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Abstract— Incorporating prior knowledge into a data-driven
modeling problem can drastically improve performance, relia-
bility, and generalization outside of the training sample. The
stronger the structural properties, the more effective these
improvements become. Manifolds are a powerful nonlinear
generalization of Euclidean space for modeling finite dimen-
sions. When additionally assuming that the manifold carries
(Lie) group structure, this imposes a drastically stricter global
constraint. The range of their applications is very wide and
includes the important case of robotic tasks. We apply this idea
to Canonical Correlation Analysis (CCA). In traditional CCA
one constructs a hierarchical sequence of maximal correlations
of up to two paired data sets in Euclidean spaces. We here
generalize the CCA concept to respect the structure of Lie
groups and demonstrate its efficacy through the substantial
improvements it achieves in making structure-consistent pre-
dictions about changes in the state of a robotic hand.

I. INTRODUCTION

Simplicity that respects structure is a desirable property of
effective control. Typically, it improves a method’s robust-
ness, feasibility, and flexibility and is achieved by reducing
its complexity. A common form of complexity reduction
is realized by dimensionality reduction, which represents a
special case of the more general principle of information
compression methods.

One popular information compression model is the In-
formation Bottleneck (IB) [1], [2], a principled method to
achieve such reductions with intimate links to statistical
machine learning.

Of particular interest to the control community is the fact
that the IB is a direct generalization of the well-established
CCA [3]. In the case of (locally) linear Gaussian models,
CCA permits tuning the degree of structural preservation
from one variable to another. The IB thus implements a
”soft” CCA in the Gaussian case [4], [5].

However, CCA and its informational generalization (IB)
purely concentrate on preserving the dependency of the
target variables. They are utterly indifferent to any particular
additional structure of the problem, some paradigmatic con-
sequences of which we now illustrate in a pertinent example.

In [5], an IB is applied to a linear Gaussian control channel
which thus reduces to a soft CCA model. Reducing the
information that a simpler model has access to, the process
leads to a progressive reduction of the dimensionality in the
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accompanying soft CCA. However, this reduction is purely
correlational and does not consider the special structure of
the control loop, as discussed in [6]. Concretely, in the
controlled system, the matrix transforms the process’ past
dynamics into the process’ future dynamics. The original
transformation has a particular recursive structure following
that of the Hankel matrix [3]. After the system is naively
subject to information/dimensionality reduction, the resulting
reduced transformation matrix for the compressed system no
longer has a Hankel structure [5].

The structural deficit is alleviated in [6] by modifying
the approach of [5] to constrain the reduced transformation
matrices to satisfy the properties of a proper Hankel matrix
to represent actual control systems. However, this approach
is unsuitable for general use due to the requirement of
handcrafting the information reduction method to respect the
Hankel matrix structure of the control problem.

The present work presents a method to support a gener-
alizable approach to produce structure-respecting IB in the
future. We modify the traditional CCA method to respect the
structure of a manifold to which the variables of interest and
their interrelation are confined. In other words, we constrain
our problem space to manifolds instead of the Euclidean
space.

To achieve this we note that the naive concept of vari-
ous averaging operations used to compute the CCA in the
Euclidean case needs to be modified, as manifolds do not
offer mean and variance computation via vector addition
operations. Therefore, instead, we resort to the variational
description of the quantities of interest. The idea is analog
to the fact that, in Euclidean space, the centroid of given
data points can not only be computed by directly taking the
average vector of the data points but, alternatively, by finding
that point that minimizes the sum of its squared Euclidean
distances to the given data.

The key components of the proposed method will be:
1. this variational principle, now with manifold-intrinsic
distance, to replace the Euclidean averaging operation to
compute the generalized mean, and 2. using projections to
sub-manifolds replacing those to Euclidean vector subspaces.

