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Abstract
1. Over the past decade, there has been a rapid increase in the development of 

predictive models at the intersection of molecular ecology, genomics, and global 
change. The common goal of these ‘genomic forecasting’ models is to integrate 
genomic data with environmental and ecological data in a model to make quanti-
tative predictions about the vulnerability of populations to climate change.

2. Despite rapid methodological development and the growing number of systems 
in which genomic forecasts are made, the forecasts themselves are rarely evalu-
ated in a rigorous manner with ground- truth experiments. This study reviews the 
evaluation experiments that have been done, introduces important terminology 
regarding the evaluation of genomic forecasting models, and discusses important 
elements in the design and reporting of ground- truth experiments.

3. To date, experimental evaluations of genomic forecasts have found high variation 
in the accuracy of forecasts, but it is difficult to compare studies on a common 
ground due to different approaches and experimental designs. Additionally, some 
evaluations may be biased toward higher performance because training data and 
testing data are not independent. In addition to independence between training 
data and testing data, important elements in the design of an evaluation experi-
ment include the construction and parameterization of the forecasting model, 
the choice of fitness proxies to measure for test data, the construction of the 
evaluation model, the choice of evaluation metric(s), the degree of extrapolation 
to novel environments or genotypes, and the sensitivity, uncertainty and repro-
ducbility of forecasts.

4. Although genomic forecasting methods are becoming more accessible, evaluat-
ing their limitations in a particular study system requires careful planning and 
experimentation. Meticulously designed evaluation experiments can clarify the 
robustness of the forecasts for application in management. Clear reporting of 
basic elements of experimental design will improve the rigour of evaluations, and 
in turn our understanding of why models work in some cases and not others.
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1  |  INTRODUC TION

Multivariate environmental change presents many challenges for 
predictive modelling. Genomic forecasting is a rapidly growing sub-
field that integrates genomic data with environmental and ecological 
data for prediction. The types of projections that genomic forecast-
ing might be used to make range from estimating population mal-
adaptation to an environmental change to choosing genotypes for 
a restoration project (Láruson et al., 2022; Rellstab et al., 2021). A 
forecast is a set of quantitative estimates that are often based on a 
theoretical model, statistical model or time series data and differs 
from a ‘prediction’ that can be more qualitative and based on intu-
ition (Burford Reiskind et al., 2021). Here, the term genomic forecast-
ing model refers to any kind of statistical or mathematical method 
that incorporates genomic data to predict fitness of a genotype in a 
given environment (e.g., the ‘forecast’).

A group of methods that are currently central to genomic fore-
casting models are known as genetic offset or genomic offset meth-
ods. A genomic offset is typically defined as the instantaneous degree 
of maladaptation of a genome in a new environment (Fitzpatrick & 
Keller, 2015; Láruson et al., 2022; Rellstab et al., 2021), although 
this definition has been questioned (Lotterhos, 2024). Genomic off-
sets are often conceptualized as the amount of genetic change that 
would be required for the population to be optimally adapted to a 
new environment (Figure 1a). They are measured as the amount of 
cumulative allele frequency change or turnover across an environ-
mental gradient (Figure 1b), and calculations are often based on pu-
tatively adaptive loci identified as outliers in genotype–environment 
associations (GEAs) (Rellstab et al., 2021). GEAs are statistical meth-
ods that identify loci with associations between allele frequencies 
and environmental gradient(s) (Rellstab et al., 2015). Although some 
investigators have also referred to genomic offset as a ‘genomic 
vulnerability’, the use of the term has been debated because it is 
not consistent with established definitions of vulnerability (Foden 
et al., 2019), and simulations show that genomic offsets do not al-
ways estimate population vulnerability (Fitzpatrick et al., 2018; 
Láruson et al., 2022; Lind & Lotterhos, 2024; Lotterhos, 2024).

Recently, there have been a number of genomic forecasting 
methods published (Brauer et al., 2023; Capblancq & Forester, 2021; 
Fitzpatrick & Keller, 2015; Gain et al., 2023; Gain & François, 2021; 
Rellstab et al., 2016; Rochat & Joost, 2021) and with them the number 
of high- profile empirical studies that make forecasts about the mal-
adaptation of populations across a species range has increased (Bay 
et al., 2018; Brauer et al., 2023; Chen et al., 2022; Exposito- Alonso 
et al., 2019; Fitzpatrick et al., 2021; Gain et al., 2023; Ingvarsson 
& Bernhardsson, 2020; Lind et al., 2024; Rhoné et al., 2020; Ruegg 
et al., 2018; Sang et al., 2022). However, only a few of these studies 
have actually evaluated those forecasts in experiments with ground- 
truth data (Exposito- Alonso et al., 2019; Fitzpatrick et al., 2021; Gain 
et al., 2023; Lind et al., 2024; Rhoné et al., 2020). The definition of 
ground- truth data is data that is known to be real or true, provided 
by direct and accurate measurement (in situ). Within the field of ge-
nomic forecasting, the ground- truth data should estimate the fitness 

of a genotype in a specific environment or a fitness offset between 
two environments. In practice, fitness can be estimated from the 
product of viability (survival) and fecundity (Conner & Hartl, 2004), 
but these can be difficult to measure. Instead, proxies of fitness 
such as growth rate or size are often used as ground- truth data (see 
Element 3 for discussion). For a study to qualify as a ground- truth or 
evaluation experiment, the genomic forecasts are evaluated against 
ground- truth proxies of fitness collected from multiple individuals 
or populations in one or more common garden environments (see 
Elements 1 and 2 below).

For the few studies that have evaluated genomic forecasts 
against ground- truth data, the degree of predictive performance has 
varied (Fitzpatrick et al., 2021; Gain et al., 2023; Lind et al., 2024; 
Rhoné et al., 2020). Predictive performance is generally measured as 
a correlation or the coefficient of determination between the fore-
cast and a ground- truth fitness proxy (see Elements 3 and 4 below). 
In the tree Balsam poplar, Fitzpatrick et al. (2021) found that a ge-
nomic offset model explained ~60% of the variance in tree height 
in experimental common gardens, but did not assess the ability of 
the model to predict mortality. In a widespread conifer jack pine, 
Lind et al. (2024) found that offset models were worse at predicting 
mortality than tree height. In general, the studies that have com-
pared multiple methods have found a wide variation in predictive 
performance among different algorithms (Gain et al., 2023; Lind 
et al., 2024). However, even different studies using the same method 
on the same data find different measures of predictive performance: 
For seed weight of pearl millet landraces in a single common garden, 
the predictive performance of a genetic offset calculated using the 
same algorithm (called gradient forests) varied from an R2 of ~17% in 
one study (Rhoné et al., 2020, estimated as the square of Pearson's 
correlation) to ~49% in another study (Gain et al., 2023). Such vari-
ation highlights that there are nuances in how investigators build a 
forecast from the same method (e.g., the selection and spatial reso-
lution of environmental variables, individuals and single nucleotide 
polymorphisms—SNPs). Indeed, for tree height in jack pine and va-
rieties of Douglas fir, Lind et al. (2024) showed that performance of 
offset forecasts were highly sensitive to the set of individuals used 
in training, varying from no predictive performance (measured as the 
correlation between a forecast and tree height) to very high predic-
tive performance.

