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AbstractÐ Incorporating prior knowledge into a data-driven
modeling problem can drastically improve performance, relia-
bility, and generalization outside of the training sample. The
stronger the structural properties, the more effective these
improvements become. Manifolds are a powerful nonlinear
generalization of Euclidean space for modeling finite dimen-
sions. When additionally assuming that the manifold carries
(Lie) group structure, this imposes a drastically stricter global
constraint. The range of their applications is very wide and
includes the important case of robotic tasks. We apply this idea
to Canonical Correlation Analysis (CCA). In traditional CCA
one constructs a hierarchical sequence of maximal correlations
of up to two paired data sets in Euclidean spaces. We here
generalize the CCA concept to respect the structure of Lie
groups and demonstrate its efficacy through the substantial
improvements it achieves in making structure-consistent pre-
dictions about changes in the state of a robotic hand.

I. INTRODUCTION

Simplicity that respects structure is a desirable property of

effective control. Typically, it improves a method’s robust-

ness, feasibility, and flexibility and is achieved by reducing

its complexity. A common form of complexity reduction

is realized by dimensionality reduction, which represents a

special case of the more general principle of information

compression methods.

One popular information compression model is the In-

formation Bottleneck (IB) [1], [2], a principled method to

achieve such reductions with intimate links to statistical

machine learning.

Of particular interest to the control community is the fact

that the IB is a direct generalization of the well-established

CCA [3]. In the case of (locally) linear Gaussian models,

CCA permits tuning the degree of structural preservation

from one variable to another. The IB thus implements a

ºsoftº CCA in the Gaussian case [4], [5].

However, CCA and its informational generalization (IB)

purely concentrate on preserving the dependency of the

target variables. They are utterly indifferent to any particular

additional structure of the problem, some paradigmatic con-

sequences of which we now illustrate in a pertinent example.

In [5], an IB is applied to a linear Gaussian control channel

which thus reduces to a soft CCA model. Reducing the

information that a simpler model has access to, the process

leads to a progressive reduction of the dimensionality in the
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accompanying soft CCA. However, this reduction is purely

correlational and does not consider the special structure of

the control loop, as discussed in [6]. Concretely, in the

controlled system, the matrix transforms the process’ past

dynamics into the process’ future dynamics. The original

transformation has a particular recursive structure following

that of the Hankel matrix [3]. After the system is naively

subject to information/dimensionality reduction, the resulting

reduced transformation matrix for the compressed system no

longer has a Hankel structure [5].

The structural deficit is alleviated in [6] by modifying

the approach of [5] to constrain the reduced transformation

matrices to satisfy the properties of a proper Hankel matrix

to represent actual control systems. However, this approach

is unsuitable for general use due to the requirement of

handcrafting the information reduction method to respect the

Hankel matrix structure of the control problem.

The present work presents a method to support a gener-

alizable approach to produce structure-respecting IB in the

future. We modify the traditional CCA method to respect the

structure of a manifold to which the variables of interest and

their interrelation are confined. In other words, we constrain

our problem space to manifolds instead of the Euclidean

space.

To achieve this we note that the naive concept of vari-

ous averaging operations used to compute the CCA in the

Euclidean case needs to be modified, as manifolds do not

offer mean and variance computation via vector addition

operations. Therefore, instead, we resort to the variational

description of the quantities of interest. The idea is analog

to the fact that, in Euclidean space, the centroid of given

data points can not only be computed by directly taking the

average vector of the data points but, alternatively, by finding

that point that minimizes the sum of its squared Euclidean

distances to the given data.

The key components of the proposed method will be:

1. this variational principle, now with manifold-intrinsic

distance, to replace the Euclidean averaging operation to

compute the generalized mean, and 2. using projections to

sub-manifolds replacing those to Euclidean vector subspaces.

The paper is organized as follows. Section II begins with

a general overview of well-known concepts and literature

reviews. An overview is given of the formalism in Section II

followed by the preliminaries relevant to the development
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of the formalism in Section III (note that Lie Theory and

manifolds as relevant to the paper are covered in the Ap-

pendix I). We highlight how to replace the computation of

the mean and centroid with a variation of expected distance

to transfer the concept from Euclidean space onto Lie groups.

This step is crucial for the development of the Intrinsic CCA.