The paper is organized as follows. Section II begins with
a general overview of well-known concepts and literature
reviews. An overview is given of the formalism in Section II
followed by the preliminaries relevant to the development
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of the formalism in Section III (note that Lie Theory and
manifolds as relevant to the paper are covered in the Ap-
pendix I). We highlight how to replace the computation of
the mean and centroid with a variation of expected distance
to transfer the concept from Euclidean space onto Lie groups.
This step is crucial for the development of the Intrinsic CCA.
‘We then discuss the Intrinsic PCA’s main features, which are
useful for building the intuition for its extensions towards
the ICCA. Section IV presents the proposed method for
ICCA, extending the concept of principal geodesic curves
to canonical geodesic curve pairs, denoted by intrinsic CCA,
and represents an efficient algorithm for the calculation of
ICCA from data points on high-dimensional Lie groups.
In Section V, we demonstrate this algorithm on a high-
dimensional articulated robotic system, an anthropomorphic
robotic hand, whose configuration space is given, in general,
by the corresponding multi-dimensional Lie group. Section
VI reanalyzes the paper to understand the impact of the
findings and build potential future directions'.

II. OVERVIEW

Existing methods for dimensionality reduction consider
their source data living in “flat” Euclidean spaces and
are utterly agnostic to any potential additional structure or
constraints [3], [4], [7], [8], [9]. Specifically, there are no
methods for joint dimensionality reduction (compression) of
two sets of points when these are restricted to a Lie group.

Joint compression could reveal predictive models between
one set to another, with additionally choosing a desired
level of complexity and details. In particular, such structure-
preserving predictive models would permit the reconstruction
of a point in one set on the Lie group from a point in another
set on the same Lie group. A particular scenario of interest is
the estimation of dynamical models on the manifold, where
two sets of points on the manifold represent the current state
and the state in 7 time steps to the future. This estimation
is much more difficult or impossible if a model does not
preserve the manifold structure. Concretely, here, we propose
a method to generalize the CCA to the ICCA on general Lie
groups.

Applying the Riemannian approach to CCA allows us to
control the model’s intrinsic complexity by choosing how
many intrinsic geodesic pairs are being used (Section IV)
while accounting for the additional intrinsic structure and.

Our main contributions include:

1) Two algorithms for ICCA decomposition and recon-
struction;

2) Reduction in the prediction error of the future state of
robotic hand from the current state compared to the
existing baseline dimensionality reduction methods;

3) Structural guarantees that the predicted state is con-
fined to the Lie group.

As one remarkable result, we found that the relationship be-
tween the “intrinsic” times of the basic geodesic movements
can be mapped linearly to each other (Section V).

Al the experiments and results can be reproduced by our code reposi-
tory: https://github.com/JWK7/ICCA
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NOTATION

Scalars are denoted by the lowercase letters, e.g., t € R™T.
A Lie group and its corresponding algebra are denoted by
G and g, respectively. For special groups, such as SO(3),
we write the algebra as its lowercase pendant, such as so(3).
The Euclidean (extrinsic) distance between two points x; and
Xy is given by ||xy —x1||2, while the Riemannian (intrinsic)
distance between such points on a manifold is denoted by
D(x1,x7).

III. PRELIMINARIES

This work uses the standard definitions of the Lie group
(including the groups for rotation and translation) frequently
used in robotics. This background is provided in Appendix I
for completeness.

The next section gives an overview over the key compo-
nents of the proposed method (intrinsic distance, averaging
operations, and sub-manifold projection).

A. Intrinsic vs. Extrinsic Means

Intrinsic and extrinsic calculations differ fundamentally
from one another. Extrinsic (Euclidean) calculation limits
itself to the linear constraint and does not account for the
non-linear structure embedded in many datasets. To develop a
structure-aware ICCA, we will need to calculate the intrinsic
mean and projections of data points on the Lie group to
its sub-manifolds (Section III-B). We now introduce the
definitions on which the intrinsic analogues of Euclidean
concepts will be based on.

Given a set of data points {xi}f-\’: | in a metric space, 2",
their mean, L, is defined by:

N
W= argminZD2(x,x,-), (D

xeZ =1
where D(-,-) denotes the distance between points in 2~ and
is assumed the minimum to be unique. L.e., the mean of a set
of points in a general metric space is defined by the solution
to the optimization problem in Eq. (1).

