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Abstract— Control of a dynamical system without the knowl-
edge of dynamics is an important and challenging task. Modern
machine learning approaches, such as deep neural networks
(DNNs), allow for the estimation of a dynamics model from
control inputs and corresponding state observation outputs.
Such data-driven models are often utilized for the derivation
of model-based controllers. However, in general, there are
no guarantees that a model represented by DNNs will be
controllable according to the formal control-theoretical meaning
of controllability, which is crucial for the design of effective
controllers. This often precludes the use of DNN-estimated
models in applications, where formal controllability guarantees
are required. In this proof-of-the-concept work, we propose
a control-theoretical method that explicitly enhances models
estimated from data with controllability. That is achieved by
augmenting the model estimation objective with a controlla-
bility constraint, which penalizes models with a low degree
of controllability. As a result, the models estimated with the
proposed controllability constraint allow for the derivation of
more efficient controllers, they are interpretable by the control-
theoretical quantities and have a lower long-term prediction
error. The proposed method provides new insights on the
connection between the DNN-based estimation of unknown
dynamics and the control-theoretical guarantees of the solution
properties. We demonstrate the superiority of the proposed
method in two standard classical control systems with state
observation given by low resolution high-dimensional images.

I. INTRODUCTION

In recent years, the development of dynamical control
models from high-dimensional data, such as images, using
deep neural networks (DNNs) has garnered substantial in-
terest within various fields, ranging from robotics to neuro-
science [1], [2]. Such data-driven models allow for the design
of optimal control strategies for intricate dynamical control
systems. However, these data-driven DNN-based models
solely rely on the quality of input-output data acquired from
a system. So, these data-driven models often lack the desired
control-theoretic properties, such as controllability, necessary
for effective system control. Consequently, designing optimal
controllers using these models can lead to sub-optimal per-
formance. In this paper, we address this issue by explicitly
incorporating a controllability metric into the development of
latent models derived from high-dimensional imaging data.
By using these models within a model predictive control
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(MPC) framework, we demonstrate significant improvement
in the MPC performance on two classical control systems:
the inverted pendulum and a cart-pole system.

One of the widely adopted methods for capturing dy-
namical features in a low-dimensional latent space from
high-dimensional data is Variational AutoEncoders (VAEs)
[3]. In essence, a VAE comprises an encoder model and a
decoder model, both trained on the input data to minimize
the reconstruction error between the encoded-decoded data
and the input data [3], [4]. Unlike standard autoencoders,
which encode input to a single point, VAEs encode inputs as
probability distributions across the latent space. VAEs have
found applications in various domains, including anomaly
detection, image regeneration, data compression [5]-[7].

Notably, VAEs have also emerged as valuable low-
dimensional latent models for designing and controlling
dynamical systems in recent research endeavors [4], [8].
In this study, state information is represented as images.
Then Convolution Neural Networks are used for processing
these images and creating latent models. Convolution Neural
Networks excel in handling image data, as demonstrated in
[9]-[11]. These latent representations are used to acquire an
understanding of the dynamics of the environment, executing
control tasks similar to the approach in [4], [8], [12], [13].
Diving deeper into this concept reveals that this approach
not only helps in predicting short horizons but also longer
horizons such as in [14], [15].

None of the above approaches explicitly include controlla-
bility constraints in their latent space. We aim to induce con-
trollability constraints in the latent space of the Variational
AutoEncoder (VAE) model[3]. The Model Predictive Control
techniques [16], [17] are used to evaluate the performance
of the models. Since VAEs are trained using the input-
output (control-observation) data from the system, the data
used for training VAEs may limit the extent to which
VAEs exhibit system controllability in response to exogenous
inputs. Formally, the VAE’s objective [3] is to minimize the
prediction error between the next state observation, generated
by a dynamics model, given the current state observation
and current control action. As we show in this work, this
prediction error itself does not guarantee the controllability
of a dynamics model, leading to the sub-optimal performance
of controllers derived with such a model.

Incorporating a controllability constraint, such as control-
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lability Gramian [17], during VAE training could signif-
icantly improve the intrinsic controllability of VAEs and
lead to the development of efficient control strategies for
complex systems. In this work, we conceptualize this idea
by developing an approach to enhance the controllability of
estimated models by imposing a controllability constraint
to the standard VAE objective. In particular, we augment
the standard VAE objective for dynamics learning with the
degree of controllability of the latent dynamics. For our best
knowledge, this is the first attempt to explicitly incorporate
controllability constraints in designing latent models for
dynamical systems estimated from data.

