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AbstractÐ Control of a dynamical system without the knowl-
edge of dynamics is an important and challenging task. Modern
machine learning approaches, such as deep neural networks
(DNNs), allow for the estimation of a dynamics model from
control inputs and corresponding state observation outputs.
Such data-driven models are often utilized for the derivation
of model-based controllers. However, in general, there are
no guarantees that a model represented by DNNs will be
controllable according to the formal control-theoretical meaning
of controllability, which is crucial for the design of effective
controllers. This often precludes the use of DNN-estimated
models in applications, where formal controllability guarantees
are required. In this proof-of-the-concept work, we propose
a control-theoretical method that explicitly enhances models
estimated from data with controllability. That is achieved by
augmenting the model estimation objective with a controlla-
bility constraint, which penalizes models with a low degree
of controllability. As a result, the models estimated with the
proposed controllability constraint allow for the derivation of
more efficient controllers, they are interpretable by the control-
theoretical quantities and have a lower long-term prediction
error. The proposed method provides new insights on the
connection between the DNN-based estimation of unknown
dynamics and the control-theoretical guarantees of the solution
properties. We demonstrate the superiority of the proposed
method in two standard classical control systems with state
observation given by low resolution high-dimensional images.

I. INTRODUCTION

In recent years, the development of dynamical control

models from high-dimensional data, such as images, using

deep neural networks (DNNs) has garnered substantial in-

terest within various fields, ranging from robotics to neuro-

science [1], [2]. Such data-driven models allow for the design

of optimal control strategies for intricate dynamical control

systems. However, these data-driven DNN-based models

solely rely on the quality of input-output data acquired from

a system. So, these data-driven models often lack the desired

control-theoretic properties, such as controllability, necessary

for effective system control. Consequently, designing optimal

controllers using these models can lead to sub-optimal per-

formance. In this paper, we address this issue by explicitly

incorporating a controllability metric into the development of

latent models derived from high-dimensional imaging data.

By using these models within a model predictive control
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(MPC) framework, we demonstrate significant improvement

in the MPC performance on two classical control systems:

the inverted pendulum and a cart-pole system.

One of the widely adopted methods for capturing dy-

namical features in a low-dimensional latent space from

high-dimensional data is Variational AutoEncoders (VAEs)

[3]. In essence, a VAE comprises an encoder model and a

decoder model, both trained on the input data to minimize

the reconstruction error between the encoded-decoded data

and the input data [3], [4]. Unlike standard autoencoders,

which encode input to a single point, VAEs encode inputs as

probability distributions across the latent space. VAEs have

found applications in various domains, including anomaly

detection, image regeneration, data compression [5]±[7].

Notably, VAEs have also emerged as valuable low-

dimensional latent models for designing and controlling

dynamical systems in recent research endeavors [4], [8].

In this study, state information is represented as images.

Then Convolution Neural Networks are used for processing

these images and creating latent models. Convolution Neural

Networks excel in handling image data, as demonstrated in

[9]±[11]. These latent representations are used to acquire an

understanding of the dynamics of the environment, executing

control tasks similar to the approach in [4], [8], [12], [13].

Diving deeper into this concept reveals that this approach

not only helps in predicting short horizons but also longer

horizons such as in [14], [15].

None of the above approaches explicitly include controlla-

bility constraints in their latent space. We aim to induce con-

trollability constraints in the latent space of the Variational

AutoEncoder (VAE) model[3]. The Model Predictive Control

techniques [16], [17] are used to evaluate the performance

of the models. Since VAEs are trained using the input-

output (control-observation) data from the system, the data

used for training VAEs may limit the extent to which

VAEs exhibit system controllability in response to exogenous

inputs. Formally, the VAE’s objective [3] is to minimize the

prediction error between the next state observation, generated

by a dynamics model, given the current state observation

and current control action. As we show in this work, this

prediction error itself does not guarantee the controllability

of a dynamics model, leading to the sub-optimal performance

of controllers derived with such a model.

