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1 | INTRODUCTION Hoegh-Guldberg & Bruno, 2010). Traditional methods used to

infer such impacts, such as reciprocal transplants and common
The impacts of climate change and habitat loss pose urgent gardens, require time and resources that may not be available or
challenges to the management of species, communities, habi- feasible for many organisms of management concern, particularly
tats and ecosystem services (Bonan, 2008; Doney et al., 2012; for long-lived organisms where reproductive stages occur after
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several decades of development. Ecological forecasting models
have therefore become increasingly germane to support environ-
mental decision-making by managers across both terrestrial and
marine systems.

In the context of population viability in the face of environmental
change, many of these models rely on theoretical expectations that
the limits of species' distributions are primarily determined by the
distribution of environmental conditions (e.g. Good, 1931), and that
occupancy of highly suitable habitat enables increased abundance
through greater survival and reproduction (i.e. fitness) of individuals
(Brown, 1984). Such methods, termed species distribution models or
ecological niche models (see Elith & Leathwick, 2009 for a discus-
sion on terminology), are correlative approaches that are often used
to predict (relative) habitat suitability for a single species (Lee-Yaw
et al., 2022). This information is used to understand potential eco-
logical impacts on the species from future climate change. However,
these methods often ignore aspects of the species' evolutionary
history that could be important for predicting long-term popula-
tion persistence, such as the environmental drivers of local adap-
tation or spatial patterns of adaptive genetic variation (Waldvogel
et al.,, 2020).

Subsequent methods, termed genomic offsets (reviewed in
Capblancqg et al., 2020; Rellstab et al., 2021), have attempted to ad-
dress these shortcomings by modelling relationships between en-
vironmental and genetic variation to predict the maladaptation of
natural populations to either future climates in situ, or to predict the
relative suitability of these populations for the specific environment
of a restoration site. Empirical attempts to confirm predictions from
genomic offset models are rare and, compared to evaluations in sil-
ico (Laruson et al., 2022), have found relatively weaker relationships
between predicted maladaptation to common garden climates and
the measurement of phenotypic proxies for fitness from individuals
grown in these same environments (e.g. Capblancq & Forester, 2021;
Fitzpatrick et al., 2021; Lind et al., 2024). This suggests that realized
performance in natural systems may not meet expectations from
evaluations in silico. Even so, these empirical results have often
shown the expected negative relationship between predicted off-
set and common garden performance such as measures of juve-
nile growth (e.g. Fitzpatrick et al., 2021; Lind et al., 2024) and even
52-year mortality at multiple sites (Lind et al., 2024). Furthermore,
many of these studies found that genomic offsets often perform
better than climate or geographic distance alone (e.g. Capblancq &
Forester, 2021; Fitzpatrick et al., 2021; Laruson et al., 2022; Lind
et al., 2024).

Across empirical and in silico studies, little difference in per-
formance was found between models trained using only adaptive
markers (i.e. known in silico, or candidates from empirical geno-
type-environment [GEA] associations) and those chosen at random,
suggesting that genome-wide data may be sufficient to capture sig-
nals relevant to environmental adaptation (Fitzpatrick et al., 2021;
Lachmuth, Capblancq, Keller, et al., 2023; Laruson et al., 2022; Lind
et al., 2024). Together, these results suggest that genomic offset
methods may provide valuable insight for management without

needing to identify adaptive loci, but the number of evaluations
has been relatively small with few comparisons among methods.
Thus, little is known about how robust these methods are across
a wide array of realistic empirical scenarios and the comparative
performance among available methods. Other signals within marker
data, such as the degree to which allele frequencies are clinal across
environmental gradients, also require further exploration, particu-
larly for methods that may algorithmically emphasize such patterns
over those more relevant to environmental selection, or for those
methods that may rely upon such clinal patterns to maintain ac-
curacy in predictions. Indeed, concerns regarding the accuracy of
ecological forecasting models present a primary limitation towards
incorporating inferences from these models into management (Clark
et al., 2001; Schmolke et al., 2010) and genomic offset models are
no exception. Major questions still remain about how the perfor-
mance of a method is affected by aspects of the evolutionary history
of sampled populations, whether the type of signals in putatively
ideal data sets that may mislead offset inference (e.g. clinal allele
frequencies), how important it is to identify the environmental driv-
ers of local adaptation a priori and how consist predictive perfor-
mance is across the landscape. Finally, because novel climates with
no recent analogue are expected to increase in the future (Lotterhos
etal.,, 2021; Mahony et al., 2017), there is also uncertainty regarding
the performance of forecasting models when predictions are made
to novel environments that drastically differ from those used to
train and build the models themselves (Fitzpatrick et al., 2018; Lind
et al,, 2024).

While much uncertainty remains regarding the predictive per-
formance of genomic offsets, the domain of applicability (i.e. the
circumstances under which a method is acceptably accurate) for
these methods can be more precisely defined using simulated data
(Lotterhos et al., 2022). Simulated data present ideal circumstances
for understanding the opportunities and limits of genomic offsets
because there is no error in the measurement of allele frequencies,
environmental variables, individual fitness or the drivers of local
adaptation. To provide relevant inference regarding the domain of
applicability, simulations should capture the complexities of empir-
ical data with biological realism (e.g. clinal or patchy environments),
present contrasting cases of differing scenarios while controlling for
important features of the data (e.g. varying population connectiv-
ity but controlling for mean differentiation) and challenge methods
using adversarial scenarios that capture extreme characteristics of
empirical data (e.g. prediction to novel environments with no current
analogue available for model training; Lotterhos et al., 2022).

