
Mol Ecol Resour. 2025;25:e14008.	 		 	 | 1 of 17
https://doi.org/10.1111/1755-0998.14008

wileyonlinelibrary.com/journal/men

1  |  INTRODUC TION

The impacts of climate change and habitat loss pose urgent 
challenges to the management of species, communities, habi-
tats and ecosystem services (Bonan, 2008; Doney et al., 2012; 

Hoegh- Guldberg & Bruno, 2010). Traditional methods used to 
infer such impacts, such as reciprocal transplants and common 
gardens, require time and resources that may not be available or 
feasible for many organisms of management concern, particularly 
for long- lived organisms where reproductive stages occur after 
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Abstract
Rapid environmental change poses unprecedented challenges to species persistence. 
To understand the extent that continued change could have, genomic offset methods 
have been used to forecast maladaptation of natural populations to future environ-
mental change. However, while their use has become increasingly common, little is 
known regarding their predictive performance across a wide array of realistic and 
challenging scenarios. Here, we evaluate the performance of currently available offset 
methods	 (gradientForest,	 the	 Risk-	Of-	Non-	Adaptedness,	 redundancy	 analysis	 with	
and without structure correction and LFMM2) using an extensive set of simulated 
data sets that vary demography, adaptive architecture and the number and spatial 
patterns of adaptive environments. For each data set, we train models using either all, 
adaptive or neutral marker sets and evaluate performance using in silico common gar-
dens	by	correlating	known	fitness	with	projected	offset.	Using	over	4,849,600	of	such	
evaluations, we find that (1) method performance is largely due to the degree of local 
adaptation across the metapopulation (LA), (2) adaptive marker sets provide minimal 
performance	advantages,	(3)	performance	within	the	species	range	is	variable	across	
gardens and declines when offset models are trained using additional non- adaptive 
environments and (4) despite (1) performance declines more rapidly in globally novel 
climates (i.e. a climate without an analogue within the species range) for metapopula-
tions with greater LA than lesser LA.	We	discuss	the	implications	of	these	results	for	
management, assisted gene flow and assisted migration.
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several decades of development. Ecological forecasting models 
have therefore become increasingly germane to support environ-
mental decision- making by managers across both terrestrial and 
marine systems.

In the context of population viability in the face of environmental 
change, many of these models rely on theoretical expectations that 
the limits of species' distributions are primarily determined by the 
distribution of environmental conditions (e.g. Good, 1931), and that 
occupancy of highly suitable habitat enables increased abundance 
through greater survival and reproduction (i.e. fitness) of individuals 
(Brown, 1984).	Such	methods,	termed	species	distribution	models	or	
ecological niche models (see Elith & Leathwick, 2009 for a discus-
sion on terminology), are correlative approaches that are often used 
to predict (relative) habitat suitability for a single species (Lee- Yaw 
et al., 2022). This information is used to understand potential eco-
logical impacts on the species from future climate change. However, 
these methods often ignore aspects of the species' evolutionary 
history that could be important for predicting long- term popula-
tion persistence, such as the environmental drivers of local adap-
tation	or	 spatial	patterns	of	adaptive	genetic	variation	 (Waldvogel	
et al., 2020).

Subsequent	 methods,	 termed	 genomic	 offsets	 (reviewed	 in	
Capblancq et al., 2020; Rellstab et al., 2021), have attempted to ad-
dress these shortcomings by modelling relationships between en-
vironmental and genetic variation to predict the maladaptation of 
natural populations to either future climates in situ, or to predict the 
relative suitability of these populations for the specific environment 
of a restoration site. Empirical attempts to confirm predictions from 
genomic offset models are rare and, compared to evaluations in sil-
ico (Láruson et al., 2022), have found relatively weaker relationships 
between predicted maladaptation to common garden climates and 
the measurement of phenotypic proxies for fitness from individuals 
grown in these same environments (e.g. Capblancq & Forester, 2021; 
Fitzpatrick et al., 2021; Lind et al., 2024). This suggests that realized 
performance in natural systems may not meet expectations from 
evaluations in silico. Even so, these empirical results have often 
shown the expected negative relationship between predicted off-
set and common garden performance such as measures of juve-
nile growth (e.g. Fitzpatrick et al., 2021; Lind et al., 2024) and even 
52- year mortality at multiple sites (Lind et al., 2024). Furthermore, 
many of these studies found that genomic offsets often perform 
better than climate or geographic distance alone (e.g. Capblancq & 
Forester, 2021; Fitzpatrick et al., 2021; Láruson et al., 2022; Lind 
et al., 2024).

Across	 empirical	 and	 in	 silico	 studies,	 little	 difference	 in	 per-
formance was found between models trained using only adaptive 
markers (i.e. known in silico, or candidates from empirical geno-
type–environment	[GEA]	associations)	and	those	chosen	at	random,	
suggesting that genome- wide data may be sufficient to capture sig-
nals relevant to environmental adaptation (Fitzpatrick et al., 2021; 
Lachmuth, Capblancq, Keller, et al., 2023; Láruson et al., 2022; Lind 
et al., 2024). Together, these results suggest that genomic offset 
methods may provide valuable insight for management without 

needing to identify adaptive loci, but the number of evaluations 
has been relatively small with few comparisons among methods. 
Thus, little is known about how robust these methods are across 
a wide array of realistic empirical scenarios and the comparative 
performance among available methods. Other signals within marker 
data, such as the degree to which allele frequencies are clinal across 
environmental gradients, also require further exploration, particu-
larly for methods that may algorithmically emphasize such patterns 
over those more relevant to environmental selection, or for those 
methods that may rely upon such clinal patterns to maintain ac-
curacy in predictions. Indeed, concerns regarding the accuracy of 
ecological forecasting models present a primary limitation towards 
incorporating inferences from these models into management (Clark 
et al., 2001;	Schmolke	et	al.,	2010) and genomic offset models are 
no exception. Major questions still remain about how the perfor-
mance of a method is affected by aspects of the evolutionary history 
of sampled populations, whether the type of signals in putatively 
ideal data sets that may mislead offset inference (e.g. clinal allele 
frequencies), how important it is to identify the environmental driv-
ers of local adaptation a priori and how consist predictive perfor-
mance is across the landscape. Finally, because novel climates with 
no recent analogue are expected to increase in the future (Lotterhos 
et al., 2021; Mahony et al., 2017), there is also uncertainty regarding 
the performance of forecasting models when predictions are made 
to novel environments that drastically differ from those used to 
train and build the models themselves (Fitzpatrick et al., 2018; Lind 
et al., 2024).

While	much	 uncertainty	 remains	 regarding	 the	 predictive	 per-
formance of genomic offsets, the domain of applicability (i.e. the 
circumstances under which a method is acceptably accurate) for 
these methods can be more precisely defined using simulated data 
(Lotterhos et al., 2022).	Simulated	data	present	ideal	circumstances	
for understanding the opportunities and limits of genomic offsets 
because there is no error in the measurement of allele frequencies, 
environmental variables, individual fitness or the drivers of local 
adaptation. To provide relevant inference regarding the domain of 
applicability, simulations should capture the complexities of empir-
ical data with biological realism (e.g. clinal or patchy environments), 
present contrasting cases of differing scenarios while controlling for 
important features of the data (e.g. varying population connectiv-
ity but controlling for mean differentiation) and challenge methods 
using adversarial scenarios that capture extreme characteristics of 
empirical data (e.g. prediction to novel environments with no current 
analogue available for model training; Lotterhos et al., 2022).