Incorporating a controllability constraint, such as control-
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lability Gramian [17], during VAE training could signif-

icantly improve the intrinsic controllability of VAEs and

lead to the development of efficient control strategies for

complex systems. In this work, we conceptualize this idea

by developing an approach to enhance the controllability of

estimated models by imposing a controllability constraint

to the standard VAE objective. In particular, we augment

the standard VAE objective for dynamics learning with the

degree of controllability of the latent dynamics. For our best

knowledge, this is the first attempt to explicitly incorporate

controllability constraints in designing latent models for

dynamical systems estimated from data.

Thus, this work establishes new connections between

the state-of-the-art machine learning methods, (VAE), for

the dynamics estimation from high-dimensional data (im-

ages/Lidar/etc) and the essential control-theoretical proper-

ties of dynamical control systems (controllability), leading

to more reliable data-driven models and more efficient data-

driven controllers. The main contributions of this work are

as follows:

• Augmentation of the standard VAE objective for the es-

timation of unknown dynamics from high-dimensional

data with the controllability constraint.

• An efficient algorithm for the optimization of the

controllability-constrained VAE objective.

• Demonstration of the effectiveness of the proposed

method on the classical dynamical control systems on

the tasks of long-term prediction and model-predictive-

control.

This paper is organized as follows. In Section II, we intro-

duce the notations and necessary definitions for the main

components such as state, state observation, action, original

dynamics, f , and a dynamics model, fθ , (latent dynamics),

degree of controllability and controllability Gramian, W , and

feature extractor and image generator, (encoder, hφ and de-

coder, gψ , respectively). Also, we overview the standard ob-

jective for learning a dynamics model from high-dimensional

state observation in the formalism of VAE. In Section III

we formulate a novel controllability-constrained objective

for VAE, which comprises a prediction error term and a

penalty term for a reduced degree of controllability of an

estimated dynamics model. In Section IV we demonstrate the

advantage of the controllability-augmented dynamics models

in comparison to the standard (baseline) model. Finally, in

Section V we conclude the current work and discuss future

research directions and eventual applications. An overveiw

of the method is provided at Fig. 1.

II. PROBLEM FORMULATION

A. Original and Latent Dynamics

Consider a dynamical control system in discrete time, f :

f : xt ×at → xt+1 (Original Dynamics) (1)

with the state and action at time t, denoted by xt ∈X and

at ∈A , respectively.

We assume the original dynamics function, f , is unknown,

and the state, xt is partially observed through the state

Fig. 1. Method overview: the current and next time states, xt and xt+1, in
the original dynamics are rendered to the corresponding state-observations,
given by low resolution images, ot and ot+1, respectively. The former,
ot , is encoded to the latent state zt by the encoder, hφ . The next latent
state, zt+1, is predicted by the parametrized latent dynamics, fθ , and the
corresponding predicted image, ôt+1, is generated by the decoder, gψ . The
prediction error between the decoded and original state-observations, ôt+1

and ot+1, is minimized as in the standard VAE framework. We enhance
the standard VAE framework with the controllability-constraint, which
explicitly penalizes latent dynamics with low degree-of-controllability. The
resulted controllability-constrained latent dynamics (in red) is superior to the
standard baseline models (in blue) both in long-term prediction and control
tasks. The former is visualized by a larger deviation of the standard model
(in blue) from the original dynamics (in black), and the latter is depicted by
a large control cost in the original dynamics driven by a controller derived
with the standard model for β = 0 in comparison to a controller derived
with the controllability-constrained model for β > 0.

observation, ot ∈ O . The latter is given by a signal from

a particular sensor, such as a camera, lidar, proprioceptive

sensor, etc. The original dynamics can be examined by input-

output triples, {ot ,at ,ot+1}
N
t=1, which are available or can be

collected.

The goal of this work is to improve the quality of dynamics

models estimated from data, fθ , denoted by ‘latent dynamics’

in the sequel, and the efficiency of controllers, π , derived

with latent dynamics models.

The latent dynamics is described by the following map-

ping:

fθ : zt ×at → zt+1 (Latent Dynamics) (2)

where zt ∈ Z is the latent state at time t, and θ ∈ Θ is a

model parameterizing dynamics in the model class, Θ.