Thus, this work establishes new connections between
the state-of-the-art machine learning methods, (VAE), for
the dynamics estimation from high-dimensional data (im-
ages/Lidar/etc) and the essential control-theoretical proper-
ties of dynamical control systems (controllability), leading
to more reliable data-driven models and more efficient data-
driven controllers. The main contributions of this work are
as follows:

« Augmentation of the standard VAE objective for the es-
timation of unknown dynamics from high-dimensional
data with the controllability constraint.

An efficient algorithm for the optimization of the
controllability-constrained VAE objective.
Demonstration of the effectiveness of the proposed
method on the classical dynamical control systems on
the tasks of long-term prediction and model-predictive-
control.

This paper is organized as follows. In Section II, we intro-
duce the notations and necessary definitions for the main
components such as state, state observation, action, original
dynamics, f, and a dynamics model, fp, (latent dynamics),
degree of controllability and controllability Gramian, W, and
feature extractor and image generator, (encoder, iy and de-
coder, gy, respectively). Also, we overview the standard ob-
jective for learning a dynamics model from high-dimensional
state observation in the formalism of VAE. In Section III
we formulate a novel controllability-constrained objective
for VAE, which comprises a prediction error term and a
penalty term for a reduced degree of controllability of an
estimated dynamics model. In Section IV we demonstrate the
advantage of the controllability-augmented dynamics models
in comparison to the standard (baseline) model. Finally, in
Section V we conclude the current work and discuss future
research directions and eventual applications. An overveiw
of the method is provided at Fig. 1.

II. PROBLEM FORMULATION
A. Original and Latent Dynamics
Consider a dynamical control system in discrete time, f:

)

with the state and action at time ¢, denoted by x;, € 2~ and
a; € of , respectively.

We assume the original dynamics function, f, is unknown,
and the state, x; is partially observed through the state

f X Xar — x4 (Original Dynamics)
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Fig. 1. Method overview: the current and next time states, x; and x;y1, in
the original dynamics are rendered to the corresponding state-observations,
given by low resolution images, o; and o, respectively. The former,
o:, is encoded to the latent state z; by the encoder, hy. The next latent
state, z;+1, is predicted by the parametrized latent dynamics, fg, and the
corresponding predicted image, 0,1, is generated by the decoder, gy. The
prediction error between the decoded and original state-observations, 01
and 0;41, is minimized as in the standard VAE framework. We enhance
the standard VAE framework with the controllability-constraint, which
explicitly penalizes latent dynamics with low degree-of-controllability. The
resulted controllability-constrained latent dynamics (in red) is superior to the
standard baseline models (in blue) both in long-term prediction and control
tasks. The former is visualized by a larger deviation of the standard model
(in blue) from the original dynamics (in black), and the latter is depicted by
a large control cost in the original dynamics driven by a controller derived
with the standard model for § =0 in comparison to a controller derived
with the controllability-constrained model for f§ > 0.

observation, o; € 0. The latter is given by a signal from
a particular sensor, such as a camera, lidar, proprioceptive
sensor, etc. The original dynamics can be examined by input-
output triples, {o;,a;,0,11}~_;, which are available or can be
collected.

The goal of this work is to improve the quality of dynamics
models estimated from data, fy, denoted by ‘latent dynamics’
in the sequel, and the efficiency of controllers, 7, derived
with latent dynamics models.

The latent dynamics is described by the following map-

ping:

fo

D XA — iyl (Latent Dynamics) 2)
where z; € & is the latent state at time 7, and 6 € ® is a
model parameterizing dynamics in the model class, ©.

A model, 0, of latent dynamics, fp, is estimated from
data 2 = {o;,a;,0:+1 }ﬁvzl by standard techniques [4], [8], as
overviewed below. In this work we assume that V¢ : o, is the
state observation given by a low-resolution image, rendered
from the original state, x;.

B. Estimation of Latent Dynamics

Deep Neural Networks have been proven as a powerful
model class, O, for the representation of latent dynamics in
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this setting with an appropriate training objective [14], [15]:

1 N
€(67¢7W) = NZd(oH—héH-l) (3)
t=1
. %
with 6,1 = gv,(fg(h¢(o,),a,)),
———
241

where N is the number of training input-output pairs, hg
and gy are trainable mappings to and from the latent space,
respectively:

(Encoder)
(Decoder)

“)
&)
and d(-,-) is a given similar function between the original

next state observation, o, € € and the reconstructed one, o, €
O

h¢ :OI%Z[

gu/ :Z[—>0[

d o x6, —RY. (©6)

In our experiments, we used the commonly-used cross-
entropy similarity between the original image, o;, and the
reconstructed image, d;, of the original dynamics. There exist
various architectures and training methods for the derivation
of fg, hy, and gy, [14], [15].

Our method, (Section III) applies to arbitrary architectures
and training methods, but in the experiments, we chose a
particular latent dynamics model, ‘Embed-To-Control‘, [4]
due to its simplicity and transparency.