Here, we used a wide array of previously published, bio-
logically realistic, contrasting and adversarial simulations from 
Lotterhos (2023a) in an attempt to more precisely define the limits 
of predictive performance of five implementations of four genomic 
offset methods (Table 1): gradientForest (GFoffset; sensu Fitzpatrick 
& Keller, 2015),	 the	 Risk	 Of	 Non-	Adaptedness	 (RONA,	 Rellstab	
et al., 2016), Latent Factor Mixed Models (LFMM2offset, sensu Gain 
& François, 2021) and redundancy analysis with and without cor-
rection	 for	 population	 structure	 (RDAoffset, sensu Capblancq & 
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Forester, 2021). The main goal of this study was to understand how 
the evolutionary and experimental parameters used in the training 
and evaluation of offset methods affect the accuracy of the meth-
ods' projections of maladaptation under ideal empirical scenarios 
(i.e.	 using	 data	with	 no	 inherent	 error).	Using	 these	 scenarios,	we	
ask	the	following	six	questions:	(1)	Which	aspects	of	the	past	evo-
lutionary history affect performance of offset methods? (2) How is 
offset performance affected by the proportion of loci with clinal al-
leles	in	the	data?	(3)	Is	method	performance	driven	by	causal	loci	or	
by	genome-	wide	patterns	of	 isolation-	by-	environment?	(4)	What	is	
the variation of model performance across the landscape? (5) How 
does the addition of non- adaptive nuisance environments in training 
affect	performance?	 (6)	How	well	do	offset	models	extrapolate	 to	
novel environments outside the range of environmental values used 
in training?

2  |  METHODS

Throughout this manuscript, we cite analysis code used to carry 
out specific analyses in- line with the text. Text S1	and	S2 outlines 
and	describes	the	sets	of	scripts	or,	most	often,	Jupyter	Notebooks,	
used	to	code	analyses.	Scripts	and	notebooks	are	both	referenced	as	
Supplemental	Code	(SC)	using	a	directory	numbering	system	(e.g.	SC	
02.05). More information regarding the numbering system, archiving 
and	software	versions	can	be	found	in	the	Data	Availability	section.

2.1  |  Explanation of simulations and training data

To train offset methods, we used single nucleotide polymorphism 
(SNP)	and	environmental	data	from	a	set	of	previously	published	
simulations	(225	levels	with	10	replicates	each)	of	a	Wright–Fisher	
metapopulation	of	100	demes	on	a	10 × 10	grid	evolving	across	a	
heterogeneous landscape (Lotterhos, 2023a). Each data set was 

simulated under a combination of the following four evolutionary 
parameters:	(i)	three	landscapes	(10	populations × 10	populations)	
that varied in vicariance and environmental gradients (Estuary – 
Clines; Stepping Stone – Clines; and Stepping Stone – Mountain), (ii) 
five demographies that varied population size and migration rates 
across the landscape, (iii) three genic levels that varied in the ef-
fect size and number of mutations underlying adaptation (mono- , 
oligo-  and polygenic) and (iv) five pleiotropy levels that varied the 
number of quantitative traits under locally stabilizing selection 
(ntraits ∈ {1, 2}), presence of pleiotropy (when ntraits = 2)	 and	vari-
ability of selection strength across individual traits (see Figure 1 
in Lotterhos, 2023a).

The adaptive trait(s) were under selection by a different envi-
ronmental variable, where the optimum trait value was given by 
the local environment on the landscape (Figure S37). The adaptive 
trait(s) undergoing selection responded to either a latitudinal tem-
perature gradient (temp; ntraits = 1),	or	to	both	temp and a longitudinal 
‘Env2’ gradient (ntraits = 2).	Env2 represented distinct biological anal-
ogies depending on the context: in the Stepping Stone – Mountain 
landscape, Env2 was analogous to elevation (e.g. as with tree spe-
cies), whereas in the Estuary – Clines landscape, the Env2 environ-
ment was analogous to gradients of salinity within coastal inlets 
connected only by the outer marine (ocean) environment (e.g. as 
with stickleback or oyster species).

Twenty independent linkage groups were simulated. Of these, 
mutations that had effects on one or more phenotypes under se-
lection	 (i.e.	 quantitative	 trait	 nucleotides,	 QTNs)	 were	 allowed	
to evolve on only 10 linkage groups, and neutral mutations were 
added to all 20 linkage groups with tree sequencing (for details see 
Lotterhos, 2023a).	Adaptive	traits	were	determined	additively	by	ef-
fects	of	QTNs.

In all simulations, phenotypic clines evolved between each trait 
and the selective environment (Lotterhos, 2023a), where popula-
tions became locally adapted to their environment, measured at the 
metapopulation level as the mean difference of demes in sympatry 

Method Abbr. Multivariate?
Structure 
correction?

gradientForest1 GFoffset Yes No

Redundancy	Analysis2 with 
population structure correction

RDA-	corrected Yes Yes, with axes 
loadings from 
PCAa

Redundancy	Analysis2 without 
population structure correction

RDA-	uncorrected Yes No

Latent factor mixed model 
from Landscape and Ecological 
Association	Studies	R	package3

LFMM2offset Yes Yes, with latent 
factors

Risk	Of	Non-	Adaptedness4 RONA No No

Note: Genomic offset methods differ in their capability to use multivariate environmental data in 
training	as	well	as	whether	a	correction	for	population	genetic	structure	is	applied.	Superscripts	
apply to the following reference citations: 1—Fitzpatrick & Keller, 2015; 2—Capblancq & 
Forester, 2021;	3—Gain	&	François,	2021; 4—Rellstab et al., 2016.
aPrincipal	component	analysis.

TA B L E  1 Genomic	offset	methods	
used for evaluation.
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minus allopatry (LAΔSA, Blanquart et al., 2013). LAΔSA equates to the 
average levels of local adaptation at the deme level which can be cal-
culated for each deme by both home- away (LAΔHA) and local- foreign 
(LAΔLF) measures.

These simulations represent a wide array of realistic, contrasting 
and adversarial scenarios in which we could more precisely define 
the domain of applicability of offset methods. For instance, in the 
Stepping Stone – Mountain landscape, geographic distance and en-
vironmental distance were not strongly correlated, whereas in the 
Stepping Stone – Clines and Estuary – Clines	they	were.	Additionally,	
the proportion of mutations with monotonic frequency gradients 
(i.e. allelic clines) underlying local adaptation varied across the simu-
lated data sets (Lotterhos, 2023a), which may also affect offset per-
formance. These simulations also presented demographic scenarios 
in which selection was confounded with genetic drift or population 
genetic structure.

For each simulation, 10 individuals were randomly chosen per 
population for a total of 1000 individuals. Individual genotypes 
were	 coded	 as	 counts	 of	 the	 derived	 allele.	 Alleles	 with	 global	
minor	 allele	 frequency	 (MAF)	 <0.01	 were	 removed.	 Using	 all	
100 populations, population- level derived allele frequencies and 
current environmental values were used as input to train offset 
methods.