We then discuss the Intrinsic PCA’s main features, which are

useful for building the intuition for its extensions towards

the ICCA. Section IV presents the proposed method for

ICCA, extending the concept of principal geodesic curves

to canonical geodesic curve pairs, denoted by intrinsic CCA,

and represents an efficient algorithm for the calculation of

ICCA from data points on high-dimensional Lie groups.

In Section V, we demonstrate this algorithm on a high-

dimensional articulated robotic system, an anthropomorphic

robotic hand, whose configuration space is given, in general,

by the corresponding multi-dimensional Lie group. Section

VI reanalyzes the paper to understand the impact of the

findings and build potential future directions1.

II. OVERVIEW

Existing methods for dimensionality reduction consider

their source data living in ºflatº Euclidean spaces and

are utterly agnostic to any potential additional structure or

constraints [3], [4], [7], [8], [9]. Specifically, there are no

methods for joint dimensionality reduction (compression) of

two sets of points when these are restricted to a Lie group.

Joint compression could reveal predictive models between

one set to another, with additionally choosing a desired

level of complexity and details. In particular, such structure-

preserving predictive models would permit the reconstruction

of a point in one set on the Lie group from a point in another

set on the same Lie group. A particular scenario of interest is

the estimation of dynamical models on the manifold, where

two sets of points on the manifold represent the current state

and the state in T time steps to the future. This estimation

is much more difficult or impossible if a model does not

preserve the manifold structure. Concretely, here, we propose

a method to generalize the CCA to the ICCA on general Lie

groups.

Applying the Riemannian approach to CCA allows us to

control the model’s intrinsic complexity by choosing how

many intrinsic geodesic pairs are being used (Section IV)

while accounting for the additional intrinsic structure and.

Our main contributions include:

1) Two algorithms for ICCA decomposition and recon-

struction;

2) Reduction in the prediction error of the future state of

robotic hand from the current state compared to the

existing baseline dimensionality reduction methods;

3) Structural guarantees that the predicted state is con-

fined to the Lie group.

As one remarkable result, we found that the relationship be-

tween the ºintrinsicº times of the basic geodesic movements

can be mapped linearly to each other (Section V).

1All the experiments and results can be reproduced by our code reposi-
tory: https://github.com/JWK7/ICCA

NOTATION

Scalars are denoted by the lowercase letters, e.g., t ∈R
+.

A Lie group and its corresponding algebra are denoted by

G and g, respectively. For special groups, such as SO(3),
we write the algebra as its lowercase pendant, such as so(3).
The Euclidean (extrinsic) distance between two points x1 and

x2 is given by ||x2− x1||2, while the Riemannian (intrinsic)

distance between such points on a manifold is denoted by

D(x1,x2).

III. PRELIMINARIES

This work uses the standard definitions of the Lie group

(including the groups for rotation and translation) frequently

used in robotics. This background is provided in Appendix I

for completeness.

The next section gives an overview over the key compo-

nents of the proposed method (intrinsic distance, averaging

operations, and sub-manifold projection).

A. Intrinsic vs. Extrinsic Means

Intrinsic and extrinsic calculations differ fundamentally

from one another. Extrinsic (Euclidean) calculation limits

itself to the linear constraint and does not account for the

non-linear structure embedded in many datasets. To develop a

structure-aware ICCA, we will need to calculate the intrinsic

mean and projections of data points on the Lie group to

its sub-manifolds (Section III-B). We now introduce the

definitions on which the intrinsic analogues of Euclidean

concepts will be based on.

Given a set of data points {xi}
N
i=1 in a metric space, X ,

their mean, µx, is defined by:

µx = argmin
x∈X

N

∑
i=1

D2(x,xi), (1)

where D(·, ·) denotes the distance between points in X and

is assumed the minimum to be unique. I.e., the mean of a set

of points in a general metric space is defined by the solution

to the optimization problem in Eq. (1).

This variational formulation offers a generalization of the

mean beyond spaces in which arithmetic means can be

computed, i.e. which permit convex combinations or explicit

addition operators, such as the standard Euclidean space. In

the latter, Eq. (1) has as closed-form solution the traditional

arithmetic average of the data points, µx =
1
N ∑i xi.

