
Decentralized Traffic Flow Optimization Through Intrinsic Motivation

Abstract— Traffic congestion has long been an ubiquitous
problem that is exacerbating with the rapid growth of megac-
ities. In this proof-of-concept work we study intrinsic motiva-
tion, implemented via the empowerment principle, to control
autonomous car behavior to improve traffic flow. In standard
models of traffic dynamics, self-organized traffic jams emerge
spontaneously from the individual behavior of cars, affecting
traffic over long distances. Our novel car behavior strategy
improves traffic flow while still being decentralized and using
only locally available information without explicit coordination.
Decentralization is essential for various reasons, not least to be
able to absorb robustly substantial levels of uncertainty. Our
scenario is based on the well-established traffic dynamics model,
the Nagel-Schreckenberg cellular automaton. In a fraction of
the cars in this model, we substitute the default behavior
by empowerment, our intrinsic motivation-based method. This
proposed model significantly improves overall traffic flow,
mitigates congestion, and reduces the average traffic jam time.

I. INTRODUCTION

Traffic congestion poses a significant challenge, with its

impact increasingly felt on the global economy. Among

the various solutions for traffic management, centralized

approaches [1]–[3] are typically restricted to areas with high-

quality infrastructure, enabling near real-time connectivity to

central servers and neighboring vehicles. This is a limiting

assumption, in terms of location and of the number of cars.

We therefore assert that any viable scalable solution must

be decentralized, eliminating the dependence on a central

hub or protocol between vehicles, and must be capable of

withstanding significant levels of uncertainty and noise. This

opens the door to artificial intelligence approaches that hold

promise in making traffic more efficient.

A priori, the drivers’ individual goal would be to safely

and quickly arrive at their destination. However, there is

no obvious externally-defined objective for artificial agents

which would simultaneously aim to achieve the collective

good of maintaining high-throughput traffic flow and mitigate

the congestion level. Our proposal is to use a suitable

intrinsic motivation measure to control the individual cars,

which lead to the emergence of global collective behaviour

with less traffic jams.

Intrinsic motivation has been increasingly established as a

class of artificial agent behavior strategies that do not rely on

a specific reward [4]–[8], but, inspired by biological agents,

are driven by objectives internal to the agents or via their

interaction with the environment. Examples are viability,

self-maintenance, or attainment or recovery of potentialities.

To some extent these constitute a paradigm dual to the

traditional one of training artificial agents by externally

provided objectives in form of rewards or costs which require

expert domain knowledge.

Empowerment measures the potential influence of the

agent through its actions on its future; in practice, this may

be only partially observable, so observing this influence

is limited by the agent’s sensors, reflecting the agent’s

limited environmental knowledge. Empowerment has been

demonstrated in a broad range of domains [9]–[17] including

assistance, locomotion, stabilization, tool use, and others. For

our best knowledge it has not been explored for decentralized

traffic flow optimization, which is one of the main contribu-

tions of this work.

The present work is a proof-of-concept study of au-

tonomous cars driven by empowerment to improve traffic

flow in the collective. We employ the well-established, but

highly useful abstracted cellular automaton model for traffic,

the Nagel-Schreckenberg model [18]–[22], which we will

refer to as NaSch. Our main motivation to select the NaSch

model is its simplicity, ease of analysis and simulation. It

is widely used as a standard model of traffic dynamics,

and it captures effects of traffic, such as the spontaneous

emergence of traffic jams affecting traffic over long distances.

So the default behavior is modeled by the NaSch model, our

intrinsic motivation is realized via empowerment.

Our method operates in fully decentralized manner and

the autonomous cars use only locally available information,

without an explicit coordination or communication protocol

even between neighbouring drivers. Such decentralization

is essential for any practical scalable solution that ensures

drivers’ privacy as well as the viability of the method

when communication between cars is impaired, e.g., under

network communication failures or lag and without relying

on compatible protocols.

We address this by replacing, for randomly selected cars,

the NaSch rules of the car behaviour with empowerment-

based rules, which operates on the individual level.In the au-

tonomous car, empowerment implements the drive to locally

maintain or increase the car’s degrees of freedom as much

as possible (in terms of local ”freedom of operation”, e.g.

moving into states with more options to accelerate or brake)

[15]. It will turn out that this, at the same time, manages to

affect the general good favourably.

