modeling weak, power-constrained

controllers. We point out that our small perturbation analysis

does not assume the dynamics to be linear, and a priori it

is not clear whether assuming small perturbations around a

generic nonlinear solution would render the system tractable,

which our algorithm achieves. To establish the robustness of

our results, we studied the dependence of the empowerment

estimate on the discretization step size, as the latter converges

to zero. The estimate converges trivially, Fig. 3, and only

depends minimally on the discretization step, including at the

critical points of the dynamics.

Crucially, our algorithm is local, so that climbing up the

empowerment gradient only requires estimation of the dy-

namics in the vicinity of the current state of the system. This

should be possible in real control applications by using the

data directly, possibly with the help of deep neural networks

to approximate the relevant dynamical landscapes [46–48].

Therefore, knowing the exact form of the dynamical system,

which could be a potential limitation of our approach, is not

strictly required. This opens up opportunities for scaling our

method to more complex scenarios.

Our work suggests that, in addition to the Lyapunov spec-

trum, defined via the trajectory divergence in time due to a

small arbitrary perturbation, one may want to consider the

optimal Lyapunov spectrum, where the initial perturbation

is optimally aligned with the controllable directions in the

dynamics. We defer a systematic study of optimal Lyapunov

spectra to future work. In this context, one could also ask

if maximization of empowerment and application of con-

trol in optimal directions might result in instabilities in the

system’s dynamics. Since empowerment optimization is usu-

ally applied in the case of limited resources, such as power,

we do not expect such runaway solutions. However, formal

analysis of this is left for the future.

While stabilization of pendula, including the double pen-

dulum, are classic test cases for control-theoretic algorithms,

our empowerment based approach needs substantial addi-

tional developments to become a general control strategy.

First, it leads an agent only to very specific points in the state

space, which optimize the sensitivity to control, and hence

potentiate future actions. Second, the specific algorithm we

used, greedy empowerment, is unlikely to result in an ability

to control systems as complex as humanoid robots. Solution

to both problems lies in combining empowerment optimiza-

tion with problem-specific goals and with explicitly learning

the underlying dynamical system in an RL-style model. We

anticipate that empowerment maximization will be faster and

more reliable within the RL paradigm, and it will dominate

early steps of control strategies, effectively endowing RL ap-

proaches with exploratory possibilities not directly related to

the eventual goal. In its turn, achieving specific RL goals will

be easier from such high empowerment regions at later steps

of control.

A potential extension of our analysis relates to social

interactions. Interacting agents have their own intrinsic moti-

vations and affect each other’s ability to achieve their goals.

Understanding how multiple agents interact, each trying to

empower itself in the presence of others, and whether and

when this leads to cooperation or conflict is a promising area

for future research. Crucially, the ability to affect someone

else’s empowerment may provide insight into what distin-

guishes social interactions from purely physical interactions

among nearby individuals.
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