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Decentralized Traffic Flow Optimization Through Intrinsic Motivation

Abstract— Traffic congestion has long been an ubiquitous
problem that is exacerbating with the rapid growth of megac-
ities. In this proof-of-concept work we study intrinsic motiva-
tion, implemented via the empowerment principle, to control
autonomous car behavior to improve traffic flow. In standard
models of traffic dynamics, self-organized traffic jams emerge
spontaneously from the individual behavior of cars, affecting
traffic over long distances. Our novel car behavior strategy
improves traffic flow while still being decentralized and using
only locally available information without explicit coordination.
Decentralization is essential for various reasons, not least to be
able to absorb robustly substantial levels of uncertainty. Our
scenario is based on the well-established traffic dynamics model,
the Nagel-Schreckenberg cellular automaton. In a fraction of
the cars in this model, we substitute the default behavior
by empowerment, our intrinsic motivation-based method. This
proposed model significantly improves overall traffic flow,
mitigates congestion, and reduces the average traffic jam time.

I. INTRODUCTION

Traffic congestion poses a significant challenge, with its
impact increasingly felt on the global economy. Among
the various solutions for traffic management, centralized
approaches [1]-[3] are typically restricted to areas with high-
quality infrastructure, enabling near real-time connectivity to
central servers and neighboring vehicles. This is a limiting
assumption, in terms of location and of the number of cars.

We therefore assert that any viable scalable solution must
be decentralized, eliminating the dependence on a central
hub or protocol between vehicles, and must be capable of
withstanding significant levels of uncertainty and noise. This
opens the door to artificial intelligence approaches that hold
promise in making traffic more efficient.

A priori, the drivers’ individual goal would be to safely
and quickly arrive at their destination. However, there is
no obvious externally-defined objective for artificial agents
which would simultaneously aim to achieve the collective
good of maintaining high-throughput traffic flow and mitigate
the congestion level. Our proposal is to use a suitable
intrinsic motivation measure to control the individual cars,
which lead to the emergence of global collective behaviour
with less traffic jams.

Intrinsic motivation has been increasingly established as a
class of artificial agent behavior strategies that do not rely on
a specific reward [4]-[8], but, inspired by biological agents,
are driven by objectives internal to the agents or via their
interaction with the environment. Examples are viability,
self-maintenance, or attainment or recovery of potentialities.
To some extent these constitute a paradigm dual to the
traditional one of training artificial agents by externally
provided objectives in form of rewards or costs which require
expert domain knowledge.

Empowerment measures the potential influence of the
agent through its actions on its future; in practice, this may
be only partially observable, so observing this influence
is limited by the agent’s sensors, reflecting the agent’s
limited environmental knowledge. Empowerment has been
demonstrated in a broad range of domains [9]-[17] including
assistance, locomotion, stabilization, tool use, and others. For
our best knowledge it has not been explored for decentralized
traffic flow optimization, which is one of the main contribu-
tions of this work.

The present work is a proof-of-concept study of au-
tonomous cars driven by empowerment to improve traffic
flow in the collective. We employ the well-established, but
highly useful abstracted cellular automaton model for traffic,
the Nagel-Schreckenberg model [18]-[22], which we will
refer to as NaSch. Our main motivation to select the NaSch
model is its simplicity, ease of analysis and simulation. It
is widely used as a standard model of traffic dynamics,
and it captures effects of traffic, such as the spontaneous
emergence of traffic jams affecting traffic over long distances.
So the default behavior is modeled by the NaSch model, our
intrinsic motivation is realized via empowerment.

Our method operates in fully decentralized manner and
the autonomous cars use only locally available information,
without an explicit coordination or communication protocol
even between neighbouring drivers. Such decentralization
is essential for any practical scalable solution that ensures
drivers’ privacy as well as the viability of the method
when communication between cars is impaired, e.g., under
network communication failures or lag and without relying
on compatible protocols.