In	addition	to	the	2250	simulated	Wright–Fisher	data	sets	(225	
levels * 10	 replicates),	 we	 also	 included	 a	 non-	Wright–Fisher	 case	
with range expansion from three refugia and secondary contact 
(Figure 6 in Lotterhos, 2023a). This simulation evolved variable de-
grees	of	admixture	across	the	landscape.	Six	moderately	polygenic	
environmental traits (ntraits = 6)	were	 under	 selection	 from	 the	 en-
vironment. Environments were based on six weakly correlated en-
vironmental variables taken from Bioclim environmental measures 

of western Canada. The simulation evolved local adaptation at all 
six traits with unconstrained pleiotropy. For more details on simula-
tions, see Lotterhos (2023a).

2.2  |  Evaluation of offset methods

We	 investigated	 the	 performance	of	 five	 implementations	 of	 four	
genomic offset methods (Table 1): GFoffset,	 RDAoffset, LFMM2offset 
and	RONA.	While	GFoffset,	RDAoffset and LFMM2offset can use mul-
tivariate	 environmental	 data	 to	 train	 models,	 RONA	 is	 univariate	
and can only account for a single environmental variable at one time 
(Table 1).	Additionally,	while	GFoffset	and	RONA	do	not	apply	correc-
tion for population genetic structure, LFMM2offset does by default, 
and	structure	correction	with	RDAoffset	 is	optional.	We	thus	evalu-
ate	RDAoffset	with	(RDA-	corrected)	and	without	(RDA-	uncorrected)	
population genetic structure correction (Table 1). For additional 
specifics related to the implementation of each offset method, see 
Text S1.1–S1.4 and Figures S1–S3.

We	varied	construction	of	genomic	offset	training	data	sets	for	
each	 replicate	of	 the	1-	,	 2-	,	 and	6-	trait	 simulations	by	varying	 the	
marker set used in model training (Figure 1a, Table 2;	see	Q3	below).	
Each model was trained using genetic and environmental data from 
all 100 populations. The environmental variables used were only 
those	 imposing	selection	pressure.	We	predicted	offset	from	each	
model for each population to all 100 within- landscape common 
gardens from a full factorial in silico reciprocal transplant design 
(Figure 1b). For each common garden, we quantified offset model 
performance as the rank correlation (Kendall's $) between the pop-
ulation	mean	fitness	(averaged	over	sampled	individuals,	Equation	3	
in Lotterhos, 2023a) and projected population offset (Figure 1c). 

F I G U R E  1 Analysis	of	1-	,	2-		and	6-	trait	simulations	included	three	main	phases:	(a)	model	training,	(b)	model	prediction	and	(c)	evaluation	
of models. The Adaptive Environment workflow is shown as an example of the processing of 1-  and 2- trait simulation data for genomic 
offset evaluation. In total, three general workflows are used to evaluate genomic offset methods (Table 2).	Subpanels	of	this	schematic	are	
numbered for referencing in Table 2 and the main text.

(a) (b) (c)
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6 of 17  |     LIND and LOTTERHOS

Strong	negative	relationships	between	fitness	and	predicted	offset	
indicate higher performance of the method (note y- axes of Kendall's 
$ are inverted within figures to show more intuitive performance re-
lationships, Figure 1c- 11).	We	refer	to	the	preceding	processing	of	
data as the Adaptive Environment workflow (Figure 1, Table 2).	Across	
all workflows, all adaptive environments were included in training 
and were never excluded.

To explore the impact of the choice of environmental variables 
used (see Q5 below), we used a workflow similar to the Adaptive 
Environment workflow, except instead of using only adaptive envi-
ronmental variables, we used additional non- adaptive (i.e. nuisance) 
environmental variables in training and prediction (second row, 
Table 2). These nuisance variables had relatively weak correlation 
structure with adaptive environments and each other (Figure S4). 
We	refer	 to	each	of	 these	nuisance	 levels	by	 the	number	of	 traits	
under selection and the number of nuisance environments used 
(e.g. 1- trait 3- nuisance).	We	 refer	 to	 this	workflow	as	 the	Nuisance 
Environment workflow.

Finally, to contrast with within- landscape evaluations, we ex-
plored predictive performance of Adaptive Environment offset mod-
els in novel environments that are beyond the range of values of 
those used in training (see Q6 below). In these novelty cases, we 
use 11 common gardens, each progressively more distant from the 
average environment used in training (i.e. climate centre) and eval-
uate	performance	in	each	garden.	We	refer	to	this	workflow	as	the	
Climate Novelty	workflow.	See	Text	S3 and Figure S5 for details re-
garding the choice of environmental values for novelty scenarios.

2.3  |  Study questions

2.3.1  |  Q1	–	Which	aspects	of	the	past	evolutionary	
history affect within- landscape performance of offset 
methods?

For	 each	 offset	 method,	 we	 used	 a	 fixed-	effects	 type	 II	 ANOVA	
model to test for significant differences in the performance from 2- 
trait Adaptive Environment models trained using all markers using the 
following factors: landscape (Estuary – Clines, Stepping Stone – Clines, 
Stepping Stone – Mountain), demography (five levels describing popu-
lation size and migration patterns across the landscape), genic level 
of architecture (three levels from oligogenic to polygenic), presence 
or absence of pleiotropy, proportion of loci with clinal allele fre-
quencies (as defined in Lotterhos, 2023a), degree of local adaptation 
(ΔSA)	and	common	garden	ID.	Specifically,

where Yij is the within- landscape performance (Kendall's $) of a sin-
gle method for garden j in simulation i, with factors for landscape (L), 
demography (D), genic level (GL), presence of pleiotropy (P), propor-
tion	of	QTN	or	neutral	 alleles	with	 temp clines (respectively, pcQTN,t,i 
and pcNeut,t,i),	 proportion	 of	 QTN	 or	 neutral	 alleles	 with	 Env2 clines 

(respectively, pcQTN,Env2,i and pcNeut,Env2,i), degree of local adaptation 
(LAΔSA) and garden ID (G). The first four factors are illustrated in 
Figure 1 of Lotterhos (2023a).

2.3.2  |  Q2	–	How	is	offset	performance	affected	
by the proportion of clinal alleles in the data?

Clinal alleles (i.e. alleles with monotonic gradients in frequency 
across space) that covary with environmental clines could be 
weighted more heavily in offset models that emphasize loci whose 
allele frequencies explain significant variation across local envi-
ronmental	 values.	Using	2-	trait	models	 trained	using	all markers 
from the Adaptive Environment	 workflow,	 we	 used	 an	 ANOVA	
model (Equation 2) to test the hypothesis that clinal alleles differ-
entially impact model performance, independent from the other 
factors from Equation 1:

The factors representing clinal alleles in Equation 2 are the same 
as those in Equation 1.

2.3.3  |  Q3	–	Is	method	performance	driven	by	
causal loci or by genome- wide patterns of isolation by 
environment?

For each offset method and workflow, we varied the set of input 
markers	for	1-	,	2-		and	6-	trait	simulations	that	were	used	in	training	
to determine if performance of a method was driven by properties 
of the evolutionary forces shaping genotype–environment relation-
ships: (1) adaptive	markers	 (i.e.	QTNs	with	 effects	 on	 at	 least	 one	
trait), (2) neutral	markers	(SNPs	on	linkage	groups	without	QTNs)	and	
(3)	all markers (union of adaptive and neutral markers, as well as non- 
QTN	markers	on	the	same	linkage	groups	as	QTNs).	Only	 loci	that	
passed	MAF	 filtering	were	 included	 in	marker	 sets	 (Nadaptive = 188, 
Nall = 33,169, Nneutral = 16,520). If offset performance is determined 
solely by adaptive signals in genetic data, offsets trained using adap-
tive markers should have better performance than all or neutral 
markers, and all markers should have better performance than neu-
tral markers.