We want to emphasize that our goal is not to surpass

specific state-of-the-art algorithms or to compare against a

diverse set of road optimization models. We acknowledge the

importance of such comparisons for full application in traffic

scenarios, which we defer to future work. Our work repre-

sents the first attempt, to our knowledge, to utilize intrinsic

motivation for decentralized traffic optimization. We believe

that demonstrating its efficacy in such a diverse scenario is a

significant step and opens new research directions in hybrid
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models of intelligent traffic control. Our proposed model

demonstrates substantial improvements in traffic flow in most

cases with respect to the unmodified original system, even

when only a fraction of the cars has been modified to be

driven by empowerment.

II. PRIOR WORK

We now review existing methodologies for traffic regu-

lation and/or congestion alleviation, specifically in light of

the unique characteristics of the present work, namely: i)

level of decentralization and inter-vehicle communication,

ii) inherent uncertainty concerning traffic state owing to the

restricted (local) information accessible to each car, and

iii) the expert domain knowledge typically necessary to

formulate effective reward functions for artificial agents.

The recent work by [23] on traffic flow control emphasizes

the importance of decentralized autonomous control and has,

to some extent, similar objectives to the current work. The

model defined three types of state spaces, minimal, radar and

aggregate differing in their information granularity. However,

[23] admit a certain level of centralization and communica-

tion such as requiring global information about ”the number

of vehicles in the bottleneck”, even in the minimal state (cf.,

Section 3.3 in [23]). Two other state representations, radar

and aggregate, require GPS information and the average car

speed at various road segments, respectively. Also, the global

reward function must be shared between all the agents in the

network, which requires centralization and network access.

In [24], decentralized control of traffic is achieved by ex-

plicit communication between cars via network. Specifically,

when an Inter-Vehicle Communication (IVC) equipped car

enters a traffic jam, a corresponding message containing jam

related information (position, time) is constructed and broad-

casted. However, if there is significant distance between IVC

equipped cars or interference, the communication becomes

unreliable. In [25], a decentralized traffic control is proposed

where agents are distributed across the road and observe spe-

cific areas. Agents provide control commands such as desired

headway and lane choices to Autonomous Vehicles (AVs)

within their respective regions. The decentralized control is

achieved by allowing agents’ observational spaces to over-

lap while keeping their controlling spaces non-overlapping,

facilitating understanding of other agents’ behavior without

direct communication. However, communication between

agents and AVs is still necessary in this model. In [26],

a congestion-aware collaborative automatic cruise control is

proposed, which requires vehicle-to-everything technology

(V2X) for inter-vehicle communication. In [27], [28], Multi-

Agent Reinforcement Learning (MARL) is used to achieve

distributed control with local information and no inter-agent

communication. While these approaches align with our goal,

they face the challenging task of having to design reward

functions to train the agents.

In contrast to the existing works, we propose a fully decen-

tralized approach for traffic regulation without any type of

inter-vehicle communication, with a substantial uncertainty

about the overall traffic state, and without manually designed

reward function.

III. PRELIMINARIES

A. Traffic Model

The standard Nagel–Schreckenberg (NaSch) model [18]

which we use here is a stochastic particle hopping model

used to simulate traffic flow. It matches real-life traffic

patterns to a remarkable extent and predicts traffic flow

phenomena with remarkable accuracy. The model captures

complex phenomena observed in real traffic, including traffic

jams, and it is an important tool for the analysis of traffic

flow [29], [30]. In the NaSch model one considers a road

divided into L cells and typically with periodic boundary

conditions. Each cell can either be occupied by one of N

cars or left empty. The car density on this road is thus given

by ρ = N
L

.