Here, we used a wide array of previously published, bio-
logically realistic, contrasting and adversarial simulations from
Lotterhos (2023a) in an attempt to more precisely define the limits
of predictive performance of five implementations of four genomic
offset methods (Table 1): gradientForest (GF ...; sensu Fitzpatrick
& Keller, 2015), the Risk Of Non-Adaptedness (RONA, Rellstab
et al., 2016), Latent Factor Mixed Models (LFMM2
& Francois, 2021) and redundancy analysis with and without cor-

offsetr SENSU Gain

rection for population structure (RDA sensu Capblancq &

offset’
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used for evaluation Structure
’ Method Abbr. Multivariate? correction?
gradientForest! GF tfeet Yes No
Redundancy Analysis? with RDA-corrected Yes Yes, with axes
population structure correction loadings from
PCA?
Redundancy Analysis? without RDA-uncorrected Yes No
population structure correction
Latent factor mixed model LFMM2 . Yes Yes, with latent
from Landscape and Ecological factors
Association Studies R package®
Risk Of Non-Adaptedness* RONA No No

Note: Genomic offset methods differ in their capability to use multivariate environmental data in
training as well as whether a correction for population genetic structure is applied. Superscripts
apply to the following reference citations: 1—Fitzpatrick & Keller, 2015; 2—Capblancq &
Forester, 2021; 3—Gain & Francois, 2021; 4—Rellstab et al., 2016.

?Principal component analysis.

Forester, 2021). The main goal of this study was to understand how
the evolutionary and experimental parameters used in the training
and evaluation of offset methods affect the accuracy of the meth-
ods' projections of maladaptation under ideal empirical scenarios
(i.e. using data with no inherent error). Using these scenarios, we
ask the following six questions: (1) Which aspects of the past evo-
lutionary history affect performance of offset methods? (2) How is
offset performance affected by the proportion of loci with clinal al-
leles in the data? (3) Is method performance driven by causal loci or
by genome-wide patterns of isolation-by-environment? (4) What is
the variation of model performance across the landscape? (5) How
does the addition of non-adaptive nuisance environments in training
affect performance? (6) How well do offset models extrapolate to
novel environments outside the range of environmental values used

in training?

2 | METHODS

Throughout this manuscript, we cite analysis code used to carry
out specific analyses in-line with the text. Text S1 and S2 outlines
and describes the sets of scripts or, most often, Jupyter Notebooks,
used to code analyses. Scripts and notebooks are both referenced as
Supplemental Code (SC) using a directory numbering system (e.g. SC
02.05). More information regarding the numbering system, archiving

and software versions can be found in the Data Availability section.

2.1 | Explanation of simulations and training data

To train offset methods, we used single nucleotide polymorphism
(SNP) and environmental data from a set of previously published
simulations (225 levels with 10 replicates each) of a Wright-Fisher
metapopulation of 100 demes on a 10x 10 grid evolving across a
heterogeneous landscape (Lotterhos, 2023a). Each data set was

simulated under a combination of the following four evolutionary
parameters: (i) three landscapes (10 populations x 10 populations)
that varied in vicariance and environmental gradients (Estuary -
Clines; Stepping Stone - Clines; and Stepping Stone - Mountain), (ii)
five demographies that varied population size and migration rates
across the landscape, (iii) three genic levels that varied in the ef-
fect size and number of mutations underlying adaptation (mono-,
oligo- and polygenic) and (iv) five pleiotropy levels that varied the
number of quantitative traits under locally stabilizing selection
(n € {1, 2}), presence of pleiotropy (when n =2) and vari-

traits traits

ability of selection strength across individual traits (see Figure 1
in Lotterhos, 2023a).

The adaptive trait(s) were under selection by a different envi-
ronmental variable, where the optimum trait value was given by
the local environment on the landscape (Figure S37). The adaptive
trait(s) undergoing selection responded to either a latitudinal tem-

perature gradient (temp; n =1), or to both temp and a longitudinal

traits
‘Env2’ gradient (n,,,,,=2). Env2 represented distinct biological anal-
ogies depending on the context: in the Stepping Stone - Mountain
landscape, Env2 was analogous to elevation (e.g. as with tree spe-
cies), whereas in the Estuary - Clines landscape, the Env2 environ-
ment was analogous to gradients of salinity within coastal inlets
connected only by the outer marine (ocean) environment (e.g. as
with stickleback or oyster species).

Twenty independent linkage groups were simulated. Of these,
mutations that had effects on one or more phenotypes under se-
lection (i.e. quantitative trait nucleotides, QTNs) were allowed
to evolve on only 10 linkage groups, and neutral mutations were
added to all 20 linkage groups with tree sequencing (for details see
Lotterhos, 2023a). Adaptive traits were determined additively by ef-
fects of QTNs.

In all simulations, phenotypic clines evolved between each trait
and the selective environment (Lotterhos, 2023a), where popula-
tions became locally adapted to their environment, measured at the
metapopulation level as the mean difference of demes in sympatry
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Adaptive Environment workflow for 1- and 2-trait simulations as an example

(a)
Model Training

(2) Genetic Data

(allele frequencies)
. allloci
OR

2. adaptive loci (4)
OR Genomic
3. neutral loci offset
method

5) offset model

(3) Environmental Data

‘Home” values for all
adaptive environmental

variables

Prediction to Garden Climates

(7) Environmental Data

The garden-specific values

Evaluation

Factor Y
Level Y,
BLevel Y,
ERLevel Yy

variable used in training

(8) Predicted Offset

One prediction

for each source population

(1)
Simulated Evolutionary History
n = 225 levels x 10 replicates

Performance Evaluations (n = 3,915,000)

FIGURE 1 Analysis of 1-, 2- and é-trait simulations included three main phases: (a) model training, (b) model prediction and (c) evaluation
of models. The Adaptive Environment workflow is shown as an example of the processing of 1- and 2-trait simulation data for genomic
offset evaluation. In total, three general workflows are used to evaluate genomic offset methods (Table 2). Subpanels of this schematic are

numbered for referencing in Table 2 and the main text.

minus allopatry (LA ,¢,, Blanquart et al., 2013). LA ¢, equates to the
average levels of local adaptation at the deme level which can be cal-
culated for each deme by both home-away (LA ,,,,) and local-foreign
(LA, ¢) measures.