An optimal solution to the problem in Eq.(3) is derived
by solving the following optimization problem [4], [8]

6*, ¢*’ l,/*

argmin £(0,9,y;9),
6.0,v

(7

where 9 = {0,,a,,o,+1}ﬁ\’: | is the training data. There exist
efficient techniques to solve the optimization problem in
Eq.(7) with high-dimensional observation and latent spaces
[16], [18]. In particular we used the ’ADAM’ optimizer [19].

A solution to Eq.(7) does not guarantee, in general, con-
trollability in estimated latent dynamics. In the next section,
we introduce a controllaiblty constraint to the optimization
problem in Eq. (7), using degree of controllability as a metric
[17].

C. Degree of Controllability

In linear dynamics, x;41 = ApxnXs + Bnxma;, controllability
is given by a binary test, where the rank of the controllability
matrix [17], C = [B,AB,A’B, ..., A"~ B], is equal to the state
dimension, n, in a controllable system, and it is less than n
in an uncontrollable system. A more flexible controllability
criterion is the degree of controllability, which is identified
by the eigendecomposition of the controllability Gramian,
Wyxn = C-C" [17]' More controllable directions, (eigen-
vectors of W), correspond to larger eigenvalues of W [17],
and the total degree of controllability can be identified by

The transpose is denoted by 7T, e.g., M| is the transpose of M.
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the controllability volume given by the determinant of the
controllability Gramian.

In non-linear dynamics, x;+1 = f(x;,q;), the local degree
of controllability can be estimated by the Gramian of locally-
linearized dynamics around the state, x, which gives the
local degree of controllability by the eigendecomposition
of W(x) = C(x)-C(x)". We use this observation in the
development of the differentiable controllability constraint
in the next section.

III. PROPOSED METHOD FOR
CONTROLLABILITY-ENHANCED LATENT DYNAMICS

In this section we propose a novel method to explicitly
induce controllability into latent dynamics, fg, by augment-
ing the loss in Eq.(3) with the controllability Gramian of
locally-linearized latent dynamics around the latent state, z:

Wp(z) =Co(2)Co(z)"  (Controllability Gramian) (8)
Co(2) =[Bé (2),A6(2)Bo(2), A5 (2)Be 2), -
.. ,AIGHI (2)Bg(2)]

where Ag(z) = V. f9(z) and Bg(z) = V.fe(z) are the Jaco-
bians of the latent dynamics, fg, with regard to the latent
state, z, and real action, a. And, Cy(z) is the corresponding
parametrized controllability matrix [17].

In general, the pair (Ag(z),Bg(z)) is not necessarily
controllable, which may deteriorate the quality of control. In
the next section, we augment the standard VAE-type loss for
data-driven estimations of dynamics with the parametrized
controllability Gramian, which explicitly penalized for a low
degree of controllability.

A. Controllabilty-Enhanced Loss

The parametrized Gramian, Eq. (8), in the latent space,
We(z), allows us to formulate the controllability-enhanced
loss, ¢, for learning latent dynamics, fy, as follows:

0(6,0,v,8:2)=1(0,0,¥;2) — Blu(6:2).  (9)

The second term in Eq.(9) explicitly increases the total
degree of controllability, (the eigenvalues of Wy), evaluated
by the determinant of the controllability Gramian [20]

N
y(0;9) = % Z Indet Wy (z;) (Constraint) (10)
=1

The interpretation of this constraint is the time-average
controllability-volume of the linearized latent dynamics. Im-
portantly, this constraint is differentiable, which makes it
suitable for gradient-based optimization [19], [21].

The solution to Eq.(9) can be derived by the same methods
as in Eq. (7), with the essential difference that now fg has
a desired degree of controllability set by 3.

6 (B).9*(B). w*(B) = argmin £(6,¢,v,B; ).

0.0,y

Y

Notably, in Eq. (11), the optimal parameters for latent
dynamics, encoder, and decoder, are parametrized by J,
which produces a family of solutions, as shown in Fig. 3,
and explained in the next sections.
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Pseudo-Code: Summary of the Proposed Method
1: Stage I: Training controllability-enhanced models
Require: 7 = {ot,at,o,ﬂ}f’: , - training data; B - value
of the trade-off parameter; 6, ¢ and y - initial DNN-
parameters for the dynamics model, the encoder, and the
decoder, respectively.
2: repeat .
3 {9,¢)7l[/}(*{9,4),1[/}*Vl(9,¢71[/,@)
4: until convergence
5: return optimal fo«, hy, gy~
6: Stage II: Derivation of the optimal controller
Require: fg+, ho+, x, xg, H
7: // Encoding of original initial and target states
8: z = hy- (RenderImage(x)) > initial latent state
9: zg = hy+ (RenderImage(x)) > target latent state
10: // Main Loop
11: repeat
12: a* = MPC(COST, fg+,z,H)
13: x= f(x,a")
14: 7= fo+(z,a*)
15: until x = x,