We address this by replacing, for randomly selected cars,
the NaSch rules of the car behaviour with empowerment-
based rules, which operates on the individual level.In the au-
tonomous car, empowerment implements the drive to locally
maintain or increase the car’s degrees of freedom as much
as possible (in terms of local “freedom of operation”, e.g.
moving into states with more options to accelerate or brake)
[15]. It will turn out that this, at the same time, manages to
affect the general good favourably.

We want to emphasize that our goal is not to surpass
specific state-of-the-art algorithms or to compare against a
diverse set of road optimization models. We acknowledge the
importance of such comparisons for full application in traffic
scenarios, which we defer to future work. Our work repre-
sents the first attempt, to our knowledge, to utilize intrinsic
motivation for decentralized traffic optimization. We believe
that demonstrating its efficacy in such a diverse scenario is a
significant step and opens new research directions in hybrid
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models of intelligent traffic control. Our proposed model
demonstrates substantial improvements in traffic flow in most
cases with respect to the unmodified original system, even
when only a fraction of the cars has been modified to be
driven by empowerment.

II. PRIOR WORK

We now review existing methodologies for traffic regu-
lation and/or congestion alleviation, specifically in light of
the unique characteristics of the present work, namely: i)
level of decentralization and inter-vehicle communication,
ii) inherent uncertainty concerning traffic state owing to the
restricted (local) information accessible to each car, and
iii) the expert domain knowledge typically necessary to
formulate effective reward functions for artificial agents.

The recent work by [23] on traffic flow control emphasizes
the importance of decentralized autonomous control and has,
to some extent, similar objectives to the current work. The
model defined three types of state spaces, minimal, radar and
aggregate differing in their information granularity. However,
[23] admit a certain level of centralization and communica-
tion such as requiring global information about ’the number
of vehicles in the bottleneck”, even in the minimal state (cf.,
Section 3.3 in [23]). Two other state representations, radar
and aggregate, require GPS information and the average car
speed at various road segments, respectively. Also, the global
reward function must be shared between all the agents in the
network, which requires centralization and network access.

In [24], decentralized control of traffic is achieved by ex-
plicit communication between cars via network. Specifically,
when an Inter-Vehicle Communication (IVC) equipped car
enters a traffic jam, a corresponding message containing jam
related information (position, time) is constructed and broad-
casted. However, if there is significant distance between IVC
equipped cars or interference, the communication becomes
unreliable. In [25], a decentralized traffic control is proposed
where agents are distributed across the road and observe spe-
cific areas. Agents provide control commands such as desired
headway and lane choices to Autonomous Vehicles (AVs)
within their respective regions. The decentralized control is
achieved by allowing agents’ observational spaces to over-
lap while keeping their controlling spaces non-overlapping,
facilitating understanding of other agents’ behavior without
direct communication. However, communication between
agents and AVs is still necessary in this model. In [26],
a congestion-aware collaborative automatic cruise control is
proposed, which requires vehicle-to-everything technology
(V2X) for inter-vehicle communication. In [27], [28], Multi-
Agent Reinforcement Learning (MARL) is used to achieve
distributed control with local information and no inter-agent
communication. While these approaches align with our goal,
they face the challenging task of having to design reward
functions to train the agents.

In contrast to the existing works, we propose a fully decen-
tralized approach for traffic regulation without any type of
inter-vehicle communication, with a substantial uncertainty

about the overall traffic state, and without manually designed
reward function.

III. PRELIMINARIES
A. Traffic Model

The standard Nagel-Schreckenberg (NaSch) model [18]
which we use here is a stochastic particle hopping model
used to simulate traffic flow. It matches real-life traffic
patterns to a remarkable extent and predicts traffic flow
phenomena with remarkable accuracy. The model captures
complex phenomena observed in real traffic, including traffic
jams, and it is an important tool for the analysis of traffic
flow [29], [30]. In the NaSch model one considers a road
divided into L cells and typically with periodic boundary
conditions. Each cell can either be occupied by one of N

cars or left empty. The car density on this road is thus given

byp:%.