A model, θ , of latent dynamics, fθ , is estimated from

data D = {ot ,at ,ot+1}
N
t=1, by standard techniques [4], [8], as

overviewed below. In this work we assume that ∀t : ot is the

state observation given by a low-resolution image, rendered

from the original state, xt .

B. Estimation of Latent Dynamics

Deep Neural Networks have been proven as a powerful

model class, Θ, for the representation of latent dynamics in
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this setting with an appropriate training objective [14], [15]:

ℓ(θ ,φ ,ψ) =
1

N

N

∑
t=1

d
(
ot+1, ôt+1) (3)

with ôt+1 = gψ

(
fθ (

zt
︷ ︸︸ ︷

hφ (ot),at)
︸ ︷︷ ︸

zt+1

)
,

where N is the number of training input-output pairs, hφ

and gψ are trainable mappings to and from the latent space,

respectively:

hφ : ot → zt (Encoder) (4)

gψ : zt → ot (Decoder) (5)

and d(·, ·) is a given similar function between the original

next state observation, ot ∈O and the reconstructed one, ôt ∈
O:

d : ot × ôt → R+. (6)

In our experiments, we used the commonly-used cross-

entropy similarity between the original image, ot , and the

reconstructed image, ôt , of the original dynamics. There exist

various architectures and training methods for the derivation

of fθ , hφ , and gψ , [14], [15].

Our method, (Section III) applies to arbitrary architectures

and training methods, but in the experiments, we chose a

particular latent dynamics model, ‘Embed-To-Control‘, [4]

due to its simplicity and transparency.

An optimal solution to the problem in Eq.(3) is derived

by solving the following optimization problem [4], [8]

θ ∗,φ ∗,ψ∗ = argmin
θ ,φ ,ψ

ℓ(θ ,φ ,ψ;D), (7)

where D = {ot ,at ,ot+1}
N
t=1 is the training data. There exist

efficient techniques to solve the optimization problem in

Eq.(7) with high-dimensional observation and latent spaces

[16], [18]. In particular we used the ’ADAM’ optimizer [19].

A solution to Eq.(7) does not guarantee, in general, con-

trollability in estimated latent dynamics. In the next section,

we introduce a controllaiblty constraint to the optimization

problem in Eq. (7), using degree of controllability as a metric

[17].

C. Degree of Controllability

In linear dynamics, xt+1 =An×nxt +Bn×mat , controllability

is given by a binary test, where the rank of the controllability

matrix [17], C = [B,AB,A2B, . . . ,An−1B], is equal to the state

dimension, n, in a controllable system, and it is less than n

in an uncontrollable system. A more flexible controllability

criterion is the degree of controllability, which is identified

by the eigendecomposition of the controllability Gramian,

Wn×n = C ·C⊤ [17]1 More controllable directions, (eigen-

vectors of W ), correspond to larger eigenvalues of W [17],

and the total degree of controllability can be identified by

1The transpose is denoted by T , e.g., M⊤ is the transpose of M.

the controllability volume given by the determinant of the

controllability Gramian.

In non-linear dynamics, xt+1 = f (xt ,at), the local degree

of controllability can be estimated by the Gramian of locally-

linearized dynamics around the state, x, which gives the

local degree of controllability by the eigendecomposition

of W (x) = C(x) ·C(x)⊤. We use this observation in the

development of the differentiable controllability constraint

in the next section.

III. PROPOSED METHOD FOR

CONTROLLABILITY-ENHANCED LATENT DYNAMICS

In this section we propose a novel method to explicitly

induce controllability into latent dynamics, fθ , by augment-

ing the loss in Eq.(3) with the controllability Gramian of

locally-linearized latent dynamics around the latent state, z:

Wθ (z) =Cθ (z)Cθ (z)
⊤ (Controllability Gramian) (8)

Cθ (z) =[Bθ (z),Aθ (z)Bθ (z),A
2
θ (z)Bθ (z), . . .

. . . ,An−1
θ (z)Bθ (z)]

where Aθ (z) = ∇z fθ (z) and Bθ (z) = ∇a fθ (z) are the Jaco-

bians of the latent dynamics, fθ , with regard to the latent

state, z, and real action, a. And, Cθ (z) is the corresponding

parametrized controllability matrix [17].