> Eq. (9)

> optimal action
> original dynamics
> latent dynamics

16: return optimal control trajectory {aj,a3,...,a;,...}

17: /* Utility functions: MPC and COST */

18: function MPC(COST, fy+, z, H)

19: d={ay,ay,...,ag—1} = RandomActionSequence
20: a* = minimum COST(d, fo+,2,H)

21: return Ei’{a > Return the first action

22: end function // MPC

23: //Inputs: latent state, action sequence, planning horizon
24: function COST({al,ag, e ,aH_l},fg* , 2, H)

25: C=0

26: for ke (1,...,H—1) do

27: e=2—2 > latent space error
28: C=C+e' e+a] -a > accumulated cost
29: 7= fo(z,a") > latent dynamics update
30: end for

31 return C

32: end function // COST

The derivation of the optimal value of 8 can be done by
dual optimization (cf., Eq. (9) in [22] or in general [23]),
which we defer to future work (cf., Section V).

B. Controllability-Prediction Trade-off

The trade-off between the degree of controllability of la-
tent dynamics, z,4+1 = fg(z,4a;), and the quality of prediction
of 0;41 from z1 = fo(hy(0;),a;) is controlled by a non-
negative parameter, § > 0. This trade-off characterizes the
relative importance between the first term in Eq. (9) and
its second term. The former controls the overall prediction
quality of the next image, o;11, from the current image, oy,
and the current action, a;.The latter directly affects the degree
of controllability of the parametrized latent dynamics, fy.

This way the optimal latent dynamics, 6;;, (), in Eq. (11),
both possess a desired controllability degree and represents
the mapping V¢ : {o; X a; — 0,11}

This trade-off produces a family of solutions, fg+(g) pa-
rameterized by f, where the original solution is given by
B =0. This additional degree of freedom in the optimization
problem allows for better solutions with a particular property
of interest in this work - controllable latent dynamics. We
demonstrate this by numerical simulations of standard con-
trol benchmark systems in both tasks: planning with latent
dynamics and deriving a more efficient controller for original
dynamics.

A typical trade-off, (family of solutions), is demonstrated
in Fig. (3), where the solution without the controllability
constraint in Eq. (10) appears for § = 0, and there is 9% of
the decrease in the Model-Predictive-Control cost for § =
0.5. For larger B values the MPC cost increases as expected
because the first term in Eq. (10) does not succeed in
estimating the dynamics model. The MPC cost is estimated
on control of the original dynamics, x = f(x,a), while the
optimal control actions are derived with the latent dynamics,
7= fo(z,a). The full experiment settings are explained in the
next section.

C. Pseudo Code of the Method

The proposed method is summarized by the Pseudo-Code
above, wherein the ‘Stage I° a model, fy, is estimated from
data with the controllability-constrained objective (cf., Eq.
(9)), while in ‘Stage II°, this model is used for the derivation
of the optimal controller to control an original dynamics, f,
Eq. (1). In both cases, state observations are given by low-
resolution images, rendered from the original state.

IV. EXPERIMENTS

In this section, we demonstrate the method represented in
Section III on two classical control benchmarks, used for
the evaluation of new algorithms for image-based estimation
of dynamics and control. We evaluate the controllability-
enhanced models, f, in two important tasks: long-term
planning and model predictive control with the estimated
model.

This section is organized as follows. Firstly, we explain the
data collection and the evaluation metrics, then we provide
the numerical simulations for ‘Long-Term Planning‘ and
‘Control‘ in two different dynamics: Inverted Pendulum and
Cart Pole.

1) Data Collection: Data for training controllability-
constrained models, fy, is collected with the Open Al
simulator for the classical control environments [13], [24],
[25]: ‘Inverted Pendulum® and ‘Cart Pole‘.

In data collection, the action a; is applied to the simula-
tor of an environment, denoted by ‘Step‘, which produces
(‘Renders‘) an image of the resulting state, 0,1:

vVt €[0,...,N] : 0,41 = RenderImage(Step(a;)).  (12)

This way the training data, &, comprises of action and state-
observation trajectories, 4 = {a,,o,}f': 0

2All the experiments and results can be reproduced by our code reposi-
tory:https://github.com/suruchil997/ControlledVAE.git
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Original Constrained  Unconstrained
Dynamics Dynamics Dynamics
fo " o, .
S ! l.
ty - = -
Fig. 2. Qualitative comparison between the long-term prediction by the

latent dynamics, fp, with the controllability-constraint (the 2nd column in
red) and without it (the 3rd column blue). The first column represents the
image trajectory by the original dynamics. The pivot point is at the center
of the image. The pendulum starts at 6(fg) = % rad from the bottom and
0(to) = Orads~'. The rows correspond to the time steps shown to the left.
Visible changes appear after 7 times steps. And, as shown at the bottom
row, after 9 time steps, there is a significant deviation of the latent dynamics
trajectory for B =0 (blue) from the original dynamics trajectory (black);
while the latent dynamics trajectory for = 0.5 (red) closely follows the
original dynamics. The deviation increases in further steps.