Traffic Dynamics. In the NaSch model, each car has not
only a location, but a positive velocity along the direction of
movement. These are discrete integers ranging from vy, =
0, indicating an idle car, to a predefined maximum speed
Umax > 0 that a car can move at. The velocity of a car
i € {1...N} in the cell z; and at time ¢ is denoted by
v(x;, t).

The traffic dynamics in the NaSch model is defined by four
update rules, R, ..., R4, which are applied sequentially to
all the cars at each time step, ¢ € [1,...,T], with T denoting
the total number of updates (the simulation time):

R (Accelerate): Increase the velocity v(z;,t) of the car
in cell z; by 1 if it is less than the maximum velocity

Umax -
v =min(v + 1, Vmax) (H

R> (Brake to avoid collisions): If the velocity v(x;, t) of a
car at cell x; is greater than the distance, A = xj —x;,
to the next car at cell zj, (i.e. if acting upon it would
cause a collision with the front car), then decrease
v(x;,t) to A —1.

A-1, ifv>A
v = , 2)
v, otherwise

R3; (Random Brake): Reduce the velocity v(x;,t) of a
car by 1 with a probability 0 < pprere < 1.

v—1, ifv>0 & rand() < pprake
v = ) 3)
v, otherwise

R, (Move): Advance each car by v(z;,t) cells according

to its velocity.

These simple rules capture plausible driver behavior, such
as the desire to drive as fast as possible, while acknowledges
that acceleration is limited (Rule 1), the inclination to avoid
collisions (Rule 2) and the influence of stochasticity due to
various factors such as inconsistent human driving behav-
ior, weather or road conditions, as well as other external
influences (Rule 3). Finally, (Rule 4) describes the forward
movement of the vehicles.
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Fig. 1: Fundamental diagram of expected traffic flow for
different values of the braking probability py,qke-

Traffic simulated by these rules shows several essential

features of real traffic, including regions of free traffic flow,
traffic congestion, and phase transitions taking place between
these two modes of movements. The validity of the core
model is well-established in [31], [32]. Notably, these rules
not only directly govern the behavior of individual cars, but
rather give rise to intricate collective phenomena such as
long-range traffic waves.
Fundamental diagram of traffic flow. The main quantity
in the NaSch model is the traffic flow, j. It measures how
many cars pass through a given spot in a given time [18].
The expected traffic flow, j, can be estimated for a finite
number of simulation steps, 7', and a finite number of cells,
L with N number of cars, as follows:

R I Qi
jmzfzzv(%t). (4)
i=1 t=1
Figure 1 illustrates the dependence of the traffic flow as
a function of car density, also known as the fundamental
diagram of traffic flow. This diagram exhibits essential char-
acteristics of traffic flow, namely a steep increase for low
traffic densities, representing free-flowing traffic. The flow
increases linearly as cars can travel at full speed without
any forced deceleration. Subsequently, we see at a specific
density, (the critical density p.), an abrupt transition to a
regime, p > p., where average flow decreases due to reduced
space, increased braking and emergence of self-organized
traffic jams. This diagram is commonly used for the analysis
of the traffic properties and the peak of the diagram indicates
the maximally reachable traffic flow; the higher the curve lies
in the fundamental diagram, the better the flow achieved!.
The objective of the current work is to develop a fully
decentralized method that enables to increase the traffic flow
over a broad range of car densities on the fundamental dia-
gram by adding a small fraction of agents driven by intrinsic
motivation to the traffic. These agents neither communicate
with each other nor do they coordinate by explicit protocols.
Instead, they follow a variation of the NaSch rules, enhanced
by the empowerment measure.