Traffic Dynamics. In the NaSch model, each car has not

only a location, but a positive velocity along the direction of

movement. These are discrete integers ranging from vmin =
0, indicating an idle car, to a predefined maximum speed

vmax > 0 that a car can move at. The velocity of a car

i 2 {1 . . . N} in the cell xi and at time t is denoted by

v(xi, t).
The traffic dynamics in the NaSch model is defined by four

update rules, R1, . . . , R4, which are applied sequentially to

all the cars at each time step, t 2 [1, . . . , T ], with T denoting

the total number of updates (the simulation time):

R1 (Accelerate): Increase the velocity v(xi, t) of the car

in cell xi by 1 if it is less than the maximum velocity

vmax.

v = min(v + 1, vmax) (1)

R2 (Brake to avoid collisions): If the velocity v(xi, t) of a

car at cell xi is greater than the distance, ∆
.
= xk�xi,

to the next car at cell xk (i.e. if acting upon it would

cause a collision with the front car), then decrease

v(xi, t) to ∆� 1.

v =

(
∆� 1, if v � ∆

v, otherwise
(2)

R3 (Random Brake): Reduce the velocity v(xi, t) of a

car by 1 with a probability 0 < pbrake < 1.

v =

(
v � 1, if v > 0 & rand() < pbrake

v, otherwise
(3)

R4 (Move): Advance each car by v(xi, t) cells according

to its velocity.

These simple rules capture plausible driver behavior, such

as the desire to drive as fast as possible, while acknowledges

that acceleration is limited (Rule 1), the inclination to avoid

collisions (Rule 2) and the influence of stochasticity due to

various factors such as inconsistent human driving behav-

ior, weather or road conditions, as well as other external

influences (Rule 3). Finally, (Rule 4) describes the forward

movement of the vehicles.
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Fig. 1: Fundamental diagram of expected traffic flow for

different values of the braking probability pbrake.

Traffic simulated by these rules shows several essential

features of real traffic, including regions of free traffic flow,

traffic congestion, and phase transitions taking place between

these two modes of movements. The validity of the core

model is well-established in [31], [32]. Notably, these rules

not only directly govern the behavior of individual cars, but

rather give rise to intricate collective phenomena such as

long-range traffic waves.

Fundamental diagram of traffic flow. The main quantity

in the NaSch model is the traffic flow, j. It measures how

many cars pass through a given spot in a given time [18].

The expected traffic flow, j, can be estimated for a finite

number of simulation steps, T , and a finite number of cells,

L with N number of cars, as follows:

j ⇡
1

L

1

T

NX

i=1

TX

t=1

v(xi, t). (4)

Figure 1 illustrates the dependence of the traffic flow as

a function of car density, also known as the fundamental

diagram of traffic flow. This diagram exhibits essential char-

acteristics of traffic flow, namely a steep increase for low

traffic densities, representing free-flowing traffic. The flow

increases linearly as cars can travel at full speed without

any forced deceleration. Subsequently, we see at a specific

density, (the critical density ρc), an abrupt transition to a

regime, ρ > ρc, where average flow decreases due to reduced

space, increased braking and emergence of self-organized

traffic jams. This diagram is commonly used for the analysis

of the traffic properties and the peak of the diagram indicates

the maximally reachable traffic flow; the higher the curve lies

in the fundamental diagram, the better the flow achieved1.

The objective of the current work is to develop a fully

decentralized method that enables to increase the traffic flow

over a broad range of car densities on the fundamental dia-

gram by adding a small fraction of agents driven by intrinsic

motivation to the traffic. These agents neither communicate

with each other nor do they coordinate by explicit protocols.

Instead, they follow a variation of the NaSch rules, enhanced

by the empowerment measure.

1The simulation is conducted on a road with a length, L, of 100, 000
cells, vmax = 5 and T = 5000. To ensure accurate data collection, the
initial 1000 time steps are disregarded to allow transient effects to stabilize.
Subsequently, data is collected at every 5th time step to reduce correlations
between consecutive time steps.

As we will show, this is sufficient to globally improve traf-

fic, which is characterized by a new augmented fundamental

diagram wherein the peak is shifted upwards and towards

the right.

B. Intrinsic Motivation by Empowerment

We propose to cast the problem of mitigation of traffic

congestion as a problem of achieving traffic flow viability

and self-maintenance for the individual car agent: traffic jams

decrease this viability and harm autonomous flow mainte-

nance for that care. Concretely, we suggest empowerment

as a suitable candidate for the intrinsic objective for the

mitigation of traffic congestion. It has been demonstrated by

various studies to provide artificial agents with the desired

properties of viability and drives towards self-maintenance

[9], [10], [33], [34], remarkably often coinciding with be-

haviors induced by explicit hand-designed reward functions.