This variational formulation offers a generalization of the
mean beyond spaces in which arithmetic means can be
computed, i.e. which permit convex combinations or explicit
addition operators, such as the standard Euclidean space. In
the latter, Eq. (1) has as closed-form solution the traditional
arithmetic average of the data points, U, = %Zix,-.

1) Intrinsic mean: We now apply this variational method
to compute the mean intrinsically to a Lie group (Ap-
pendix I). Given a Lie group, Z°, the distance between data
points, x1,x2 € 2 is given by the Riemannian distance on
the manifold:

2

where the inverse is a Lie group inverse and "log’ denotes the
logarithmic map?. With this, we generalize the calculation of

D*(x1,x) 2 ||log(x; 'x2)] 13,

2Strictly spoken, the logarithmic map is defined locally. Without loss of
generality, we resolve ambiguities by choosing the pre-image of its argument
with respect to the exponential map with the minimal norm and breaking
remaining ambiguities as per convenience of the respective computation.
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the intrinsic mean [10], [11] of x1,x3,...,xy € Z by solving
Eq. (1). The problem in Eq. (1) can be solved iteratively
[10], [11] or can be approximated for small x; and x; by
the Baker—Campbell-Hausdorff formula [12], [13] given by
Eq. (3):

3)

which omits the non-commutative terms between x; ' and x.

2) Extrinsic mean: If we would instead embed data points
from the Lie manifold 2" into the ambient Euclidean space
[14] we can calculate the mean in Eq. (1) directly using the
Euclidean distance of the ambient space via the arithmetic
computation of the mean, leading to the traditional extrinsic
mean. However, in general, this mean will not be a point
on a manifold. This creates a discrepancy between the
internal structure of the data and its extrinsic statistics. This
discrepancy results in imprecise modeling of data if these are
actually constrained to a manifold and, hence, in deficient
generalization across samples. By violating the constraints
represented by the manifold structure, the extrinsic mean
may not even represent a physically realizable configuration
of the system at all.

[[log(xy " x2) |2 ~ || log (x2) —log(x1)] |2,

B. Projection to Subgroups

Let G and g be the Lie group and its corresponding
algebra. For an arbitrary unit vector v € g, we can define
a one-parameter subgroup H, of G [10]:

4)

where ’exp’ is the exponential map from g to G, given in
Eq. (28). The distance between any x € G and H, is given
by:

H, = {exp(tv) €G : 1t € R},

D(x,H,) = mtin D(x,exp(tv)), (5)
with the optimal value of ¢ being given by:
t* :argfnin D(x,exp(1v)), (6)
determining the projection of x onto H,:
Projy (x) £ exp(1*v). (7)

This projection of a group element to a one-parameter
subgroup is a core component in the Intrinsic PCA [10],
[13] (explained in the next section), which we generalize to
Intrinsic CCA in this work.

C. Intrinsic Principal Component Analysis

To provide the intuition for the development and the key
features in the proposed Intrinsic CCA method, we reca-
pitulate an existing Intrinsic Principal Component Analysis
(PCA) method on Lie groups [13]. Traditional PCA is con-
cerned with dimensionality reduction through the projection
of data to linear subspaces, minimizing the reconstruction
error. As one increases the dimensionality of the subspaces,
new independent (orthogonal) additional features are ac-
counted for.
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Whether in the Euclidean or the manifold case, the calcula-
tion is based on the above principle of hierarchical projection
of data on those subspaces or -manifolds which minimize
the mean projection error between the data points and the
corresponding subspace [13]. The difference between PCA
in the Euclidean space and PCA on the Lie group is in the
definition of the subspace and that of the distance, and the
operators used for averaging (Appendices III-A and III-B).