IThe simulation is conducted on a road with a length, L, of 100,000
cells, vmax = 5 and T° = 5000. To ensure accurate data collection, the
initial 1000 time steps are disregarded to allow transient effects to stabilize.
Subsequently, data is collected at every 5t" time step to reduce correlations
between consecutive time steps.

As we will show, this is sufficient to globally improve traf-
fic, which is characterized by a new augmented fundamental
diagram wherein the peak is shifted upwards and towards
the right.

B. Intrinsic Motivation by Empowerment

We propose to cast the problem of mitigation of traffic
congestion as a problem of achieving traffic flow viability
and self-maintenance for the individual car agent: traffic jams
decrease this viability and harm autonomous flow mainte-
nance for that care. Concretely, we suggest empowerment
as a suitable candidate for the intrinsic objective for the
mitigation of traffic congestion. It has been demonstrated by
various studies to provide artificial agents with the desired
properties of viability and drives towards self-maintenance
[9], [10], [33], [34], remarkably often coinciding with be-
haviors induced by explicit hand-designed reward functions.

Formally, one characterizes empowerment as the channel
capacity between a potential sequence of agent actions and
the (possibly limited) agent’s sensor in the future after
executing this sequence [35]. Empowerment is defined for a
given time horizon of actions. Concretely, for a n-step action

sequence A", define n-step empowerment as’:
E™(st) = max I[Sipn; AL | stl, 5)
(A7 |st)

where I[Sii1n; A} | s¢] is the mutual information between
the distribution of final states, S;;,, and that of the action
sequence, A}, conditioned on the specific current state, s;.
Stated differently, it is the channel capacity between A} and
Stin. We emphasize that A} is a distribution over potential
actions, not the action actually taken by the agent — the
latter is selected to move into a state with maximum such
channel capacity, i.e. one maximizing the term from (5).
The essential properties of empowerment are summarized
as follows. When the agent’s set of actions only lead to
outcomes that are similar or closely aligned, the agent’s
capacity to exert influence is constrained, reflected through
low values of empowerment. Conversely, when the available
action spectrum results in a wide range of potential distin-
guishable states, the agent’s ability to shape its environment
is considered stronger; this corresponds to larger empow-
erment values. In our traffic scenario, when a car agent is
trapped closely behind e.g. a slow-moving car, and there
are not many different state outcomes the agent can impose,
empowerment will be low [15] and vice versa.

IV. PROPOSED METHOD

Here we present our novel approach to employ em-
powerment within the context of the NaSch model and
to investigate its effect on the traffic dynamics. We equip
certain cars with non-default decision-making capabilities
throughout the simulation. These agent cars are not bound
by NaSch rules; instead, they select velocities based on
maximizing their empowerment. We hypothesize that when

2We denote random variables by capital letters, and their particular
realisations by small letters.
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Fig. 2: 3-step empowerment, £3(s), in bits for pyrare = 0.2 and p = 0.2

the cars aim towards states with higher empowerment, this
enhances the viability of traffic and decreases traffic jams.
Starting in a state s;_; (state is described in detail below),
each agent computes (6) for the possible states s; it can
reach, subject to NaSch dynamics, and then takes the action
that moves it into the state with the highest value of, £ (s;):

E™(st) = max I[Siin; AV | st (6)

p(ai|st)

subject to NaSch dynamics.

Given that a particular car’s velocity on the road is
primarily influenced by its leading car’s velocity, we focus
solely on the local information with respect to the leading
car. The state s of an agent thus encompasses only locally
observable information such as the distance between the
agent and its leading car and the velocity of the leading
car 8 = (Ajead, Viead)- With this local information, agents
strive to make decisions, particularly choosing velocity,
with the greedy goal of stepping into a state of as high
empowerment as possible. We consider choosing a velocity
as an action a, and a sequence of actions a™ representing
consecutive actions taken by such an agent over n time
steps. Agents have the capacity to increase their velocity
by 1, while they can decrease it by any arbitrary amount.
Consequently, the one-step actions available to the agent
are a; € {0,...,min(vagent(t) + 1, Umag)}. Furthermore,
we assume that each agent has a full model of the system
rules, including the probability of braking (pprqke) and
the maximally permissible velocity (v,,.,) on the road.
Additionally, agents assume their neighboring cars follow
traditional NaSch update rules. However, the empowered
agents still operate under constraints such as the ability
to increase their velocity only by one unit or having to
decelerate to avoid collisions.