Formally, one characterizes empowerment as the channel

capacity between a potential sequence of agent actions and

the (possibly limited) agent’s sensor in the future after

executing this sequence [35]. Empowerment is defined for a

given time horizon of actions. Concretely, for a n-step action

sequence An, define n-step empowerment as2:

En(st) = max
p(An

t
|st)

I[St+n;A
n
t | st], (5)

where I[St+n;A
n
t | st] is the mutual information between

the distribution of final states, St+n, and that of the action

sequence, An
t , conditioned on the specific current state, st.

Stated differently, it is the channel capacity between An
t and

St+n. We emphasize that An
t is a distribution over potential

actions, not the action actually taken by the agent — the

latter is selected to move into a state with maximum such

channel capacity, i.e. one maximizing the term from (5).

The essential properties of empowerment are summarized

as follows. When the agent’s set of actions only lead to

outcomes that are similar or closely aligned, the agent’s

capacity to exert influence is constrained, reflected through

low values of empowerment. Conversely, when the available

action spectrum results in a wide range of potential distin-

guishable states, the agent’s ability to shape its environment

is considered stronger; this corresponds to larger empow-

erment values. In our traffic scenario, when a car agent is

trapped closely behind e.g. a slow-moving car, and there

are not many different state outcomes the agent can impose,

empowerment will be low [15] and vice versa.

IV. PROPOSED METHOD

Here we present our novel approach to employ em-

powerment within the context of the NaSch model and

to investigate its effect on the traffic dynamics. We equip

certain cars with non-default decision-making capabilities

throughout the simulation. These agent cars are not bound

by NaSch rules; instead, they select velocities based on

maximizing their empowerment. We hypothesize that when

2We denote random variables by capital letters, and their particular
realisations by small letters.
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(a) vagent = 0 (b) vagent = 2 (c) vagent = 5

Fig. 2: 3-step empowerment, E3(s), in bits for pbrake = 0.2 and ρ = 0.2

the cars aim towards states with higher empowerment, this

enhances the viability of traffic and decreases traffic jams.

Starting in a state st−1 (state is described in detail below),

each agent computes (6) for the possible states st it can

reach, subject to NaSch dynamics, and then takes the action

that moves it into the state with the highest value of, En(st):

En(st) = max
p(an

t
|st)

I[St+n;A
n
t | st] (6)

subject to NaSch dynamics.

Given that a particular car’s velocity on the road is

primarily influenced by its leading car’s velocity, we focus

solely on the local information with respect to the leading

car. The state s of an agent thus encompasses only locally

observable information such as the distance between the

agent and its leading car and the velocity of the leading

car s = (∆lead, vlead). With this local information, agents

strive to make decisions, particularly choosing velocity,

with the greedy goal of stepping into a state of as high

empowerment as possible. We consider choosing a velocity

as an action a, and a sequence of actions an representing

consecutive actions taken by such an agent over n time

steps. Agents have the capacity to increase their velocity

by 1, while they can decrease it by any arbitrary amount.

Consequently, the one-step actions available to the agent

are at 2 {0, . . . ,min(vagent(t) + 1, vmax)}. Furthermore,

we assume that each agent has a full model of the system

rules, including the probability of braking (pbrake) and

the maximally permissible velocity (vmax) on the road.

Additionally, agents assume their neighboring cars follow

traditional NaSch update rules. However, the empowered

agents still operate under constraints such as the ability

to increase their velocity only by one unit or having to

decelerate to avoid collisions.

The empowerment horizon, the duration for which the

potential future action sequences are probed is a crucial

parameter of the simulation which we set at the outset

and which remains constant throughout the simulation. For

each experiment, the overall braking probability pbrake and

density ρ is specified. Given this, the transitional probability

of velocities for normal cars p(vt+1|vt)
3 is calculated. To

3The transitional probability of velocities for normal cars p(vt+1|vt)
have been sampled independently for a given pbrake and vehicle density
ρ, on a lane comprising 10, 000 cells over the course of 106 time steps.

estimate empowerment, agents need to generate the distri-

bution of destination states (st+n) for every available action

sequence (an) — we call this distribution as state transitional

channel p(st+n|a
n, st). With the help of p(vt+1|vt), agents

can construct p(st+n|a
n, st).