In general, the pair
(
Aθ (z),Bθ (z)

)
is not necessarily

controllable, which may deteriorate the quality of control. In

the next section, we augment the standard VAE-type loss for

data-driven estimations of dynamics with the parametrized

controllability Gramian, which explicitly penalized for a low

degree of controllability.

A. Controllabilty-Enhanced Loss

The parametrized Gramian, Eq. (8), in the latent space,

Wθ (z), allows us to formulate the controllability-enhanced

loss, ℓ̂, for learning latent dynamics, fθ , as follows:

ℓ̂(θ ,φ ,ψ,β ;D) = ℓ(θ ,φ ,ψ;D)−βℓω(θ ;D). (9)

The second term in Eq.(9) explicitly increases the total

degree of controllability, (the eigenvalues of Wθ ), evaluated

by the determinant of the controllability Gramian [20]

ℓω(θ ;D)
.
=

1

N

N

∑
t=1

lndetWθ (zt) (Constraint) (10)

The interpretation of this constraint is the time-average

controllability-volume of the linearized latent dynamics. Im-

portantly, this constraint is differentiable, which makes it

suitable for gradient-based optimization [19], [21].

The solution to Eq.(9) can be derived by the same methods

as in Eq. (7), with the essential difference that now fθ has

a desired degree of controllability set by β .

θ ∗W (β ),φ ∗(β ),ψ∗(β ) = argmin
θ ,φ ,ψ

ℓ̂(θ ,φ ,ψ,β ;D). (11)

Notably, in Eq. (11), the optimal parameters for latent

dynamics, encoder, and decoder, are parametrized by β ,

which produces a family of solutions, as shown in Fig. 3,

and explained in the next sections.
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Pseudo-Code: Summary of the Proposed Method

1: Stage I: Training controllability-enhanced models

Require: D = {ot ,at ,ot+1}
N
t=1 - training data; β - value

of the trade-off parameter; θ , φ and ψ - initial DNN-

parameters for the dynamics model, the encoder, and the

decoder, respectively.

2: repeat

3: {θ ,φ ,ψ}← {θ ,φ ,ψ}−∇l̂(θ ,φ ,ψ;D) ▷ Eq. (9)

4: until convergence

5: return optimal fθ∗ ,hφ∗ ,gψ∗ .

6: Stage II: Derivation of the optimal controller

Require: fθ∗ , hφ∗ , x, xg, H

7: // Encoding of original initial and target states

8: z = hφ∗
(
RenderImage(x)

)
▷ initial latent state

9: zg = hφ∗
(
RenderImage(xg)

)
▷ target latent state

10: // Main Loop

11: repeat

12: a∗ = MPC(COST, fθ∗ ,z,H) ▷ optimal action

13: x = f (x,a∗) ▷ original dynamics

14: z = fθ∗(z,a
∗) ▷ latent dynamics

15: until x = xg

16: return optimal control trajectory {a∗1,a
∗
2, . . . ,a

∗
k , . . .}

17: /* Utility functions: MPC and COST */

18: function MPC(COST, fθ∗ , z, H)

19: a⃗
.
= {a1,a2, . . . ,aH−1}= RandomActionSequence

20: a⃗∗ = minimum
a⃗

COST(⃗a, fθ∗ ,z,H)

21: return a⃗∗1 ▷ Return the first action

22: end function // MPC

23: //Inputs: latent state, action sequence, planning horizon

24: function COST({a1,a2, . . . ,aH−1}, fθ∗ ,z,H)

25: C = 0

26: for k ∈ (1, . . . ,H−1) do

27: e = zg− z ▷ latent space error

28: C =C+ e⊤ · e+a⊤k ·ak ▷ accumulated cost

29: z = fθ∗(z,a
∗) ▷ latent dynamics update

30: end for

31: return C

32: end function // COST

The derivation of the optimal value of β can be done by

dual optimization (cf., Eq. (9) in [22] or in general [23]),

which we defer to future work (cf., Section V).