Although this variation in performance of forecasts among study 
systems may be due to differences in the underlying biology of the 
system, it could also be due to variation in the nuanced decisions in-
vestigators make when designing experiments and building, training, 
and testing models. If such variation in model performance is due 
to nuanced decisions, this creates substantial hurdles to the field in 
terms of understanding the utility of genomic forecasting. For this 
reason, explicit reporting of key design elements would advance our 
understanding of why performance is high in some scenarios and 
low in others, but these are rarely reported.

The goal of this review is to enumerate the elements of exper-
imental design and reporting that are necessary for the rigorous 
evaluation and interpretation of genomic forecasting models. These 
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1468  |    LOTTERHOS

elements include design principles such as independence of training 
and testing data, and reporting the relatedness among individuals in 
these two groups. These elements are germane to both evaluation 
and validation of methods. Evaluation is a quantitative comparison 
of how well one or more methods perform on one or more data sets 
(Lotterhos et al., 2022). If one quantifies the predictive performance 
of one or many methods, then it is an evaluation. However, even the 
‘best’ method in an evaluation may have low predictive performance 
and be unsuitable for any kind of real- world application.

For any real- world application, a method must first be validated. 
Although the term validation is not used consistently (Augusiak 
et al., 2014), here the term refers to the process of comparing the 
model forecasts to a body of evidence obtained from many eval-
uations, and then determining if the model meets a set of a priori 
criteria for a specific real- world application (Lotterhos et al., 2022). 

For forecasting models, validation would be the process of consult-
ing with stakeholders to develop consensus on the criteria a model 
should meet for incorporation into a management plan, and then de-
termining if the model meets those criteria. Concluding that a fore-
cast is ‘valid’ is not necessarily a binary outcome; models lie on a 
continuum of usefulness in which the overall credibility of a forecast 
is gradually built upon (Augusiak et al., 2014).

Regardless of whether the goal is evaluation or validation, the 
outcome can inform the domain of applicability of a forecasting 
model. The domain of applicability of a model describes the set of 
conditions under which the model predictions are valid (Lotterhos 
et al., 2022). The following sections outline considerations for the 
most constructive use, publication and archiving of genomic fore-
casting models. Careful design and reporting will lead naturally 
to meta- analyses and syntheses that can help further define the 

F I G U R E  1  Concept, measurement and evaluation of genomic offsets. (a) A genomic offset is conceptualized as the amount of change 
in the adaptive genomic architecture needed for the individual or population to be optimally adapted to a new environment (visualized in 
multivariate genomic space). (b) For a given amount of environmental change, a genomic offset is typically measured as a cumulative change 
in allele frequency or turnover in allele frequency, amalgamated across loci. A genomic offset is inferred to be directly related to the degree 
of maladaptation to that environmental change, although this inference has been debated. (c) A current- future evaluation tests whether the 
genomic offsets are correlated with the estimated fitness of a particular genotype in different environments. (d) A common garden evaluation 
tests whether genomic offsets are correlated with the estimated fitness of different genotypes grown in the same common garden 
environment. See Lotterhos (2024) for more discussion on why the two evaluations in (c) and (d) are not equivalent.
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    |  1469LOTTERHOS

domain of applicability of these methods across systems. To date, 
most genomic forecasting methods models make predictions at the 
level of the population. Although individual- level predictive models 
have not yet been widely developed or tested, this article takes a 
prospective view with an eye towards designing experiments that 
would be able to evaluate individual- level predictive models when 
they become available.

2  |  COMMON A SSUMPTIONS OF 
GENOMIC FOREC A STING MODEL S

All forecasting models make assumptions either directly or implic-
itly. An implicit assumption is one that is not always stated, but is a 
basic requirement for the model to produce accurate results. Not all 
genomic forecasting models share the same assumptions, but com-
mon assumptions include:

1. The population is locally adapted to the environment and genotype–
climate relationships reflect local adaptation to the environment. 
Local adaptation is a property of a metapopulation in which 
subpopulations have higher fitness in sympatry than in allopatry 
(Blanquart et al., 2013). This can lead to a pattern in which 
locally adapted alleles have higher frequency in sympatry than 
in allopatry. Motivated by this, current genomic offset mod-
els are trained on contemporary spatial relationships between 
genotype and climate, and thus rely on the assumptions that 
(i) populations are locally adapted and (ii) the allele frequency 
at a particular environment on the landscape provides some 
information about the local fitness of that allele. Because the 
assumption of local adaptation is integral, investigators should 
establish proof of local adaptation in the metapopulation with 
common garden and/or reciprocal transplant experiments (for 
a quantitative method see Blanquart et al., 2013) prior to 
investing resources into building a forecasting model, as has 
been recommended to do prior to conducting genotype–en-
vironment and genotype–phenotype associations (Barrett & 
Hoekstra, 2011). Even if local adaptation exists, non- monotonic 
allele frequency patterns can evolve under evolution to mul-
tivariate environments (Lotterhos, 2023) and these patterns 
may confound forecasting methods that assume linear geno-
type–climate relationships.

2. The environmental change is instantaneous. Current genomic off-
set models predict the fitness of a genotype under an instanta-
neous environmental change (Fitzpatrick & Keller, 2015; Láruson 
et al., 2022). Due to this assumption that is specific to offset 
models, the forecasts can be evaluated by testing if they are sig-
nificantly correlated with ground- truth fitness proxies measured 
on a set of individuals after moving them to a new environment 
(see Elements 2 and 3 for discussion). Current offset models do 
not incorporate evolutionary processes that happen over multiple 
generations, such as gene flow, inheritance, drift, recombination, 

mutation, and adaptive evolution. However, these processes may 
be included into eco- evolutionary models, which can also be used 
to make forecasts (Waldvogel et al., 2020).

