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Abstract

1. Over the past decade, there has been a rapid increase in the development of

predictive models at the intersection of molecular ecology, genomics, and global
change. The common goal of these ‘genomic forecasting’ models is to integrate
genomic data with environmental and ecological data in a model to make quanti-

tative predictions about the vulnerability of populations to climate change.

. Despite rapid methodological development and the growing number of systems

in which genomic forecasts are made, the forecasts themselves are rarely evalu-

ated in a rigorous manner with ground-truth experiments. This study reviews the
evaluation experiments that have been done, introduces important terminology
regarding the evaluation of genomic forecasting models, and discusses important
elements in the design and reporting of ground-truth experiments.

3. To date, experimental evaluations of genomic forecasts have found high variation
in the accuracy of forecasts, but it is difficult to compare studies on a common
ground due to different approaches and experimental designs. Additionally, some
evaluations may be biased toward higher performance because training data and
testing data are not independent. In addition to independence between training
data and testing data, important elements in the design of an evaluation experi-
ment include the construction and parameterization of the forecasting model,
the choice of fithess proxies to measure for test data, the construction of the
evaluation model, the choice of evaluation metric(s), the degree of extrapolation
to novel environments or genotypes, and the sensitivity, uncertainty and repro-
ducbility of forecasts.

4. Although genomic forecasting methods are becoming more accessible, evaluat-
ing their limitations in a particular study system requires careful planning and
experimentation. Meticulously designed evaluation experiments can clarify the
robustness of the forecasts for application in management. Clear reporting of
basic elements of experimental design will improve the rigour of evaluations, and

in turn our understanding of why models work in some cases and not others.
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1 | INTRODUCTION

Multivariate environmental change presents many challenges for
predictive modelling. Genomic forecasting is a rapidly growing sub-
field that integrates genomic data with environmental and ecological
data for prediction. The types of projections that genomic forecast-
ing might be used to make range from estimating population mal-
adaptation to an environmental change to choosing genotypes for
a restoration project (Laruson et al., 2022; Rellstab et al., 2021). A
forecast is a set of quantitative estimates that are often based on a
theoretical model, statistical model or time series data and differs
from a ‘prediction’ that can be more qualitative and based on intu-
ition (Burford Reiskind et al., 2021). Here, the term genomic forecast-
ing model refers to any kind of statistical or mathematical method
that incorporates genomic data to predict fitness of a genotype in a
given environment (e.g., the ‘forecast’).

A group of methods that are currently central to genomic fore-
casting models are known as genetic offset or genomic offset meth-
ods. A genomic offset is typically defined as the instantaneous degree
of maladaptation of a genome in a new environment (Fitzpatrick &
Keller, 2015; Laruson et al., 2022; Rellstab et al., 2021), although
this definition has been questioned (Lotterhos, 2024). Genomic off-
sets are often conceptualized as the amount of genetic change that
would be required for the population to be optimally adapted to a
new environment (Figure 1a). They are measured as the amount of
cumulative allele frequency change or turnover across an environ-
mental gradient (Figure 1b), and calculations are often based on pu-
tatively adaptive loci identified as outliers in genotype-environment
associations (GEAs) (Rellstab et al., 2021). GEAs are statistical meth-
ods that identify loci with associations between allele frequencies
and environmental gradient(s) (Rellstab et al., 2015). Although some
investigators have also referred to genomic offset as a ‘genomic
vulnerability’, the use of the term has been debated because it is
not consistent with established definitions of vulnerability (Foden
et al,, 2019), and simulations show that genomic offsets do not al-
ways estimate population vulnerability (Fitzpatrick et al.,, 2018;
Laruson et al., 2022; Lind & Lotterhos, 2024, Lotterhos, 2024).

Recently, there have been a number of genomic forecasting
methods published (Brauer et al., 2023; Capblancq & Forester, 2021;
Fitzpatrick & Keller, 2015; Gain et al., 2023; Gain & Francois, 2021;
Rellstab etal., 2016; Rochat & Joost, 2021) and with them the number
of high-profile empirical studies that make forecasts about the mal-
adaptation of populations across a species range has increased (Bay
et al., 2018; Brauer et al., 2023; Chen et al., 2022; Exposito-Alonso
et al., 2019; Fitzpatrick et al., 2021; Gain et al., 2023; Ingvarsson
& Bernhardsson, 2020; Lind et al., 2024; Rhoné et al., 2020; Ruegg
et al., 2018; Sang et al., 2022). However, only a few of these studies
have actually evaluated those forecasts in experiments with ground-
truth data (Exposito-Alonso et al., 2019; Fitzpatrick et al., 2021; Gain
et al,, 2023; Lind et al., 2024; Rhoné et al., 2020). The definition of
ground-truth data is data that is known to be real or true, provided
by direct and accurate measurement (in situ). Within the field of ge-
nomic forecasting, the ground-truth data should estimate the fitness
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of a genotype in a specific environment or a fitness offset between
two environments. In practice, fitness can be estimated from the
product of viability (survival) and fecundity (Conner & Hartl, 2004),
but these can be difficult to measure. Instead, proxies of fitness
such as growth rate or size are often used as ground-truth data (see
Element 3 for discussion). For a study to qualify as a ground-truth or
evaluation experiment, the genomic forecasts are evaluated against
ground-truth proxies of fitness collected from multiple individuals
or populations in one or more common garden environments (see
Elements 1 and 2 below).

For the few studies that have evaluated genomic forecasts
against ground-truth data, the degree of predictive performance has
varied (Fitzpatrick et al., 2021; Gain et al., 2023; Lind et al., 2024;
Rhoné et al., 2020). Predictive performance is generally measured as
a correlation or the coefficient of determination between the fore-
cast and a ground-truth fitness proxy (see Elements 3 and 4 below).
In the tree Balsam poplar, Fitzpatrick et al. (2021) found that a ge-
nomic offset model explained ~60% of the variance in tree height
in experimental common gardens, but did not assess the ability of
the model to predict mortality. In a widespread conifer jack pine,
Lind et al. (2024) found that offset models were worse at predicting
mortality than tree height. In general, the studies that have com-
pared multiple methods have found a wide variation in predictive
performance among different algorithms (Gain et al., 2023; Lind
et al., 2024). However, even different studies using the same method
on the same data find different measures of predictive performance:
For seed weight of pearl millet landraces in a single common garden,
the predictive performance of a genetic offset calculated using the
same algorithm (called gradient forests) varied from an R? of ~17% in
one study (Rhoné et al., 2020, estimated as the square of Pearson's
correlation) to ~49% in another study (Gain et al., 2023). Such vari-
ation highlights that there are nuances in how investigators build a
forecast from the same method (e.g., the selection and spatial reso-
lution of environmental variables, individuals and single nucleotide
polymorphisms—SNPs). Indeed, for tree height in jack pine and va-
rieties of Douglas fir, Lind et al. (2024) showed that performance of
offset forecasts were highly sensitive to the set of individuals used
in training, varying from no predictive performance (measured as the
correlation between a forecast and tree height) to very high predic-
tive performance.

Although this variation in performance of forecasts among study
systems may be due to differences in the underlying biology of the
system, it could also be due to variation in the nuanced decisions in-
vestigators make when designing experiments and building, training,
and testing models. If such variation in model performance is due
to nuanced decisions, this creates substantial hurdles to the field in
terms of understanding the utility of genomic forecasting. For this
reason, explicit reporting of key design elements would advance our
understanding of why performance is high in some scenarios and
low in others, but these are rarely reported.