B. Controllability-Prediction Trade-off

The trade-off between the degree of controllability of la-

tent dynamics, zt+1 = fθ (zt ,at), and the quality of prediction

of ot+1 from zt+1 = fθ (hφ (ot),at) is controlled by a non-

negative parameter, β ≥ 0. This trade-off characterizes the

relative importance between the first term in Eq. (9) and

its second term. The former controls the overall prediction

quality of the next image, ot+1, from the current image, ot ,

and the current action, at .The latter directly affects the degree

of controllability of the parametrized latent dynamics, fθ .

This way the optimal latent dynamics, θ ∗W (β ), in Eq. (11),

both possess a desired controllability degree and represents

the mapping ∀t : {ot ×at → ot+1}.

This trade-off produces a family of solutions, fθ∗(β ) pa-

rameterized by β , where the original solution is given by

β = 0. This additional degree of freedom in the optimization

problem allows for better solutions with a particular property

of interest in this work - controllable latent dynamics. We

demonstrate this by numerical simulations of standard con-

trol benchmark systems in both tasks: planning with latent

dynamics and deriving a more efficient controller for original

dynamics.

A typical trade-off, (family of solutions), is demonstrated

in Fig. (3), where the solution without the controllability

constraint in Eq. (10) appears for β = 0, and there is 9% of

the decrease in the Model-Predictive-Control cost for β =
0.5. For larger β values the MPC cost increases as expected

because the first term in Eq. (10) does not succeed in

estimating the dynamics model. The MPC cost is estimated

on control of the original dynamics, x = f (x,a), while the

optimal control actions are derived with the latent dynamics,

z= fθ (z,a). The full experiment settings are explained in the

next section.

C. Pseudo Code of the Method

The proposed method is summarized by the Pseudo-Code

above, wherein the ‘Stage I‘ a model, fθ , is estimated from

data with the controllability-constrained objective (cf., Eq.

(9)), while in ‘Stage II‘, this model is used for the derivation

of the optimal controller to control an original dynamics, f ,

Eq. (1). In both cases, state observations are given by low-

resolution images, rendered from the original state.

IV. EXPERIMENTS

In this section, we demonstrate the method represented in

Section III on two classical control benchmarks, used for

the evaluation of new algorithms for image-based estimation

of dynamics and control. We evaluate the controllability-

enhanced models, f ∗θ , in two important tasks: long-term

planning and model predictive control with the estimated

model2.

This section is organized as follows. Firstly, we explain the

data collection and the evaluation metrics, then we provide

the numerical simulations for ‘Long-Term Planning‘ and

‘Control‘ in two different dynamics: Inverted Pendulum and

Cart Pole.

1) Data Collection: Data for training controllability-

constrained models, fθ , is collected with the Open AI

simulator for the classical control environments [13], [24],

[25]: ‘Inverted Pendulum‘ and ‘Cart Pole‘.

In data collection, the action at is applied to the simula-

tor of an environment, denoted by ‘Step‘, which produces

(‘Renders‘) an image of the resulting state, ot+1:

∀t ∈ [0, . . . ,N] : ot+1 = RenderImage(Step(at)). (12)

This way the training data, D , comprises of action and state-

observation trajectories, D = {at ,ot}
N
t=0.

2All the experiments and results can be reproduced by our code reposi-
tory:https://github.com/suruchi1997/ControlledVAE.git
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Original

Dynamics

Constrained

Dynamics

Unconstrained

Dynamics

t0

t7

t9

Fig. 2. Qualitative comparison between the long-term prediction by the
latent dynamics, fθ , with the controllability-constraint (the 2nd column in
red) and without it (the 3rd column blue). The first column represents the
image trajectory by the original dynamics. The pivot point is at the center
of the image. The pendulum starts at θ(t0) =

π
4

rad from the bottom and

θ̇(t0) = 0 rads−1. The rows correspond to the time steps shown to the left.
Visible changes appear after 7 times steps. And, as shown at the bottom
row, after 9 time steps, there is a significant deviation of the latent dynamics
trajectory for β = 0 (blue) from the original dynamics trajectory (black);
while the latent dynamics trajectory for β = 0.5 (red) closely follows the
original dynamics. The deviation increases in further steps.