1) Intrinsic mean: We now apply this variational method

to compute the mean intrinsically to a Lie group (Ap-

pendix I). Given a Lie group, X , the distance between data

points, x1,x2 ∈X is given by the Riemannian distance on

the manifold:

D2(x1,x2)≜ || log(x−1
1 x2)||

2
2, (2)

where the inverse is a Lie group inverse and ’log’ denotes the

logarithmic map2. With this, we generalize the calculation of

2Strictly spoken, the logarithmic map is defined locally. Without loss of
generality, we resolve ambiguities by choosing the pre-image of its argument
with respect to the exponential map with the minimal norm and breaking
remaining ambiguities as per convenience of the respective computation.
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the intrinsic mean [10], [11] of x1,x2, . . . ,xN ∈X by solving

Eq. (1). The problem in Eq. (1) can be solved iteratively

[10], [11] or can be approximated for small x1 and x2 by

the Baker±Campbell±Hausdorff formula [12], [13] given by

Eq. (3):

|| log(x−1
1 x2)||2 ≈ || log(x2)− log(x1)||2, (3)

which omits the non-commutative terms between x−1
1 and x2.

2) Extrinsic mean: If we would instead embed data points

from the Lie manifold X into the ambient Euclidean space

[14] we can calculate the mean in Eq. (1) directly using the

Euclidean distance of the ambient space via the arithmetic

computation of the mean, leading to the traditional extrinsic

mean. However, in general, this mean will not be a point

on a manifold. This creates a discrepancy between the

internal structure of the data and its extrinsic statistics. This

discrepancy results in imprecise modeling of data if these are

actually constrained to a manifold and, hence, in deficient

generalization across samples. By violating the constraints

represented by the manifold structure, the extrinsic mean

may not even represent a physically realizable configuration

of the system at all.

B. Projection to Subgroups

Let G and g be the Lie group and its corresponding

algebra. For an arbitrary unit vector v ∈ g, we can define

a one-parameter subgroup Hv of G [10]:

Hv ≜
{

exp(tv) ∈ G : t ∈ R
}

, (4)

where ’exp’ is the exponential map from g to G, given in

Eq. (28). The distance between any x ∈ G and Hv is given

by:

D(x,Hv)≜ min
t

D(x,exp(tv)), (5)

with the optimal value of t being given by:

t∗ =argmin
t

D(x,exp(tv)), (6)

determining the projection of x onto Hv:

ProjHv
(x)≜ exp(t∗v). (7)

This projection of a group element to a one-parameter

subgroup is a core component in the Intrinsic PCA [10],

[13] (explained in the next section), which we generalize to

Intrinsic CCA in this work.

C. Intrinsic Principal Component Analysis

To provide the intuition for the development and the key

features in the proposed Intrinsic CCA method, we reca-

pitulate an existing Intrinsic Principal Component Analysis

(PCA) method on Lie groups [13]. Traditional PCA is con-

cerned with dimensionality reduction through the projection

of data to linear subspaces, minimizing the reconstruction

error. As one increases the dimensionality of the subspaces,

new independent (orthogonal) additional features are ac-

counted for.

Whether in the Euclidean or the manifold case, the calcula-

tion is based on the above principle of hierarchical projection

of data on those subspaces or -manifolds which minimize

the mean projection error between the data points and the

corresponding subspace [13]. The difference between PCA

in the Euclidean space and PCA on the Lie group is in the

definition of the subspace and that of the distance, and the

operators used for averaging (Appendices III-A and III-B).

We proceed by presenting first the calculation of PCA in

both Euclidean space and the Lie group in order to prepare

the background to the introduction of the ICCA method.

PCA in Euclidean Space One calculates the hierarchical

projections beginning with the first PCA component, k = 1,

which is a one-dimensional linear (strictly spoken, affine)

space. Given the Euclidean space, X , we compute it by

seeking a one-dimensional subspace onto which the data

points x1,x2, . . . ,xN ∈ X project with the least total distance

loss [13], more precisely, we seek Sv = {tv : t ∈ R} such

that:

v(1) = argmin
||v||=1

N

∑
i=1

||xi−ProjSv
(xi)||

2
2, (8)

where ProjSv
(x) = (x · v)v is the optimal projection of x on

Sv. We compute the subsequent PCA components recursively

by proceeding to increasingly higher-dimensional subspaces,

by removing the contribution of the already established

subspaces and minimizing the distance loss of the data points

with respect to the newly added one. Concretely, for k > 1,

we calculate recursively [13]:

v(k>1) = argmin
||v||=1

N

∑
i=1

||xi−ProjSv
(xi)−

k−1

∑
ℓ=1

ProjS
v(ℓ)

(xi)||
2
2. (9)

In other words, the first projection minimizes the devia-

tions to the first component, and all subsequent projections

minimize the residual deviation to the new component after

all previous components have been accounted for.