These simulations represent a wide array of realistic, contrasting
and adversarial scenarios in which we could more precisely define
the domain of applicability of offset methods. For instance, in the
Stepping Stone - Mountain landscape, geographic distance and en-
vironmental distance were not strongly correlated, whereas in the
Stepping Stone - Clines and Estuary - Clines they were. Additionally,
the proportion of mutations with monotonic frequency gradients
(i.e. allelic clines) underlying local adaptation varied across the simu-
lated data sets (Lotterhos, 2023a), which may also affect offset per-
formance. These simulations also presented demographic scenarios
in which selection was confounded with genetic drift or population
genetic structure.

For each simulation, 10 individuals were randomly chosen per
population for a total of 1000 individuals. Individual genotypes
were coded as counts of the derived allele. Alleles with global
minor allele frequency (MAF) <0.01 were removed. Using all
100 populations, population-level derived allele frequencies and
current environmental values were used as input to train offset
methods.

In addition to the 2250 simulated Wright-Fisher data sets (225
levels* 10 replicates), we also included a non-Wright-Fisher case
with range expansion from three refugia and secondary contact
(Figure 6 in Lotterhos, 2023a). This simulation evolved variable de-
grees of admixture across the landscape. Six moderately polygenic
environmental traits (n,,,,,=6) were under selection from the en-
vironment. Environments were based on six weakly correlated en-
vironmental variables taken from Bioclim environmental measures

of western Canada. The simulation evolved local adaptation at all
six traits with unconstrained pleiotropy. For more details on simula-
tions, see Lotterhos (2023a).

2.2 | Evaluation of offset methods

We investigated the performance of five implementations of four
genomic offset methods (Table 1): GF ., RDA ., LFMM2
and RONA. While GF .., RDA ., and LFMM2 . . can use mul-
tivariate environmental data to train models, RONA is univariate

offset

offse offse

and can only account for a single environmental variable at one time
(Table 1). Additionally, while GF
tion for population genetic structure, LFMM2

and RONA do not apply correc-

offset

iset dO€S by default,
and structure correction with RDA ., is optional. We thus evalu-
ate RDA .., with (RDA-corrected) and without (RDA-uncorrected)
population genetic structure correction (Table 1). For additional
specifics related to the implementation of each offset method, see
Text S1.1-S1.4 and Figures S1-S3.

We varied construction of genomic offset training data sets for
each replicate of the 1-, 2-, and 6-trait simulations by varying the
marker set used in model training (Figure 1a, Table 2; see Q3 below).
Each model was trained using genetic and environmental data from
all 100 populations. The environmental variables used were only
those imposing selection pressure. We predicted offset from each
model for each population to all 100 within-landscape common
gardens from a full factorial in silico reciprocal transplant design
(Figure 1b). For each common garden, we quantified offset model
performance as the rank correlation (Kendall's t) between the pop-
ulation mean fitness (averaged over sampled individuals, Equation 3
in Lotterhos, 2023a) and projected population offset (Figure 1c).
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Strong negative relationships between fitness and predicted offset
indicate higher performance of the method (note y-axes of Kendall's
T are inverted within figures to show more intuitive performance re-
lationships, Figure 1c-11). We refer to the preceding processing of
data as the Adaptive Environment workflow (Figure 1, Table 2). Across
all workflows, all adaptive environments were included in training
and were never excluded.

To explore the impact of the choice of environmental variables
used (see Q5 below), we used a workflow similar to the Adaptive
Environment workflow, except instead of using only adaptive envi-
ronmental variables, we used additional non-adaptive (i.e. nuisance)
environmental variables in training and prediction (second row,
Table 2). These nuisance variables had relatively weak correlation
structure with adaptive environments and each other (Figure S4).
We refer to each of these nuisance levels by the number of traits
under selection and the number of nuisance environments used
(e.g. 1-trait 3-nuisance). We refer to this workflow as the Nuisance
Environment workflow.

Finally, to contrast with within-landscape evaluations, we ex-
plored predictive performance of Adaptive Environment offset mod-
els in novel environments that are beyond the range of values of
those used in training (see Qé below). In these novelty cases, we
use 11 common gardens, each progressively more distant from the
average environment used in training (i.e. climate centre) and eval-
uate performance in each garden. We refer to this workflow as the
Climate Novelty workflow. See Text S3 and Figure S5 for details re-

garding the choice of environmental values for novelty scenarios.

2.3 | Study questions

2.3.1 | Q1 - Which aspects of the past evolutionary
history affect within-landscape performance of offset
methods?

For each offset method, we used a fixed-effects type || ANOVA
model to test for significant differences in the performance from 2-
trait Adaptive Environment models trained using all markers using the
following factors: landscape (Estuary - Clines, Stepping Stone - Clines,
Stepping Stone - Mountain), demography (five levels describing popu-
lation size and migration patterns across the landscape), genic level
of architecture (three levels from oligogenic to polygenic), presence
or absence of pleiotropy, proportion of loci with clinal allele fre-
quencies (as defined in Lotterhos, 2023a), degree of local adaptation

(ASA) and common garden ID. Specifically,

Yi =L+ D; + GL; + P + Peqrnti + PeNeuti + PeqTNenvai + PeNeutemvzi + LAasai + Gj

(1)

where Y,.j is the within-landscape performance (Kendall's t) of a sin-
gle method for garden j in simulation i, with factors for landscape (L),
demography (D), genic level (GL), presence of pleiotropy (P), propor-
tion of QTN or neutral alleles with temp clines (respectively, Peqrnti
and cheut’tyi), proportion of QTN or neutral alleles with Env2 clines

(respectively, Peqr.Envai and cheut,Enin), degree of local adaptation
(LA s4) and garden ID (G). The first four factors are illustrated in
Figure 1 of Lotterhos (2023a).

2.3.2 | Q2 - How is offset performance affected
by the proportion of clinal alleles in the data?

Clinal alleles (i.e. alleles with monotonic gradients in frequency
across space) that covary with environmental clines could be
weighted more heavily in offset models that emphasize loci whose
allele frequencies explain significant variation across local envi-
ronmental values. Using 2-trait models trained using all markers
from the Adaptive Environment workflow, we used an ANOVA
model (Equation 2) to test the hypothesis that clinal alleles differ-
entially impact model performance, independent from the other
factors from Equation 1:

Yij = chTN,t,i + cheut,t,i + chTN,EnvZ,i + cheut,Enin (2)

The factors representing clinal alleles in Equation 2 are the same

as those in Equation 1.