If the marker set has little impact on offset performance, this 
could indicate that offset methods are giving weight to genome- 
wide	signals	present	in	the	data.	Previously,	some	(e.g.	Lachmuth,	
Capblancq, Keller, et al., 2023; Lind et al., 2024) have postu-
lated that this signal may be related to isolation by environment 
(IBE, i.e. when genetic and environmental distances are posi-
tively	 correlated,	 independent	 of	 geographic	 distance;	 Wang	 &	
Bradburd, 2014).

If IBE is driving patterns of offset performance, we expect (1) 
performance to be similar between offsets estimated using adap-
tive markers and those estimated using neutral markers; (2) a greater 
proportion of variation in performance to be explained by pcNeut than 

(1)

Yij = Li + Di + GLi + Pi + pcQTN,t,i + pcNeut,t,i + pcQTN,Env2,i + pcNeut,Env2,i + LAΔSA,i + Gj

(2)Yij = pcQTN,t,i + pcNeut,t,i + pcQTN,Env2,i + pcNeut,Env2,i
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    |  7 of 17LIND and LOTTERHOS

pcQTN (from Q2);	 (3)	a	strong,	positive	relationship	between	perfor-
mance and LAΔSA; and (4) the difference in IBE between two marker 
sets to be positively correlated with the difference in performance 
of	two	models	trained	with	those	markers.	We	measured	IBE	as	the	
rank	 correlation	 (Spearman's	 %) between population pairwise FST 
(Weir	&	Cockerham,	1984) and Euclidean climate distance of adap-
tive environmental variables.

2.3.4  |  Q4	–	What	is	the	variation	of	model	
performance across the landscape?

Within	a	landscape,	offset	methods	may	not	have	high	predictive	per-
formance	at	every	site	or	every	environment.	Understanding	variability	
in the predictive performance of offset models across the landscape is 
particularly relevant when offsets are used for restoration or assisted 
gene flow initiatives (i.e. ranking sources for a given site). If predictive 
performance is variable across the landscape, this may limit the useful-
ness of genomic offsets for such purposes even if model performance 
is	 validated	 in	one	 common	garden.	Using	 the	Adaptive Environment 
workflow, we visualized variation of 1-  and 2- trait within- landscape 
performance with boxplots for each common garden for each method 
and landscape. To understand if variation in predictive performance 
was a function of the model quality, we investigated the relationship 
between a model's performance variability (i.e. standard deviation 
across 100 common gardens) and the model's median performance.

2.3.5  |  Q5	–	How	does	the	addition	of	non-	adaptive	
nuisance environments in training affect performance?

In practice, the environments imposing selection are rarely known a 
priori.	Additionally,	the	inclusion	of	environmental	measures	that	are	
not correlated with the main axes of selection may reduce model per-
formance compared to models trained using only causal environments. 
To investigate the sensitivity of offset methods to environmental 
input, we compared Adaptive Environment workflow models from 1- , 
2-		and	6-	trait	simulations—where	only	the	adaptive	environment(s)	are	
used in training (0- nuisance)—to models from the Nuisance Environment 
workflow trained with the same data but with the addition of nuisance 
environments (N- nuisance, where N > 0;	Table 2).

We	used	nuisance	environmental	variables	from	Lotterhos	(2023a) 
that were real BioClim variables (TSsd, PSsd and ISO) taken from British 
Columbia	and	Alberta,	Canada,	which	have	minimal	correlation	with	
causal environments and each other (Figure S4). These three nuisance 
environments differ from previous implementations of such variables 
(Láruson et al., 2022) in that they are spatially autocorrelated whereas 
nuisance environments in Láruson et al. (2022) were not. For 1- trait 
scenarios, Env2 was also used as a nuisance environmental variable. 
If offset methods are unaffected by the addition of nuisance environ-
mental variables, performance should not differ between 0- nuisance 
and N- nuisance implementations. Finally, in empirical settings, the set 
of	adaptive	environments	are	not	known	a	priori.	We	also	explored	

whether GF would rank adaptive environments higher than nuisance 
environments using weighted importance output from GF.

2.3.6  |  Q6	–	How	well	do	offset	models	extrapolate	
to novel environments outside the range of 
environments used in training?

Even if offset methods have high within- landscape performance, 
this does not directly address situations where future environmental 
conditions are vastly different from the environmental conditions 
used for training (i.e. novel environments). If performance decreases 
with increasing environmental novelty relative to training data, this 
raises questions about the utility of genomic offsets for predict-
ing (1) relative in situ vulnerability of populations to future climate 
change and (2) the relative suitability of populations to restoration 
sites that differ drastically than those used in training.

To understand if offset performance degrades with environmen-
tal novelty relative to training data, we predicted offset to 10 novel 
environmental	scenarios	for	the	1-	,	2-		and	6-	trait	simulations	using	
the Climate Novelty workflow (Table 2). The novel environmental 
scenarios were a set of common garden environments, zE, extend-
ing outward from the training populations and exceeding values 
observed on the landscape for all adaptive environmental variables 
(Text S3).	We	represent	these	scenarios	as	standard	deviations	from	
the centre of environmental values used in training: zE ∈	{1.72,	2.35,	
2.74,	3.13,	3.53,	3.92,	4.31,	4.70,	5.09,	5.48,	5.88}.	Fitness	in	novel	
environments was estimated assuming that the phenotypic optimum 
continues to have a linear relationship with the environmental vari-
able	(Equation	3	in	Lotterhos,	2023a).

3  |  RESULTS

3.1  |  Q1 – Which aspects of the past evolutionary 
history affect within- landscape performance of offset 
methods?

The	ANOVA	model	(Equation 1) indicated that the degree of local adap-
tation of the metapopulation (LAΔSA) was the primary factor influencing 
offset performance, followed by common garden location, demogra-
phy and landscape (Table S1; Figure S6).	Within	the	simulations,	LAΔSA 
was impacted by pleiotropy, the relative strength of selection and land-
scape (Figure S7; see also Figure S2a,b in Lotterhos, 2023a), so there 
may be some confounding among these factors.

In	line	with	the	ANOVA	model,	the	performance	of	specific	off-
set methods generally increased with increasing LAΔSA (Figure 2), 
but there were some interesting differences among methods. For 
instance, GFoffset, LFFM2offset,	 RDA-	uncorrected	 and	RONAtemp all 
improved as LAΔSA	 increased,	while	RDA-	corrected	and	RONAEnv2 
showed relatively weaker relationships.

Across	 landscapes,	 offset	 methods	 generally	 had	 higher	 per-
formance in Stepping Stone – Clines landscapes than Stepping Stone 
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8 of 17  |     LIND and LOTTERHOS

F I G U R E  2 Predictive	performance	of	genomic	offset	models	(y-	axes)	is	driven	by	the	degree	of	local	adaptation	(a)	and	the	spatial	
patterns of adaptive environments across the landscape (b, c). For each model, a median value from performance scores from 100 common 
gardens is shown for (a and b); c shows scores across all common gardens for each model (note that y- axes are inverted, as more negative 
values have higher performance). Data included in these figures were processed through the Adaptive Environment workflow but only 
include models trained using 2- trait simulations and all	loci.	Code	to	create	(a)	and	(b)	can	be	found	in	SC	02.02.02;	code	to	create	(c)	can	be	
found	in	SC	02.02.01.