3. A model built on current genetic and environmental variables can be 
extrapolated without reduction in predictive performance. Current 
genomic forecasting models assume that the genotype–climate 
relationship will remain the same under future environmental 
change. Extrapolation is the action of estimating a variable's value 
beyond the range of initial values by using relationships between 
this and other variable(s). For instance, projecting a genomic 
forecast trained on a dataset of genetic and environmental data 
to a novel genotype or novel environment (novel relative to the 
training dataset) is an extrapolation (see Element 6 for more dis-
cussion). Such extrapolations can fail if they do not account for 
evolutionary processes over multiple generations or the fixa-
tion of climate- adapted alleles (Hoffmann et al., 2021; Jordan 
et al., 2017).
Even when a forecast is used to choose genotypes for imme-
diate transplantation as in restoration (e.g., the assumption of 
instantaneous environmental change is met), extrapolations 
to novel environments could fail because of statistical reasons 
(e.g., the model was biased by historical evolutionary process 
such as drift: Láruson et al., 2022; or the model is not accurate 
in the extrapolated region: Lind & Lotterhos, 2024) or intrinsic 
biological reasons (e.g., cryptic genetic variation that is only 
expressed in a new environment: Bitter et al., 2021). Recently, 
DeSaix et al. (2022) showed that large portions of the breeding 
range of an alpine songbird will shift to novel climatic conditions, 
highlighting that substantial portions of a species' range can be 
subject to uncertainty in genomic forecasts. This could be an 
issue for genomic forecasts in many species, since novel climates 
without precedent in recent history are emerging around terres-
trial and marine habitats and will become more widespread in 
the future (Lotterhos et al., 2021; Williams et al., 2007). Thus, 
estimating the degree that a model is extrapolated to novel cli-
mates or genotypes is an important element of evaluation (see 
Elements 5 and 6 below for discussion).

4. Accurate forecasts can be made without considering genetic in-
teractions, trait correlations or trait plasticity. Currently, the com-
plex dynamics of within-  and among- locus interactions, plei-
otropy and plasticity are not explicitly incorporated into genomic 
offset models. Fitness may be affected by non- additive allelic 
interactions within loci (dominance) and among loci (epistasis) 
(Conner & Hartl, 2004). Pleiotropic effects of a gene on mul-
tiple traits may facilitate or constrain adaptation and therefore 
complicate forecasts (Hoffmann et al., 2021). Plasticity is the 
environmentally induced production of different phenotypes 
from a given genotype (DeWitt & Scheiner, 2004), which sug-
gests that trait data in addition to environmental and genetic 
data will be needed to produce accurate forecasts. These dy-
namics are not explicitly incorporated into current genomic 
forecasting models, but the elements of experimental design 
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1470  |    LOTTERHOS

discussed below will also be germane to more complex models 
that include these dynamics.

3  |  ELEMENTS OF E XPERIMENTAL 
DESIGN AND REPORTING

How robust and accurate genomic forecasts models are—even 
when implicit assumptions are met—is an open question for many 
study systems. The most rigorous way to test model forecasts 
is with controlled experiments and compare a forecast against 
ground- truth data from the experiment. There are many types of 
experiments that one could design, including common garden ex-
periments, growth chambers or microcosms, experimental evolu-
tion or within- generation selection experiments. Here, the focus is 
largely on common garden experiments because they will be the 
most feasible for many study systems (de Villemereuil et al., 2016; 
Sork et al., 2013), but many of the principles will apply to other 
kinds of experiments.

3.1  |  Element 1: The type of evaluation to do

The appropriate experimental design used to evaluate a model 
depends on the management context or application (Augusiak 
et al., 2014). The question remains as to how well a genomic offset 
measurement estimates some kind of fitness offset for different 
applications. Unfortunately, there are many different ways that fit-
ness offsets can be calculated, and depending on the pattern of 
local adaptation in the metapopulation, different types of fitness 
offsets may not be correlated with each other (Lotterhos, 2024). 
For this reason, the experimental design that should be used to 
evaluate a forecast of climate change vulnerability is not the same 
design that should be used to evaluate a forecast for a restoration 
project.

In a current- future evaluation, one aims to understand whether 
the forecast can predict population vulnerability in a future climate. 
The appropriate experimental design would be to raise the focal 
genotype in current and future environments and use an estimate 
of fitness (or fitness offset from the current to the future environ-
ment) in each treatment as a ground- truth metric (Figure 1c, x- axis) 
(Lotterhos, 2024). The relevant forecast to evaluate would estimate 
the focal genotype's fitness in the different environmental treat-
ments (Figure 1c, y- axis). For a genomic offset, genotypes with larger 
offsets to a new environment are predicted to have lower fitness 
in that environment, so a strong negative correlation indicates high 
predictive performance of the forecast.

In a restoration or common garden evaluation, one aims to under-
stand whether the forecast can predict the most fit genotype(s) at 
a restoration site, so that the best genotype(s) can be chosen for 
that environment and give the project the highest chances of suc-
cess. The appropriate experimental design would be to raise mul-
tiple genotypes in a common garden at the restoration site and 

use an estimate of fitness (or fitness offset) of each genotype in 
that common garden as a ground- truth metric (Figure 1d, x- axis) 
(Lotterhos, 2024). The relevant forecast to evaluate would estimate 
the (relative) fitnesses of different genotypes in the restoration en-
vironment (Figure 1d, y- axis).

To date, all evaluations of genomic offsets have been common 
garden evaluations (Fitzpatrick et al., 2021; Gain et al., 2023; Lind 
et al., 2024; Rhoné et al., 2020), so it is still unclear how well genomic 
offsets predict population vulnerability to future climate change. 
Evaluation experiments that have multiple genotypes in many cur-
rent and future environmental treatments can simultaneously con-
duct current- future and common garden evaluations (for an extensive 
discussion on this topic see Lotterhos, 2024).

3.2  |  Element 2: Independence between and 
sample sizes of training and ground- truth data

Current genomic forecasting models require data to build the model 
that makes the forecast. This model- building step uses ‘training 
data’ to calibrate the model. After the model is developed, predic-
tions are made for a set of ‘ground- truth data’ or ‘test data’, which 
are then used to evaluate the predictive performance of the model. 
If the same or overlapping data are used for both training and 
ground- truthing, this can lead to inflated model performance and 
poor generalizability (i.e., overfitting) because one is essentially ask-
ing how good the data is at predicting itself (Goodall, 1972; Grimm 
et al., 2015; Molnar, 2021). Therefore, such circularity should be 
avoided by using independent data for both model training and 
ground- truthing.