2) Training: The training procedure is based on the stan-
dard stochastic gradient descent (SGD) optimization [19],
summarized by ‘Stage I in the Pseudo-Code.

In the experiments, the encoder, hy, the latent dynamics,
fo. and the decoder, gy, are implemented by a similar
neural networks’ architecture as in the baseline system [4],
which is a SOTA in the field. The architecture details are
provided in Appendix V for completeness, and the exact
implementations are accessible at the the link. Remarkably,
our method requires only a small modification, (addition of
the controllability constraint), to baseline systems, and can
be eventually applied to arbitrary systems.

3) Evaluation Metrics: To examine the effectiveness of
the controllability constraint Eq. (10) on the quality of the
latent dynamics, fy, we used two metrics:

-Qualitative comparison (cf., Fig. 2 and Fig. 4) between
state observation trajectories generated by the ground truth
dynamics in Eq. (1) and by the trained latent dynamics, fg,
for different values of 3.

-Quantitative comparison (cf., Fig 3 and in the text below)
between control cost by a controller derived with the latent
dynamics, f,, trained with the controllability-constraint, § >
0 and without it 8 = 0. The MPC controller [16], [26]

Tz — a (13)
is derived with the quadratic cost defined in the latent space,
%, as summarized by ’Stage II’ in the Pseudo-Code (cf.,
lines 27-29). The optimal actions, a = 7(z), are applied to
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Fig. 3. Relative Change, in the MPC Cost (red) and Degree of Con-
trollability (blue). The left y-axis represents the Percentage change in
the MPC cost for € [0,...,5.0]. The MPC cost without controllability
constraint is shown for f = 0. There is 9% decrease in the MPC cost for
B ~0.5. The right y-axis shows the minimal eigenvalue of the controllability
Gramian, InAq;,(W(B)), for the range of B values, which reflects the
degree-of-controllability. Each point on the plot represents the average
over 20 randomly intialized models, where each model is evaluated on
300 trajectories with 100 steps, starting from a random initial state. There
are 3 orders of magnitude in the increase of the degree of controllability
between 8 =0 and 8 = 0.5, which corresponds to the improvement in the
efficiency of the MPC controller. As expected, for large values of f3, the
model predictability term in Eq. (10) is less effective, resulting in a poor
dynamical model for fitting the data.

the original dynamics,
X = fx,ap)

and the quadratic cost for the optimal action sequence
{aj,a3,...,a;,...} is calculated in the original space 2.
These evaluation metrics address the two important prop-
erties of dynamics: ‘Long-Term Planning‘ and ‘Control‘,
respectively.

(14)

A. Inverted Pendulum

1) Original Dynamics: Swing up and stabilization of
the inverted pendulum is one of the classic problems
in control theory [4], [13], [27], [28]. The goal of
this experiment is to examine whether the controllability-
constrained dynamics reflects better the intrinsic prop-
erties (long-term prediction and controllability) of the
original dynamics.

In this experiment, we train the latent dy-
namics with low-resolution images, represent-
ing state observation, o;, and real actions, a;.
This task is challenging because the model
fo should learn a dynamics model from low-
resolution high-dimensional images.

The ‘Inverted Pendulum‘ environment is
schematically represented in the figure to the
left. It comprised of a pivot point (the mo-
tor), where the limited control action (torque),
|a;| < 2(N/m), can be applied, and a pole with a point mass
at the end.
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Original Constrained  Unconstrained
Dynamics Dynamics Dynamics
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Fig. 4. Qualitative comparison in Cart Pole. The column and row meaning

is the same as in Figure (2). The pole starts at 6(rg) = {f rad from the
top and (ty) = Orads™!. In this more complicated environment, there is
a significant deviation of the baseline solution (blue) from the original
dynamics (black) after 7 times steps, while the proposed method (red)
closely follows the original dynamics in further steps as well.

The state space of this system is two-dimensional, con-
sisting of angle, 6, = 6(rad), and angular velocity, 6, =
§(rads~!). The dynamics of the pendulum is given by:

61(1) =61(1)

6 (1) :§ sin(6; (1)) + alt)

mi?

where g = 9.8m/s? is gravity, m = 1kg is the mass of the
point mass, and / = Im is the length of the pole.