The goal of this review is to enumerate the elements of exper-
imental design and reporting that are necessary for the rigorous
evaluation and interpretation of genomic forecasting models. These
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FIGURE 1 Concept, measurement and evaluation of genomic offsets. (a) A genomic offset is conceptualized as the amount of change

in the adaptive genomic architecture needed for the individual or population to be optimally adapted to a new environment (visualized in
multivariate genomic space). (b) For a given amount of environmental change, a genomic offset is typically measured as a cumulative change
in allele frequency or turnover in allele frequency, amalgamated across loci. A genomic offset is inferred to be directly related to the degree
of maladaptation to that environmental change, although this inference has been debated. (c) A current-future evaluation tests whether the
genomic offsets are correlated with the estimated fitness of a particular genotype in different environments. (d) A common garden evaluation
tests whether genomic offsets are correlated with the estimated fitness of different genotypes grown in the same common garden
environment. See Lotterhos (2024) for more discussion on why the two evaluations in (c) and (d) are not equivalent.

elements include design principles such as independence of training
and testing data, and reporting the relatedness among individuals in
these two groups. These elements are germane to both evaluation
and validation of methods. Evaluation is a quantitative comparison
of how well one or more methods perform on one or more data sets
(Lotterhos et al., 2022). If one quantifies the predictive performance
of one or many methods, then it is an evaluation. However, even the
‘best’ method in an evaluation may have low predictive performance
and be unsuitable for any kind of real-world application.

For any real-world application, a method must first be validated.
Although the term validation is not used consistently (Augusiak
et al., 2014), here the term refers to the process of comparing the
model forecasts to a body of evidence obtained from many eval-
uations, and then determining if the model meets a set of a priori
criteria for a specific real-world application (Lotterhos et al., 2022).

For forecasting models, validation would be the process of consult-
ing with stakeholders to develop consensus on the criteria a model
should meet for incorporation into a management plan, and then de-
termining if the model meets those criteria. Concluding that a fore-
cast is ‘valid’ is not necessarily a binary outcome; models lie on a
continuum of usefulness in which the overall credibility of a forecast
is gradually built upon (Augusiak et al., 2014).

Regardless of whether the goal is evaluation or validation, the
outcome can inform the domain of applicability of a forecasting
model. The domain of applicability of a model describes the set of
conditions under which the model predictions are valid (Lotterhos
et al., 2022). The following sections outline considerations for the
most constructive use, publication and archiving of genomic fore-
casting models. Careful design and reporting will lead naturally
to meta-analyses and syntheses that can help further define the
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domain of applicability of these methods across systems. To date,
most genomic forecasting methods models make predictions at the
level of the population. Although individual-level predictive models
have not yet been widely developed or tested, this article takes a
prospective view with an eye towards designing experiments that
would be able to evaluate individual-level predictive models when

they become available.

2 | COMMON ASSUMPTIONS OF
GENOMIC FORECASTING MODELS

All forecasting models make assumptions either directly or implic-
itly. An implicit assumption is one that is not always stated, but is a
basic requirement for the model to produce accurate results. Not all
genomic forecasting models share the same assumptions, but com-
mon assumptions include:

1. The population is locally adapted to the environment and genotype-
climate relationships reflect local adaptation to the environment.
Local adaptation is a property of a metapopulation in which
subpopulations have higher fitness in sympatry than in allopatry
(Blanquart et al., 2013). This can lead to a pattern in which
locally adapted alleles have higher frequency in sympatry than
in allopatry. Motivated by this, current genomic offset mod-
els are trained on contemporary spatial relationships between
genotype and climate, and thus rely on the assumptions that
(i) populations are locally adapted and (ii) the allele frequency
at a particular environment on the landscape provides some
information about the local fitness of that allele. Because the
assumption of local adaptation is integral, investigators should
establish proof of local adaptation in the metapopulation with
common garden and/or reciprocal transplant experiments (for
a quantitative method see Blanquart et al., 2013) prior to
investing resources into building a forecasting model, as has
been recommended to do prior to conducting genotype-en-
vironment and genotype-phenotype associations (Barrett &
Hoekstra, 2011). Even if local adaptation exists, non-monotonic
allele frequency patterns can evolve under evolution to mul-
tivariate environments (Lotterhos, 2023) and these patterns
may confound forecasting methods that assume linear geno-
type-climate relationships.

2. The environmental change is instantaneous. Current genomic off-
set models predict the fitness of a genotype under an instanta-
neous environmental change (Fitzpatrick & Keller, 2015; Laruson
et al., 2022). Due to this assumption that is specific to offset
models, the forecasts can be evaluated by testing if they are sig-
nificantly correlated with ground-truth fitness proxies measured
on a set of individuals after moving them to a new environment
(see Elements 2 and 3 for discussion). Current offset models do
not incorporate evolutionary processes that happen over multiple

generations, such as gene flow, inheritance, drift, recombination,

3.
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mutation, and adaptive evolution. However, these processes may
be included into eco-evolutionary models, which can also be used
to make forecasts (Waldvogel et al., 2020).

A model built on current genetic and environmental variables can be
extrapolated without reduction in predictive performance. Current
genomic forecasting models assume that the genotype-climate
relationship will remain the same under future environmental
change. Extrapolation is the action of estimating a variable's value
beyond the range of initial values by using relationships between
this and other variable(s). For instance, projecting a genomic
forecast trained on a dataset of genetic and environmental data
to a novel genotype or novel environment (novel relative to the
training dataset) is an extrapolation (see Element 6 for more dis-
cussion). Such extrapolations can fail if they do not account for
evolutionary processes over multiple generations or the fixa-
tion of climate-adapted alleles (Hoffmann et al., 2021; Jordan
etal., 2017).

Even when a forecast is used to choose genotypes for imme-
diate transplantation as in restoration (e.g., the assumption of
instantaneous environmental change is met), extrapolations
to novel environments could fail because of statistical reasons
(e.g., the model was biased by historical evolutionary process
such as drift: Laruson et al., 2022; or the model is not accurate
in the extrapolated region: Lind & Lotterhos, 2024) or intrinsic
biological reasons (e.g., cryptic genetic variation that is only
expressed in a new environment: Bitter et al., 2021). Recently,
DeSaix et al. (2022) showed that large portions of the breeding
range of an alpine songbird will shift to novel climatic conditions,
highlighting that substantial portions of a species' range can be
subject to uncertainty in genomic forecasts. This could be an
issue for genomic forecasts in many species, since novel climates
without precedent in recent history are emerging around terres-
trial and marine habitats and will become more widespread in
the future (Lotterhos et al., 2021; Williams et al., 2007). Thus,
estimating the degree that a model is extrapolated to novel cli-
mates or genotypes is an important element of evaluation (see
Elements 5 and 6 below for discussion).

Accurate forecasts can be made without considering genetic in-
teractions, trait correlations or trait plasticity. Currently, the com-
plex dynamics of within- and among-locus interactions, plei-
otropy and plasticity are not explicitly incorporated into genomic
offset models. Fitness may be affected by non-additive allelic
interactions within loci (dominance) and among loci (epistasis)
(Conner & Hartl, 2004). Pleiotropic effects of a gene on mul-
tiple traits may facilitate or constrain adaptation and therefore
complicate forecasts (Hoffmann et al., 2021). Plasticity is the
environmentally induced production of different phenotypes
from a given genotype (DeWitt & Scheiner, 2004), which sug-
gests that trait data in addition to environmental and genetic
data will be needed to produce accurate forecasts. These dy-
namics are not explicitly incorporated into current genomic

forecasting models, but the elements of experimental design
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discussed below will also be germane to more complex models

that include these dynamics.