An example of independent training data and ground- truth data 
is illustrated in Figure 2 for a hypothetical coastal marine species 
that is locally adapted to temperature and salinity. In this case, sea-
scape genomic data with individual SNP genotypes and population- 
level environmental variables (temperature and salinity) are used 
to train a forecasting model (Figure 2, Step 1, orange colour). In the 
independent ground- truthing phase, different individuals are col-
lected from across the metapopulation and bred to create offspring 
for the test (Figure 2, Step 2, black colour). In the example shown in 
Figure 2, some test individuals come from populations that are used 
in training the forecasting model and some come from populations 
that were not used in training, which can give insight into the domain 
of applicability of the predictive model.

Offspring are then raised in ‘test’ common garden environments 
at high or low salinity (Figure 2, Step 3, green colour). Ideally, there 
would be multiple common garden sites, although this might not be 
feasible in all systems for logistical (e.g., broadcast- spawning ma-
rine invertebrates that require a hatchery for rearing) or permitting 
reasons (e.g., permits do not allow transfer of foreign genetic ma-
terial to the local site). The genomic offset is calculated from the 
forecasting model using the test environment and, depending on 
the specific forecasting method being used, the genotypes of the 
test individuals (Figure 2, green arrow from Step 3 to Step 4) (see 
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    |  1471LOTTERHOS

Element 6 for more discussion on quantifying the environment). 
The predictive performance of the forecasting model is estimated 
as the correlation between the forecast (y- axis) and a ground- 
truth estimate of fitness measured in each common garden (x- axis) 
(Figure 2, Step 5) (see Element 4 for more discussion on estimating 
predictive performance). The variation in predictive performance 
among many different common gardens gives insight into how gen-
eralizable the forecasting model will be. In the hypothetical example 
in Figure 2 (Step 5), the model has high predictive performance in 
Common Garden 1 (as evidenced by the strong negative correlation 
between predicted offset and fitness), but low predictive perfor-
mance in Common Garden 2, which suggests that the model is not 
generalizable.

The feasibility of creating offspring from parents for an evalua-
tion experiment will vary among study systems. It can be advanta-
geous to split test offspring from each family among common garden 
test sites and measure fitness proxies on both test parents and test 
offspring (see Element 3 for more discussion). If such a design is not 
feasible and test individuals are relocated directly from their collec-
tion site to an experimental common garden, the experiment may 
be confounded by direct carry- over effects from the organism's 

environment to the common garden. On the other hand, this may be 
exactly how one wants to conduct a test if such relocations are what 
would be practised for management, as in corals. Regardless of how 
the test is conducted, many of the following recommended design 
elements arise from this basic principle of independence between 
training and ground- truthing.

3.2.1  |  How large do sample sizes need to be?

It is well established in the machine learning literature that the pre-
dictive capacity of a model is limited by the data on which it is based 
(Bergstrom & West, 2021; Molnar, 2021). Thus, models that are 
trained on data that is a limited subset of the situations for which 
they will be applied often lead to inaccurate results when extrap-
olated to new situations. For example, if a forecasting model uses 
information about allele frequency correlations with environments, 
then a comprehensive training data set would include a large number 
of subpopulations across the environmental range of the species, 
with enough samples from each site to accurately estimate allele fre-
quency in that environment. Understanding how a forecasting model 

F I G U R E  2  Overview of an empirical evaluation with two common gardens. An overview of the model evaluation process with 
independent training and test phases, using the hypothetical example of a widespread coastal marine invertebrate. Step 1: Train a forecasting 
model on existing data, in this example from seascape genomic data with salinity, pH, dissolved oxygen and temperature (orange squares 
and text). Step 2: Collect test parents that will be used to create test offspring (black circles). Step 3: Raise test offspring in the experimental 
common gardens where the model forecast will be tested (green text). In this example, one common garden is at a low salinity site, while the 
other is at a high salinity site (green triangles). Step 4: The common garden environment and test genotypes are input into the model to make 
a forecast. Step 5 (grey box): The forecast is evaluated against an estimate of fitness in the common garden. The predictive power of the 
forecasting model may vary among common gardens (as shown here), which would inform the domain of applicability for the model.
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1472  |    LOTTERHOS

is built is fundamental to planning robust sample sizes for training 
and testing. The simulation studies (Láruson et al., 2022; Lind & 
Lotterhos, 2024) and empirical validations (Fitzpatrick et al., 2021; 
Lind et al., 2024) that find high predictive performance of genomic 
offsets suggest that much larger sample sizes are needed for training 
(hundreds of individuals from dozens of populations) than for test-
ing (dozens of individuals from tens of populations). This is because 
a comprehensive set of data is needed for model training, whereas 
a smaller dataset spanning a range of scenarios can be sufficient to 
calculate predictive performance. At this time, the effect of sample 
size on the performance of forecasts has not been sufficiently ex-
plored in the literature and this is an important area for future work.

3.3  |  Element 3: The ground- truth metric(s)

To evaluate the predictive performance of a model, the forecast 
must be compared with a ground- truth data set that estimates fit-
ness (Figure 2, Step 5, x- axis). There could be multiple ways to es-
timate fitness based on traits, fitness components or organism 
performance. While fitness components include viability (survival) 
and fecundity, these can be difficult to measure, and growth rate 
or size are often used as proxies for fitness instead. For the design 
shown in Figure 2, ground- truth measures could be calculated from 
(i) the fitness proxy of the parental genotypes measured as the vi-
ability of their offspring, or (ii) the fitness proxies of the offspring 
genotypes measured as their survival, growth or fecundity. Both of 
these measures have strengths and drawbacks.

3.3.1  |  Fitness proxies of parents

The fitness of parental genotypes can be estimated as the viability 
of their descendants, which can be estimated at a handful of genetic 
markers with a parentage or lineage analysis. The benefit of using 
a parental fitness proxy as a ground- truth is that genotypes of par-
ents can be obtained before or immediately after offspring are pro-
duced. Thus the parental fitness metric will reflect any early- stage 
mortality that occurs due to the treatment before offspring are large 
enough to count, genotype or phenotype accurately. Depending on 
the study species, it may be hard to control for the exact same num-
ber of offspring from each parent, and in this case the proportion of 
offspring from each parent should be quantified at the beginning of 
the experiment and used as a baseline.