2) State Observation: The dynamics in Eq. (15) is simu-
lated in discrete time with df = 0.1s. The original state, x;,
in the time ¢ is rendered (cf., Eq. (12)) to a corresponding
low-resolution image with dimension 48 x 48 pixels, which
represents the state observation o;, as shown at the top left
image in Fig. 2

The qualitative comparison is shown in Fig. 2. The original
dynamics (black), the controllability-constrained latent dy-
namics (red), and the baseline latent dynamics (blue) [4] start
from the same initial state. However, in the three last rows,
corresponding to the time steps #7, fg and t9, it is visible that
the controllability-constrained dynamics better predict future
states in comparison to the baseline dynamics. Additional
details appear in the caption of Fig. 2.

To validate the effectiveness of the proposed method for
control, we derived an MPC controller in Eq. (13) with the
controllability-constrained latent dynamics for f € [0,...5].
The change in the MPC cost for different values of f is
shown in Fig 3. Control cost in the original dynamics by the
controller derived with baseline latent dynamics for § =0
is the reference. The MPC cost is improved by ~ 9% by
the controller derived with the controllability-constrained
latent dynamics for 8 = 0.5. As expected, the MPC cost
increases for larger values of 3, because the controllability-
constraint becomes dominant in the training objective Eq.

15)
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Fig. 5. Relative Change, in the MPC Cost (red) and Degree of Control-

lability (blue) for *CartPole’. The meaning of the axes and the evaluation
conditions are the same as at Fig. 3. We observe a similar behaviour, where
"Control Cost” with the controllability-enhanced dynamics, > 0, is lower
incomparison to the baseline dynamics, 8 = 0. Noteably, the same number
of samples is used for learning dynamics in both cases.

(9), which deteriorates the prediction quality of the la-
tent dynamics. This new controllability-prediction trade-off
shows that estimated models can be enhanced by explicitly
augmenting them with the controllability feature. This trade-
off connects machine learning methods for sample-based
model estimation with the fundamental concepts in optimal
control theory.

B. Cart Pole

To validate the effectiveness of the proposed method in
a more complicated system, we conducted the same experi-
ment with the ‘Cart Pole‘ dynamics.

1) Original Dynamics: Balancing the pole over
the cart is another classic problem in control theory.
The cart pole system consists of a
pole attached to a cart that moves
over the frictionless track[29]. The
state space dimensionality is four. The
components of state space include,
cart position, x, cart linear velocity,
X, pole-angle, 0, and pole angular
velocity, 6.

The action space, d(t) € <7, is dis-
crete, comprising of two force values
+1N and -1N. The original dynamics is given by

(1) ~ msin6(1)(€62(1) + gcos O(1)) +a(r)
B M + msin® 6(r)

6(t) =—a(r)cos O(r) —mlO?(r)cos O(r) sin O(r)

— (M +m)gsin6(z),

(16)

)

where x(¢), 0(t), m, M, ¢, g, la(t)| <1 are the x coordinate of
the center of mass of the cart, the angle of the pole, the pole
mass, the cart mass, the pole length, the free-fall acceleration,
and the force applied to the cart.
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2) State Observation: In the same procedure as in the
Inverted Pendulum, the dynamics in Eq. (16) is simulated in
discrete time, and the state x; at the time, 7, is rendered to a
low-resolution image with dimension 80 x 80, shown at the
top left image in Fig. 4.

Similarly to the ‘Inverted Pendulum® environment, the
performance is evaluated on both long-term prediction and
control tasks. Fig. 4 shows the qualitative comparison be-
tween the future state predictions by the latent dynamics and
the original dynamics. The black images, in the 1st column,
represent the image trajectory by the original dynamics. The
red images, in the 2nd column, show the predictions by the
controllability-constrained models, and the blue images, in
the 3rd column, show the predictions by the baseline models.
All three dynamics start from the same initial conditions,
the 1st row. The images generated by the controllability-
constrained model (red) and the baseline model (blue), are
similar at the first two steps. In the further steps, it is visible
that controllability-constrained models accurately follow the
original dynamics, while the baseline models (trained with-
out the controllability constraint) deviate from the original
dynamics. This deviation increases in further steps.

The control cost in the original dynamics driven by the
controller derived with the controllability-constrained latent
dynamics for B = 0.5 is lower than that derived with the
baseline latent model for § = 0.0.

V. CONCLUSION AND FUTURE WORK

In this work, we conceptualize the idea of the enhancement
of data-driven models with the controllability property. The
implementation of this idea boils down to adding the control-
lability constraint to the standard VAE objective for learning
a dynamics model from data. The resulting controllability-
enhanced VAE objective has the same number of parameters
to optimize as in the original VAE. That is because the
constraint, (the degree of controllability, expressed via the
controllability Grammian), is given with the same parameters
as in the original unconstrained model. We discovered the
controllability-prediction tradeoff, which is regulated by a
scalar parameter . This proof-of-the-concept study shows
that data-driven models may have a small prediction error,
which is not enough to guarantee the controllability of the
model. The main observation and conclusion are that there
exists a positive value of 3, when the performance of a
derived controller with a learned model is superior to that
for B =0, as shown in Figure (3).