3 | ELEMENTS OF EXPERIMENTAL
DESIGN AND REPORTING

How robust and accurate genomic forecasts models are—even
when implicit assumptions are met—is an open question for many
study systems. The most rigorous way to test model forecasts
is with controlled experiments and compare a forecast against
ground-truth data from the experiment. There are many types of
experiments that one could design, including common garden ex-
periments, growth chambers or microcosms, experimental evolu-
tion or within-generation selection experiments. Here, the focus is
largely on common garden experiments because they will be the
most feasible for many study systems (de Villemereuil et al., 2016;
Sork et al., 2013), but many of the principles will apply to other

kinds of experiments.

3.1 | Element 1: The type of evaluation to do

The appropriate experimental design used to evaluate a model
depends on the management context or application (Augusiak
et al., 2014). The question remains as to how well a genomic offset
measurement estimates some kind of fitness offset for different
applications. Unfortunately, there are many different ways that fit-
ness offsets can be calculated, and depending on the pattern of
local adaptation in the metapopulation, different types of fitness
offsets may not be correlated with each other (Lotterhos, 2024).
For this reason, the experimental design that should be used to
evaluate a forecast of climate change vulnerability is not the same
design that should be used to evaluate a forecast for a restoration
project.

In a current-future evaluation, one aims to understand whether
the forecast can predict population vulnerability in a future climate.
The appropriate experimental design would be to raise the focal
genotype in current and future environments and use an estimate
of fitness (or fitness offset from the current to the future environ-
ment) in each treatment as a ground-truth metric (Figure 1c, x-axis)
(Lotterhos, 2024). The relevant forecast to evaluate would estimate
the focal genotype's fitness in the different environmental treat-
ments (Figure 1c, y-axis). For a genomic offset, genotypes with larger
offsets to a new environment are predicted to have lower fitness
in that environment, so a strong negative correlation indicates high
predictive performance of the forecast.

In a restoration or common garden evaluation, one aims to under-
stand whether the forecast can predict the most fit genotype(s) at
a restoration site, so that the best genotype(s) can be chosen for
that environment and give the project the highest chances of suc-
cess. The appropriate experimental design would be to raise mul-
tiple genotypes in a common garden at the restoration site and

use an estimate of fitness (or fitness offset) of each genotype in
that common garden as a ground-truth metric (Figure 1d, x-axis)
(Lotterhos, 2024). The relevant forecast to evaluate would estimate
the (relative) fitnesses of different genotypes in the restoration en-
vironment (Figure 1d, y-axis).

To date, all evaluations of genomic offsets have been common
garden evaluations (Fitzpatrick et al., 2021; Gain et al., 2023; Lind
etal., 2024; Rhoné et al., 2020), so it is still unclear how well genomic
offsets predict population vulnerability to future climate change.
Evaluation experiments that have multiple genotypes in many cur-
rent and future environmental treatments can simultaneously con-
duct current-future and common garden evaluations (for an extensive

discussion on this topic see Lotterhos, 2024).

3.2 | Element 2: Independence between and
sample sizes of training and ground-truth data

Current genomic forecasting models require data to build the model
that makes the forecast. This model-building step uses ‘training
data’ to calibrate the model. After the model is developed, predic-
tions are made for a set of ‘ground-truth data’ or ‘test data’, which
are then used to evaluate the predictive performance of the model.
If the same or overlapping data are used for both training and
ground-truthing, this can lead to inflated model performance and
poor generalizability (i.e., overfitting) because one is essentially ask-
ing how good the data is at predicting itself (Goodall, 1972; Grimm
et al., 2015; Molnar, 2021). Therefore, such circularity should be
avoided by using independent data for both model training and
ground-truthing.

An example of independent training data and ground-truth data
is illustrated in Figure 2 for a hypothetical coastal marine species
that is locally adapted to temperature and salinity. In this case, sea-
scape genomic data with individual SNP genotypes and population-
level environmental variables (temperature and salinity) are used
to train a forecasting model (Figure 2, Step 1, orange colour). In the
independent ground-truthing phase, different individuals are col-
lected from across the metapopulation and bred to create offspring
for the test (Figure 2, Step 2, black colour). In the example shown in
Figure 2, some test individuals come from populations that are used
in training the forecasting model and some come from populations
that were not used in training, which can give insight into the domain
of applicability of the predictive model.

Offspring are then raised in ‘test’ common garden environments
at high or low salinity (Figure 2, Step 3, green colour). Ideally, there
would be multiple common garden sites, although this might not be
feasible in all systems for logistical (e.g., broadcast-spawning ma-
rine invertebrates that require a hatchery for rearing) or permitting
reasons (e.g., permits do not allow transfer of foreign genetic ma-
terial to the local site). The genomic offset is calculated from the
forecasting model using the test environment and, depending on
the specific forecasting method being used, the genotypes of the
test individuals (Figure 2, green arrow from Step 3 to Step 4) (see
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Example of an empirical evaluation with two common gardens
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FIGURE 2 Overview of an empirical evaluation with two common gardens. An overview of the model evaluation process with
independent training and test phases, using the hypothetical example of a widespread coastal marine invertebrate. Step 1: Train a forecasting
model on existing data, in this example from seascape genomic data with salinity, pH, dissolved oxygen and temperature (orange squares
and text). Step 2: Collect test parents that will be used to create test offspring (black circles). Step 3: Raise test offspring in the experimental
common gardens where the model forecast will be tested (green text). In this example, one common garden is at a low salinity site, while the
other is at a high salinity site (green triangles). Step 4: The common garden environment and test genotypes are input into the model to make
a forecast. Step 5 (grey box): The forecast is evaluated against an estimate of fitness in the common garden. The predictive power of the
forecasting model may vary among common gardens (as shown here), which would inform the domain of applicability for the model.

Element 6 for more discussion on quantifying the environment).
The predictive performance of the forecasting model is estimated
as the correlation between the forecast (y-axis) and a ground-
truth estimate of fitness measured in each common garden (x-axis)
(Figure 2, Step 5) (see Element 4 for more discussion on estimating
predictive performance). The variation in predictive performance
among many different common gardens gives insight into how gen-
eralizable the forecasting model will be. In the hypothetical example
in Figure 2 (Step 5), the model has high predictive performance in
Common Garden 1 (as evidenced by the strong negative correlation
between predicted offset and fitness), but low predictive perfor-
mance in Common Garden 2, which suggests that the model is not
generalizable.

The feasibility of creating offspring from parents for an evalua-
tion experiment will vary among study systems. It can be advanta-
geous to split test offspring from each family among common garden
test sites and measure fitness proxies on both test parents and test
offspring (see Element 3 for more discussion). If such a design is not
feasible and test individuals are relocated directly from their collec-
tion site to an experimental common garden, the experiment may

be confounded by direct carry-over effects from the organism's

environment to the common garden. On the other hand, this may be
exactly how one wants to conduct a test if such relocations are what
would be practised for management, as in corals. Regardless of how
the test is conducted, many of the following recommended design
elements arise from this basic principle of independence between

training and ground-truthing.

3.2.1 | How large do sample sizes need to be?