3.3.2  |  Fitness proxies of offspring

Measuring fitness proxies directly on offspring themselves, such as 
their growth and survival, also has strengths and drawbacks. When 
families can be tracked in the design, best linear unbiased predictors 
or estimates (BLUPs or BLUEs) may be used to estimate a breeding 
value for a fitness proxy such as height and used as a ground- truth 

in the evaluation (e.g., Fitzpatrick et al., 2021; Lachmuth et al., 2023; 
Lind et al., 2024). The advantage of using offspring fitness as a 
ground- truth is that a forecast based on each individual's genotype 
can be tested within that individual's lifetime. Drawbacks arise from 
the timing of genotyping relative to when mortality arises from se-
lection, because one has to wait until the offspring are large enough 
to collect tissue without causing mortality. If offspring are put into 
the common garden test environments before they are genotyped 
(e.g., as seeds), this has the drawback of potentially excluding off-
spring samples that die due to selection (e.g., never sprout or die 
shortly after sprouting) from the ground- truth data, and their ab-
sence could bias the overall evaluation.

3.3.3  |  Direct transplantation

Another alternative would be to transplant genotypes directly from 
their home site to the common garden test environment, which 
might be necessary for some organisms that are difficult to breed. 
These approaches have the potential drawbacks of (i) being biased 
by direct carry- over effects from one environment to another, and/
or (ii) missing selection that would have happened during the early 
part of the life cycle in the test environment. Despite these draw-
backs, studies that choose these alternatives for practical or restora-
tion reasons can still give relevant insights.

3.3.4  |  Should population size be used as a 
ground- truth metric?

While measuring fitness proxies on both test parents and their off-
spring in a controlled experiment meets the highest level of rigour 
for a ground- truth measure, some studies have interpreted relation-
ships between genomic offsets and population size as evidence that 
forecasts are accurate (Bay et al., 2018; Ruegg et al., 2018). A com-
putational study found that genetic offset values were correlated 
with population size in purely neutral simulations due to genetic drift 
affecting the offset values, which highlights issues with using popu-
lation size as a ground- truth metric (Láruson et al., 2022).

3.4  |  Element 4: The evaluation metric(s)

An important question in the evaluation (Figure 2, Step 5) is how to 
quantify the predictive performance of the forecasting model. The 
evaluation metric is a statistic that summarizes the model perfor-
mance from the evaluation model—a statistical model of the relation-
ship between the forecast and the ground- truth data. In the case that 
the forecast and the ground- truth data are both numerical variables 
in different units, the model performance can be quantified as the 
strength of the relationship between these two variables, which can 
be measured as a correlation or as R2 in a general/generalized linear 
model (Lotterhos et al., 2022). Note that other evaluation metrics 
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such as mean error and its derivatives are only appropriate when 
the forecast and the ground truth are in the same units (Lotterhos 
et al., 2022). To date, both correlation (Láruson et al., 2022; Lind 
et al., 2024; Rhoné et al., 2020) and R2 (Fitzpatrick et al., 2021; Gain 
et al., 2023) have been used as evaluation metrics to quantify the 
performance of a forecast. Although this section focuses on evalu-
ation metrics, the process of evaluation should also consider logi-
cal consistency in the forecasting model structure (e.g., underlying 
theories and assumptions), as major flaws in the forecasting model 
structure could mislead a decision even when evaluation metrics 
suggest that predictive performance is high (Augusiak et al., 2014).

3.4.1  |  Correlation as an evaluation metric

When correlation is used as an evaluation metric, it measures the 
strength and significance of the association between ground- truth 
fitness and the forecast. When the assumption of linearity is met, 
Pearson's correlation should be used, while if the relationship is 
monotonic but non- linear then a rank correlation should be used 
(Whitlock & Schluter, 2009). The benefit of correlation measures is 
that they make few assumptions and can be easily compared among 
studies.

3.4.2  |  R2 as an evaluation metric

When R2 from some type of general/generalized linear model or 
linear mixed model is used as an evaluation metric, different philo-
sophical approaches to constructing linear models makes it difficult 
to compare among studies. The question for evaluating forecasts is: 
Should the ground- truth be the response variable (e.g., the forecast 
predicts the ground- truth fitness) or explanatory variable (e.g., the 
ground- truth fitness predicts the forecast)? Logical arguments can 
be constructed for both approaches.

Arguments for constructing an evaluation model with ground- 
truth fitness as an explanatory variable and the model forecast as 
a response variable come from method evaluations in data science 
(Lotterhos et al., 2022). Evaluations are constructed in this way be-
cause it is the amount of error in the forecast (response variable) 
that gives information about how good the forecast is. This type 
of model construction is shown in Figures 1c,d and 2 (Steps 4–5) 
with the ground- truth on the x- axis and the forecast on the y- axis. 
Most types of linear models assume that the explanatory variable 
is known without error and models error in the response variable. 
However, ground- truth estimates of fitness are imperfect and con-
tain error, which violates the assumptions of ordinary least squares 
regression. When error exists in an explanatory variable, ordinary 
least squares regression will underestimate the true regression slope 
(McArdle, 1988). In this case, one can construct an evaluation model 
with reduced major axis regression, which will yield a more accurate 
slope (McArdle, 1988).

The argument for constructing an evaluation model with ground- 
truth fitness as a response variable and the model forecast as an 
explanatory variable is that a number of other explanatory variables 
could be put into the model to determine how much variance in es-
timated fitness is explained by different factors. For a genomic off-
set evaluation constructed in this way, the slope informs how much 
fitness decline is expected for a given amount of genomic offset. 
However, when there are multiple explanatory variables, the overall 
model R2 is not a measure of predictive performance of the fore-
cast or genomic offset: R2 is based on unexplained variation after 
accounting for all explanatory variables (Whitlock & Schluter, 2009) 
and therefore is not a measure of the performance of the genomic 
forecast specifically. Moreover, when models are constructed in this 
manner, investigators should take care to show that they avoided 
overfitting (e.g., inflating R2 by including many explanatory variables) 
by performing model selection to determine the most parsimonious 
model that explains the data (Whitlock & Schluter, 2009).

Thus, the interpretation of the evaluation model depends on its for-
mulation. When the model contains only two variables, a model with 
forecast ~ ground-­truth will have the same R2 or correlation as a model 
with ground-­truth ~ forecast, and the R2 or correlation value will give infor-
mation about the predictive performance. However, the R2 from a model 
with ground-­truth ~ forecast + other variables does not give information 
about the predictive performance of the forecast specifically, because 
other variables could be explaining most of the variation. However, this 
latter type of model could still be useful to understand how various fac-
tors are related to the ground- truth fitness proxy via their slopes.