We defer the optimization of the trade-off parameter 3
to future work, where the optimal value of B* will be
explored with the dual optimization techniques. Other impor-
tant venues for future work are i) a rigorous characterization
of the solution properties and guarantees, ii) implications of
the proposed method in the case of uncontrollable dynamics
(or isolated states in dynamics).

A full-fledged method for the derivation of data-driven
dynamical models with control-theoretic guarantees for con-
trollability will allow to design of efficient model-based
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controllers for various critical mission applications such as,
neuro-stimulation feedback, robotic surgery, etc.

ACKNOWLEDGMENT

The authors thank the graduate students at the CI> Lab,
CoE, SJSU, Tristan Shah and Himaja Papala for proofreading
the manuscript. ST is supported in part by the NSF, grant
number: 2246221.

REFERENCES

D. D. Cox and T. Dean, “Neural networks and
neuroscience-inspired computer vision,” Current Bi-
ology, vol. 24, no. 18, R921-R929, 2014.

H. A. Pierson and M. S. Gashler, “Deep learning
in robotics: A review of recent research,” Advanced
Robotics, vol. 31, no. 16, pp. 821-835, 2017.

D. P. Kingma and M. Welling, “Auto-encoding vari-
ational bayes,” Proceedings of the International Con-
ference on Learning Representations (ICLR), 2014.
M. Watter, J. Springenberg, J. Boedecker, and M.
Riedmiller, “Embed to control: A locally linear la-
tent dynamics model for control from raw images,”
Advances in neural information processing systems,
vol. 28, 2015.

K. Han, H. Wen, J. Shi, K.-H. Lu, Y. Zhang, D. Fu,
and Z. Liu, “Variational autoencoder: An unsupervised
model for encoding and decoding fmri activity in
visual cortex,” Neurolmage, vol. 198, pp. 125-136,
2019.

L. Zhou, C. Cai, Y. Gao, S. Su, and J. Wu, “Variational
autoencoder for low bit-rate image compression,” in
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2018,
pp- 2617-2620.

L. D. Chamain, S. Qi, and Z. Ding, “End-to-end image
classification and compression with variational au-
toencoders,” IEEE Internet of Things Journal, vol. 9,
no. 21, pp. 21916-21931, 2022.

E. Banijamali, R. Shu, H. Bui, A. Ghodsi, et al.,
“Robust locally-linear controllable embedding,” in In-
ternational Conference on Artificial Intelligence and
Statistics, PMLR, 2018, pp. 1751-1759.

A. Dosovitskiy, J. Tobias Springenberg, and T. Brox,
“Learning to generate chairs with convolutional neural
networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015,
pp. 1538-1546.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” Advances in neural information processing
systems, vol. 25, 2012.

L. Hui and S. Yu-Jie, “Research on face recognition
algorithm based on improved convolution neural net-
work,” in 2018 13th IEEE Conference on Industrial
Electronics and Applications (ICIEA), 1EEE, 2018,
pp- 2802-2805.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Authorized licensed use limited to: Texas Tech University. Downloaded on April 14,2025 at 01:50:00 UTC from IEEE Xplore. Restrictions apply.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

M. Khalid and S. Omatu, “A neural network based
control scheme with an adaptive neural model refer-
ence structure,” in [Proceedings] 1991 IEEE Interna-
tional Joint Conference on Neural Networks, IEEE,
1991, pp. 2128-2133.

N. Levine, Y. Chow, R. Shu, A. Li, M. Ghavamzadeh,
and H. Bui, “Prediction, consistency, curvature: Rep-
resentation learning for locally-linear control,” Pro-
ceedings of International Conference on Learning
Representations (ICLR), 2020.

D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream
to control: Learning behaviors by latent imagination,”
Proceedings of International Conference on Learning
Representations, 2020.

D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha,
H. Lee, and J. Davidson, “Learning latent dynamics
for planning from pixels,” in International conference
on machine learning, PMLR, 2019, pp. 2555-2565.
Y. Tassa, T. Erez, and W. Smart, “Receding horizon
differential dynamic programming,” Advances in neu-
ral information processing systems, vol. 20, 2007.

S. L. Brunton and J. N. Kutz, Data-driven science and
engineering: Machine learning, dynamical systems,
and control. Cambridge University Press, 2022.