It is well established in the machine learning literature that the pre-
dictive capacity of a model is limited by the data on which it is based
(Bergstrom & West, 2021; Molnar, 2021). Thus, models that are
trained on data that is a limited subset of the situations for which
they will be applied often lead to inaccurate results when extrap-
olated to new situations. For example, if a forecasting model uses
information about allele frequency correlations with environments,
then a comprehensive training data set would include a large number
of subpopulations across the environmental range of the species,
with enough samples from each site to accurately estimate allele fre-
quency in that environment. Understanding how a forecasting model
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is built is fundamental to planning robust sample sizes for training
and testing. The simulation studies (Laruson et al., 2022; Lind &
Lotterhos, 2024) and empirical validations (Fitzpatrick et al., 2021;
Lind et al., 2024) that find high predictive performance of genomic
offsets suggest that much larger sample sizes are needed for training
(hundreds of individuals from dozens of populations) than for test-
ing (dozens of individuals from tens of populations). This is because
a comprehensive set of data is needed for model training, whereas
a smaller dataset spanning a range of scenarios can be sufficient to
calculate predictive performance. At this time, the effect of sample
size on the performance of forecasts has not been sufficiently ex-
plored in the literature and this is an important area for future work.

3.3 | Element 3: The ground-truth metric(s)

To evaluate the predictive performance of a model, the forecast
must be compared with a ground-truth data set that estimates fit-
ness (Figure 2, Step 5, x-axis). There could be multiple ways to es-
timate fitness based on traits, fitness components or organism
performance. While fitness components include viability (survival)
and fecundity, these can be difficult to measure, and growth rate
or size are often used as proxies for fitness instead. For the design
shown in Figure 2, ground-truth measures could be calculated from
(i) the fitness proxy of the parental genotypes measured as the vi-
ability of their offspring, or (ii) the fitness proxies of the offspring
genotypes measured as their survival, growth or fecundity. Both of

these measures have strengths and drawbacks.

3.3.1 | Fitness proxies of parents

The fitness of parental genotypes can be estimated as the viability
of their descendants, which can be estimated at a handful of genetic
markers with a parentage or lineage analysis. The benefit of using
a parental fitness proxy as a ground-truth is that genotypes of par-
ents can be obtained before or immediately after offspring are pro-
duced. Thus the parental fitness metric will reflect any early-stage
mortality that occurs due to the treatment before offspring are large
enough to count, genotype or phenotype accurately. Depending on
the study species, it may be hard to control for the exact same num-
ber of offspring from each parent, and in this case the proportion of
offspring from each parent should be quantified at the beginning of

the experiment and used as a baseline.

3.3.2 | Fitness proxies of offspring

Measuring fitness proxies directly on offspring themselves, such as
their growth and survival, also has strengths and drawbacks. When
families can be tracked in the design, best linear unbiased predictors
or estimates (BLUPs or BLUES) may be used to estimate a breeding
value for a fitness proxy such as height and used as a ground-truth

in the evaluation (e.g., Fitzpatrick et al., 2021; Lachmuth et al., 2023;
Lind et al., 2024). The advantage of using offspring fitness as a
ground-truth is that a forecast based on each individual's genotype
can be tested within that individual's lifetime. Drawbacks arise from
the timing of genotyping relative to when mortality arises from se-
lection, because one has to wait until the offspring are large enough
to collect tissue without causing mortality. If offspring are put into
the common garden test environments before they are genotyped
(e.g., as seeds), this has the drawback of potentially excluding off-
spring samples that die due to selection (e.g., never sprout or die
shortly after sprouting) from the ground-truth data, and their ab-
sence could bias the overall evaluation.

3.3.3 | Direct transplantation

Another alternative would be to transplant genotypes directly from
their home site to the common garden test environment, which
might be necessary for some organisms that are difficult to breed.
These approaches have the potential drawbacks of (i) being biased
by direct carry-over effects from one environment to another, and/
or (ii) missing selection that would have happened during the early
part of the life cycle in the test environment. Despite these draw-
backs, studies that choose these alternatives for practical or restora-

tion reasons can still give relevant insights.

3.3.4 | Should population size be used as a
ground-truth metric?

While measuring fitness proxies on both test parents and their off-
spring in a controlled experiment meets the highest level of rigour
for a ground-truth measure, some studies have interpreted relation-
ships between genomic offsets and population size as evidence that
forecasts are accurate (Bay et al., 2018; Ruegg et al., 2018). A com-
putational study found that genetic offset values were correlated
with population size in purely neutral simulations due to genetic drift
affecting the offset values, which highlights issues with using popu-

lation size as a ground-truth metric (Laruson et al., 2022).

3.4 | Element 4: The evaluation metric(s)

An important question in the evaluation (Figure 2, Step 5) is how to
quantify the predictive performance of the forecasting model. The
evaluation metric is a statistic that summarizes the model perfor-
mance from the evaluation model—a statistical model of the relation-
ship between the forecast and the ground-truth data. In the case that
the forecast and the ground-truth data are both numerical variables
in different units, the model performance can be quantified as the
strength of the relationship between these two variables, which can
be measured as a correlation or as R?in a general/generalized linear

model (Lotterhos et al., 2022). Note that other evaluation metrics
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such as mean error and its derivatives are only appropriate when
the forecast and the ground truth are in the same units (Lotterhos
et al., 2022). To date, both correlation (Laruson et al., 2022; Lind
et al., 2024; Rhoné et al., 2020) and R? (Fitzpatrick et al., 2021; Gain
et al., 2023) have been used as evaluation metrics to quantify the
performance of a forecast. Although this section focuses on evalu-
ation metrics, the process of evaluation should also consider logi-
cal consistency in the forecasting model structure (e.g., underlying
theories and assumptions), as major flaws in the forecasting model
structure could mislead a decision even when evaluation metrics

suggest that predictive performance is high (Augusiak et al., 2014).

3.4.1 | Correlation as an evaluation metric

When correlation is used as an evaluation metric, it measures the
strength and significance of the association between ground-truth
fitness and the forecast. When the assumption of linearity is met,
Pearson's correlation should be used, while if the relationship is
monotonic but non-linear then a rank correlation should be used
(Whitlock & Schluter, 2009). The benefit of correlation measures is
that they make few assumptions and can be easily compared among
studies.

3.4.2 | R?as an evaluation metric

When R? from some type of general/generalized linear model or
linear mixed model is used as an evaluation metric, different philo-
sophical approaches to constructing linear models makes it difficult
to compare among studies. The question for evaluating forecasts is:
Should the ground-truth be the response variable (e.g., the forecast
predicts the ground-truth fitness) or explanatory variable (e.g., the
ground-truth fitness predicts the forecast)? Logical arguments can
be constructed for both approaches.