Thus, the overall R2 as an evaluation metric should be inter-
preted carefully based on the formulation of the evaluation model. 
Regardless of how the evaluation model is formulated, it will be 
informative to compare the shape and magnitude of the forecast/
ground- truth relationship across multiple studies, treatments and/or 
common garden environments (e.g., Figure 2, Step 5), because that 
gives information about how generalizable the forecast is.

3.5  |  Element 5: Relationships among training 
samples and test samples

To keep the training and test phases independent, a necessary de-
sign element is that the set of individuals used in training is different 
from the set of individuals used in ground- truthing. A central question 
in determining the domain of applicability is whether model perfor-
mance degrades as specific test samples (individuals or populations) 
become more genetically distant from those used in training (e.g., ex-
trapolation of the forecasting model to samples that are ‘novel’ to that 
model). Design considerations that should be clearly reported include 
the number of samples used in training, the number of test samples 
and populations, whether test samples come from populations used 
in training, and the degree of independence between test and training 
samples. Individuals within a species will never truly be independent 
due to shared evolutionary history. Sources of non- independence in 
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the data arise among genes within genomes, among individuals within 
a population due to relatedness, and among populations due to migra-
tion and/or spatially autocorrelated selection. The degree of (non)inde-
pendence among test and training samples can be estimated as values 
of relatedness, FST, or other measures of genetic distance.

Take for instance a test that was conducted on a mix of gen-
otypes, some that are genetically distant (‘novel’) compared with 
the training genotypes (Figure 3a). If the fitness of novel genotypes 
are not predicted well by the model, then removing them from the 
evaluation would increase the predictive performance of the model 
(Figure 3a). This concept could be tested more formally by using a 
jackknife in the evaluation to understand the sensitivity of the eval-
uation to specific genotypes. A jackknife removes one genotype at 
a time and re- evaluates the relationship between the forecast and 
ground- truth data. One would predict that the decline in predictive 
performance when a test sample is removed scales directly with the 
genetic distance between that test population (or genotype) and all 
the training genotypes, and the rate of this decline would give insight 
into the domain of applicability of a particular forecasting model. 
This type of analysis remains to be performed.

A major design consideration is the set of genetic markers that 
will be used to genotype all the individuals. For some forecasting 
models, the same set of genetic markers must be used across all 
training and test individuals because the model uses this information 
to make a prediction (Figure 4a). Unless the genetic basis of adapta-
tion to the multivariate environment is accurately known, research-
ers should make the case that their marker set provides high enough 
coverage of the genome so as to have markers in linkage disequi-
librium with adaptive loci that determine local adaptation (Lowry 
et al., 2017). Without such justification, it is difficult to determine 

whether a poorly performing forecasting model is due to insufficient 
coverage of the genome or some other reason.

There is currently no consensus in the literature as to the best 
marker set to use for building a forecasting model. Although it is 
common practice to narrow the loci set down to outliers in GEAs, 
both simulation and empirical studies that have explored the sen-
sitivity of forecasts to the set of loci used have found that a ran-
dom set of loci has similar performance to GEA outliers (Fitzpatrick 
et al., 2021; Lachmuth et al., 2023; Láruson et al., 2022; Lind 
et al., 2024). This may occur because evolution in multivariate en-
vironments can lead to non- monotonic patterns in allele frequen-
cies across environmental gradients that would be missed by GEA 
methods (Lotterhos, 2023), and offset models may be driven instead 
by genome- wide patterns of isolation by environment. Thus, it is im-
portant for investigators to report how sensitive a forecast is to the 
set of loci used (see Element 8 for more discussion).

3.6  |  Element 6: The training and test  
environments: Quantification, novelty, uncertainty  
and variability

In order to obtain a genomic forecast for the test individuals, most 
models require the test environment as input (Figure 2, Step 3). Thus, 
the multivariate environment measured for the test must be meas-
ured in the same way as the multivariate environment was meas-
ured across populations or individuals used in training the model 
(Figure 4b). The test environment should only include data collected 
during the period over which individuals are reared/grown, in case 
there are any extreme climatic events that affect mortality. The 

F I G U R E  3  Change in model performance with extrapolation. Hypothetical examples of how the accuracy of the forecasting model 
might change as the model is extrapolated to new situations compared to the training data, such as novel genotypes or novel environments. 
(a) The relationship between the estimate of fitness (ground truth) and a forecast within a single test common garden may be sensitive to 
the novelty of the test genotypes relative to the training genotypes. Here, a novel test genotype is one that is genetically distant from the 
training genotypes. The performance of the model, measured as the correlation between ground truth and forecast, may improve when 
novel test genotypes are removed from the evaluation. A jackknife could be used to understand how particular test genotypes influence 
the model performance. (b) The relationship between the ground truth and a forecast among test common gardens may be sensitive to the 
novelty of the test environment (where the ground- truth data were collected) relative to the training environments. The degree of climate 
novelty of a particular test environment can be quantified as described in the main text. Model accuracy may decrease as test environments 
become more novel compared with the training environments, as shown here.
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model's predictive performance may decline in test environments 
that are outside the range of environments from which the popula-
tions used in training were collected. Therefore, investigators should 
quantify how novel the test environment is compared with the en-
vironments used in training the forecasting model, which will help 
define the domain of applicability of the model.

A novel climate is defined as a climate observation without a re-
cent analogue in a local or global area, and the degree of novelty is 
typically measured as the number of standard deviations of a climate 
observation from a historical baseline (Mahony et al., 2017; Williams 

et al., 2007). Novel climates for a species can also be estimated by 
the niche margin index, with decreasing negative values represent-
ing climatic distance outside the niche (Broennimann et al., 2021; 
DeSaix et al., 2022). We can extend these definitions of climate nov-
elty to model ground- truthing, where the test/ground- truth environ-
ment does not have an analogue in the training environment. With 
the domain of applicability of a forecasting model in mind, there are 
various kinds of situations that would be interesting to examine, for 
example, ground- truth environments that are: (i) typical of the envi-
ronments used in training (Figure 5, circle), (ii) extreme but within the 

F I G U R E  4  Best practices for data 
collection. Examples of best practices 
for data collection (top) and potentially 
not useful data (bottom) for (a) single 
nucleotide polymorphisms (SNPs) (left 
column) and (b) environmental data (right 
column). The ‘training’ data are used 
to parameterize the forecasting model 
and the ‘test’ data are used as a ground- 
truth for the evaluation of the forecast. 
Investigators can easily end up with 
potentially not useful data if the landscape 
genomic data used for model training used 
one type of sequencing (e.g., RADseq) 
and available environmental data, 
while the experiment for model testing 
used a different type of sequencing 
(e.g., RNAseq) and did not quantify the 
multivariate test environment in the exact 
same way.