2.3.3 | Q3 -Is method performance driven by
causal loci or by genome-wide patterns of isolation by
environment?

For each offset method and workflow, we varied the set of input
markers for 1-, 2- and 6-trait simulations that were used in training
to determine if performance of a method was driven by properties
of the evolutionary forces shaping genotype-environment relation-
ships: (1) adaptive markers (i.e. QTNs with effects on at least one
trait), (2) neutral markers (SNPs on linkage groups without QTNs) and
(3) all markers (union of adaptive and neutral markers, as well as non-
QTN markers on the same linkage groups as QTNs). Only loci that
passed MAF filtering were included in marker sets (W = 188,
N_a,, = 33,169, m = 16,520). If offset performance is determined
solely by adaptive signals in genetic data, offsets trained using adap-
tive markers should have better performance than all or neutral
markers, and all markers should have better performance than neu-
tral markers.

If the marker set has little impact on offset performance, this
could indicate that offset methods are giving weight to genome-
wide signals present in the data. Previously, some (e.g. Lachmuth,
Capblancq, Keller, et al., 2023; Lind et al., 2024) have postu-
lated that this signal may be related to isolation by environment
(IBE, i.e. when genetic and environmental distances are posi-
tively correlated, independent of geographic distance; Wang &
Bradburd, 2014).

If IBE is driving patterns of offset performance, we expect (1)
performance to be similar between offsets estimated using adap-
tive markers and those estimated using neutral markers; (2) a greater
proportion of variation in performance to be explained by p ., than
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P.qry (from Q2); (3) a strong, positive relationship between perfor-
mance and LA ,¢,; and (4) the difference in IBE between two marker
sets to be positively correlated with the difference in performance
of two models trained with those markers. We measured IBE as the
rank correlation (Spearman's p) between population pairwise Fg;
(Weir & Cockerham, 1984) and Euclidean climate distance of adap-

tive environmental variables.

2.3.4 | Q4 - Whatis the variation of model
performance across the landscape?

Within a landscape, offset methods may not have high predictive per-
formance at every site or every environment. Understanding variability
in the predictive performance of offset models across the landscape is
particularly relevant when offsets are used for restoration or assisted
gene flow initiatives (i.e. ranking sources for a given site). If predictive
performance is variable across the landscape, this may limit the useful-
ness of genomic offsets for such purposes even if model performance
is validated in one common garden. Using the Adaptive Environment
workflow, we visualized variation of 1- and 2-trait within-landscape
performance with boxplots for each common garden for each method
and landscape. To understand if variation in predictive performance
was a function of the model quality, we investigated the relationship
between a model's performance variability (i.e. standard deviation

across 100 common gardens) and the model's median performance.

2.3.5 | Q5 - How does the addition of non-adaptive
nuisance environments in training affect performance?

In practice, the environments imposing selection are rarely known a
priori. Additionally, the inclusion of environmental measures that are
not correlated with the main axes of selection may reduce model per-
formance compared to models trained using only causal environments.
To investigate the sensitivity of offset methods to environmental
input, we compared Adaptive Environment workflow models from 1-,
2- and 6-trait simulations—where only the adaptive environment(s) are
used in training (0-nuisance)—to models from the Nuisance Environment
workflow trained with the same data but with the addition of nuisance
environments (N-nuisance, where N> 0; Table 2).

We used nuisance environmental variables from Lotterhos (2023a)
that were real BioClim variables (TSsd, PSsd and ISO) taken from British
Columbia and Alberta, Canada, which have minimal correlation with
causal environments and each other (Figure S4). These three nuisance
environments differ from previous implementations of such variables
(Laruson et al., 2022) in that they are spatially autocorrelated whereas
nuisance environments in Laruson et al. (2022) were not. For 1-trait
scenarios, Env2 was also used as a nuisance environmental variable.
If offset methods are unaffected by the addition of nuisance environ-
mental variables, performance should not differ between 0-nuisance
and N-nuisance implementations. Finally, in empirical settings, the set
of adaptive environments are not known a priori. We also explored
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whether GF would rank adaptive environments higher than nuisance

environments using weighted importance output from GF.

2.3.6 | Q6 - How well do offset models extrapolate
to novel environments outside the range of
environments used in training?

Even if offset methods have high within-landscape performance,
this does not directly address situations where future environmental
conditions are vastly different from the environmental conditions
used for training (i.e. novel environments). If performance decreases
with increasing environmental novelty relative to training data, this
raises questions about the utility of genomic offsets for predict-
ing (1) relative in situ vulnerability of populations to future climate
change and (2) the relative suitability of populations to restoration
sites that differ drastically than those used in training.

To understand if offset performance degrades with environmen-
tal novelty relative to training data, we predicted offset to 10 novel
environmental scenarios for the 1-, 2- and 6-trait simulations using
the Climate Novelty workflow (Table 2). The novel environmental
scenarios were a set of common garden environments, z,, extend-
ing outward from the training populations and exceeding values
observed on the landscape for all adaptive environmental variables
(Text S3). We represent these scenarios as standard deviations from
the centre of environmental values used in training: z, € {1.72, 2.35,
2.74, 3.13, 3.53, 3.92, 4.31, 4.70, 5.09, 5.48, 5.88}. Fitness in novel
environments was estimated assuming that the phenotypic optimum
continues to have a linear relationship with the environmental vari-
able (Equation 3 in Lotterhos, 2023a).

3 | RESULTS

3.1 | Q1 - Which aspects of the past evolutionary
history affect within-landscape performance of offset
methods?

The ANOVA model (Equation 1) indicated that the degree of local adap-
tation of the metapopulation (LA ,,) was the primary factor influencing
offset performance, followed by common garden location, demogra-
phy and landscape (Table S1; Figure S6). Within the simulations, LA ¢
was impacted by pleiotropy, the relative strength of selection and land-
scape (Figure S7; see also Figure S2a,b in Lotterhos, 2023a), so there
may be some confounding among these factors.