The empowerment horizon, the duration for which the
potential future action sequences are probed is a crucial
parameter of the simulation which we set at the outset
and which remains constant throughout the simulation. For
each experiment, the overall braking probability pp,qxre and
density p is specified. Given this, the transitional probability
of velocities for normal cars p(viy1|v¢)?® is calculated. To

3The transitional probability of velocities for normal cars p(vit1|ve)
have been sampled independently for a given py,qke and vehicle density
p, on a lane comprising 10,000 cells over the course of 106 time steps.

estimate empowerment, agents need to generate the distri-
bution of destination states (s;4,,) for every available action
sequence (a") — we call this distribution as state transitional
channel p(s;yn|a™, s;). With the help of p(vy1|v:), agents
can construct p(sy4,|a™, st).

The agents possess knowledge of the transitional proba-
bility of the velocity of normal cars p(vy1|ve). For each
action a in the action sequence, agents sample the Ujeaq(t +
1) (future velocity of their leading car) from p(vii1|v).
Subsequently, they can estimate the distance in next time
step using Ajeada(t + 1) = Ajead(t) + Viead(t + 1) — a. This
process provides the agent with the future sample state
St41 = (Aead(t + 1), vieaa(t + 1)). Agents iterate through
this procedure for each action a in the available action
sequence a™, constructing the distribution p(sii,|a™, s:).
Once p(s¢1n|a™,s:) is constructed, the empowerment of a
particular state is calculated using the Blahut-Arimoto (BA)
algorithm [36] for the channel p(siin|a™, s¢).

Figure 2 illustrates the interplay between Ajeud, Viead, and
Uggent 10 influencing the empowerment of a state £(s). The
analysis indicates that larger distances to the lead car Ajqq
generally improve the agent’s empowerment. However, the
influence of faster velocity of the lead car vj..q is stronger,
and this effect is more pronounced when the agent’s car
itself moves faster. This observation aligns logically with the
expectation that when agent is trapped behind a slow moving
car, there are not many different state outcomes the agent can
impose, because whatever action it takes it has to reduce the
velocity to avoid collisions, resulting in low empowerment
values. However, if agent is behind the fast moving car, it
would have more options to accelerate and can end up in
different states resulting in high empowerment values.

The main goal of the agent is to find an action that results
in more empowered state. To achieve this, it assesses how
empowered it could be in various possible future situations
if it takes a particular action a, at a certain time ¢. There are
different ways to approach this, but for the present purpose,
the agent considers the probability of each outcome for
the given one step action p(s¢|s;—1,a;—1) and averages the
empowerment across the outcomes s; for a given action a;_.

E)(st—1,a-1) =Y p(selsi—1,a-1)E(s)) (D)
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For simplicity, we omit the current state in the notation,
denoting empowerment of the current state, s;_;, and the
action, a;_1, by (€)(a). Agents always chooses the action
a¢—1 maximizing the expected empowerment in (7). If mul-
tiple actions have same expected empowerment, the action
is chosen randomly with equal probability.