F I G U R E  5  Selection of experimental common gardens that can help evaluate the domain of applicability of a forecasting model. The blue 
ellipse on the graph shows the distribution of values for the two environmental variables in the training data, and the dark red arrow shows 
the direction of climate change. Testing the model in treatments that are (i) within the environmental envelope of the training data (circle 
and star), (ii) novel to the training data but within the historical variability of each variable (squares) and (iii) novel to the training data and 
outside the historical variability of multiple variables (diamond) can inform situations in which the model yields (or does not yield) accurate 
results. Note that the most informative treatments for understanding the domain of applicability to future climate change are not necessarily 
factorial combinations of individual environmental values.
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range of environmental combinations used in training (Figure 5, star), 
(iii) a novel combination of environmental variables, but within the 
historical variability of the training environments (Figure 5, squares), 
and/or (iv) a novel combination of environmental variables and out-
side the historical variability of the training environments (Figure 5, 
diamond). The degree of climate novelty (between a test environ-
ment and all the training environments) for any situation can be sta-
tistically estimated as the degree of novelty or niche margin index 
(e.g., DeSaix et al., 2022; Lotterhos et al., 2021; Mahony et al., 2017).

With enough common gardens, one could then test how model 
performance degrades as the novelty of the test environment rela-
tive to the training environment increases (Figure 3b), which has par-
ticular relevance for assisted gene flow (inside current species range) 
and assisted migration (outside current species range). Analysis of 
thousands of simulated data sets spanning a range of demographies 
has demonstrated that the predictive performance of genomic off-
sets declines with climate novelty, and it declines more rapidly for 
strongly locally adapted species (Lind & Lotterhos, 2024). Similar 
results have been observed in genomic selection models, where the 
predictive performance declines in ground- truth environments were 
outside the range of training data (Rogers & Holland, 2022). Note 
that the set of ground- truth environments that may be the most rel-
evant for determining the domain of applicability is not necessarily 
factorial combinations of individual environmental values (Figure 5).

An additional design consideration is which environmental vari-
ables to use in training and ground- truthing a forecast. Ideally, all 
abiotic and biotic environmental variables that affect fitness are 
included in the model and the grain size is relevant to biology of 
the system (Dauphin et al., 2023). These goals are logistically dif-
ficult, especially given the multitude of diseases and competitive 
interactions that affect natural populations. Some methods, such 
as redundancy analysis or multiple regression, assume that the en-
vironmental predictor variables used in training are uncorrelated 
(Legendre & Legendre, 1998), and so some environmental variables 
may need to be excluded for statistical reasons. However, not all en-
vironmental measures will be important in determining fitness and 
could mis- parameterize offset models if all possible environmental 
variables are included in training (Lind & Lotterhos, 2024). In addi-
tion, there is considerable variability among different climate pro-
jections (IPCC, 2023), which is an additional source of uncertainty 
in forecasts. Therefore, investigators should report the sensitivity of 
the forecast to the set of environmental variables chosen for model- 
building, as well as the range of values for each variable (see Element 
8 for more discussion).

Another open question with regard to building forecasting 
models is how to incorporate environmental variability. For exam-
ple, a forecasting model could be trained on some combination of 
the mean temperature (which might reflect long- term thermal tol-
erance), the maximum temperature (which might reflect selective 
events due to heat stress), minimum temperature (which might re-
flect selective events due to cold stress) or features of temperature 
variability such as standard deviation and predictability (e.g., tem-
poral autocorrelation) that might reflect the degree of phenotypic 

plasticity (Bitter et al., 2021). More research is currently needed to 
understand the best ways to incorporate environmental variability 
into genomic forecasting models and assess model sensitivity to the 
way that environmental variability is quantified.

3.7  |  Element 7: Model training

For some types of forecasting models, users may have to choose 
hyperparameters for the algorithm. Hyperparameters are values that 
are given before the model is trained and specify the details of the 
algorithm (e.g., tree depth within random forests or the number of 
neurons in the i'th hidden layer of neural nets). Other methods do 
not require the user to choose hyperparameters, because the pa-
rameters are estimated by minimizing residual error (e.g., general 
linear models and redundancy analysis). This section is relevant 
to building models that require the user to explore a potentially 
large hyperparameter space available for use in model training. In 
this case, training data and ground- truth data are still independent 
datasets, but training data are further subdivided into data used for 
model parameterization and holdout data used to assess model fit for 
hyperparameter tuning.

Cross- validation is the process of evaluating model fit on differ-
ent subsets of a single data set, and this process can be leveraged 
for hyperparameter tuning. In cross- validation, the training data is 
split into multiple subsets or folds, and in each fold a different subset 
of the training data is used as holdout data on which the model fit 
is assessed (Figure 6). Cross- validation is a specific technique used 
to summarize model generalizability, and should not be confused 
with model validation performed on independent ground- truth 
data, because the latter is the process of determining whether a 
model is ‘good enough’ for application in the real world (Lotterhos 
et al., 2018, 2022). The result of cross- validation is a distribution of 
model accuracies when different subsets of the training data are 
used for training and assessing model fit. A model that generalizes 
well to new situations will have both high mean predictive perfor-
mance with minimal variation across folds.

One critical question in cross- validation is how to divide the 
training data into folds, as there are multiple ways to do this. The 
‘leave- one- out’ strategy leaves one sample out in each fold, and has 
as many folds as there are observations in the dataset. This is com-
putationally intensive for large datasets, so it is rarely performed. It 
is more common for the data to be divided into k folds (where the 
choice of k is informed by the sampling design), and this can be per-
formed in an unstratified or stratified manner. An unstratified k- fold 
cross- validation randomly chooses samples from the entire dataset 
to place into folds. If there are unequal sample sizes among genetic 
clusters, the unstratified design will result in some populations being 
over-  or under- represented in a particular fold, and as a result it may 
be difficult to interpret what drives the model accuracy in each fold. 
A stratified k- fold cross- validation populates the holdout data so that 
each stratum (i.e., some shared characteristic among samples, such 
as population ID or geographic region) is roughly equally represented 
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in both training and holdout sets. This strategy ensures that the gen-
eralizability reflects the hyperparameters being evaluated and is not 
affected by differences between the training and holdout sets.