 17550998, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.14008, W

iley O
nline Library on [14/04/2025]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



    |  9 of 17LIND and LOTTERHOS

– Mountain landscapes (Figure 2b) despite similar levels of LAΔSA 
(Figure 2a). Offset methods also generally performed better in 
the two Stepping Stone landscapes than the Estuary – Clines land-
scape (Figure 2b). However, there were some interactions between 
method and landscape (Figure 2c).	For	instance,	RDA-	corrected	per-
formed better in the Estuary – Clines compared to the two Stepping 
Stones	landscapes,	while	the	RDA-	uncorrected	showed	the	opposite	
pattern: performance was higher in the two Stepping Stones land-
scapes compared to Estuary – Clines.

The performance of methods was similar across genic levels but 
increased	 slightly	 as	 the	 number	 of	 QTNs	 underlying	 adaptation	
became more polygenic (Figure S8).	 Additionally,	 while	 demog-
raphy primarily influenced population differentiation across the 
landscape with little impact on LAΔSA within simulations (Table S2 
in Lotterhos, 2023a), migration breaks between populations and 
latitudinal clines in population size generally decreased offset per-
formance for LFMM2offset, GFoffset	and	RDA-	uncorrected	(Figure S9).

3.2  |  Q2 – How is offset performance affected 
by the proportion of clinal alleles in the data?

The sum of squares from Equation 1 indicated that the proportion of 
clinal alleles did not account for meaningful variation in offset per-
formance (Table S1).	Even	so,	 results	 from	an	ANOVA	model	with	
just the proportion of clinal loci as explanatory variables (Equation 2) 
indicated that pcNeut	accounted	for	4.14–9.65	times	the	variation	than	
did pcQTN for GFoffset, LFMM2offset	 and	RDA-	corrected.	For	GFoffset 

and	RDA-	uncorrected,	pcNeut,Env2 accounted for >16%	of	the	sum	of	
squares (Table S2, Figure S10).

Overall, relationships between performance and pcNeut (second 
column, Figure S11) were stronger than between performance and 
pcQTN (first column, Figure S11). However, sometimes performance 
increased with pcNeut and sometimes it decreased, depending on the 
method (Figure S11), indicating that each method is differentially 
sensitive	 to	clinal	alleles	 in	 the	data.	Ultimately,	 strong	population	
genetic structure along environmental clines in 2- trait simulations 
(Figure S12) drove relationships with pcNeut (Figure S13) which in turn 
drove relationships with performance (Figures S11	and	S14).

3.3  |  Q3 – Is method performance driven 
by causal loci or by genome- wide patterns of 
isolation- by- environment?

Overall, 1-  and 2- trait Adaptive Environment models had relatively 
similar performance among marker sets. For instance, models trained 
using all or neutral markers had similar performance while models 
trained using adaptive markers performed slightly higher than the 
other sets. The median increase in performance from adaptive com-
pared to all or neutral	models	was	less	than	3%.	In	total,	using	adap-
tive	markers	outperformed	68%	of	models	using	neutral markers and 
67%	of	models	using	all	markers,	while	74%	of	models	using	all mark-
ers outperformed neutral models (Figure 3a–c).	For	RDA-	corrected,	
the neutral markers performed slightly better than either adaptive or 
all markers in 2- trait evaluations (Figure 3e).	Adaptive markers from 

F I G U R E  3 Comparison	of	marker	choice	across	genomic	offset	methods	for	1-		and	2-	trait	simulations.	(a–c)	Scatterplots	of	pairwise	
comparisons of performance between marker sets (histograms in each margin) from both 1-  and 2- trait models where density of points is 
indicated by colour in legend (note colour scale is different for each figure to accentuate patterns in data). (d, e) Boxplots from the same data 
in (a–c) separated by individual traits. Data included in these figures is from all 1-  and 2- trait models from the Adaptive Environment workflow. 
Code	to	create	these	figures	can	be	found	in	SC	02.02.03.

(a)

(d) (e)

(b) (c)
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10 of 17  |     LIND and LOTTERHOS

6-	trait	evaluations	provided	varied	performance	advantages	across	
methods (Figure 4; Figure S37).

The adaptive marker sets had relatively elevated levels of IBE 
compared to sets of neutral or all markers in 1-  and 2- trait simu-
lations, but levels of IBE were nonetheless quite similar between 
marker sets (Figure S15). Consequently, performance of models 
trained with adaptive markers generally had stronger relationships 
with IBE than LAΔSA, but this was not the case for models trained 
with either all or neutral markers (Figure S16).

Intriguingly, levels of IBE found within a landscape 
(Figure S17a) did not correspond to the degree of LAΔSA that 
developed (Figure S17b). Even so, while IBE was generally un-
related to LAΔSA across all simulations, there were generally pos-
itive relationships between IBE and LAΔSA when controlling for 
the number of traits and differences in strengths of selection 
(Figure S18).	As	such,	 IBE from all markers explained very little 

variation	in	performance	when	added	as	a	factor	to	the	ANOVA	
model from Equation 1	 (SC	02.02.01),	 but	 accounted	 for	 some	
variation	in	ANOVA	models	with	only	LAΔSA and IBE as explana-
tory	variables	(0%–34%	for	IBE	vs.	0%–74%	for	LAΔSA; Table S3). 
Except	for	RONA,	the	differences	in	performance	between	two	
models trained with different marker sets were generally unre-
lated to the differences in IBE between the two marker sets used 
to train the models (Figure S19).

3.4  |  Q4 – What is the variation of model 
performance across the landscape?

All	 1-		 and	2-	trait	models	 exhibited	variation	 in	 the	predictive	per-
formance across gardens within a landscape, from essentially 
no predictive performance to very high predictive performance 

F I G U R E  4 Comparison	of	marker	choice	across	genomic	offset	methods	for	the	6-	trait	simulation.	(a–c)	Scatterplots	of	pairwise	
comparisons	of	performance	between	marker	sets	(RONA	is	not	shown,	except	in	SN	02.05.10).	(d)	Boxplots	from	the	same	data	in	a–c	
(RONA6-	traits	is	the	combined	performance	across	all	six	environmental	models).	Data	included	in	this	figure	is	from	the	6-	trait	models	
processed through the Adaptive Environment	workflow.	Note	there	is	only	one	6-	trait	replicate,	and	variation	within	figures	represents	the	
performance	across	100	common	gardens	for	each	method.	Code	to	create	these	figures	can	be	found	in	SN	02.05.10.

(a)

(d)

(b) (c)
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    |  11 of 17LIND and LOTTERHOS

(Figures S20–S23).	Variation	in	performance	was	also	observed	for	
6-	trait	models	(Figure 4).