2) Training: The training procedure is based on the stan-

dard stochastic gradient descent (SGD) optimization [19],

summarized by ‘Stage I‘ in the Pseudo-Code.

In the experiments, the encoder, hφ , the latent dynamics,

fθ , and the decoder, gψ , are implemented by a similar

neural networks’ architecture as in the baseline system [4],

which is a SOTA in the field. The architecture details are

provided in Appendix V for completeness, and the exact

implementations are accessible at the the link. Remarkably,

our method requires only a small modification, (addition of

the controllability constraint), to baseline systems, and can

be eventually applied to arbitrary systems.

3) Evaluation Metrics: To examine the effectiveness of

the controllability constraint Eq. (10) on the quality of the

latent dynamics, fθ , we used two metrics:

-Qualitative comparison (cf., Fig. 2 and Fig. 4) between

state observation trajectories generated by the ground truth

dynamics in Eq. (1) and by the trained latent dynamics, fθ ,

for different values of β .

-Quantitative comparison (cf., Fig 3 and in the text below)

between control cost by a controller derived with the latent

dynamics, f ∗θ , trained with the controllability-constraint, β >
0 and without it β = 0. The MPC controller [16], [26]

π : zt → at (13)

is derived with the quadratic cost defined in the latent space,

Z , as summarized by ’Stage II’ in the Pseudo-Code (cf.,

lines 27-29). The optimal actions, a∗t = π(zt), are applied to

Fig. 3. Relative Change, in the MPC Cost (red) and Degree of Con-
trollability (blue). The left y-axis represents the Percentage change in
the MPC cost for β ∈ [0, . . . ,5.0]. The MPC cost without controllability
constraint is shown for β = 0. There is 9% decrease in the MPC cost for
β ≈ 0.5. The right y-axis shows the minimal eigenvalue of the controllability
Gramian, lnλmin(W (β )), for the range of β values, which reflects the
degree-of-controllability. Each point on the plot represents the average
over 20 randomly intialized models, where each model is evaluated on
300 trajectories with 100 steps, starting from a random initial state. There
are 3 orders of magnitude in the increase of the degree of controllability
between β = 0 and β ≈ 0.5, which corresponds to the improvement in the
efficiency of the MPC controller. As expected, for large values of β , the
model predictability term in Eq. (10) is less effective, resulting in a poor
dynamical model for fitting the data.

the original dynamics,

x∗t+1 = f (x∗t ,a
∗
t ) (14)

and the quadratic cost for the optimal action sequence

{a∗1,a
∗
2, . . . ,a

∗
k , . . .} is calculated in the original space X .

These evaluation metrics address the two important prop-

erties of dynamics: ‘Long-Term Planning‘ and ‘Control‘,

respectively.

A. Inverted Pendulum

1) Original Dynamics: Swing up and stabilization of

the inverted pendulum is one of the classic problems

in control theory [4], [13], [27], [28]. The goal of

this experiment is to examine whether the controllability-

constrained dynamics reflects better the intrinsic prop-

erties (long-term prediction and controllability) of the

original dynamics.

In this experiment, we train the latent dy-

namics with low-resolution images, represent-

ing state observation, ot , and real actions, at .

This task is challenging because the model

fθ should learn a dynamics model from low-

resolution high-dimensional images.

The ‘Inverted Pendulum‘ environment is

schematically represented in the figure to the

left. It comprised of a pivot point (the mo-

tor), where the limited control action (torque),

|at |< 2(N/m), can be applied, and a pole with a point mass

at the end.
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Original

Dynamics

Constrained

Dynamics

Unconstrained

Dynamics

t0

t7

t9

Fig. 4. Qualitative comparison in Cart Pole. The column and row meaning
is the same as in Figure (2). The pole starts at θ(t0) =

π
10

rad from the

top and θ̇(t0) = 0 rads−1. In this more complicated environment, there is
a significant deviation of the baseline solution (blue) from the original
dynamics (black) after 7 times steps, while the proposed method (red)
closely follows the original dynamics in further steps as well.