In line with the ANOVA model, the performance of specific off-
set methods generally increased with increasing LA ¢, (Figure 2),
but there were some interesting differences among methods. For
instance, GF ..., LFFM2 . .., RDA-uncorrected and RONAtemp all
improved as LA ¢, increased, while RDA-corrected and RONA, ,
showed relatively weaker relationships.

Across landscapes, offset methods generally had higher per-
formance in Stepping Stone - Clines landscapes than Stepping Stone
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- Mountain landscapes (Figure 2b) despite similar levels of LA,
(Figure 2a). Offset methods also generally performed better in
the two Stepping Stone landscapes than the Estuary - Clines land-
scape (Figure 2b). However, there were some interactions between
method and landscape (Figure 2c). For instance, RDA-corrected per-
formed better in the Estuary - Clines compared to the two Stepping
Stones landscapes, while the RDA-uncorrected showed the opposite
pattern: performance was higher in the two Stepping Stones land-
scapes compared to Estuary - Clines.

The performance of methods was similar across genic levels but
increased slightly as the number of QTNs underlying adaptation
became more polygenic (Figure S8). Additionally, while demog-
raphy primarily influenced population differentiation across the
landscape with little impact on LA, within simulations (Table S2
in Lotterhos, 2023a), migration breaks between populations and
latitudinal clines in population size generally decreased offset per-
formance for LFMM2 GF and RDA-uncorrected (Figure S9).

offset’ offset

3.2 | Q2 - How is offset performance affected
by the proportion of clinal alleles in the data?

The sum of squares from Equation 1 indicated that the proportion of
clinal alleles did not account for meaningful variation in offset per-
formance (Table S1). Even so, results from an ANOVA model with
just the proportion of clinal loci as explanatory variables (Equation 2)
indicated that p ,,,,, accounted for 4.14-9.65 times the variation than
did p.qry for GF LFMM2 and RDA-corrected. For GF

offset’ offset offset

(a) 68% of adaptive scores outperform alf scores b) 67% of adaptive scores outperform neutraf scores (C

— ]}

R— 11171
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and RDA-uncorrected, PeNeut.Env2 accounted for >16% of the sum of
squares (Table S2, Figure 510).

Overall, relationships between performance and p,,,, (second
column, Figure S11) were stronger than between performance and
Pearn (first column, Figure S11). However, sometimes performance

increased with p and sometimes it decreased, depending on the

cNeut
method (Figure S11), indicating that each method is differentially
sensitive to clinal alleles in the data. Ultimately, strong population
genetic structure along environmental clines in 2-trait simulations
(Figure S12) drove relationships with p . (Figure S13) which in turn

drove relationships with performance (Figures S11 and S14).

3.3 | Q3 - Is method performance driven
by causal loci or by genome-wide patterns of
isolation-by-environment?

Overall, 1- and 2-trait Adaptive Environment models had relatively
similar performance among marker sets. For instance, models trained
using all or neutral markers had similar performance while models
trained using adaptive markers performed slightly higher than the
other sets. The median increase in performance from adaptive com-
pared to all or neutral models was less than 3%. In total, using adap-
tive markers outperformed 68% of models using neutral markers and
67% of models using all markers, while 74% of models using all mark-
ers outperformed neutral models (Figure 3a-c). For RDA-corrected,
the neutral markers performed slightly better than either adaptive or

all markers in 2-trait evaluations (Figure 3e). Adaptive markers from

74% of all scores outperform neutral scores
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FIGURE 3 Comparison of marker choice across genomic offset methods for 1- and 2-trait simulations. (a-c) Scatterplots of pairwise
comparisons of performance between marker sets (histograms in each margin) from both 1- and 2-trait models where density of points is
indicated by colour in legend (note colour scale is different for each figure to accentuate patterns in data). (d, e) Boxplots from the same data
in (a-c) separated by individual traits. Data included in these figures is from all 1- and 2-trait models from the Adaptive Environment workflow.
Code to create these figures can be found in SC 02.02.03.
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is the combined performance across all six environmental models). Data included in this figure is from the 6-trait models

processed through the Adaptive Environment workflow. Note there is only one 6-trait replicate, and variation within figures represents the
performance across 100 common gardens for each method. Code to create these figures can be found in SN 02.05.10.

6-trait evaluations provided varied performance advantages across
methods (Figure 4; Figure S37).

The adaptive marker sets had relatively elevated levels of IBE
compared to sets of neutral or all markers in 1- and 2-trait simu-
lations, but levels of IBE were nonetheless quite similar between
marker sets (Figure S15). Consequently, performance of models
trained with adaptive markers generally had stronger relationships
with IBE than LA,.,, but this was not the case for models trained
with either all or neutral markers (Figure S16).

IBE found within a
(Figure S17a) did not correspond to the degree of LA,., that

Intriguingly, levels of landscape
developed (Figure S17b). Even so, while IBE was generally un-
related to LA ¢, across all simulations, there were generally pos-
itive relationships between IBE and LA ,, when controlling for
the number of traits and differences in strengths of selection

(Figure S18). As such, IBE from all markers explained very little

variation in performance when added as a factor to the ANOVA
model from Equation 1 (SC 02.02.01), but accounted for some
variation in ANOVA models with only LA ¢, and IBE as explana-
tory variables (0%-34% for IBE vs. 0%-74% for LA ,¢,; Table S3).
Except for RONA, the differences in performance between two
models trained with different marker sets were generally unre-
lated to the differences in IBE between the two marker sets used

to train the models (Figure 519).

3.4 | Q4 - Whatis the variation of model
performance across the landscape?

All 1- and 2-trait models exhibited variation in the predictive per-
formance across gardens within a landscape, from essentially
no predictive performance to very high predictive performance
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(Figures S20-523). Variation in performance was also observed for
6-trait models (Figure 4).