The agents possess knowledge of the transitional proba-

bility of the velocity of normal cars p(vt+1|vt). For each

action a in the action sequence, agents sample the vlead(t+
1) (future velocity of their leading car) from p(vt+1|vt).
Subsequently, they can estimate the distance in next time

step using ∆lead(t + 1) = ∆lead(t) + vlead(t + 1) � a. This

process provides the agent with the future sample state

st+1 = (∆lead(t + 1), vlead(t + 1)). Agents iterate through

this procedure for each action a in the available action

sequence an, constructing the distribution p(st+n|a
n, st).

Once p(st+n|a
n, st) is constructed, the empowerment of a

particular state is calculated using the Blahut-Arimoto (BA)

algorithm [36] for the channel p(st+n|a
n, st).

Figure 2 illustrates the interplay between ∆lead, vlead, and

vagent in influencing the empowerment of a state E(s). The

analysis indicates that larger distances to the lead car ∆lead

generally improve the agent’s empowerment. However, the

influence of faster velocity of the lead car vlead is stronger,

and this effect is more pronounced when the agent’s car

itself moves faster. This observation aligns logically with the

expectation that when agent is trapped behind a slow moving

car, there are not many different state outcomes the agent can

impose, because whatever action it takes it has to reduce the

velocity to avoid collisions, resulting in low empowerment

values. However, if agent is behind the fast moving car, it

would have more options to accelerate and can end up in

different states resulting in high empowerment values.

The main goal of the agent is to find an action that results

in more empowered state. To achieve this, it assesses how

empowered it could be in various possible future situations

if it takes a particular action at at a certain time t. There are

different ways to approach this, but for the present purpose,

the agent considers the probability of each outcome for

the given one step action p(st|st−1, at−1) and averages the

empowerment across the outcomes st for a given action at−1.

hEi(st−1, at−1)
.
=

X

st

p(st|st−1, at−1)E
n(st) (7)
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For simplicity, we omit the current state in the notation,

denoting empowerment of the current state, st−1, and the

action, at−1, by hEi(a). Agents always chooses the action

at−1 maximizing the expected empowerment in (7). If mul-

tiple actions have same expected empowerment, the action

is chosen randomly with equal probability.

Algorithm 1 Expected Empowerment

Input: velocity of an agent (vagent), initial state (st−1),

p(vt+1|vt), and vmax

Parameter: Empowerment horizon, n

Output: hEi(a)

1: Initialize 1-step actions at−1 2 {0, . . . ,min(vagent +
1, vmax)}

2: Compute p(st|st−1, at−1)
3: for s in st do

4: Get n-step action sequences an

5: Compute channel p(st+n|a
n, s)

6: Compute Empowerment, En(s), by Eq. (5)

7: end for

8: hEi(a) 
P

st
p(st|st−1, at−1)E

n(st)
9: return hEi(a)

Algorithm 2 Traffic Flow with Empowerment

Input: position of agents ( bX), position of regular cars (cXn),

road length (L), simulation time (T ).
Parameter: density, ρ, braking probability pbrake
Output: Flow j

1: Let t = 1.

2: while t  T do

3: for x in bX do

4: v(x, t+ 1)= argmax
a

hEi(a)

5: v(x, t+ 1) NaSch Rule 2

6: end for

7: for xn in cXn do

8: v(xn, t+ 1) NaSch Rules 1-3

9: end for

10: Displace cars by NaSch Rule 4

11: end while

12: j ⇡ 1
L

1
T

PN

i=1

PT

t=1 v(xi, t)
13: return j

Traffic Flow with Empowerment: In the final step, we out-

line the procedure for calculating traffic flow in the presence

of empowered agents. We begin by randomly initializing a

road of length L, populated with a given number of cars N .

These cars will have velocities in the range v 2 {0 : vmax}.