Algorithm 1 Expected Empowerment

Input: velocity of an agent (vggent), initial state (s;—1),
p(”t«kl‘vt)a and Umazx

Parameter: Empowerment horizon, n

Output: (&)(a)

1: Initialize 1-step actions a;—1 € {0,...,min(vegent +
17 Umax)}

2: Compute p(s¢|si—1,at—1)

3: for s in s; do

4:  Get n-step action sequences a”

5. Compute channel p(s¢yn|a™, s)

6:  Compute Empowerment, £"(s), by Eq. (5)

7: end for

8: (€)(a) < 32, p(se|si—1,a:-1)E" (s¢)

9: return (€)(a)

Algorithm 2 Traffic Flow with Empowerment

Input: position of agents ()A( ), position of regular cars ()/(:,, ),
road length (L), simulation time (7).
Parameter: density, p, braking probability py,qke
Output: Flow j
: Lett = 1.
while ¢t < T ilo

for = in X do

v(z,t + 1)= argmax (€)(a)

w(z,t +1) + NaSch Rule 2
end for
for x,, in X,, do
v(zp,t + 1) - NaSch Rules 1-3
end for
10:  Displace cars by NaSch Rule 4
11: end while
2~ 3 N vl t)
: return j

L

R A

—_
[95]

Traffic Flow with Empowerment: In the final step, we out-
line the procedure for calculating traffic flow in the presence
of empowered agents. We begin by randomly initializing a
road of length L, populated with a given number of cars N.
These cars will have velocities in the range v € {0 : vy }-
Among these cars, certain cars are considered emRowered
agents. Their positions are recorded in the vector X, while
normal cars’ positions are recorded in vector X,,. These data
structures are then used for subsequent empowerment calcu-
lations. For each agent in X we will independently compute
the expected empowerment (£)(a) and asynchronously carry
out the action that maximizes (£)(a). After the actions are

chosen, agents verify whether their chosen actions result in
any collisions. If so, agents adjust their actions to A — 1
(NaSch rule Rs). All the normal cars in X,, will follow the
NaSch update rules (R;, Rg, R3). Subsequently, all cars,
including agents, will follow rule R4 and move forward
based on their velocities. The positions all cars will be
correspondingly updated and stored for the subsequent time
step computations. This process is repeated for 71" time steps.
Upon completion of the simulation, the traffic flow will be
evaluated using the approximation provided in (4).

V. EXPERIMENTS

We now study the influence of the empowered agents on
traffic dynamics and especially its important global signa-
tures, such as traffic flow and average traffic jam time. The
full code repository is provided at [37].

In our investigation, we emphasize that agents rely solely
on local information for decision-making. We conduct exper-
iments with varying ratios of empowered agents relative to
the total number of vehicles on the road. Figure 3 shows the
fundamental diagram illustrating traffic flow across different
densities, considering braking probabilities of pprxe = 0.2
and 0.5, and two different empowerment horizons.

Remarkably, as depicted in Figure 4, the inclusion of
empowered agents yields substantial improvements in traffic
flow, reaching approximately 27% for ppae = 0.2 and
approximately 58% for ppre = 0.5, compared to scenar-
ios devoid of empowered agents. These enhancements are
observed across a range of densities, extending beyond the
critical density (p.). As the number of agents increases, we
observe a corresponding increase in the maximum attainable
traffic flow. Additionally, the critical density (p.) shifts
rightward, indicating that empowered agents prolong the
transition from a free-flowing state to the onset of traffic
congestion when compared to the NaSch model.

The impact of empowerment is inherently local, con-
strained by the horizon. As depicted in Figure 3, extending
the empowerment horizon expands the range of densities
where our model maintains effectiveness, illustrating its po-
tential to mitigate traffic congestion across broader scenarios.
The slight reduction of flow in low-traffic density (before
critical density (p.)) can be intuitively explained by the
fact that a competent driver never operates at the limits of
their vehicle’s performance, but leaves themselves options
to react. As a consequence, they won’t drive in a maximally
aggressive fashion.