While there was variability in predictive performance of 1- and
2-trait models within each landscape, in many cases, the best per-
forming models had the lowest levels of performance variation
(Figures S24-S26). Ultimately, we found no strong indicator for
predicting when a model will be highly variable. Indeed, while per-
formance generally increased with LA, (Figure 2), variability in
performance was not strongly related to the variability in deme-level
LA on the landscape (Figures S27-529). Despite LA ¢, driving per-
formance more generally (from Q1), this indicates that variation in
model performance across the landscape was not strongly driven by

metapopulation levels of, nor deme-level variation in, LA.

3.5 | Qb5 - How does the addition of non-adaptive
nuisance environments in training affect
performance?

Training offset models with the addition of non-adaptive nuisance
environmental variables generally reduced offset method perfor-
mance (Figure 5). This decline was most dramatic for offset trained
on 1-trait simulations (Figure 5a) compared to the decline observed
for 2-trait (Figure 5b) and 6-trait (Figure 5c) simulations. The only
instances for which median performance did not decrease mono-
tonically with nuisance level were for 2-trait simulations evaluated
with GF ., (Figure S30).

Overall, landscape had the most influence over performance dif-
ferences due to non-adaptive nuisance environments (Figure S30),
whereas there was little difference across other simulation param-
eters (not shown except in SC 02.02.06). Even so, adaptive markers
seemed to provide some advantages in the presence of nuisance en-
vironments, particularly for 1-trait data sets where the advantages
were more substantial compared to 2-trait data sets (Figures S31
and S32).

In some cases, the rankings of weighted environmental im-
portance output from GF ranked nuisance variables higher than
at least one adaptive environment (Table S4). Across 1- and 2-trait
N-nuisance models trained with all markers, GF incorrectly ranked
environmental drivers in 26.9% (133/495) of the cases. Rankings
improved somewhat for models trained with adaptive markers, in-
correctly ranking environmental variables in 20.6% (102/495) of the
cases (Table S4).

3.6 | Q6 - How well do offset models extrapolate
to novel environments outside the range of
environments used in training?

The datasets that had the greatest within-landscape performance
(i.e. those with higher levels of LA,.,) were also those that experi-
enced the steepest decline in performance with increasing climate
novelty (red shade, Figure 6). Importantly, declines in performance

RESOURCES

for data sets with greater LA, were not due to instances where all
populations had zero fitness (and thus performance was undefined
and manually set to 0; Text S4, Figure S33). Despite little change in
the median performance for data sets with low levels of LA, most
performance scores from these data sets did not exceed Kendall's
1=-0.5, and therefore had little predictive value in novelty scenar-
ios. Performance of individual methods followed the overall trend
presented in Figure 6 (Figure S35).

Advantages of adaptive marker sets were much less prevalent
across methods for Climate Novelty scenario performance than
either Adaptive Environment or Nuisance Environment scenarios
(Figure S34).

4 | DISCUSSION

In the last decade, genomic offset methods have been identified as a
complement to other ecological forecasting models because they in-
corporate intraspecific variation (Capblancq et al., 2020; Fitzpatrick
& Keller, 2015; Rellstab et al., 2021). Our evaluations show that offset
methods may be impacted by both the evolutionary history of sam-
pled populations as well as the decisions made during model train-
ing. Our analyses emphasize that performance of offset methods
is highest when applied to locally adapted populations with known
drivers of environmental selection, and when restricting offset pro-
jections to climates similar to those used in training. These results
suggest that there may be a number of scenarios for which genomic
offset methods may provide valuable insight for management, but
also highlight that they will not yield accurate results in every situ-
ation. Below, we discuss the implications of these findings towards

restoration, conservation and the management of biodiversity.

4.1 | Theimportance of local adaptation

A basic assumption of genomic offset methods is that the sam-
pled populations are adapted to their local environment (Rellstab
etal., 2016, 2021), but this assumption has not been formally tested.
Our analyses show that indeed the degree of local adaptation (LA ;¢ ,)
is one of the primary factors that determine model performance for

most methods. A value of LA ., ~0.5 indicates that fitness in demes

ASA
is on average 50% higher in sympatry than allopatry. Values of LA ¢
represent the average deme-level magnitudes of LA,,, and LA, .
across the metapopulation (Blanquart et al., 2013). Previous meta-
analyses of studies measuring local adaptation of natural popula-
tions have used different measures of LA from the ones we calculate
here, but do show that some species evolve large fitness differences
among populations (Hereford, 2009; Leimu & Fischer, 2008). Given
the prevalence of LA found previously (Hereford, 2009; Leimu &
Fischer, 2008), we may therefore expect some genomic offset meth-
ods to do reasonably well when predictions are made for environ-
mental values most similar to those used in training, and when local

adaptation in the metapopulation is high (e.g. when LA ¢, >0.5, the
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FIGURE 6 Performance decays with climate novelty relative to training data. Shown is model performance (y-axes) across methods at
climate centre and across common gardens each representing increasing degrees of climate novelty relative to training data (right-most
x-axis) where all 100 populations have been transplanted. The standard deviation values are applicable to all environments for all landscapes
except for Env2 in the Stepping Stone - Mountain landscape; the corresponding standard deviations are 1.55, 2.12, 2.47, 2.82, 3.18, 3.53,
3.88,4.24,4.60, 4.95, 5.3. When fitness for all transplanted individuals was zero, a model's performance was undefined and manually set to
0; no method predicted a single offset value for all populations in these situations. Setting undefined performance to O did not substantially
impact patterns between performance and climate novelty, and is explored in Text S3. Data included in this figure are from models trained

using 1- and 2-trait simulations from the Climate Novelty workflow, and excludes both RONA

figure can be found in SC 02.04.05.

had an

average correlation between offset and fitness of ~-0.6). However,

best performing methods, RDA-uncorrected and GF ..
even moderately high levels of local adaptation had substantial de-
cline in performance (e.g. when LA, =0.3, the best performing
methods, RDA-uncorrected and GF ..,
between GO and common garden fitness of ~-0.2). Future studies

had an average correlation

should seek to demonstrate evidence for strong local adaptation
in the system prior to applying genomic offset methods, but ulti-
mately the level of predictable performance that is acceptable will
depend on the stakeholders and management goals in the system. In
the absence of evidence for local adaptation for the target system,
additional data that can be used to verify offset predictions (such
as common garden(s], demographic data or remote sensing data)
should be used to verify offset predictions (Lind et al., 2024).