While	there	was	variability	in	predictive	performance	of	1-		and	
2- trait models within each landscape, in many cases, the best per-
forming models had the lowest levels of performance variation 
(Figures S24–S26).	 Ultimately,	 we	 found	 no	 strong	 indicator	 for	
predicting when a model will be highly variable. Indeed, while per-
formance generally increased with LAΔSA (Figure 2), variability in 
performance was not strongly related to the variability in deme- level 
LA on the landscape (Figures S27–S29). Despite LAΔSA driving per-
formance more generally (from Q1), this indicates that variation in 
model performance across the landscape was not strongly driven by 
metapopulation levels of, nor deme- level variation in, LA.

3.5  |  Q5 – How does the addition of non- adaptive 
nuisance environments in training affect 
performance?

Training offset models with the addition of non- adaptive nuisance 
environmental variables generally reduced offset method perfor-
mance (Figure 5). This decline was most dramatic for offset trained 
on 1- trait simulations (Figure 5a) compared to the decline observed 
for 2- trait (Figure 5b)	 and	6-	trait	 (Figure 5c) simulations. The only 
instances for which median performance did not decrease mono-
tonically with nuisance level were for 2- trait simulations evaluated 
with GFoffset (Figure S30).

Overall, landscape had the most influence over performance dif-
ferences due to non- adaptive nuisance environments (Figure S30), 
whereas there was little difference across other simulation param-
eters	(not	shown	except	in	SC	02.02.06).	Even	so,	adaptive markers 
seemed to provide some advantages in the presence of nuisance en-
vironments, particularly for 1- trait data sets where the advantages 
were more substantial compared to 2- trait data sets (Figures S31	
and	S32).

In some cases, the rankings of weighted environmental im-
portance output from GF ranked nuisance variables higher than 
at least one adaptive environment (Table S4).	Across	1-  and 2- trait 
N- nuisance models trained with all markers, GF incorrectly ranked 
environmental	 drivers	 in	 26.9%	 (133/495)	 of	 the	 cases.	 Rankings	
improved somewhat for models trained with adaptive markers, in-
correctly	ranking	environmental	variables	in	20.6%	(102/495)	of	the	
cases (Table S4).

3.6  |  Q6 – How well do offset models extrapolate 
to novel environments outside the range of 
environments used in training?

The datasets that had the greatest within- landscape performance 
(i.e. those with higher levels of LAΔSA) were also those that experi-
enced the steepest decline in performance with increasing climate 
novelty (red shade, Figure 6). Importantly, declines in performance 

for data sets with greater LAΔSA were not due to instances where all 
populations had zero fitness (and thus performance was undefined 
and manually set to 0; Text S4, Figure S33). Despite little change in 
the	median	performance	for	data	sets	with	 low	 levels	of	LA,	most	
performance scores from these data sets did not exceed Kendall's 
$= − 0.5,	and	therefore	had	little	predictive	value	in	novelty	scenar-
ios.	Performance	of	 individual	methods	 followed	 the	overall	 trend	
presented in Figure 6 (Figure S35).

Advantages	 of	adaptive marker sets were much less prevalent 
across methods for Climate Novelty scenario performance than 
either Adaptive Environment or Nuisance Environment scenarios 
(Figure S34).

4  |  DISCUSSION

In the last decade, genomic offset methods have been identified as a 
complement to other ecological forecasting models because they in-
corporate intraspecific variation (Capblancq et al., 2020; Fitzpatrick 
& Keller, 2015; Rellstab et al., 2021). Our evaluations show that offset 
methods may be impacted by both the evolutionary history of sam-
pled populations as well as the decisions made during model train-
ing. Our analyses emphasize that performance of offset methods 
is highest when applied to locally adapted populations with known 
drivers of environmental selection, and when restricting offset pro-
jections to climates similar to those used in training. These results 
suggest that there may be a number of scenarios for which genomic 
offset methods may provide valuable insight for management, but 
also highlight that they will not yield accurate results in every situ-
ation. Below, we discuss the implications of these findings towards 
restoration, conservation and the management of biodiversity.

4.1  |  The importance of local adaptation

A	 basic	 assumption	 of	 genomic	 offset	 methods	 is	 that	 the	 sam-
pled populations are adapted to their local environment (Rellstab 
et al., 2016, 2021), but this assumption has not been formally tested. 
Our analyses show that indeed the degree of local adaptation (LAΔSA) 
is one of the primary factors that determine model performance for 
most	methods.	A	value	of	LAΔSA ~ 0.5	indicates	that	fitness	in	demes	
is	on	average	50%	higher	in	sympatry	than	allopatry.	Values	of	LAΔSA 
represent the average deme- level magnitudes of LAΔHA and LAΔLF 
across the metapopulation (Blanquart et al., 2013).	Previous	meta-	
analyses of studies measuring local adaptation of natural popula-
tions have used different measures of LA from the ones we calculate 
here, but do show that some species evolve large fitness differences 
among populations (Hereford, 2009; Leimu & Fischer, 2008). Given 
the prevalence of LA found previously (Hereford, 2009; Leimu & 
Fischer, 2008), we may therefore expect some genomic offset meth-
ods to do reasonably well when predictions are made for environ-
mental values most similar to those used in training, and when local 
adaptation in the metapopulation is high (e.g. when LAΔSA > 0.5,	the	
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F I G U R E  5 Effect	of	non-	adaptive	nuisance	environmental	variables	on	offset	performance.	Shown	are	evaluations	of	offsets	from	1-		and	
2- trait models trained using only adaptive environments (0- nuisance) or with adaptive environments and the addition of N > 0	non-	adaptive	
environmental variables (N- nuisance).	RONA	is	not	shown	because	it	is	univariate	with	respect	to	environmental	variables.	Nuisance	
variables are listed in Table 2.	Code	to	create	figures	can	be	found	in	SC	02.02.06	and	SC	02.02.08.

(a)

(b)

(c)
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best	 performing	 methods,	 RDA-	uncorrected	 and	 GFoffset, had an 
average correlation between offset and fitness of ~−0.6).	However,	
even moderately high levels of local adaptation had substantial de-
cline in performance (e.g. when LAΔSA ≈ 0.3,	 the	 best	 performing	
methods,	RDA-	uncorrected	and	GFoffset, had an average correlation 
between GO and common garden fitness of ~−0.2).	Future	studies	
should seek to demonstrate evidence for strong local adaptation 
in the system prior to applying genomic offset methods, but ulti-
mately the level of predictable performance that is acceptable will 
depend on the stakeholders and management goals in the system. In 
the absence of evidence for local adaptation for the target system, 
additional data that can be used to verify offset predictions (such 
as	 common	 garden[s],	 demographic	 data	 or	 remote	 sensing	 data)	
should be used to verify offset predictions (Lind et al., 2024).

4.2  |  The importance of the signals within genomic 
marker sets

Initial implementations of genomic offset models focused on pu-
tatively adaptive markers where the signal of local adaptation may 
be strongest (Fitzpatrick & Keller, 2015; Rellstab et al., 2016). More 
recently, investigators have varied the set of markers used to train 
models but have found little influence on performance (Fitzpatrick 
et al., 2021; Lachmuth, Capblancq, Keller, et al., 2023; Láruson 
et al., 2022; Lind et al., 2024) and our results are consistent with 
these	 studies.	We	 found	 that	 the	adaptive marker sets provided a 
slight advantage over all or neutral marker sets, but not universally 
or by great margins.