We proceed by presenting first the calculation of PCA in
both Euclidean space and the Lie group in order to prepare
the background to the introduction of the ICCA method.
PCA in Euclidean Space One calculates the hierarchical
projections beginning with the first PCA component, k = 1,
which is a one-dimensional linear (strictly spoken, affine)
space. Given the Euclidean space, X, we compute it by
seeking a one-dimensional subspace onto which the data
points x1,x2,...,xy € X project with the least total distance

loss [13], more precisely, we seek S, = {rv : t € R} such
that:
N
v = argmin Y ||x; — Projg, (x;)|[3, ®)

(V=1 i=1

where Projg (x) = (x-v)v is the optimal projection of x on
Sy. We compute the subsequent PCA components recursively
by proceeding to increasingly higher-dimensional subspaces,
by removing the contribution of the already established
subspaces and minimizing the distance loss of the data points
with respect to the newly added one. Concretely, for k > 1,
we calculate recursively [13]:
N k=1
el = argmin 3 x; —Projg, ()~ . Projs , (x) 3. ©
vi=1 i=1 (=1 Y

In other words, the first projection minimizes the devia-
tions to the first component, and all subsequent projections
minimize the residual deviation to the new component after
all previous components have been accounted for.

There are two essential differences between PCA in the

Euclidean space and on the Lie group. First, the Euclidean
distance function is inappropriate for estimating the projec-
tion error on the Lie group. Instead, the manifold-intrinsic
distance, such as the Riemannian distance, should be used
[15]. Second, the sub-spaces/principal components in the
Euclidean space are given by vector (strictly spoken, affine,
if the mean does not coincide with the origin) subspaces,
while in the Lie group, they are given by principal geodesic
curves.
PCA on Lie Groups The generalization of the first principal
vector in Eq. (8) to the first principal geodesic curve is
achieved by combining Eq. (1),Eq. (5), and Egs. (8) and
(9). One obtains the first principal geodesic curve, [13]:

1

I, (10)

N
v = argminz rrtlinHlog((,Lf xi)fleXP(”’))

[VlI=1 i=1
where 11, 'log’, and 'exp’, are the mean, given in Eq. (1), the
logarithmic and exponential maps (cf., Appendix), accord-
ingly.
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The principal geodesic curves for k > 1 are defined anal-
ogously to v*>1) in Eq. (9), again , with the appropriate
distance (Eq. (5)), projection (Eq. (7)), and mean (Eq. (1)),
respectively.

Following this intuition and the properties of projections to
a submanifold, we now extend the Intrinsic PCA method [13]
to the novel Intrinsic CCA method. Here sets of point pairs
on the Lie group are recursively projected onto a sequence of
pairs of submanifolds. In analogy to PCA, a current manifold
pair recursively encompasses previous submanifold pairs to
minimize the intrinsic error between the mapped points.

IV. PROPOSED METHOD - ICCA

Canonical Correlation Analysis (CCA) is a fundamental
tool to estimate two subspaces and a linear transformation
between them from data, such that each of the original
data sets are represented by (projected to) the corresponding
subspaces with minimal error; similarly, there is a minimal
error between the projected data to these subspaces.

Its applications extend far beyond pure data analysis; they
include computer vision [16], speech synthesis [17], and
robotic control [18]. Notably, and of particular interest for
control, CCA and its information-theoretic generalization has
been proven useful for the dimensionality reduction of linear
dynamical systems [6], [5], [4], [3]. With its wide variety
of applications, however, conventional CCA tends to handle
non-linear data poorly due to its Euclidean assumptions [19].
One can therefore expect that adapting CCA to the intrinsic
structure of the data it is to represent should improve the
ability of this dimension reduction technique to respect and
faithfully preserve the mapping between the set of data pairs.

In this work, we propose a particularly useful special-
ization of the nonlinear case, namely a CCA that “lives”
specifically on Lie groups. Such an operation is of particular
interest in the context of robotics [20]. Environments that
contain complex manipulation, shape modifications, or other
structural changes can be suitably described in the language
of Lie group operations.

Much like in PCA, CCA implements a hierarchy of
projections between data and sub-spaces. However, CCA
uses two projections per component, called the canonical
pairs. In the Euclidean space these pairs are derived using
the standard distance, averaging and projection operators.

In order to define the intrinsic CCA, we thus translate its
functionality, given in the first paragraph of this section, into
the language of intrinsic distance, averaging and projection
operators on the Lie group, as follows.