4.2 | Theimportance of the signals within genomic
marker sets

Initial implementations of genomic offset models focused on pu-
tatively adaptive markers where the signal of local adaptation may
be strongest (Fitzpatrick & Keller, 2015; Rellstab et al., 2016). More
recently, investigators have varied the set of markers used to train
models but have found little influence on performance (Fitzpatrick
et al.,, 2021; Lachmuth, Capblancg, Keller, et al., 2023; Laruson
et al., 2022; Lind et al., 2024) and our results are consistent with
these studies. We found that the adaptive marker sets provided a
slight advantage over all or neutral marker sets, but not universally
or by great margins.

p and RONA,, ,. Code used to create this

tem

One hypothesis put forth as to why adaptive marker sets per-
form similar to all markers is that genome-wide data capture suf-
ficient signatures of IBE (Lachmuth, Capblancg, Keller, et al., 2023;
Lind et al., 2024). Our analysis found weak positive relationships
between performance and levels of IBE within marker sets. Even so,
and except for RONA, there were no universal relationships within
methods between the difference in IBE of marker sets and the dif-
ference in performance of the models trained with these markers.
Together, these results indicate that while higher degrees of local
adaptation may lead to increased levels of IBE in the genome, the
signal of IBE of input markers generally has minimal and varied im-
pact on performance differences for the scenarios evaluated here.
Alternatively, the levels of IBE present in the simulated genomes
may exceed a minimum threshold of IBE, beyond which differences
in performance between marker sets are minimized.

While we found little impact of levels of IBE on overall perfor-
mance, the way in which we measured IBE may have masked caus-
ative relationships. For instance, we measured IBE as the correlation
between pairwise environmental distance and pairwise Fq, and did
not incorporate geographic distance. In doing so, our measure of IBE
distilled genetic distance down to a single value from a large number
of loci and gave less weight to loci with rare alleles. In future studies,
creating a fourth marker set based on loci with the highest IBE sig-
nals to compare with other marker sets offers another opportunity
to understand the impact of IBE on performance. Empirical data sets
will also be able to specifically address geographical distances while
quantifying IBE (e.g. Bradburd et al., 2013).

While measures of IBE are one signal remaining to be explored
in future analyses, the proportion of clinal neutral loci within marker
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sets was shown to have varied impacts on performance, sometimes
being positively related to performance and sometimes negatively
depending on the context. In addition to the effect of clinal allele
patterns, our results also suggest that nonmonotonic relationships
between environmental gradients and allele frequencies will be an
important element to consider during model building, as the meth-
ods that strictly modelled linear relationships (RONA, LFMM2) had
on average poorer performance than other methods we evaluated
(GF RDA et
across adaptive, neutral and all loci. Although, while the similarity in

offset? ). In contrast, we found very similar performance
performance among marker sets evaluated here may indicate that it
is often unnecessary to subset loci for model training to those that
are putatively adaptive, testing multiple marker sets during model
exploration will be important to understand model sensitivity (Lind
et al., 2024). These and other signals within data that could improve
or mislead offset models, including the choice of how and when to
correct for population structure, also warrant further investigation.

4.3 | Theimportance of adaptive environmental
variables

In empirical settings, the environmental drivers of local adaptation
are rarely known a priori. Even so, our results emphasize the impor-
tance of identifying these variables before training offset models, as
there were often declines in performance between models trained
using only adaptive environmental variables (0-nuisance) and those
trained using additional non-adaptive nuisance environmental vari-
ables (N-nuisance).

The importance of identifying these selective environments may
be particularly germane to two general empirical scenarios. In the
first empirical scenario, sparsely sampling an environmentally het-
erogeneous range may enrich genetic signals (e.g. coincident pop-
ulation structure) most correlated to environmental variables that
maintain a gradient across this extent, and miss signals relevant to
more local scales. In the second empirical scenario, identifying the
environmental variables underlying selection is particularly import-
ant when a specific genomic offset method is ill-suited to differ-
entiate importance among input variables. For instance, RDA (and
therefore RDA .
to build models are not collinear (as implemented here; Capblancg &

) assumes that the environmental variables used

Forester, 2021; Legendre & Legendre, 2012). Because of this, empir-
ical data sets must be limited to a subset of available environmen-
tal measures. The process of excluding environmental variables in
this way may omit signals of adaptive drivers (particularly when true
drivers are not well measured), or perhaps incorporate environmen-
tal variables that do not coincide with drivers of selection. In these
cases, performance is likely to decline. As such, this may indicate
that methods such as RDA .., are likely to perform worse in, or less
uniformly across, realistic empirical settings than what our current
findings suggest.

Users of GF may be tempted to include a large number of en-
vironmental variables in training, hoping that GF can accurately

attribute the correct environmental variation to adaptive genetic
structure. Our results show that it is not necessarily the case that GF
will give the highest importance values to the true adaptive environ-
mental variables. Indeed, weighted feature importance scores from
GF models still incorrectly ranked the adaptive environments below
neutral environments in 20%-27% of the data sets, depending on
which marker set was used. These importance values ultimately
affect the model predictions. Including all available environmental

variables may therefore negatively impact GF performance and

offset
could have weakened overall performance in previous empirical
evaluations that used a large number of environmental measures in
training (e.g. Lind et al., 2024).

There are some differences between the nuisance environ-
mental variables implemented here and those that have been im-
plemented previously. For instance, Laruson et al. (2022) created
nuisance variables by randomly sampling a multivariate normal dis-
tribution. In contrast to findings here, Laruson et al. (2022) found
that model performance was relatively unaffected with the addition
of nuisance variables. The minimal influence of nuisance variables
on performance found by Laruson et al. (2022) may differ from the
performance declines reported here because the nuisance variables
we used were spatially autocorrelated, while those from Laruson
et al. (2022) were not. Inclusion of nuisance variables that are spa-
tially autocorrelated may mislead offset models more generally than
variables with little spatial autocorrelation because of the spurious

relationship between environmental structure and genetic structure.