One hypothesis put forth as to why adaptive marker sets per-
form similar to all markers is that genome- wide data capture suf-
ficient signatures of IBE (Lachmuth, Capblancq, Keller, et al., 2023; 
Lind et al., 2024). Our analysis found weak positive relationships 
between performance and levels of IBE within marker sets. Even so, 
and	except	for	RONA,	there	were	no	universal	relationships	within	
methods between the difference in IBE of marker sets and the dif-
ference in performance of the models trained with these markers. 
Together, these results indicate that while higher degrees of local 
adaptation may lead to increased levels of IBE in the genome, the 
signal of IBE of input markers generally has minimal and varied im-
pact on performance differences for the scenarios evaluated here. 
Alternatively,	 the	 levels	 of	 IBE present in the simulated genomes 
may exceed a minimum threshold of IBE, beyond which differences 
in performance between marker sets are minimized.

While	we	found	 little	 impact	of	 levels	of	 IBE on overall perfor-
mance, the way in which we measured IBE may have masked caus-
ative relationships. For instance, we measured IBE as the correlation 
between pairwise environmental distance and pairwise FST, and did 
not incorporate geographic distance. In doing so, our measure of IBE 
distilled genetic distance down to a single value from a large number 
of loci and gave less weight to loci with rare alleles. In future studies, 
creating a fourth marker set based on loci with the highest IBE sig-
nals to compare with other marker sets offers another opportunity 
to understand the impact of IBE on performance. Empirical data sets 
will also be able to specifically address geographical distances while 
quantifying IBE (e.g. Bradburd et al., 2013).

While	measures	of	IBE	are	one	signal	remaining	to	be	explored	
in future analyses, the proportion of clinal neutral loci within marker 

F I G U R E  6 Performance	decays	with	climate	novelty	relative	to	training	data.	Shown	is	model	performance	(y-	axes)	across	methods	at	
climate centre and across common gardens each representing increasing degrees of climate novelty relative to training data (right- most 
x- axis) where all 100 populations have been transplanted. The standard deviation values are applicable to all environments for all landscapes 
except for Env2 in the Stepping Stone – Mountain	landscape;	the	corresponding	standard	deviations	are	1.55,	2.12,	2.47,	2.82,	3.18,	3.53,	
3.88,	4.24,	4.60,	4.95,	5.3.	When	fitness	for	all	transplanted	individuals	was	zero,	a	model's	performance	was	undefined	and	manually	set	to	
0;	no	method	predicted	a	single	offset	value	for	all	populations	in	these	situations.	Setting	undefined	performance	to	0	did	not	substantially	
impact patterns between performance and climate novelty, and is explored in Text S3. Data included in this figure are from models trained 
using 1-  and 2- trait simulations from the Climate Novelty	workflow,	and	excludes	both	RONAtemp	and	RONAEnv2. Code used to create this 
figure	can	be	found	in	SC	02.04.05.
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sets was shown to have varied impacts on performance, sometimes 
being positively related to performance and sometimes negatively 
depending on the context. In addition to the effect of clinal allele 
patterns, our results also suggest that nonmonotonic relationships 
between environmental gradients and allele frequencies will be an 
important element to consider during model building, as the meth-
ods	that	strictly	modelled	linear	relationships	(RONA,	LFMM2)	had	
on average poorer performance than other methods we evaluated 
(GFoffset,	RDAoffset). In contrast, we found very similar performance 
across adaptive, neutral and all	loci.	Although,	while	the	similarity	in	
performance among marker sets evaluated here may indicate that it 
is often unnecessary to subset loci for model training to those that 
are putatively adaptive, testing multiple marker sets during model 
exploration will be important to understand model sensitivity (Lind 
et al., 2024). These and other signals within data that could improve 
or mislead offset models, including the choice of how and when to 
correct for population structure, also warrant further investigation.

4.3  |  The importance of adaptive environmental 
variables

In empirical settings, the environmental drivers of local adaptation 
are rarely known a priori. Even so, our results emphasize the impor-
tance of identifying these variables before training offset models, as 
there were often declines in performance between models trained 
using only adaptive environmental variables (0- nuisance) and those 
trained using additional non- adaptive nuisance environmental vari-
ables (N- nuisance).

The importance of identifying these selective environments may 
be particularly germane to two general empirical scenarios. In the 
first empirical scenario, sparsely sampling an environmentally het-
erogeneous range may enrich genetic signals (e.g. coincident pop-
ulation structure) most correlated to environmental variables that 
maintain a gradient across this extent, and miss signals relevant to 
more local scales. In the second empirical scenario, identifying the 
environmental variables underlying selection is particularly import-
ant when a specific genomic offset method is ill- suited to differ-
entiate	 importance	among	 input	variables.	For	 instance,	RDA	 (and	
therefore	RDAoffset) assumes that the environmental variables used 
to build models are not collinear (as implemented here; Capblancq & 
Forester, 2021; Legendre & Legendre, 2012). Because of this, empir-
ical data sets must be limited to a subset of available environmen-
tal measures. The process of excluding environmental variables in 
this way may omit signals of adaptive drivers (particularly when true 
drivers are not well measured), or perhaps incorporate environmen-
tal variables that do not coincide with drivers of selection. In these 
cases,	 performance	 is	 likely	 to	 decline.	As	 such,	 this	may	 indicate	
that	methods	such	as	RDAoffset are likely to perform worse in, or less 
uniformly across, realistic empirical settings than what our current 
findings suggest.

Users	of	GF	may	be	 tempted	 to	 include	a	 large	number	of	en-
vironmental variables in training, hoping that GF can accurately 

attribute the correct environmental variation to adaptive genetic 
structure. Our results show that it is not necessarily the case that GF 
will give the highest importance values to the true adaptive environ-
mental variables. Indeed, weighted feature importance scores from 
GF models still incorrectly ranked the adaptive environments below 
neutral	environments	 in	20%–27%	of	 the	data	 sets,	depending	on	
which marker set was used. These importance values ultimately 
affect the model predictions. Including all available environmental 
variables may therefore negatively impact GFoffset performance and 
could have weakened overall performance in previous empirical 
evaluations that used a large number of environmental measures in 
training (e.g. Lind et al., 2024).

There are some differences between the nuisance environ-
mental variables implemented here and those that have been im-
plemented previously. For instance, Láruson et al. (2022) created 
nuisance variables by randomly sampling a multivariate normal dis-
tribution. In contrast to findings here, Láruson et al. (2022) found 
that model performance was relatively unaffected with the addition 
of nuisance variables. The minimal influence of nuisance variables 
on performance found by Láruson et al. (2022) may differ from the 
performance declines reported here because the nuisance variables 
we used were spatially autocorrelated, while those from Láruson 
et al. (2022) were not. Inclusion of nuisance variables that are spa-
tially autocorrelated may mislead offset models more generally than 
variables with little spatial autocorrelation because of the spurious 
relationship between environmental structure and genetic structure.

4.4  |  The effect of environmental novelty

While	 within-	landscape	 performance	 generally	 increased	 with	
LAΔSA, the data sets with the greatest levels of LAΔSA were also the 
data sets where performance declined most readily with climate 
novelty. This occurred because locally adapted metapopulations 
were under strong selection to be fine- tuned to their environment, 
and as a result, most individuals suffered severe fitness declines with 
environmental change. In contrast, less locally adapted metapopula-
tions were under weaker selection, and suffered less steep fitness 
declines with environmental change. This result highlights an inter-
esting paradox: Offset methods that have the highest performance 
in common garden transplants under current climates (because of 
strong local adaptation) may have the lowest performance in pre-
dicting ‘genomic vulnerability’ as the range of climate variables be-
come more novel compared to the ranges used in training the model.