Among these cars, certain cars are considered empowered

agents. Their positions are recorded in the vector bX , while

normal cars’ positions are recorded in vector cXn. These data

structures are then used for subsequent empowerment calcu-

lations. For each agent in bX we will independently compute

the expected empowerment hEi(a) and asynchronously carry

out the action that maximizes hEi(a). After the actions are

chosen, agents verify whether their chosen actions result in

any collisions. If so, agents adjust their actions to ∆ � 1
(NaSch rule R2). All the normal cars in cXn will follow the

NaSch update rules (R1, R2, R3). Subsequently, all cars,

including agents, will follow rule R4 and move forward

based on their velocities. The positions all cars will be

correspondingly updated and stored for the subsequent time

step computations. This process is repeated for T time steps.

Upon completion of the simulation, the traffic flow will be

evaluated using the approximation provided in (4).

V. EXPERIMENTS

We now study the influence of the empowered agents on

traffic dynamics and especially its important global signa-

tures, such as traffic flow and average traffic jam time. The

full code repository is provided at [37].

In our investigation, we emphasize that agents rely solely

on local information for decision-making. We conduct exper-

iments with varying ratios of empowered agents relative to

the total number of vehicles on the road. Figure 3 shows the

fundamental diagram illustrating traffic flow across different

densities, considering braking probabilities of pbrake = 0.2
and 0.5, and two different empowerment horizons.

Remarkably, as depicted in Figure 4, the inclusion of

empowered agents yields substantial improvements in traffic

flow, reaching approximately 27% for pbrake = 0.2 and

approximately 58% for pbrake = 0.5, compared to scenar-

ios devoid of empowered agents. These enhancements are

observed across a range of densities, extending beyond the

critical density (ρc). As the number of agents increases, we

observe a corresponding increase in the maximum attainable

traffic flow. Additionally, the critical density (ρc) shifts

rightward, indicating that empowered agents prolong the

transition from a free-flowing state to the onset of traffic

congestion when compared to the NaSch model.

The impact of empowerment is inherently local, con-

strained by the horizon. As depicted in Figure 3, extending

the empowerment horizon expands the range of densities

where our model maintains effectiveness, illustrating its po-

tential to mitigate traffic congestion across broader scenarios.

The slight reduction of flow in low-traffic density (before

critical density (ρc)) can be intuitively explained by the

fact that a competent driver never operates at the limits of

their vehicle’s performance, but leaves themselves options

to react. As a consequence, they won’t drive in a maximally

aggressive fashion.

For a deeper investigation into the factors driving im-

proved flow in intermediate densities, we present the spatio-

temporal diagram of vehicle movement in Figure 5. This

figure offers a comprehensive view of vehicle dynamics over

time, specifically focusing on densities where our model

achieved peak flow improvement with a 3-step horizon,

across different pbrake values. The horizontal axis depicts

the road, which repeats periodically at the edges, hosting

both normal cars and agents. The vertical axis indicates the

time (flowing from top to bottom). The cars are represented

as black dots in space and time (no distinction is made
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(a)
pbrake = 0.2

2-step planning horizon

(b)
pbrake = 0.2,

3-step planning horizon

(c)
pbrake = 0.5,

3-step planning horizon

Fig. 3: Comparison of traffic flow with varying ratios of empowered agents, 0% to 70%, across different vehicle densities on

the x axis. It is evident that an increase in the horizon expands the range of densities for which the model remains effective.

As expected, with an increase in pbrake value, the flow decreases, but the effect of empowerment remains consistent. The

analysis is done on a road of L = 1000, vmax = 5 with T = 5000. Note, the curves intersect at nearly but not exactly the

same point (cf., insert ’b’)

(a)
pbrake = 0.2,

2-step planning horizon

(b)
pbrake = 0.2,

3-step planning horizon

(c)
pbrake = 0.5,

3-step planning horizon

Fig. 4: Comparison of the percentage (%) improvement in traffic flow for densities beyond critical density (ρc) and

those within the model’s effective range, under varying ratios of empowered agents, different pbrake values, and different

empowerment planning horizons.

between NaSch and empowered cars). The black streaks in

the diagram now indicate traffic jam waves which, as NaSch

remarkably captures, flow backwards through the traffic.