4.4 | The effect of environmental novelty

While within-landscape performance generally increased with
LA ,a, the data sets with the greatest levels of LA, were also the
data sets where performance declined most readily with climate
novelty. This occurred because locally adapted metapopulations
were under strong selection to be fine-tuned to their environment,
and as a result, most individuals suffered severe fitness declines with
environmental change. In contrast, less locally adapted metapopula-
tions were under weaker selection, and suffered less steep fitness
declines with environmental change. This result highlights an inter-
esting paradox: Offset methods that have the highest performance
in common garden transplants under current climates (because of
strong local adaptation) may have the lowest performance in pre-
dicting ‘genomic vulnerability’ as the range of climate variables be-
come more novel compared to the ranges used in training the model.

Thus, it will be important for future studies to clearly show what
offset predictions have been extrapolated to environments that
have no analogue in the data used to train the model. This is par-
ticularly relevant for applications of offset methods that attempt
to estimate the in situ risk of climate change where the environ-
ment is expected to be increasingly novel. Global climate novelty
is often measured with respect to historical variability across a spe-
cies range (e.g. Lotterhos et al., 2021; Mahony et al., 2017; Williams
et al., 2007). Terrestrial systems could experience change in excess
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of three standard deviations relative to historic values (Williams
et al., 2007), with similar indices in marine systems indicating poten-
tial for even greater novelty (Lotterhos et al., 2021). We observed
performance declines below the analogous z.=3.13 standard devi-
ations Climate Novelty scenario, indicating offset predictions could
be inaccurate in many real-world climate change predictions. These
issues are also germane to measures derived from offset values
(Gougherty et al., 2021; Lachmuth, Capblancq, Keller, et al., 2023;
Lachmuth, Capblancg, Prakash, et al., 2023), which currently do not
consider the degree of climate novelty in the prediction (but see
DeSaix et al., 2022 for an empirical example that highlights model
extrapolations).

Our results present a best-case scenario for predicting perfor-
mance in novel environments, as in many cases, there will be bio-
logical reasons as to why climate-fitness relationships will differ in
future environments from relationships measured within the con-
temporary climate space (see Figure 5 in Capblancq et al., 2020). The
simulations used here assumed a linear relationship between envi-
ronment (whether current or novel) and optimal trait value, with-
out a cost for the production of extreme traits. Thus, by assuming
linearity in the simulations, we presented methods with a straight-
forward relationship to extrapolate to novel climates. In empirical
settings, the relationship between the selective environment and
optimal trait value could be nonlinear. Developing a clearer under-
standing of the relationship between the environment and optimal
trait value, as well as various nonlinear methods for extrapolation

(e.g. see Text S1), are important areas of future work.

4.5 | Genomic offsets in practice

Our evaluations show that genomic offset methods hold promise for
predicting maladaptation to environmental change for metapopula-
tions that evolve strong local adaptation, and within environments
similar to those in the data used to train the model. However, our
analyses also emphasize the limits of these methods in some sce-
narios and the variability of performance across methods. Although
GF ¢t.er and RDA-uncorrected generally had greater performance
than RDA-corrected, LFMM2 or RONA, there was no single method
that outperformed the others across all situations. For instance, un-
like other methods that performed best in Stepping Stones - Clines
landscapes, RDA-corrected had highest performance in Estuary
- Clines landscapes. RDA-corrected also had greater performance
than other methods in many of the data sets that developed low
levels of LA ,¢,, but this was not the case when local adaptation was
high. In practice, species that are locally adapted to measurable en-
vironmental variables will be best suited for offset methods when
predicting the relative performance of populations in a contempo-
rary common garden, but paradoxically these species may be least
suited to using these methods to predict their vulnerability to novel
climates.

Together, these results indicate that some genomic offset meth-
ods may be suited to guide initiatives such as near-term assisted
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gene flow, where targeted restoration sites within a species range
have climates that are similar to those used to train offset models.
Even so, our results also show that the performance of these meth-
ods are often variable across a landscape, indicating that high per-
formance at one site does not mean the offset model will perform
well at another. While genomic offset methods may be suitable for
assisted gene flow initiatives, they may be less suited for assisted mi-
gration programmes where populations are moved outside of their
native range and environments differ from training data.

Before genomic offsets can be incorporated into management
plans, considerable thought must be put into the sensitivity of model
outcomes from input data (e.g. from marker sets and the populations
used; Lind et al., 2024), the uncertainty inherent in environmental or
climate forecasts (Lachmuth, Capblancq, Keller, et al., 2023), as well
as the degree of novelty of future climates (DeSaix et al., 2022, this
study). While accurate predictions are limited for novel climates of
the future, these offset methods could still be used to guide man-
agement in the intervening time in a stepwise manner where experi-
ments can be used to validate model performance in practice. Using
simulations tailored to the life history of target species also presents
a promising avenue to understand limitations of these methods for

specific management cases.
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uscript). Supplemental Code includes both executable scripts (*.R,
*.py) as well as Jupyter Notebooks (*.ipynb). For example, for Script
3in Directory 1, we refer to SC 01.03; for Notebook 5 in Subfolder
3 of Directory 2, we will refer to SC 02.03.05. Each directory will be
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web link in the archive's README on GitHub. Analyses were carried
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out primarily using python v3.8.5 and R v3.5.1 and v4.0.3. yml files
are available to reconstruct the coding environments for the Rv3.5.1
(r35.yml) and python v3.8.5 (mvp_env.yml) environments in the
Zenodo repository. The yml file to reconstruct the R v4.0.3 environ-
ment (MVP_env_R4.0.3.yml) is archived in Lotterhos (2023c). Exact
package and code versions are available at the top of each notebook.
More information on coding workflows and coding environments
can be found in Text S1 and S2. Data used for analysis have been
archived previously (Lotterhos, 2023b). Code has been archived on
Zenodo (Lind, 2024), which mirrors the GitHub repository at https://
github.com/ModelValidationProgram/MVP-offsets.
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