For a deeper investigation into the factors driving im-
proved flow in intermediate densities, we present the spatio-
temporal diagram of vehicle movement in Figure 5. This
figure offers a comprehensive view of vehicle dynamics over
time, specifically focusing on densities where our model
achieved peak flow improvement with a 3-step horizon,
across different ppre values. The horizontal axis depicts
the road, which repeats periodically at the edges, hosting
both normal cars and agents. The vertical axis indicates the
time (flowing from top to bottom). The cars are represented
as black dots in space and time (no distinction is made
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between NaSch and empowered cars). The black streaks in
the diagram now indicate traffic jam waves which, as NaSch
remarkably captures, flow backwards through the traffic.
The comparison of the diagrams shows that setups without
agents (Figure 5a, 5d) contain more concentrated and pro-
longed traffic jams indicating more number of cars trapped
in jammed states for longer durations. On the other hand,
scenarios with empowered agents (Figure 5b, 5c, S5e, 5f)
result in shorter traffic jams involving fewer cars that are
distributed more thinly across the road. This observation is
corroborated by the significant decrease (up to = 85% ) in
average jam time as depicted in Figure 6, corresponding
to an increase in the percentage of empowered agents. In
the computation of average traffic jam time, we followed
the methodology outlined in [29]. The definition of jam
time pertains to the number of time steps during which cars
remain stationary. Specifically, cars with a velocity of v =0
are identified as stationary vehicles within our traffic model.
The effectiveness of empowered agents in mitigating con-
gestion can be attributed to their adaptive braking behavior,
which adjusts based on their current speed. Unlike conven-
tional cars that brake with a fixed probability pp,qke regard-
less of their speed (update Rule 3), empowered agents refrain

from braking when traveling at low speeds, particularly when
stationary (v = 0). The constant braking of regular cars,
especially when stationary, contributes to the delay in jam
dissolution. As long as there is sufficient leeway in the
density, the tendency of the empowered agents to maintain
their own freedom of operation appears to buffer off the
fluctuations induced by the regular randomly braking drivers.
As the density increases, the incentive of empowerment does
at a point no longer align with the goal of moving faster.
However, longer horizons can postpone the density where
the inflection happens. As seen in Figure 3(a, b), increasing
the empowerment horizon to 3 steps extends the range of
densities where empowerment improves flow.

VI. CONCLUSION AND FUTURE WORK

We introduced and examined a decentralized strategy
aimed at optimizing traffic flow. Our approach diverges sub-
stantially from traditional decentralized approaches that often
require the meticulous design of reward functions tailored to
the application, and instead uses a generic model for intrinsic
motivation, namely empowerment, to produce local behavior
that improves global traffic flow. Over a range of traffic
densities, empowered cars can substantially improve global
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traffic flow despite genuinely local decision-making requiring
no joint protocols and only basic traffic rule coordination.

The approach eliminates the need for explicit reward func-
tion crafting and demonstrates another promising application
of generic intrinsic motivation approaches to address specific
problems even in multiagent scenarios. Notably, our solution
does not consist of adding hand-crafted rules to improve traf-
fic flow. Rather, we show that the empowerment formalism
(which was already shown to create useful behaviours in a

large variety of other scenarios) also works almost out-of-the-
box for the present scenario of decentralized traffic control.
The only model-specific assumption is essentially what part
of the state space to capture.

As a cellular automaton, the traditional NaSch model
discretizes roads and velocities. Studying a continuous limit
of the NaSch model [38] will require the generalization
of empowerment towards the continuum and may reveal
completely novel phenomena which we defer to future work.

NaSch has been a highly successful model for the study of
typical traffic phenomena; crossings and many other exten-
sions have been introduced [39]-[41]. For full deployment,
it will be important to scale the method developed here
not only towards the continuum, but towards crossings,
various types of roads, and much more. Apart from the
continuous limit, it would be of high interest to consider a
hybrid model, where decentralized control between the cars
(either human or agents) is additionally globally coordinated
by e.g., intelligent traffic lights and other elements. This
requires a hierarchical approach interleaving centralized and
decentralized control at different levels of the hierarchy.
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