The comparison of the diagrams shows that setups without

agents (Figure 5a, 5d) contain more concentrated and pro-

longed traffic jams indicating more number of cars trapped

in jammed states for longer durations. On the other hand,

scenarios with empowered agents (Figure 5b, 5c, 5e, 5f)

result in shorter traffic jams involving fewer cars that are

distributed more thinly across the road. This observation is

corroborated by the significant decrease (up to ⇡ 85% ) in

average jam time as depicted in Figure 6, corresponding

to an increase in the percentage of empowered agents. In

the computation of average traffic jam time, we followed

the methodology outlined in [29]. The definition of jam

time pertains to the number of time steps during which cars

remain stationary. Specifically, cars with a velocity of v = 0
are identified as stationary vehicles within our traffic model.

The effectiveness of empowered agents in mitigating con-

gestion can be attributed to their adaptive braking behavior,

which adjusts based on their current speed. Unlike conven-

tional cars that brake with a fixed probability pbrake regard-

less of their speed (update Rule 3), empowered agents refrain

from braking when traveling at low speeds, particularly when

stationary (v = 0). The constant braking of regular cars,

especially when stationary, contributes to the delay in jam

dissolution. As long as there is sufficient leeway in the

density, the tendency of the empowered agents to maintain

their own freedom of operation appears to buffer off the

fluctuations induced by the regular randomly braking drivers.

As the density increases, the incentive of empowerment does

at a point no longer align with the goal of moving faster.

However, longer horizons can postpone the density where

the inflection happens. As seen in Figure 3(a, b), increasing

the empowerment horizon to 3 steps extends the range of

densities where empowerment improves flow.

VI. CONCLUSION AND FUTURE WORK

We introduced and examined a decentralized strategy

aimed at optimizing traffic flow. Our approach diverges sub-

stantially from traditional decentralized approaches that often

require the meticulous design of reward functions tailored to

the application, and instead uses a generic model for intrinsic

motivation, namely empowerment, to produce local behavior

that improves global traffic flow. Over a range of traffic

densities, empowered cars can substantially improve global
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(a) pbrake = 0.2, ρ = 0.18,
NaSch baseline

(b) pbrake = 0.2, ρ = 0.18,
20% empowered agents

(c) pbrake = 0.2, ρ = 0.18,
70% empowered agents

(d) pbrake = 0.5, ρ = 0.12,
NaSch baseline

(e) pbrake = 0.5, ρ = 0.12,
20% empowered agents

(f) pbrake = 0.5, ρ = 0.12,
70% empowered agents

Fig. 5: Spatio-temporal view of traffic at densities corresponding to peak flow improvement achieved by our model. Each

black dot represents a vehicle moving from left to right. The black streaks depict traffic jam waves propagating in reverse

through the traffic. Increasing the number of empowered vehicles results in less dense jams and their quicker dissipation.

Fig. 6: Percentage reduction in average traffic jam time for

different ratios of empowered agents compared to a baseline

model with varying pbrake at densities where peak flow

improvement is achieved by our model with 3-step horizon.

traffic flow despite genuinely local decision-making requiring

no joint protocols and only basic traffic rule coordination.

The approach eliminates the need for explicit reward func-

tion crafting and demonstrates another promising application

of generic intrinsic motivation approaches to address specific

problems even in multiagent scenarios. Notably, our solution

does not consist of adding hand-crafted rules to improve traf-

fic flow. Rather, we show that the empowerment formalism

(which was already shown to create useful behaviours in a

large variety of other scenarios) also works almost out-of-the-

box for the present scenario of decentralized traffic control.

The only model-specific assumption is essentially what part

of the state space to capture.

As a cellular automaton, the traditional NaSch model

discretizes roads and velocities. Studying a continuous limit

of the NaSch model [38] will require the generalization

of empowerment towards the continuum and may reveal

completely novel phenomena which we defer to future work.

NaSch has been a highly successful model for the study of

typical traffic phenomena; crossings and many other exten-

sions have been introduced [39]–[41]. For full deployment,

it will be important to scale the method developed here

not only towards the continuum, but towards crossings,

various types of roads, and much more. Apart from the

continuous limit, it would be of high interest to consider a

hybrid model, where decentralized control between the cars

(either human or agents) is additionally globally coordinated

by e.g., intelligent traffic lights and other elements. This

requires a hierarchical approach interleaving centralized and

decentralized control at different levels of the hierarchy.
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