The state space of this system is two-dimensional, con-

sisting of angle, θ1 = θ(rad), and angular velocity, θ2 =
θ̇(rads−1). The dynamics of the pendulum is given by:

θ̇1(t) =θ2(t)

θ̇2(t) =
g

l
sin(θ1(t))+

a(t)

ml2
(15)

where g = 9.8m/s2 is gravity, m = 1kg is the mass of the

point mass, and l = 1m is the length of the pole.

2) State Observation: The dynamics in Eq. (15) is simu-

lated in discrete time with dt = 0.1s. The original state, xt ,

in the time t is rendered (cf., Eq. (12)) to a corresponding

low-resolution image with dimension 48×48 pixels, which

represents the state observation ot , as shown at the top left

image in Fig. 2

The qualitative comparison is shown in Fig. 2. The original

dynamics (black), the controllability-constrained latent dy-

namics (red), and the baseline latent dynamics (blue) [4] start

from the same initial state. However, in the three last rows,

corresponding to the time steps t7, t8 and t9, it is visible that

the controllability-constrained dynamics better predict future

states in comparison to the baseline dynamics. Additional

details appear in the caption of Fig. 2.

To validate the effectiveness of the proposed method for

control, we derived an MPC controller in Eq. (13) with the

controllability-constrained latent dynamics for β ∈ [0, . . .5].
The change in the MPC cost for different values of β is

shown in Fig 3. Control cost in the original dynamics by the

controller derived with baseline latent dynamics for β = 0

is the reference. The MPC cost is improved by ∼ 9% by

the controller derived with the controllability-constrained

latent dynamics for β ≈ 0.5. As expected, the MPC cost

increases for larger values of β , because the controllability-

constraint becomes dominant in the training objective Eq.

Fig. 5. Relative Change, in the MPC Cost (red) and Degree of Control-
lability (blue) for ’CartPole’. The meaning of the axes and the evaluation
conditions are the same as at Fig. 3. We observe a similar behaviour, where
’Control Cost’ with the controllability-enhanced dynamics, β > 0, is lower
incomparison to the baseline dynamics, β = 0. Noteably, the same number
of samples is used for learning dynamics in both cases.

(9), which deteriorates the prediction quality of the la-

tent dynamics. This new controllability-prediction trade-off

shows that estimated models can be enhanced by explicitly

augmenting them with the controllability feature. This trade-

off connects machine learning methods for sample-based

model estimation with the fundamental concepts in optimal

control theory.

B. Cart Pole

To validate the effectiveness of the proposed method in

a more complicated system, we conducted the same experi-

ment with the ‘Cart Pole‘ dynamics.

1) Original Dynamics: Balancing the pole over

the cart is another classic problem in control theory.

The cart pole system consists of a

pole attached to a cart that moves

over the frictionless track[29]. The

state space dimensionality is four. The

components of state space include,

cart position, x, cart linear velocity,

ẋ, pole-angle, θ , and pole angular

velocity, θ̇ .

The action space, a⃗(t) ∈A , is dis-

crete, comprising of two force values

+1N and -1N. The original dynamics is given by

Èx(t) =
msinθ(t)(ℓθ̇ 2(t)+gcosθ(t))+a(t)

M+msin2 θ(t)
, (16)

Èθ(t) =−a(t)cosθ(t)−mℓθ̇ 2(t)cosθ(t)sinθ(t)

− (M+m)gsinθ(t),

where x(t), θ(t), m, M, ℓ, g, |a(t)| ≤ 1 are the x coordinate of

the center of mass of the cart, the angle of the pole, the pole

mass, the cart mass, the pole length, the free-fall acceleration,

and the force applied to the cart.
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2) State Observation: In the same procedure as in the

Inverted Pendulum, the dynamics in Eq. (16) is simulated in

discrete time, and the state xt at the time, t, is rendered to a

low-resolution image with dimension 80×80, shown at the

top left image in Fig. 4.

Similarly to the ‘Inverted Pendulum‘ environment, the

performance is evaluated on both long-term prediction and

control tasks. Fig. 4 shows the qualitative comparison be-

tween the future state predictions by the latent dynamics and

the original dynamics. The black images, in the 1st column,

represent the image trajectory by the original dynamics. The

red images, in the 2nd column, show the predictions by the

controllability-constrained models, and the blue images, in

the 3rd column, show the predictions by the baseline models.