1) Projection on the Subgroups: We define one-parameter
subgroups H, and H, of G, a distance between x,y € G and
H,, H,, respectively, where v,u € g:

H, = {exp(tv) €G : t €R}, (11)
H, = {exp(su) € G : s€ R}, (12)
D(x,H,) = mtin D(x,exp(tv)), (13)
D(y,H,) = min D(y,exp(su)), (14)
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By using the base movement of (v, u), we can represent each
data point pair through the optimal projection times (t*,s*):

t* =argmin D(x,exp(tv)), (15)
t

s* =argmin D(y,exp(su)). (16)
S

The distance, D(+,-), in Eq. (13) and Eq. (14) is the intrinsic

Riemannian distance Eq. (2).

A. Intrinsic Canonical Correlation Analysis

Our methodology relies on optimizing projections to min-
imize the distance between the two subgroups of the set of
points. We compress the original data into the pair (v, u) with
their corresponding projection times (¢*,s*). (v,u) and (t*,s*)
are selected to minimize the prediction error between the past
and future trajectory on the manifold, corresponding to the
first vs. second entry of the pair, respectively, as explained
below.

1) First ICCA pair: Given N point pairs, {x; € G,y; €
G}fV: 1» on the Lie manifold, G, we defined the first canonical
geodesic pair as a pair of vectors in the corresponding Lie al-
gebra, g, (v<1> egul) e g), representing two one-parameter
subgroups (HV,HM) , with which the data are maximally asso-
ciated through their projections Proj, (x;) € G,Projy (i) €
G,i=1...N with corresponding parametrizations t;,s;.

We propose to calculate the first ICCA pair from N point
pairs {x;,y;}? ; on the manifold by:

N
v M = argmin Z(Dz(u;lxi,Hv)

[[V][=|lul|=1i=1
+D?(uy i, Ha)
+D? (Proji (15 ), Projg, (15 v7) ).

a7)

or, explicitly,
N

v uM = argmin Z( mtin D*(u; 'x; exp(tv))
[VlI=llull=1i=1

+ min D (u; 'y;,exp(su))
. ,

+D?* (exp(t} V),eXP(S?“))) )

(18)

where the first two terms define for each i the time pair
(tf,sF) via Egs. (15) and (16), while the third term is the
distance between the projected x; and y;, with the correspond-
ing ¢ and s}, from each other. The joint projections given
by the first two terms and the last term in Eq. (18) extend
the intrinsic PCA towards the ICCA.

Optimal Projection Time. The solution to Eq. (17) includes
(v, uM)) and (#7,s7)Y,. Given this solution we train a
linear regression model, fwl , parameterized by v, to predict
s from ¢:

1 N

Y’ = argmin g Y (s =1 @)?

N (19)
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Fig. 1. Optimal Projection Time. r* vs s* comparison that uses the

canonical pair to map to the original data. t* and s* show a linear relationship
between one another. Thus a simple linear regression model would be
suitable to map #* to s*.

which we concisely denote by §(z):

(20)

The model in Eq. (20) allows us to reconstruct y from x
using the first ICCA pair by:

1* = argmin D(x,exp(rv'!)),
t

(§(t*)u(l))v

21

A

y=exp (22)

where D(-,-) and ’exp’ are the (intrinsic) Riemannian dis-
tance Eq. (2) and the exponential map Eq. (28), respectively.

Given that the two sets of data are assumed to be asso-
ciated, the (t*,s*) derived from these data sets is expected
to preserve some level of association with one another. A
fortiori, we empirically found in our experiments (cf., Section
V) that the dependency between the optimal (¢;",s}) is linear,
and even close to the identity, as shown at Figure 1. We
have not yet established a stringent theoretical justification
for this phenomenon, whether this is a general property of the
algorithm, a consequence of the construction of ¢ and s from
normalized vectors, stemming from constraining ourselves
to the Lie group property, or a peculiarity of the particular
experimental scenario.

We proceed by recursively defining the next ICCA pairs.