Arguments for constructing an evaluation model with ground-
truth fitness as an explanatory variable and the model forecast as
a response variable come from method evaluations in data science
(Lotterhos et al., 2022). Evaluations are constructed in this way be-
cause it is the amount of error in the forecast (response variable)
that gives information about how good the forecast is. This type
of model construction is shown in Figures 1c,d and 2 (Steps 4-5)
with the ground-truth on the x-axis and the forecast on the y-axis.
Most types of linear models assume that the explanatory variable
is known without error and models error in the response variable.
However, ground-truth estimates of fitness are imperfect and con-
tain error, which violates the assumptions of ordinary least squares
regression. When error exists in an explanatory variable, ordinary
least squares regression will underestimate the true regression slope
(McArdle, 1988). In this case, one can construct an evaluation model
with reduced major axis regression, which will yield a more accurate
slope (McArdle, 1988).
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The argument for constructing an evaluation model with ground-

truth fitness as a response variable and the model forecast as an
explanatory variable is that a number of other explanatory variables
could be put into the model to determine how much variance in es-
timated fitness is explained by different factors. For a genomic off-
set evaluation constructed in this way, the slope informs how much
fitness decline is expected for a given amount of genomic offset.
However, when there are multiple explanatory variables, the overall
model R? is not a measure of predictive performance of the fore-
cast or genomic offset: R? is based on unexplained variation after
accounting for all explanatory variables (Whitlock & Schluter, 2009)
and therefore is not a measure of the performance of the genomic
forecast specifically. Moreover, when models are constructed in this
manner, investigators should take care to show that they avoided
overfitting (e.g., inflating R? by including many explanatory variables)
by performing model selection to determine the most parsimonious
model that explains the data (Whitlock & Schluter, 2009).

Thus, the interpretation of the evaluation model depends on its for-
mulation. When the model contains only two variables, a model with
forecast ~ground-truth will have the same R? or correlation as a model
with ground-truth ~forecast, and the R? or correlation value will give infor-
mation about the predictive performance. However, the R? from a model
with ground-truth~forecast+other variables does not give information
about the predictive performance of the forecast specifically, because
other variables could be explaining most of the variation. However, this
latter type of model could still be useful to understand how various fac-
tors are related to the ground-truth fitness proxy via their slopes.

Thus, the overall R? as an evaluation metric should be inter-
preted carefully based on the formulation of the evaluation model.
Regardless of how the evaluation model is formulated, it will be
informative to compare the shape and magnitude of the forecast/
ground-truth relationship across multiple studies, treatments and/or
common garden environments (e.g., Figure 2, Step 5), because that

gives information about how generalizable the forecast is.

3.5 | Element 5: Relationships among training
samples and test samples

To keep the training and test phases independent, a necessary de-
sign element is that the set of individuals used in training is different
from the set of individuals used in ground-truthing. A central question
in determining the domain of applicability is whether model perfor-
mance degrades as specific test samples (individuals or populations)
become more genetically distant from those used in training (e.g., ex-
trapolation of the forecasting model to samples that are ‘novel’ to that
model). Design considerations that should be clearly reported include
the number of samples used in training, the number of test samples
and populations, whether test samples come from populations used
in training, and the degree of independence between test and training
samples. Individuals within a species will never truly be independent

due to shared evolutionary history. Sources of non-independence in
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the data arise among genes within genomes, among individuals within
a population due to relatedness, and among populations due to migra-
tion and/or spatially autocorrelated selection. The degree of (non)inde-
pendence among test and training samples can be estimated as values
of relatedness, F¢;, or other measures of genetic distance.

Take for instance a test that was conducted on a mix of gen-
otypes, some that are genetically distant (‘novel’) compared with
the training genotypes (Figure 3a). If the fitness of novel genotypes
are not predicted well by the model, then removing them from the
evaluation would increase the predictive performance of the model
(Figure 3a). This concept could be tested more formally by using a
jackknife in the evaluation to understand the sensitivity of the eval-
uation to specific genotypes. A jackknife removes one genotype at
a time and re-evaluates the relationship between the forecast and
ground-truth data. One would predict that the decline in predictive
performance when a test sample is removed scales directly with the
genetic distance between that test population (or genotype) and all
the training genotypes, and the rate of this decline would give insight
into the domain of applicability of a particular forecasting model.
This type of analysis remains to be performed.

A major design consideration is the set of genetic markers that
will be used to genotype all the individuals. For some forecasting
models, the same set of genetic markers must be used across all
training and test individuals because the model uses this information
to make a prediction (Figure 4a). Unless the genetic basis of adapta-
tion to the multivariate environment is accurately known, research-
ers should make the case that their marker set provides high enough
coverage of the genome so as to have markers in linkage disequi-
librium with adaptive loci that determine local adaptation (Lowry
et al.,, 2017). Without such justification, it is difficult to determine

a o
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whether a poorly performing forecasting model is due to insufficient
coverage of the genome or some other reason.

There is currently no consensus in the literature as to the best
marker set to use for building a forecasting model. Although it is
common practice to narrow the loci set down to outliers in GEAs,
both simulation and empirical studies that have explored the sen-
sitivity of forecasts to the set of loci used have found that a ran-
dom set of loci has similar performance to GEA outliers (Fitzpatrick
et al.,, 2021; Lachmuth et al., 2023; Laruson et al., 2022; Lind
et al., 2024). This may occur because evolution in multivariate en-
vironments can lead to non-monotonic patterns in allele frequen-
cies across environmental gradients that would be missed by GEA
methods (Lotterhos, 2023), and offset models may be driven instead
by genome-wide patterns of isolation by environment. Thus, it is im-
portant for investigators to report how sensitive a forecast is to the

set of loci used (see Element 8 for more discussion).

3.6 | Element 6: The training and test
environments: Quantification, novelty, uncertainty
and variability

In order to obtain a genomic forecast for the test individuals, most
models require the test environment as input (Figure 2, Step 3). Thus,
the multivariate environment measured for the test must be meas-
ured in the same way as the multivariate environment was meas-
ured across populations or individuals used in training the model
(Figure 4b). The test environment should only include data collected
during the period over which individuals are reared/grown, in case
there are any extreme climatic events that affect mortality. The

b
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FIGURE 3 Change in model performance with extrapolation. Hypothetical examples of how the accuracy of the forecasting model

might change as the model is extrapolated to new situations compared to the training data, such as novel genotypes or novel environments.
(a) The relationship between the estimate of fitness (ground truth) and a forecast within a single test common garden may be sensitive to
the novelty of the test genotypes relative to the training genotypes. Here, a novel test genotype is one that is genetically distant from the
training genotypes. The performance of the model, measured as the correlation between ground truth and forecast, may improve when
novel test genotypes are removed from the evaluation. A jackknife could be used to understand how particular test genotypes influence
the model performance. (b) The relationship between the ground truth and a forecast among test common gardens may be sensitive to the
novelty of the test environment (where the ground-truth data were collected) relative to the training environments. The degree of climate
novelty of a particular test environment can be quantified as described in the main text. Model accuracy may decrease as test environments
become more novel compared with the training environments, as shown here.
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model's predictive performance may decline in test environments
that are outside the range of environments from which the popula-
tions used in training were collected. Therefore, investigators should
quantify how novel the test environment is compared with the en-
vironments used in training the forecasting model, which will help
define the domain of applicability of the model.