There are two essential differences between PCA in the

Euclidean space and on the Lie group. First, the Euclidean

distance function is inappropriate for estimating the projec-

tion error on the Lie group. Instead, the manifold-intrinsic

distance, such as the Riemannian distance, should be used

[15]. Second, the sub-spaces/principal components in the

Euclidean space are given by vector (strictly spoken, affine,

if the mean does not coincide with the origin) subspaces,

while in the Lie group, they are given by principal geodesic

curves.

PCA on Lie Groups The generalization of the first principal

vector in Eq. (8) to the first principal geodesic curve is

achieved by combining Eq. (1),Eq. (5), and Eqs. (8) and

(9). One obtains the first principal geodesic curve, [13]:

v(1) = argmin
||v||=1

N

∑
i=1

min
t
|| log

(

(µ−1xi)
−1 exp(tv)

)

||2, (10)

where µ , ′ log′, and ′ exp′, are the mean, given in Eq. (1), the

logarithmic and exponential maps (cf., Appendix), accord-

ingly.
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The principal geodesic curves for k > 1 are defined anal-

ogously to v(k>1) in Eq. (9), again , with the appropriate

distance (Eq. (5)), projection (Eq. (7)), and mean (Eq. (1)),

respectively.

Following this intuition and the properties of projections to

a submanifold, we now extend the Intrinsic PCA method [13]

to the novel Intrinsic CCA method. Here sets of point pairs

on the Lie group are recursively projected onto a sequence of

pairs of submanifolds. In analogy to PCA, a current manifold

pair recursively encompasses previous submanifold pairs to

minimize the intrinsic error between the mapped points.

IV. PROPOSED METHOD - ICCA

Canonical Correlation Analysis (CCA) is a fundamental

tool to estimate two subspaces and a linear transformation

between them from data, such that each of the original

data sets are represented by (projected to) the corresponding

subspaces with minimal error; similarly, there is a minimal

error between the projected data to these subspaces.

Its applications extend far beyond pure data analysis; they

include computer vision [16], speech synthesis [17], and

robotic control [18]. Notably, and of particular interest for

control, CCA and its information-theoretic generalization has

been proven useful for the dimensionality reduction of linear

dynamical systems [6], [5], [4], [3]. With its wide variety

of applications, however, conventional CCA tends to handle

non-linear data poorly due to its Euclidean assumptions [19].

One can therefore expect that adapting CCA to the intrinsic

structure of the data it is to represent should improve the

ability of this dimension reduction technique to respect and

faithfully preserve the mapping between the set of data pairs.

In this work, we propose a particularly useful special-

ization of the nonlinear case, namely a CCA that ºlivesº

specifically on Lie groups. Such an operation is of particular

interest in the context of robotics [20]. Environments that

contain complex manipulation, shape modifications, or other

structural changes can be suitably described in the language

of Lie group operations.

Much like in PCA, CCA implements a hierarchy of

projections between data and sub-spaces. However, CCA

uses two projections per component, called the canonical

pairs. In the Euclidean space these pairs are derived using

the standard distance, averaging and projection operators.

In order to define the intrinsic CCA, we thus translate its

functionality, given in the first paragraph of this section, into

the language of intrinsic distance, averaging and projection

operators on the Lie group, as follows.

1) Projection on the Subgroups: We define one-parameter

subgroups Hv and Hu of G, a distance between x,y ∈ G and

Hv, Hu, respectively, where v,u ∈ g:

Hv ≜
{

exp(tv) ∈ G : t ∈ R
}

, (11)

Hu ≜
{

exp(su) ∈ G : s ∈ R
}

, (12)

D(x,Hv)≜ min
t

D(x,exp(tv)), (13)

D(y,Hu)≜ min
s

D(y,exp(su)), (14)

By using the base movement of (v, u), we can represent each

data point pair through the optimal projection times (t∗,s∗):

t∗ =argmin
t

D(x,exp(tv)), (15)

s∗ =argmin
s

D(y,exp(su)). (16)

The distance, D(·, ·), in Eq. (13) and Eq. (14) is the intrinsic

Riemannian distance Eq. (2).