2) Next ICCA Pairs: Denote the projection of 1~ lx; on
H 1) by Proj'!) (x;), and the projection of [,Ly’ly,' on H ) by
Proj! (y).

Firstly, we remove Proj(!) (x;) from p'x; and Proj!)(y;)

from [,L}Tl v;, which results in xfz) and yl(z , respectively. Then,

1 M

given Vi @ (x;),y;) = (exp(t:vl)),exp(siull))), we define
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the second ICCA pair by:

N
V@ , u® = argmin

[[vI|=]lul|=1i=1
+D*(y* H,)

+D? (Proij (x§2> ), Projy, (ygz))) ) .

(DZ «? H,) (23)

In general, the (k+ 1)-th ICCA pair is recursively defined
by:

N
= argmin Z

[v|=ul|=1i=1
+D* (3 H,)

+D? (Proj H, (xl(k) ), Proj H, (yl(k) )) ) .

v(kH),u(kH) (D2(x§k),Hv) (24)

where x*) and y®) are the residual data pair from the last
iteration. The solution to the ICCA problem consists of all
k ICCA pairs (v(k>,u(k)) and their corresponding mappings
f®)(r) between the optimal projection times.

The equations Eq. (23) and Eq. (24) represent the de-
composition of data into the k canonical pairs. We present
two algorithms to decompose and reconstruct two data sets
on the Lie group using the first canonical pair Eq. (18),
which can be extended to the k-th canonical pair by Eq. (23)
and Eq. (24). We show in Section V that already the first
ICCA pair results in a significantly lower prediction error in
comparison to the standard Euclidean CCA.

1) ICCA Decomposition: extracts the first canonical pair,
and calculates the model, §, mapping one optimal
projection time, t*, to the other, s*. The subsequent
pairs can be calculated by applying Eq. (24).

2) ICCA Reconstruction: Predicts y € G from x € G using
the first canonical pair.

B. ICCA Decomposition

The ICCA decomposition uses iteration to solve for the
minimization for the first canonical pair. The algorithm
contains two stages: initialization and iteration.

The distance, D(-,-) between a point on the manifold and
a one-dimensional sub-manifold has multiple local minima.
We initialize the algorithm by firstly finding the optimal
projection of the data set to the first canonical pair oW uy,
lines 2-4 in Alg. 1. Then, we optimize the full objective in
Eq. (18) until convergence, lines 5-9 in Alg.1. Note that,
for this, the iteration stage alternates between finding the
optimal canonical pair (v(l),u(')) and its respective optimal
projection times for the data, {7, s }Y,.

At convergence, we estimate the predictor for s* from ¢*
using linear regression, Eq. (20). The algorithm returns the
model §, and the optimal first canonical pair (v(!), 1)),

C. ICCA Reconstruction

Given the k ICCA pairs (v(¥), 1)) and the model for the
optimal prediction time, §(¢), we can use these to reconstruct
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Algorithm 1 ICCA Decomposition

1: Input: {x;,y;}¥, € G - data pairs on the manifold, G.
2: Initialize

3: vt* « argmin YV | mtin ||log (1 'xiexp(v)) |2,
[Ivl=1
4: u,s* < argmin Y min ||log(u, 'yiexp(su))|?,
[luf[=1 '
5: repeat
6:  vu<+ Eq.(18) {with fixed {¢},s7}}
* : - N
{7}, « {argmin D(p; l)c,-7e>(p(sv))}l.:1
t
* : — N
s {57}, < {aremin D(u; 'y exp(ru)) )
N
9: until convergence
10: $(-) + Eq.(20)
11: return {4V} and §(-).

a secondary point §(x) € G on the Lie group from a primary
point x € G on the Lie group, as follows:

Y = argmin D(x,exp(rv!)))
t
vk > 1 : (%) = argmin D) exp(rv®)))
t

where x®) is as explained after Eq. (24) in Section IV-A.2.

j=exp(Y s ) e G, (25)

(ngle

k=1

V. EXPERIMENTS

The state space in articulated robotic systems [20] lies
within a manifold consisting of group elements such as
rotations and translations. The novelty of ICCA is the ability
to account for these intrinsic properties of the robotic states.
A more consistent representation of such states than provided
by standard CCA would be one that remains inside the man-
ifold structure, leading to improved CCA output accuracy.
The goal of the experiments is to answer the following
questions:

1) Can ICCA be effectively calculated from a finite
sample of point pairs on the Lie group?