A novel climate is defined as a climate observation without a re-
cent analogue in a local or global area, and the degree of novelty is
typically measured as the number of standard deviations of a climate
observation from a historical baseline (Mahony et al., 2017; Williams

Methods in Ecology and Evolution Eggﬁgﬁm

et al., 2007). Novel climates for a species can also be estimated by
the niche margin index, with decreasing negative values represent-
ing climatic distance outside the niche (Broennimann et al., 2021;
DeSaix et al., 2022). We can extend these definitions of climate nov-
elty to model ground-truthing, where the test/ground-truth environ-
ment does not have an analogue in the training environment. With
the domain of applicability of a forecasting model in mind, there are
various kinds of situations that would be interesting to examine, for
example, ground-truth environments that are: (i) typical of the envi-

ronments used in training (Figure 5, circle), (ii) extreme but within the

FIGURE 4 Best practices for data (a) (b)
collection. Examples of best practices
for data collection (top) and potentially SNP |SNP|sNP [sNP|snP Env | Env | Env | Env | Env
not useful data (bottom) for (a) single 1| 2|3 |4|5 1|23 |4]|5
nucleotide polymorphisms (SNPs) (left
column) and (b) environmental data (right Training-1| A |G| T | A |G Training-1] 19 [12.1| 1 |6.5| 33
column). The ‘training’ data are used
to parameterize the forecasting model Best Training-2| C |G| T | A | C Training-2| 20 (15.4| 2 |6.8| 21
and the ‘test’ data are used as a ground- practice
truth for the evaluation of the forecast. Test-1 TilalTlAlC Test-1 21192| 3 |53/ 24
Investigators can easily end up with

tentiall t useful data if the land
potentially not usetul data it the fandscape Test2 [C|A|C|T|G Test2 |21 /92| 3 |5.3|24
genomic data used for model training used
one type of sequencing (e.g., RADseq)
and available environmental data, SNP |SNP|SNP |SNP |SNP Env | Env | Env | Env | Env
while the experiment for model testing 1123 |4 |5 112|345
used a different type of sequencing o o
(e.g., RNAseq) and did not quantify the Training-1 A| G Training-1| 19 [12.1] 1 33
multivariate test environment in the exact
same way. Potentia”y Training-2 A|C Training-2| 20 [15.4| 2 21

not useful
Test-1 T|A|T Test-1 21 3 (53|24
Test-2 C|A|C Test-2 21 3 |5.3|24
Climate change ¥
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FIGURE 5 Selection of experimental common gardens that can help evaluate the domain of applicability of a forecasting model. The blue
ellipse on the graph shows the distribution of values for the two environmental variables in the training data, and the dark red arrow shows
the direction of climate change. Testing the model in treatments that are (i) within the environmental envelope of the training data (circle
and star), (ii) novel to the training data but within the historical variability of each variable (squares) and (iii) novel to the training data and
outside the historical variability of multiple variables (diamond) can inform situations in which the model yields (or does not yield) accurate
results. Note that the most informative treatments for understanding the domain of applicability to future climate change are not necessarily

factorial combinations of individual environmental values.
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range of environmental combinations used in training (Figure 5, star),
(iii) a novel combination of environmental variables, but within the
historical variability of the training environments (Figure 5, squares),
and/or (iv) a novel combination of environmental variables and out-
side the historical variability of the training environments (Figure 5,
diamond). The degree of climate novelty (between a test environ-
ment and all the training environments) for any situation can be sta-
tistically estimated as the degree of novelty or niche margin index
(e.g., DeSaix et al., 2022; Lotterhos et al., 2021; Mahony et al., 2017).

With enough common gardens, one could then test how model
performance degrades as the novelty of the test environment rela-
tive to the training environment increases (Figure 3b), which has par-
ticular relevance for assisted gene flow (inside current species range)
and assisted migration (outside current species range). Analysis of
thousands of simulated data sets spanning a range of demographies
has demonstrated that the predictive performance of genomic off-
sets declines with climate novelty, and it declines more rapidly for
strongly locally adapted species (Lind & Lotterhos, 2024). Similar
results have been observed in genomic selection models, where the
predictive performance declines in ground-truth environments were
outside the range of training data (Rogers & Holland, 2022). Note
that the set of ground-truth environments that may be the most rel-
evant for determining the domain of applicability is not necessarily
factorial combinations of individual environmental values (Figure 5).

An additional design consideration is which environmental vari-
ables to use in training and ground-truthing a forecast. Ideally, all
abiotic and biotic environmental variables that affect fitness are
included in the model and the grain size is relevant to biology of
the system (Dauphin et al., 2023). These goals are logistically dif-
ficult, especially given the multitude of diseases and competitive
interactions that affect natural populations. Some methods, such
as redundancy analysis or multiple regression, assume that the en-
vironmental predictor variables used in training are uncorrelated
(Legendre & Legendre, 1998), and so some environmental variables
may need to be excluded for statistical reasons. However, not all en-
vironmental measures will be important in determining fitness and
could mis-parameterize offset models if all possible environmental
variables are included in training (Lind & Lotterhos, 2024). In addi-
tion, there is considerable variability among different climate pro-
jections (IPCC, 2023), which is an additional source of uncertainty
in forecasts. Therefore, investigators should report the sensitivity of
the forecast to the set of environmental variables chosen for model-
building, as well as the range of values for each variable (see Element
8 for more discussion).

Another open question with regard to building forecasting
models is how to incorporate environmental variability. For exam-
ple, a forecasting model could be trained on some combination of
the mean temperature (which might reflect long-term thermal tol-
erance), the maximum temperature (which might reflect selective
events due to heat stress), minimum temperature (which might re-
flect selective events due to cold stress) or features of temperature
variability such as standard deviation and predictability (e.g., tem-
poral autocorrelation) that might reflect the degree of phenotypic

plasticity (Bitter et al., 2021). More research is currently needed to
understand the best ways to incorporate environmental variability
into genomic forecasting models and assess model sensitivity to the

way that environmental variability is quantified.

3.7 | Element 7: Model training

For some types of forecasting models, users may have to choose
hyperparameters for the algorithm. Hyperparameters are values that
are given before the model is trained and specify the details of the
algorithm (e.g., tree depth within random forests or the number of
neurons in the i'th hidden layer of neural nets). Other methods do
not require the user to choose hyperparameters, because the pa-
rameters are estimated by minimizing residual error (e.g., general
linear models and redundancy analysis). This section is relevant
to building models that require the user to explore a potentially
large hyperparameter space available for use in model training. In
this case, training data and ground-truth data are still independent
datasets, but training data are further subdivided into data used for
model parameterization and holdout data used to assess model fit for
hyperparameter tuning.

Cross-validation is the process of evaluating model fit on differ-
ent subsets of a single data set, and this process can be leveraged
for hyperparameter tuning. In cross-validation, the training data is
split into multiple subsets or folds, and in each fold a different subset
of the training data is used as holdout data on which the model fit
is assessed (Figure 6). Cross-validation is a specific technique used
to summarize model generalizability, and should not be confused
with model validation performed on independent ground-truth
data, because the latter is the process of determining whether a
model is ‘good enough’ for application in the real world (Lotterhos
et al., 2018, 2022). The result of cross-validation is a distribution of
model accuracies when different subsets of the training data are
used for training and assessing model fit. A model that generalizes
well to new situations will have both high mean predictive perfor-
mance with minimal variation across folds.