A. Intrinsic Canonical Correlation Analysis

Our methodology relies on optimizing projections to min-

imize the distance between the two subgroups of the set of

points. We compress the original data into the pair (v,u) with

their corresponding projection times (t∗,s∗). (v,u) and (t∗,s∗)

are selected to minimize the prediction error between the past

and future trajectory on the manifold, corresponding to the

first vs. second entry of the pair, respectively, as explained

below.

1) First ICCA pair: Given N point pairs, {xi ∈ G,yi ∈
G}N

i=1, on the Lie manifold, G, we defined the first canonical

geodesic pair as a pair of vectors in the corresponding Lie al-

gebra, g,
(

v(1) ∈ g,u(1) ∈ g
)

, representing two one-parameter

subgroups
(

Hv,Hu

)

, with which the data are maximally asso-

ciated through their projections ProjHv
(xi) ∈ G,ProjHu

(yi) ∈
G, i = 1 . . .N with corresponding parametrizations t∗i ,s

∗
i .

We propose to calculate the first ICCA pair from N point

pairs {xi,yi}
N
i=1 on the manifold by:

v(1),u(1) = argmin
||v||=||u||=1

N

∑
i=1

(

D2(µ−1
x xi,Hv) (17)

+D2(µ−1
y yi,Hu)

+D2
(

ProjHv
(µ−1

x xi),ProjHu
(µ−1

y yi)
)

)

.

or, explicitly,

v(1),u(1) = argmin
||v||=||u||=1

N

∑
i=1

(

min
t

D2(µ−1
x xi,exp(tv)) (18)

+ min
s

D2
(

µ−1
y yi,exp(su)

)

+D2
(

exp(t∗i v),exp(s∗i u)
)

)

,

where the first two terms define for each i the time pair

(t∗i ,s
∗
i ) via Eqs. (15) and (16), while the third term is the

distance between the projected xi and yi, with the correspond-

ing t∗i and s∗i , from each other. The joint projections given

by the first two terms and the last term in Eq. (18) extend

the intrinsic PCA towards the ICCA.

Optimal Projection Time. The solution to Eq. (17) includes
(

v(1),u(1)
)

and
(

t∗i ,s
∗
i )

N
i=1. Given this solution we train a

linear regression model, f
(1)
ψ , parameterized by ψ , to predict

s from t:

ψ∗ = argmin
ψ

1

N

N

∑
i=1

(

s∗i − f
(1)
ψ (t∗i )

)2
(19)
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Fig. 1. Optimal Projection Time. t∗ vs s∗ comparison that uses the
canonical pair to map to the original data. t∗ and s∗ show a linear relationship
between one another. Thus a simple linear regression model would be
suitable to map t∗ to s∗.

which we concisely denote by ŝ(t):

ŝ(t) = f
(1)
ψ∗ (t). (20)

The model in Eq. (20) allows us to reconstruct ŷ from x

using the first ICCA pair by:

t∗ = argmin
t

D(x,exp(tv(1))), (21)

ŷ = exp
(

ŝ(t∗)u(1)
)

, (22)

where D(·, ·) and ’exp’ are the (intrinsic) Riemannian dis-

tance Eq. (2) and the exponential map Eq. (28), respectively.

Given that the two sets of data are assumed to be asso-

ciated, the (t∗,s∗) derived from these data sets is expected

to preserve some level of association with one another. A

fortiori, we empirically found in our experiments (cf., Section

V) that the dependency between the optimal (t∗i ,s
∗
i ) is linear,

and even close to the identity, as shown at Figure 1. We

have not yet established a stringent theoretical justification

for this phenomenon, whether this is a general property of the

algorithm, a consequence of the construction of t and s from

normalized vectors, stemming from constraining ourselves

to the Lie group property, or a peculiarity of the particular

experimental scenario.

We proceed by recursively defining the next ICCA pairs.

2) Next ICCA Pairs: Denote the projection of µ−1
x xi on

H
v(1)

by Proj(1)(xi), and the projection of µ−1
y yi on H

u(1)
by

Proj(1)(yi).