All three dynamics start from the same initial conditions,

the 1st row. The images generated by the controllability-

constrained model (red) and the baseline model (blue), are

similar at the first two steps. In the further steps, it is visible

that controllability-constrained models accurately follow the

original dynamics, while the baseline models (trained with-

out the controllability constraint) deviate from the original

dynamics. This deviation increases in further steps.

The control cost in the original dynamics driven by the

controller derived with the controllability-constrained latent

dynamics for β = 0.5 is lower than that derived with the

baseline latent model for β = 0.0.

V. CONCLUSION AND FUTURE WORK

In this work, we conceptualize the idea of the enhancement

of data-driven models with the controllability property. The

implementation of this idea boils down to adding the control-

lability constraint to the standard VAE objective for learning

a dynamics model from data. The resulting controllability-

enhanced VAE objective has the same number of parameters

to optimize as in the original VAE. That is because the

constraint, (the degree of controllability, expressed via the

controllability Grammian), is given with the same parameters

as in the original unconstrained model. We discovered the

controllability-prediction tradeoff, which is regulated by a

scalar parameter β . This proof-of-the-concept study shows

that data-driven models may have a small prediction error,

which is not enough to guarantee the controllability of the

model. The main observation and conclusion are that there

exists a positive value of β , when the performance of a

derived controller with a learned model is superior to that

for β = 0, as shown in Figure (3).

We defer the optimization of the trade-off parameter β
to future work, where the optimal value of β ∗ will be

explored with the dual optimization techniques. Other impor-

tant venues for future work are i) a rigorous characterization

of the solution properties and guarantees, ii) implications of

the proposed method in the case of uncontrollable dynamics

(or isolated states in dynamics).

A full-fledged method for the derivation of data-driven

dynamical models with control-theoretic guarantees for con-

trollability will allow to design of efficient model-based

controllers for various critical mission applications such as,

neuro-stimulation feedback, robotic surgery, etc.
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APPENDIX

A. Network Architectures and Hyperparameters

1) Pendulum: Input: Two 48× 48 images, 15000 train-

ing samples of the form (ot ,at ,ot+1), Action Space: 1-

dimensional, Latent Space: 2-dimensional, Encoder: 4 layers:

Convolution: 16×3×3; stride (2,2) - Convolution: 32×3×
3; stride (2, 2) - 256 units - 4 units (2 for mean and 2

for variance), Decoder: 5 layers: 256 units - 4608 units -

Convolution Transpose: 16×3×3; stride (2, 2) - Convolution

Transpose: 2×3×3; stride (2, 2) - Sigmoid Layer, Transition

Dynamics: 3 layers: 100 units - 100 units - 8 units, MPC

Prediction Horizon (H): 10, Control Horizon: 10, Number

of Models: 20, Learning Rate: 0.0003, Optimizer: ‘ADAM‘

[19], Cost Matrices: Q = In×n, R = 0.01.

2) CartPole: The architecture is inspired by. [13] Input:

Two 80× 80 images. 15000 training samples of the form

(ot ,at ,ot+1), Action Space: 1-dimensional, Latent Space:

4-dimensional, Encoder: 6 layers: Convolution: 32× 5×
5; stride (1,1) - Convolution: 32 × 5 × 5; stride (2, 2)-

Convolution: 32×5×5; stride (2, 2)-Convolution: 10×5×5;

stride (2, 2) - 200 units - 8 units (4 for mean and 4

for variance), Decoder: 7 Layers: 200 units - 1000 units -

Convolution Transpose: 32×5×5; stride (1, 1) - Convolution

Transpose: 32×5×5; stride (1, 1) - Convolution Transpose:

32×5×5; stride (1, 1) - Convolution Transpose: 2×5×5;

stride (1, 1)-Sigmoid Layer, Transition Dynamics: 3 layers:

100 units - 100 units - 24 units, MPC Prediction Horizon: 10,

Control Horizon: 10. Number of Models:12, Learning Rate:

0.0001, Optimizer: ‘ADAM‘ [19], Cost Matrices : Q = In×n,

R = 1.
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