W. Li and E. Todorov, “Iterative linear quadratic reg-
ulator design for nonlinear biological movement sys-
tems,” in First International Conference on Informat-
ics in Control, Automation and Robotics, SciTePress,
vol. 2, 2004, pp. 222-229.

D. P. Kingma and J. Ba, “Adam: A method for
stochastic optimization,” Proceedings of the 3rd In-
ternational Conference on Learning Representations
(ICLR), 2015.

T. Katayama et al., Subspace methods for system
identification. Springer, 2005, vol. 1.

I. Ahmadianfar, O. Bozorg-Haddad, and X. Chu,
“Gradient-based optimizer: A new metaheuristic op-
timization algorithm,” Information Sciences, vol. 540,
pp. 131-159, 2020.

X. B. Peng, A. Kanazawa, S. Toyer, P. Abbeel, and
S. Levine, “Variational discriminator bottleneck: Im-
proving imitation learning, inverse rl, and gans by con-
straining information flow,” International Conference
on Learning Representations, (ICLR), 2019.

Y. Nandwani, A. Pathak, and P. Singla, “A primal
dual formulation for deep learning with constraints,”
Advances in Neural Information Processing Systems,
vol. 32, 2019.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba, “Openai gym,”
arXiv preprint arXiv:1606.01540, 2016.

J. Arroyo, C. Manna, F. Spiessens, and L. Helsen,
“An open-ai gym environment for the building op-
timization testing (boptest) framework,” in Building
Simulation 2021, IBPSA, vol. 17, 2021, pp. 175-182.
J. Rawlings, “Tutorial overview of model predictive
control,” IEEE Control Systems Magazine, vol. 20,

166

Authorized licensed use limited to: Texas Tech University. Downloaded on

no. 3, pp. 38-52, 2000. por: 10 . 1109 / 37 .
845037.

[27] N. Muskinja and B. Tovornik, “Swinging up and sta-
bilization of a real inverted pendulum,” IEEE transac-
tions on industrial electronics, vol. 53, no. 2, pp. 631—
639, 2006.

[28] M. Bugeja, “Non-linear swing-up and stabilizing con-
trol of an inverted pendulum system,” in The IEEE
Region 8 EUROCON 2003. Computer as a Tool.,
IEEE, vol. 2, 2003, pp. 437-441.

[29] A. G. Barto, R. S. Sutton, and C. W. Anderson,
“Neuronlike adaptive elements that can solve difficult
learning control problems,” IEEE Transactions on
Systems, Man, and Cybernetics, vol. SMC-13, no. 5,
pp- 834-846, 1983. pOoI: 10.1109/TSMC.1983.
6313077.

APPENDIX
A. Network Architectures and Hyperparameters

1) Pendulum: Input: Two 48 x 48 images, 15000 train-
ing samples of the form (o;,a;,0,11), Action Space: 1-
dimensional, Latent Space: 2-dimensional, Encoder: 4 layers:
Convolution: 16 x 3 x 3; stride (2,2) - Convolution: 32 x 3 x
3; stride (2, 2) - 256 units - 4 units (2 for mean and 2
for variance), Decoder: 5 layers: 256 units - 4608 units -
Convolution Transpose: 16 x 3 x 3; stride (2, 2) - Convolution
Transpose: 2 x 3 x 3; stride (2, 2) - Sigmoid Layer, Transition
Dynamics: 3 layers: 100 units - 100 units - 8 units, MPC
Prediction Horizon (H): 10, Control Horizon: 10, Number
of Models: 20, Learning Rate: 0.0003, Optimizer: ‘ADAM°*
[19], Cost Matrices: Q = I,,x,, R =0.01.

2) CartPole: The architecture is inspired by. [13] Input:
Two 80 x 80 images. 15000 training samples of the form
(0rya1,00+1), Action Space: 1-dimensional, Latent Space:
4-dimensional, Encoder: 6 layers: Convolution: 32 x 5 X
5; stride (1,1) - Convolution: 32 x 5 x 5; stride (2, 2)-
Convolution: 32 x 5 x 5; stride (2, 2)-Convolution: 10 x 5 x 5;
stride (2, 2) - 200 units - 8 units (4 for mean and 4
for variance), Decoder: 7 Layers: 200 units - 1000 units -
Convolution Transpose: 32 x 5 x 5; stride (1, 1) - Convolution
Transpose: 32 x 5 x 5; stride (1, 1) - Convolution Transpose:
32 x5 x 5; stride (1, 1) - Convolution Transpose: 2 X 5 X 5;
stride (1, 1)-Sigmoid Layer, Transition Dynamics: 3 layers:
100 units - 100 units - 24 units, MPC Prediction Horizon: 10,
Control Horizon: 10. Number of Models:12, Learning Rate:
0.0001, Optimizer: ‘ADAM* [19], Cost Matrices : Q = I;xp,
R=1.
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