Firstly, we remove Proj(1)(xi) from µ−1
x xi and Proj(1)(yi)

from µ−1
y yi, which results in x

(2)
i and y

(2)
i , respectively. Then,

given ∀i : (x
(1)
i ,y

(1)
i ) = (exp(t∗i v(1)),exp(s∗i u(1))), we define

the second ICCA pair by:

v(2),u(2) = argmin
||v||=||u||=1

N

∑
i=1

(

D2(x
(2)
i ,Hv) (23)

+D2(y
(2)
i ,Hu)

+D2
(

ProjHv
(x

(2)
i ),ProjHu

(y
(2)
i )
)

)

.

In general, the (k+ 1)-th ICCA pair is recursively defined

by:

v(k+1),u(k+1) = argmin
||v||=||u||=1

N

∑
i=1

(

D2(x
(k)
i ,Hv) (24)

+D2(y
(k)
i ,Hu)

+D2
(

ProjHv
(x

(k)
i ),ProjHu

(y
(k)
i )
)

)

.

where x(k) and y(k) are the residual data pair from the last

iteration. The solution to the ICCA problem consists of all

k ICCA pairs
(

v(k),u(k)
)

and their corresponding mappings

f (k)(t) between the optimal projection times.

The equations Eq. (23) and Eq. (24) represent the de-

composition of data into the k canonical pairs. We present

two algorithms to decompose and reconstruct two data sets

on the Lie group using the first canonical pair Eq. (18),

which can be extended to the k-th canonical pair by Eq. (23)

and Eq. (24). We show in Section V that already the first

ICCA pair results in a significantly lower prediction error in

comparison to the standard Euclidean CCA.

1) ICCA Decomposition: extracts the first canonical pair,

and calculates the model, ŝ, mapping one optimal

projection time, t∗, to the other, s∗. The subsequent

pairs can be calculated by applying Eq. (24).

2) ICCA Reconstruction: Predicts y∈G from x∈G using

the first canonical pair.

B. ICCA Decomposition

The ICCA decomposition uses iteration to solve for the

minimization for the first canonical pair. The algorithm

contains two stages: initialization and iteration.

The distance, D(·, ·) between a point on the manifold and

a one-dimensional sub-manifold has multiple local minima.

We initialize the algorithm by firstly finding the optimal

projection of the data set to the first canonical pair (v(1),u(1)),

lines 2-4 in Alg. 1. Then, we optimize the full objective in

Eq. (18) until convergence, lines 5-9 in Alg.1. Note that,

for this, the iteration stage alternates between finding the

optimal canonical pair (v(1),u(1)) and its respective optimal

projection times for the data, {t∗i ,s
∗
i }

N
i=1.

At convergence, we estimate the predictor for s∗ from t∗

using linear regression, Eq. (20). The algorithm returns the

model ŝ, and the optimal first canonical pair (v(1),u(1)).

C. ICCA Reconstruction

Given the k ICCA pairs (v(k),u(k)) and the model for the

optimal prediction time, ŝ(t), we can use these to reconstruct

443

Authorized licensed use limited to: Texas Tech University. Downloaded on December 17,2024 at 18:06:37 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 ICCA Decomposition

1: Input: {xi,yi}
N
i=1 ∈ G - data pairs on the manifold, G.

2: Initialize

3: v, t∗← argmin
||v||=1

∑
N
i=1 min

t
|| log

(

µ−1
x xi exp(tv)

)

||2,

4: u,s∗← argmin
||u||=1

∑
N
i=1 min

s
|| log

(

µ−1
y yi exp(su)

)

||2,

5: repeat

6: v,u← Eq.(18) {with fixed {t∗i ,s
∗
i }}

7: {t∗i }
N
i=1←

{

argmin
t

D(µ−1
x xi,exp(sv))

}N

i=1

8: {s∗i }
N
i=1←

{

argmin
s

D(µ−1
y yi,exp(tu))

}N

i=1

9: until convergence

10: ŝ(·)← Eq.(20)

11: return {v(1),u(1)} and ŝ(·).

a secondary point ŷ(x) ∈G on the Lie group from a primary

point x ∈ G on the Lie group, as follows:

t(1) = argmin
t

D(x,exp(tv(1)))

∀k ≥ 1 : t(k+1) = argmin
t

D(x(k),exp(tv(k)))

ŷ = exp
(

K

∑
k=1

ŝ(k)(t(k))u(k)
)

∈ G, (25)

where x(k) is as explained after Eq. (24) in Section IV-A.2.