2) Is the ICCA reconstruction more accurate than that
achieved by the standard Euclidean CCA?

A. Experimental settings

The MuJoCo simulator [21] was used to generate the data
for the evaluation of the ICCA method on the anthropomor-
phic hand. The hand consisted of 14 finger joints; the inner
finger joint was represented as a 3D Special Orthogonal
SO(3) group, and the other finger joints as a 2D Special
Orthogonal SO(2) group.

The two data sets for the ICCA analysis consist of the
original configurations of the hand and the final configu-
rations after 20 simulation steps with a stochastic action
sequence ’Action Noise’, as explained below. An example
of the original (current) configuration, x € G, is shown in
the top left image at Figure 2, and an example for the final
configuration, y € G, is shown at the top right image.
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Fig. 2. Anthropomorphic Robotic Hand used in Sec.V. The images
above show one of the simulations along with its ICCA reconstruction.
Top-left represents the original state. Bottom-left represents the initial
configuration (the neutral state with noise). Top-right represents the ground-
truth configuration. Bottom-right represents the ICCA reconstruction of the
final configuration given the initial configuration.

The set of the current configurations, {xi}fy: | €G, is gen-
erated by adding a stochastic perturbation (noise) to x € G, as
explained below. Each of the final configurations, {y;}Y | €
G, corresponds to a particular {x;} € G after applying the
predefined action sequence with small perturbation in each
action. An example of a perturbed current configuration and
the corresponding final configuration of the hand are shown
at the bottom left and right images of Figure 2, respectively.
To create the original configuration set {x;}}, € G, we
applied noise with the following features:

1) Configuration Noise: Gaussian noise with zero mean
vector with dimensionality 14 and diagonal covariance
matrix, 214 = 0.02114x14. This noise is added to the
original configuration.

2) Action Noise: Gaussian noise with zero mean, yu = 0.0
and variance, o = 0.01. This noise is independently
added to each action in the predefined action sequence
with length 20.

The total number of data points, {x;, y,-}f\': > is N=10x
1500, split into 10 experiments with 1500 data points in each
experiment. 2 : 1 ’train-to-test’ split was performed on the
data. We used the training data set for the calculations of
the first ICCA pair, (u("),v(1)), and of the regression model
§(t). The test set is used for measuring the reconstruction
error between the true final configuration, y, in (x,y), and the
reconstructed configuration, $(x), with (u"),v(1)) and §(r),
as explained in Section IV-C. The reconstruction error was
defined as the Mean Squared Error (MSE) between § = $(x)
and y. We compared the reconstruction error between the
conventional CCA (based on the Euclidean distance) and the
proposed ICCA (based on intrinsic distance).

B. Results

Accuracy and generalization are improved significantly
for ICCA compared to CCA. The MSE comparison shown
at Figure 3. The training improvement achieved 16.41%,
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Fig. 3. MSE between the true and the reconstructed configurations of the

anthropomorphic robotic arm for CCA and ICCA in training and testing.

while the testing improvement was 23.08%. ICCA achieved
better generalization as the train-test accuracy difference was
3.77% for ICCA and 16.05% for CCA.

There is an initial loss decrease in the initialization stage,
(lines 2-4, Alg. (1)), where the initial values for v(!) and u(!)
are found. Then, they are fine-tuned in the iteration stage
(lines 5-9 Alg. 1) until convergence (Figure 4). The plot
shows the average loss over ten experiments with a very
small variance.

VI. CONCLUSIONS AND FUTURE WORK

This work presents a novel method to generalize CCA to
the nonlinear setting of a Lie group. The distance optimality,
projection criteria, and subspace concepts generalize natu-
rally to the Lie setting via intrinsic Riemannian distances and
geodesics, respectively. This setting is a central application
in the context of articulated robotic devices [22].