Thus, it will be important for future studies to clearly show what 
offset predictions have been extrapolated to environments that 
have no analogue in the data used to train the model. This is par-
ticularly relevant for applications of offset methods that attempt 
to estimate the in situ risk of climate change where the environ-
ment is expected to be increasingly novel. Global climate novelty 
is often measured with respect to historical variability across a spe-
cies range (e.g. Lotterhos et al., 2021; Mahony et al., 2017;	Williams	
et al., 2007). Terrestrial systems could experience change in excess 
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of	 three	 standard	 deviations	 relative	 to	 historic	 values	 (Williams	
et al., 2007), with similar indices in marine systems indicating poten-
tial for even greater novelty (Lotterhos et al., 2021).	We	observed	
performance declines below the analogous zE = 3.13	standard	devi-
ations Climate Novelty scenario, indicating offset predictions could 
be inaccurate in many real- world climate change predictions. These 
issues are also germane to measures derived from offset values 
(Gougherty et al., 2021; Lachmuth, Capblancq, Keller, et al., 2023; 
Lachmuth,	Capblancq,	Prakash,	et	al.,	2023), which currently do not 
consider the degree of climate novelty in the prediction (but see 
DeSaix	et	al.,	2022 for an empirical example that highlights model 
extrapolations).

Our results present a best- case scenario for predicting perfor-
mance in novel environments, as in many cases, there will be bio-
logical reasons as to why climate–fitness relationships will differ in 
future environments from relationships measured within the con-
temporary climate space (see Figure 5 in Capblancq et al., 2020). The 
simulations used here assumed a linear relationship between envi-
ronment (whether current or novel) and optimal trait value, with-
out a cost for the production of extreme traits. Thus, by assuming 
linearity in the simulations, we presented methods with a straight-
forward relationship to extrapolate to novel climates. In empirical 
settings, the relationship between the selective environment and 
optimal trait value could be nonlinear. Developing a clearer under-
standing of the relationship between the environment and optimal 
trait value, as well as various nonlinear methods for extrapolation 
(e.g. see Text S1), are important areas of future work.

4.5  |  Genomic offsets in practice

Our evaluations show that genomic offset methods hold promise for 
predicting maladaptation to environmental change for metapopula-
tions that evolve strong local adaptation, and within environments 
similar to those in the data used to train the model. However, our 
analyses also emphasize the limits of these methods in some sce-
narios	and	the	variability	of	performance	across	methods.	Although	
GFoffset	 and	 RDA-	uncorrected	 generally	 had	 greater	 performance	
than	RDA-	corrected,	LFMM2	or	RONA,	there	was	no	single	method	
that outperformed the others across all situations. For instance, un-
like other methods that performed best in Stepping Stones – Clines 
landscapes,	 RDA-	corrected	 had	 highest	 performance	 in	 Estuary 
– Clines	 landscapes.	 RDA-	corrected	 also	 had	 greater	 performance	
than other methods in many of the data sets that developed low 
levels of LAΔSA, but this was not the case when local adaptation was 
high. In practice, species that are locally adapted to measurable en-
vironmental variables will be best suited for offset methods when 
predicting the relative performance of populations in a contempo-
rary common garden, but paradoxically these species may be least 
suited to using these methods to predict their vulnerability to novel 
climates.

Together, these results indicate that some genomic offset meth-
ods may be suited to guide initiatives such as near- term assisted 

gene flow, where targeted restoration sites within a species range 
have climates that are similar to those used to train offset models. 
Even so, our results also show that the performance of these meth-
ods are often variable across a landscape, indicating that high per-
formance at one site does not mean the offset model will perform 
well	at	another.	While	genomic	offset	methods	may	be	suitable	for	
assisted gene flow initiatives, they may be less suited for assisted mi-
gration programmes where populations are moved outside of their 
native range and environments differ from training data.

Before genomic offsets can be incorporated into management 
plans, considerable thought must be put into the sensitivity of model 
outcomes from input data (e.g. from marker sets and the populations 
used; Lind et al., 2024), the uncertainty inherent in environmental or 
climate forecasts (Lachmuth, Capblancq, Keller, et al., 2023), as well 
as	the	degree	of	novelty	of	future	climates	(DeSaix	et	al.,	2022, this 
study).	While	accurate	predictions	are	limited	for	novel	climates	of	
the future, these offset methods could still be used to guide man-
agement in the intervening time in a stepwise manner where experi-
ments	can	be	used	to	validate	model	performance	in	practice.	Using	
simulations tailored to the life history of target species also presents 
a promising avenue to understand limitations of these methods for 
specific management cases.

AUTHOR CONTRIBUTIONS
Katie E. Lotterhos received funding. Katie E. Lotterhos and Brandon 
M.	 Lind	 conceptualized	 the	 project	 and	methodology.	With	 input,	
editing, and feedback from Katie E. Lotterhos, Brandon M. Lind 
wrote code to train and evaluate offset models, created figures, cu-
rated coding and records for archiving and wrote the manuscript.

ACKNOWLEDG EMENTS
This	research	was	funded	by	NSF-	2043905	(KEL)	and	Northeastern	
University.	The	funding	bodies	did	not	have	any	role	 in	the	design	
of the study, analysis, interpretation of results or in writing of the 
manuscript.	We	thank	four	anonymous	reviewers	for	helpful	com-
ments that improved the clarity and presentation of our results.

CONFLIC T OF INTERE ST STATEMENT
The authors declare no conflicts of interest.

DATA AVAIL ABILIT Y STATEMENT
We	 reference	 the	 analysis	 code	 in	 the	 text	 of	 our	 documents	 by	
designating	 Supplemental	 Code	 (SC)	 using	 a	 directory	 numbering	
system from our servers (as opposed to the order listed in the man-
uscript).	 Supplemental	Code	 includes	both	 executable	 scripts	 (*.R,	
*.py)	as	well	as	Jupyter	Notebooks	(*.ipynb).	For	example,	for	Script	
3	in	Directory	1,	we	refer	to	SC	01.03;	for	Notebook	5	in	Subfolder	
3	of	Directory	2,	we	will	refer	to	SC	02.03.05.	Each	directory	will	be	
archived on Zenodo. org and include a citation below, which will also 
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out	primarily	using	python	v3.8.5	and	R	v3.5.1	and	v4.0.3.	yml	files	
are	available	to	reconstruct	the	coding	environments	for	the	Rv3.5.1	
(r35.yml)	 and	 python	 v3.8.5	 (mvp_env.yml)	 environments	 in	 the	
Zenodo	repository.	The	yml	file	to	reconstruct	the	R	v4.0.3	environ-
ment	(MVP_env_R4.0.3.yml)	is	archived	in	Lotterhos	(2023c). Exact 
package and code versions are available at the top of each notebook. 
More information on coding workflows and coding environments 
can be found in Text S1	and	S2. Data used for analysis have been 
archived previously (Lotterhos, 2023b). Code has been archived on 
Zenodo (Lind, 2024), which mirrors the GitHub repository at https:// 
github.	com/	Model	Valid	ation	Progr	am/	MVP-		offsets.
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