One critical question in cross-validation is how to divide the
training data into folds, as there are multiple ways to do this. The
‘leave-one-out’ strategy leaves one sample out in each fold, and has
as many folds as there are observations in the dataset. This is com-
putationally intensive for large datasets, so it is rarely performed. It
is more common for the data to be divided into k folds (where the
choice of k is informed by the sampling design), and this can be per-
formed in an unstratified or stratified manner. An unstratified k-fold
cross-validation randomly chooses samples from the entire dataset
to place into folds. If there are unequal sample sizes among genetic
clusters, the unstratified design will result in some populations being
over- or under-represented in a particular fold, and as a result it may
be difficult to interpret what drives the model accuracy in each fold.
A stratified k-fold cross-validation populates the holdout data so that
each stratum (i.e., some shared characteristic among samples, such
as population ID or geographic region) is roughly equally represented
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.Cross-validation training data
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FIGURE 6 Types of cross-validation (CV). CV involves partitioning the data into folds and within each fold using a different subset of data
for training the model (orange boxes) and assessing model accuracy (grey boxes). In this example, each row represents a fold of the training
data. Populations are based on genetic groupings rather than sampling locations. Note that the number of populations and individuals shown
here are much fewer than would be necessary for building a robust model. (a) Leave-one-population-out cross-validation splits the data into
the number of populations and retains one population per split for estimating model accuracy. In this case, the mean accuracy for all splits
reflects the ability of the model to predict new populations. (b) Leave-one-individual-per-population-out cross-validation splits the data into

the number of individuals per population and retains one individual-per-population for estimating model accuracy. In this case, the mean
accuracy for all folds reflects the ability of the model to predict new individuals from the same populations.

in both training and holdout sets. This strategy ensures that the gen-
eralizability reflects the hyperparameters being evaluated and is not
affected by differences between the training and holdout sets.

Most sampling designs sample individuals within locations,
and this can inform a k-fold strategy. Two examples of k-fold
strategies are ‘leave-one-individual-per-population-out’  and
‘leave-one-population-out’ cross-validation (Rellstab et al., 2021).
‘Leave-one-individual-per-population-out’ is a stratified k-fold strat-
egy in which the average accuracy in cross-validation reflects the
ability of the model to generalize to new individuals from training
populations (Figure éb). ‘Leave-one-population-out’ has the advan-
tage of informing the average accuracy in cross-validation reflects
the ability of the model to generalize a new population (Figure 6a),
but note that this ‘leave-out’ strategy is not stratified (because each
population is not equally represented in the holdout data).

Real datasets may not be as straightforward to stratify as
Figure 6, so investigators should describe how they chose to par-
tition the data into folds based on genetic, phenotypic, geographic
or climatic groups (or other logical strata in the datasets). The cross-
validation should be interpreted based on the stratification used
in folding because different holdout strategies test different ideas
about model generalizability. Which folding strategy to choose may
depend on the research goals in the study system, but in many cases
it can be worthwhile to compare multiple strategies. For example,

genomic prediction studies that predict traits from genotypes and
environments often compare different ‘leave out’ strategies in which
specific genotypes and/or environmental variables are excluded
from the training data (Millet et al., 2019; Rogers & Holland, 2022).
For instance, a study in maize (Zea mays) found that predictive per-
formance depended more on the environmental similarity between
the holdout data and training data than the genetic similarity be-
tween the two sets (Rogers & Holland, 2022).

Finally, it is important to understand what cross-validation is
doing in each fold. For models that automatically estimate some pa-
rameters from the data (e.g., the slope and intercept in a simple linear
model), each fold in cross-validation may be testing a slightly different
model (because different subsets of the data lead to different pa-
rameter estimates in the model). Having a family of models creates a
philosophical problem for evaluation, which seeks to evaluate a single
model by comparing it to ground-truth. To develop a single model
while still keeping the training and testing data independent of each
other, one can split the training data into folds and explore model ac-
curacy over a large parameter space (Figure 7a). One could combine
multiple ‘leave out’ strategies in cross-validation to determine the ef-
fects of different kinds of folding on model accuracy (Figure 7a). Once
an optimal hyperparameter set is determined, the training data can be
used to build the full model (Figure 7b). Finally, the full model can be
evaluated with the independent ground-truth data (Figure 7c).

QSUADI SUOWIIOL) dANEAIY) d[qedr[dde duy £q PauIdA0S dIe SA[IIIE V() 98N JO SN J0f AIeIqr] QUI[UQ AJ[IAN UO (SUOIIPUOI-PUR-SULI}/WOY KI[IM’ ATRIQI[AUI[UO//:$dNY) SUONIPUOD) PUB SWID L, Y 39S “[STOT/H0/F1] U0 AIRIqrT auruQ AS[IM “6LEHT XOIZ-T1H0T/1 111" 01/10p/wod Ka[im’ Keiqrjaur[uo: syeunofsaqy/:sdny woiy papeojumod ‘6 ‘420z ‘X012 1407



Methods in Ecology and Evol i

LOTTERHOS

All Data

(@ Determine parameters with k-folding

Population 1 Population 2
Ind. Ind. Ind. Ind. Ind.Ind. Ind. Ind. Ind.
1 2 3 4 5 6 7 8 9

Population 3
Ind.| Ind. Ind. Ind. Ind. Ind.
12 13 14 15

Population 1 Population 2 Population 3

Ind. Ind. Ind. Ind. Ind.Ind. Ind. Ind. Ind. Ind.]Ind. Ind. Ind. Ind. Ind.
1 2 3 4 5 6 7 8 9 12 13 14

folds

Population 1 Population 2 Population 3

Ind. Ind. Ind. Ind. Ind.Ind. Ind. Ind. Ind. Ind.]Ind. Ind. Ind. Ind. Ind.
1 2 3 4 5 6 7 8 9 10 12 13 14

(b) Model training with Parameter Set x

Parameter Set 1:
lower accuracy

Parameter Set n:
lower accuracy

B i-fold training data

i-fold holdout data
(Out-of-bag samples)

(c) Model testing

Ground-truth data

Pop 1 Pop 2 Pop 3 Pop 4 Pop 5
Ind. Ind. [[Ind. Ind.|[Ind. Ind.[ Ind. Ind.|Ind. Ind.
16 17 [ 18 19 20 21 || 22 23|24 25

Parameter Set x:
highest mean
accuracy across

Test environment

mmmmel Full Forecasting Model

Genomic offset

~  Altanngdaa -

or similar forecast

FIGURE 7 Cross-validation (CV) for hyperparameter tuning as an independent phase from model ground-truthing. (a) Some forecasting
models may have hyperparameters that must be fine-tuned by the user. In this example, the data are split into 8 folds (each row within the
dataset is a fold). Within each fold, the CV-training data is used to train the model given the parameter set, while the CV-test data are used
to estimate model accuracy for that parameter set. The average accuracy for each parameter set is calculated as the mean over all the folds.
This process is repeated for different parameter sets, until the parameter set with the highest average accuracy is determined (centre). (b)
With the most accurate parameter set, all the training data can be run with that parameter set to build the full forecasting model (see also
Figure 2, Step 1). (c) Test genotypes and environments, which were not used in model training, are then input into the full model to obtain a
forecast in the test environment. Depending on the type of model, genotypes of the test individuals may not have to be input into the model
to make a forecast. Note that the number of populations and individuals shown here are much fewer than would be necessary for building

and evaluating a robust model.