V. EXPERIMENTS

The state space in articulated robotic systems [20] lies

within a manifold consisting of group elements such as

rotations and translations. The novelty of ICCA is the ability

to account for these intrinsic properties of the robotic states.

A more consistent representation of such states than provided

by standard CCA would be one that remains inside the man-

ifold structure, leading to improved CCA output accuracy.

The goal of the experiments is to answer the following

questions:

1) Can ICCA be effectively calculated from a finite

sample of point pairs on the Lie group?

2) Is the ICCA reconstruction more accurate than that

achieved by the standard Euclidean CCA?

A. Experimental settings

The MuJoCo simulator [21] was used to generate the data

for the evaluation of the ICCA method on the anthropomor-

phic hand. The hand consisted of 14 finger joints; the inner

finger joint was represented as a 3D Special Orthogonal

SO(3) group, and the other finger joints as a 2D Special

Orthogonal SO(2) group.

The two data sets for the ICCA analysis consist of the

original configurations of the hand and the final configu-

rations after 20 simulation steps with a stochastic action

sequence ’Action Noise’, as explained below. An example

of the original (current) configuration, x ∈ G, is shown in

the top left image at Figure 2, and an example for the final

configuration, y ∈ G, is shown at the top right image.

Fig. 2. Anthropomorphic Robotic Hand used in Sec.V. The images
above show one of the simulations along with its ICCA reconstruction.
Top-left represents the original state. Bottom-left represents the initial
configuration (the neutral state with noise). Top-right represents the ground-
truth configuration. Bottom-right represents the ICCA reconstruction of the
final configuration given the initial configuration.

The set of the current configurations, {xi}
N
i=1 ∈G, is gen-

erated by adding a stochastic perturbation (noise) to x∈G, as

explained below. Each of the final configurations, {yi}
N
i=1 ∈

G, corresponds to a particular {xi} ∈ G after applying the

predefined action sequence with small perturbation in each

action. An example of a perturbed current configuration and

the corresponding final configuration of the hand are shown

at the bottom left and right images of Figure 2, respectively.

To create the original configuration set {xi}
N
i=1 ∈ G, we

applied noise with the following features:

1) Configuration Noise: Gaussian noise with zero mean

vector with dimensionality 14 and diagonal covariance

matrix, Σ14 = 0.02I14×14. This noise is added to the

original configuration.

2) Action Noise: Gaussian noise with zero mean, µ = 0.0

and variance, σ = 0.01. This noise is independently

added to each action in the predefined action sequence

with length 20.

The total number of data points, {xi,yi}
N
i=1, is N = 10×

1500, split into 10 experiments with 1500 data points in each

experiment. 2 : 1 ’train-to-test’ split was performed on the

data. We used the training data set for the calculations of

the first ICCA pair, (u(1),v(1)), and of the regression model

ŝ(t). The test set is used for measuring the reconstruction

error between the true final configuration, y, in (x,y), and the

reconstructed configuration, ŷ(x), with (u(1),v(1)) and ŝ(t),
as explained in Section IV-C. The reconstruction error was

defined as the Mean Squared Error (MSE) between ŷ = ŷ(x)
and y. We compared the reconstruction error between the

conventional CCA (based on the Euclidean distance) and the

proposed ICCA (based on intrinsic distance).

B. Results

Accuracy and generalization are improved significantly

for ICCA compared to CCA. The MSE comparison shown

at Figure 3. The training improvement achieved 16.41%,

444

Authorized licensed use limited to: Texas Tech University. Downloaded on December 17,2024 at 18:06:37 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. MSE between the true and the reconstructed configurations of the
anthropomorphic robotic arm for CCA and ICCA in training and testing.

while the testing improvement was 23.08%. ICCA achieved

better generalization as the train-test accuracy difference was

3.77% for ICCA and 16.05% for CCA.

There is an initial loss decrease in the initialization stage,

(lines 2-4, Alg. (1)), where the initial values for v(1) and u(1)

are found. Then, they are fine-tuned in the iteration stage

(lines 5-9 Alg. 1) until convergence (Figure 4). The plot

shows the average loss over ten experiments with a very

small variance.

VI. CONCLUSIONS AND FUTURE WORK

This work presents a novel method to generalize CCA to

the nonlinear setting of a Lie group. The distance optimality,

projection criteria, and subspace concepts generalize natu-

rally to the Lie setting via intrinsic Riemannian distances and

geodesics, respectively. This setting is a central application

in the context of articulated robotic devices [22].