The projection-based approach opens doors to symmetry-
aware methodologies, among these, the learning of parame-
ters in a transformation model.

Our formalism expressly uses the group-theoretic proper-
ties of the Lie group rather than merely approximating the
Lie group, e.g. via kernel-based approaches. However, fur-
ther refinements are based on explicitly symmetry-respecting
learning methods, such as kernels [23]. With the presented
generalization, the option to incorporate further direct tools
from the theory of groups has now become available to
enhance the quality of treatment of systems with intrinsically
symmetric structures.

We also emphasize that, like the whole family of PCA,
CCA, and their informational generalization, the Information
Bottleneck methods, the ICCA method enables a controlled
hierarchical dimensional reduction of dynamical control sys-
tems respecting the constraint manifold and thus allows us to
control complexity without losing the structural guarantees
enforced by the constraints, and thus to substantially limit
the performance loss due to the approximation.

We defer to future work the theoretical study of the
relationship between the optimal projection times, which was
found to be linear in the Lie group and the extension of the
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Fig. 4. Convergence of the ICCA loss for Grasping Hand in the iteration
stage. The loss plot is created by taking the average on 10 sets of
experiments on the grasping hand task. The curve is based on loss in the
iteration stage of ICCA Decomposition. There is an additional loss decrease
in the initialization stage.

introduced ICCA to the data on different manifolds which
are not necessarily Lie groups.
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I. APPENDIX: ELEMENTS OF LIE GROUP THEORY

A finite-dimensional Lie group is a group that is at the
same time a differentiable manifold [24], [25]. For every
point x € G on the manifold, there exists a tangent linear
vector space T G,. The tangent space at the identity element,
TG,, is special. It is called the Lie algebra, g, of the Lie
group, G. One can map elements of the Lie group (manifold)
to those of its algebra (linear vector space with an associative
bilinear product) and vice versa by:

Jog

g —
exp

G (26)

where ’exp’ and ’log’ are calculated via the corresponding
Taylor series of the operators. Concretely, Vg € g, exp(g) =

446

Yoo %’ where g"=gogo---og is the n-fold product of g

in the Lie algebra and the sum taken in the tangent space.
Here we interpret the expression in terms of the matrix
representation of the algebra.

The Lie algebra, as a linear vector space, is spanned
by a basis of k elements, E = {E|,E,,...,E;}, where k is
the dimension of the manifold G and E; € R¥. Thus every
element in the algebra, g € g, interpreted as k-dimensional
vector, is represented by a unique linear combination of the
basis elements

k
gla)= Z o;E;, with k scalars , o0 = {a;}_,.
i=1

27)

Eq. (26) and (27) induce a mapping of the collection & to
the Lie group, G, as follows: G(o) = exp(g(a)) € G.

The formalism is of particular interest for the special case
of articulated robotic systems, since its configuration space
(under multiple concatenated links) is represented by the Lie
groups of rotations and translations, reviewed below.

1) Groups of rotation and translation: The Lie groups
of 2D/3D spatial rotations, SO(2)/SO(3), and translations,
SE(2)/SE(3), fully characterize the primitive geometric mo-
tions of rigid bodies, and are widely used in robotics [20],
[26], [27]. Both groups admit matrix representations [25].
The group composition operator, o, is the standard matrix
multiplication and exp the matrix exponential.

The exponential map from the so(3) algebra to the cor-
responding SO(3) Lie group in Eq. (26) can be explicitly
calculated by the Rodrigues rotation formula [28]:

R=exp(0U) =I1+Usin8+U?*(1 —cosf) € R, (28)

where [ is the identity matrix, 6 € R the angle of rotation
and U the matrix (the element of the Lie algebra) generating
the rotation. The ’logarithmic map’:

6(R—RT)
2sin 6

trace(R) — 1
2

— -1

0 = cos

log(R) - 9
together with the Rodrigues rotation formula [28] allows us
to effectively calculate the intrinsic distance and the projec-
tions to subgroups, which are the important components of

the proposed ICCA method.
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