3.8 | Element 8: Forecast sensitivity and
uncertainty

Forecasts have many sources of uncertainty. Sensitivity analysis
quantifies how differences in the model outputs can be allocated
to differences in the model inputs. The inputs of a genomic fore-
casting model that may affect the output (the forecast) include the
environmental data, the set of SNPs used for training, the set of in-
dividuals used for training, the climate period used for training and
the climate projections. For instance, various types of environmental
data have different spatial resolutions and low-resolution data can

lead to high uncertainty regarding the environment at the study site
(Dauphin et al., 2023). Authors can use their knowledge about the
data and study system to design their own sensitivity analysis by
subsetting their data in thoughtful ways, re-running the analysis and
seeing how it affects the outputs. To date, only a few studies with
ground-truth data have conducted some kind of sensitivity analy-
sis. In general, forecasts have been found to be insensitive to the
set of SNPs used in training (e.g., Fitzpatrick et al., 2021; Lachmuth
et al., 2023; Lind et al., 2024), suggesting that the models are driven
by genome-wide patterns of isolation by environment rather than
specific adaptive alleles. In another study, Lachmuth et al. (2023)

ASUDOIT SUOWIWO)) AANEAI) d[qeatjdde oYy £q PAUIAOS 2Ie SI[ONIE YO (SN JO SI[NI 10§ AIRIqIT QUIUQ AS[IA UO (SUOTIPUOI-PUB-SULIDY/WOY K[1A KTRIqIouI[U0//:Sd1Y) SUONIPUOY) PUB SWIAT, 9Y) S *[SZOT/F0/P 1] U0 ARIqIT uIuQ AIM “6LEHT XOTZ-140Z/1111°01/10p/wod K[im’ KIeiquiourjuorsjeunofsaqy/:sdiy woij papeojumod ‘6 “+70T ‘X01Z1#07



LOTTERHOS

explored how forecasts in red spruce (Picea rubens) to future climate
risks were influenced by altering the genomic marker set, the set of
climate variables used in training, and the climate change scenario
(SSP2-RCP4.5 vs. SSP5-RCP8.5). They found that forecasts were
by far the most sensitive to climate change scenario, which intro-
duced significant uncertainty in parts of the species range that could
not easily be reduced. However, they did not evaluate sensitivity to
the set of populations used in model training, and it was not clear
whether the model was extrapolated to novel climates. Conducting
extensive sensitivity analyses as part of the routine evaluation of
forecasting models, mapping geographic variation in the degree of
uncertainty and showing geographic regions of extrapolation (as in
DeSaix et al., 2022, see Element 5 for discussion) can aid in our un-

derstanding of the precision of forecasts.

3.9 | Element 9: Data ethics and reproducibility

Genomic forecasting is a rapidly advancing field, with new methods
constantly being developed. Careful and ethical curation of data,
code and forecasts will drive rapid advances in the field of genomic
forecasting. The FAIR Guiding Principles for data stewardship state
that archived data should be findable, accessible, interoperable and
reusable (Wilkinson et al., 2016). In addition, the CARE Principles for
Indigenous Data Governance provides guidelines for engagement
with Indigenous Peoples rights and interests (Carroll et al., 2021,
2022). Since recent reviews have revealed that a large proportion
of archived genomic data sets lack spatiotemporal metadata, grow-
ing awareness of the community on best practices for data curation
is urgently needed (Crandall et al., 2023; Toczydlowski et al., 2021).
The Genomics Observatories Metadatabase (GEOME) (Deck
et al., 2017; Riginos et al., 2020) provides a user-friendly portal for
uploading spatiotemporal FAIR metadata and linking it to genomic
data stored in the International Nucleotide Sequence Database
Collaboration (Cochrane et al., 2016). Crandall et al. (2023) provides
a thorough overview of common genomic metadata gaps and guide-
lines for avoiding them, and Leigh et al. (2024) provides a set of rec-
ommendations for genomic data archival.

In addition to genomic and spatiotemporal metadata, what else
should be archived? The basic elements of the ODMAP (Overview,
Data, Model, Assessment and Prediction) protocol, a standard pro-
tocol for reporting species distribution models, can serve as a guide-
line for archiving data, code, and outputs (Zurell et al., 2020). Even
when code is properly archived, it can be difficult to reproduce as
hardware and software changes over time. Thus, key outputs of the
code, such as the evaluation and forecasts (the ‘AP’ in ‘ODMAP’),
should be carefully archived in addition to the data. When the fore-
casts by a specific method are made publicly available, this facilitates
comparison of new methods on the same data set. In addition, stud-
ies should follow best practices for crafting clean code (Filazzola &
Lortie, 2022) and for archiving data and code (Jenkins et al., 2023).

Studies that follow the best practices for the curation of data,
code and outputs will enable methods comparisons, which in turn
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will drive rapid advances in the field. In a best case scenario, such
studies will become standardized benchmark data sets and used to
compare methods on a common ground. Standardized benchmark
data sets are commonly used in computer science to drive advance-
ments in algorithm development, such as in the image recognition of
handwritten digits (LeCun et al., 2021), and benchmarks are urgently

needed in the field of genomic forecasting.

4 | SUMMARY AND CHECKLIST

In summary, it is becoming more accessible to molecular ecologists
to build forecasting models, but evaluating their limitations in a
particular study system requires careful planning and experimen-
tation. If investigators conduct such experiments without clearly
reporting basic design elements, it may be hard to understand why
models work in some cases and not others. It is important for re-
viewers to recognize that field experiments have many logistical
hurdles, and for this reason it is unlikely that any single study will
meet all these design elements. Nevertheless, investigators should
strive to design informative experiments and explain the limitations
of their design. The following checklist will be helpful in planning
and reporting:

e Element 1: The type of evaluation

e Use a current-future evaluation design to test predictions of a
population's response to climate change.

e Use a common garden evaluation design to test predictions of
the performance of multiple genotypes at the restoration site.

e Element 2: Independence between training and ground-truth
data

e To avoid circularity, samples used to train the model are differ-
ent from samples used to ultimately ground-truth the model.

e Show that sample sizes are sufficient for model training and
ground-truthing.

e Element 3: The ground-truth metric(s)

e Report how each ground-truth metric was measured or
calculated.

e Report when test individuals that will form the basis for the
ground-truth data are genotyped relative to when the ground-
truthing started.

e Consider the strengths and drawbacks of different ground-
truth metrics in the interpretation.

e Element 4: The evaluation metric(s)

e Report the correlation between the ground-truth metric and
the forecast for each common garden, because this can be eas-
ily compared across studies.

e Show that the evaluation metric accurately captures predictive
performance of the model.

e Avoid inflating model performance via overfitting.

e Element 5: Relationships among training samples and test samples

e Report the number of training and test samples.

e Show the marker set has sufficient coverage of the genome.
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o |f necessary, genotype the same markers in training samples
and test samples.
e Report the degree of (non)independence among test and train-
ing samples as relatedness and/or FST.
o Usejackknife to explore how model performance changes when
particular test genotypes are removed from the evaluation.
e Element 6: The training and test environments: quantification,
novelty, uncertainty and variability
e Measure the multivariate environment in the same way in the
training and ground-truth/test datasets.
e Show that the chosen environmental variables are relevant to
fitness.
e Quantify the common garden test environment during the pe-
riod of the test.
e Report the degree of climate novelty between each test envi-
ronment and all the training environments.
e Element 7: Model training
e Maintain independent training and ground-truth datasets by
partitioning training data into folds for hyperparameter tuning.
e Report how training data were divided into folds for
cross-validation.
e Interpret cross-validation as a summary of model fit, informed
by the type of folding.
e Element 8: Forecast sensitivity and uncertainty
e Report the sensitivity of the forecasts to the set of populations
used in training, genomic marker set, the set of climate vari-
ables used in training and/or the climate change scenario, as
applicable.
e Element 9: Data Ethics and Reproducibility
o Deposit genomic datain the International Nucleotide Sequence
Database and link it to spatiotemporal metadata with GEOME.
o Follow FAIR and CARE Guiding Principles for data stewardship.
e Follow the ODMAP (Overview, Data, Model, Assessment and
Prediction) protocol for archiving the forecasting model and
the evaluation.
e Follow best practices for crafting and archiving code.
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