The projection-based approach opens doors to symmetry-

aware methodologies, among these, the learning of parame-

ters in a transformation model.

Our formalism expressly uses the group-theoretic proper-

ties of the Lie group rather than merely approximating the

Lie group, e.g. via kernel-based approaches. However, fur-

ther refinements are based on explicitly symmetry-respecting

learning methods, such as kernels [23]. With the presented

generalization, the option to incorporate further direct tools

from the theory of groups has now become available to

enhance the quality of treatment of systems with intrinsically

symmetric structures.

We also emphasize that, like the whole family of PCA,

CCA, and their informational generalization, the Information

Bottleneck methods, the ICCA method enables a controlled

hierarchical dimensional reduction of dynamical control sys-

tems respecting the constraint manifold and thus allows us to

control complexity without losing the structural guarantees

enforced by the constraints, and thus to substantially limit

the performance loss due to the approximation.

We defer to future work the theoretical study of the

relationship between the optimal projection times, which was

found to be linear in the Lie group and the extension of the

Fig. 4. Convergence of the ICCA loss for Grasping Hand in the iteration
stage. The loss plot is created by taking the average on 10 sets of
experiments on the grasping hand task. The curve is based on loss in the
iteration stage of ICCA Decomposition. There is an additional loss decrease
in the initialization stage.

introduced ICCA to the data on different manifolds which

are not necessarily Lie groups.
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I. APPENDIX: ELEMENTS OF LIE GROUP THEORY

A finite-dimensional Lie group is a group that is at the

same time a differentiable manifold [24], [25]. For every

point x ∈ G on the manifold, there exists a tangent linear

vector space T Gx. The tangent space at the identity element,

T Ge, is special. It is called the Lie algebra, g, of the Lie

group, G. One can map elements of the Lie group (manifold)

to those of its algebra (linear vector space with an associative

bilinear product) and vice versa by:

g

log
←−−−−→
exp

G (26)

where ’exp’ and ’log’ are calculated via the corresponding

Taylor series of the operators. Concretely, ∀g ∈ g, exp(g) =

∑
∞
n=0

gn

n!
, where gn=g◦g◦ · · · ◦g is the n-fold product of g

in the Lie algebra and the sum taken in the tangent space.

Here we interpret the expression in terms of the matrix

representation of the algebra.

The Lie algebra, as a linear vector space, is spanned

by a basis of k elements, E = {E1,E2, . . . ,Ek}, where k is

the dimension of the manifold G and Ei ∈ R
k. Thus every

element in the algebra, g ∈ g, interpreted as k-dimensional

vector, is represented by a unique linear combination of the

basis elements

g(α) =
k

∑
i=1

αiEi, with k scalars ,α = {αi}
k
i=1. (27)

Eq. (26) and (27) induce a mapping of the collection α to

the Lie group, G, as follows: G(α) = exp(g(α)) ∈ G.

The formalism is of particular interest for the special case

of articulated robotic systems, since its configuration space

(under multiple concatenated links) is represented by the Lie

groups of rotations and translations, reviewed below.

1) Groups of rotation and translation: The Lie groups

of 2D/3D spatial rotations, SO(2)/SO(3), and translations,

SE(2)/SE(3), fully characterize the primitive geometric mo-

tions of rigid bodies, and are widely used in robotics [20],

[26], [27]. Both groups admit matrix representations [25].

The group composition operator, ◦, is the standard matrix

multiplication and exp the matrix exponential.

The exponential map from the so(3) algebra to the cor-

responding SO(3) Lie group in Eq. (26) can be explicitly

calculated by the Rodrigues rotation formula [28]:

R = exp
(

θU
)

= I +U sinθ +U2(1− cosθ) ∈ R
3×3, (28)

where I is the identity matrix, θ ∈ R the angle of rotation

and U the matrix (the element of the Lie algebra) generating

the rotation. The ’logarithmic map’:

log(R) =
θ(R−RT )

2sinθ
, θ = cos−1

(

trace(R)−1

2

)

together with the Rodrigues rotation formula [28] allows us

to effectively calculate the intrinsic distance and the projec-

tions to subgroups, which are the important components of

the proposed ICCA method.
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