Most sampling designs sample individuals within locations, 
and this can inform a k- fold strategy. Two examples of k- fold 
strategies are ‘leave- one- individual- per- population- out’ and 
‘leave- one- population- out’ cross- validation (Rellstab et al., 2021). 
‘Leave- one- individual- per- population- out’ is a stratified k- fold strat-
egy in which the average accuracy in cross- validation reflects the 
ability of the model to generalize to new individuals from training 
populations (Figure 6b). ‘Leave- one- population- out’ has the advan-
tage of informing the average accuracy in cross- validation reflects 
the ability of the model to generalize a new population (Figure 6a), 
but note that this ‘leave- out’ strategy is not stratified (because each 
population is not equally represented in the holdout data).

Real datasets may not be as straightforward to stratify as 
Figure 6, so investigators should describe how they chose to par-
tition the data into folds based on genetic, phenotypic, geographic 
or climatic groups (or other logical strata in the datasets). The cross- 
validation should be interpreted based on the stratification used 
in folding because different holdout strategies test different ideas 
about model generalizability. Which folding strategy to choose may 
depend on the research goals in the study system, but in many cases 
it can be worthwhile to compare multiple strategies. For example, 

genomic prediction studies that predict traits from genotypes and 
environments often compare different ‘leave out’ strategies in which 
specific genotypes and/or environmental variables are excluded 
from the training data (Millet et al., 2019; Rogers & Holland, 2022). 
For instance, a study in maize (Zea mays) found that predictive per-
formance depended more on the environmental similarity between 
the holdout data and training data than the genetic similarity be-
tween the two sets (Rogers & Holland, 2022).

Finally, it is important to understand what cross- validation is 
doing in each fold. For models that automatically estimate some pa-
rameters from the data (e.g., the slope and intercept in a simple linear 
model), each fold in cross- validation may be testing a slightly different 
model (because different subsets of the data lead to different pa-
rameter estimates in the model). Having a family of models creates a 
philosophical problem for evaluation, which seeks to evaluate a single 
model by comparing it to ground- truth. To develop a single model 
while still keeping the training and testing data independent of each 
other, one can split the training data into folds and explore model ac-
curacy over a large parameter space (Figure 7a). One could combine 
multiple ‘leave out’ strategies in cross- validation to determine the ef-
fects of different kinds of folding on model accuracy (Figure 7a). Once 
an optimal hyperparameter set is determined, the training data can be 
used to build the full model (Figure 7b). Finally, the full model can be 
evaluated with the independent ground- truth data (Figure 7c).

F I G U R E  6  Types of cross- validation (CV). CV involves partitioning the data into folds and within each fold using a different subset of data 
for training the model (orange boxes) and assessing model accuracy (grey boxes). In this example, each row represents a fold of the training 
data. Populations are based on genetic groupings rather than sampling locations. Note that the number of populations and individuals shown 
here are much fewer than would be necessary for building a robust model. (a) Leave- one- population- out cross- validation splits the data into 
the number of populations and retains one population per split for estimating model accuracy. In this case, the mean accuracy for all splits 
reflects the ability of the model to predict new populations. (b) Leave- one- individual- per- population- out cross- validation splits the data into 
the number of individuals per population and retains one individual- per- population for estimating model accuracy. In this case, the mean 
accuracy for all folds reflects the ability of the model to predict new individuals from the same populations.

(a)

(b)
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3.8  |  Element 8: Forecast sensitivity and 
uncertainty

Forecasts have many sources of uncertainty. Sensitivity analysis 
quantifies how differences in the model outputs can be allocated 
to differences in the model inputs. The inputs of a genomic fore-
casting model that may affect the output (the forecast) include the 
environmental data, the set of SNPs used for training, the set of in-
dividuals used for training, the climate period used for training and 
the climate projections. For instance, various types of environmental 
data have different spatial resolutions and low- resolution data can 

lead to high uncertainty regarding the environment at the study site 
(Dauphin et al., 2023). Authors can use their knowledge about the 
data and study system to design their own sensitivity analysis by 
subsetting their data in thoughtful ways, re- running the analysis and 
seeing how it affects the outputs. To date, only a few studies with 
ground- truth data have conducted some kind of sensitivity analy-
sis. In general, forecasts have been found to be insensitive to the 
set of SNPs used in training (e.g., Fitzpatrick et al., 2021; Lachmuth 
et al., 2023; Lind et al., 2024), suggesting that the models are driven 
by genome- wide patterns of isolation by environment rather than 
specific adaptive alleles. In another study, Lachmuth et al. (2023) 

F I G U R E  7  Cross- validation (CV) for hyperparameter tuning as an independent phase from model ground- truthing. (a) Some forecasting 
models may have hyperparameters that must be fine- tuned by the user. In this example, the data are split into 8 folds (each row within the 
dataset is a fold). Within each fold, the CV- training data is used to train the model given the parameter set, while the CV- test data are used 
to estimate model accuracy for that parameter set. The average accuracy for each parameter set is calculated as the mean over all the folds. 
This process is repeated for different parameter sets, until the parameter set with the highest average accuracy is determined (centre). (b) 
With the most accurate parameter set, all the training data can be run with that parameter set to build the full forecasting model (see also 
Figure 2, Step 1). (c) Test genotypes and environments, which were not used in model training, are then input into the full model to obtain a 
forecast in the test environment. Depending on the type of model, genotypes of the test individuals may not have to be input into the model 
to make a forecast. Note that the number of populations and individuals shown here are much fewer than would be necessary for building 
and evaluating a robust model.
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explored how forecasts in red spruce (Picea rubens) to future climate 
risks were influenced by altering the genomic marker set, the set of 
climate variables used in training, and the climate change scenario 
(SSP2- RCP4.5 vs. SSP5- RCP8.5). They found that forecasts were 
by far the most sensitive to climate change scenario, which intro-
duced significant uncertainty in parts of the species range that could 
not easily be reduced. However, they did not evaluate sensitivity to 
the set of populations used in model training, and it was not clear 
whether the model was extrapolated to novel climates. Conducting 
extensive sensitivity analyses as part of the routine evaluation of 
forecasting models, mapping geographic variation in the degree of 
uncertainty and showing geographic regions of extrapolation (as in 
DeSaix et al., 2022, see Element 5 for discussion) can aid in our un-
derstanding of the precision of forecasts.

3.9  |  Element 9: Data ethics and reproducibility

Genomic forecasting is a rapidly advancing field, with new methods 
constantly being developed. Careful and ethical curation of data, 
code and forecasts will drive rapid advances in the field of genomic 
forecasting. The FAIR Guiding Principles for data stewardship state 
that archived data should be findable, accessible, interoperable and 
reusable (Wilkinson et al., 2016). In addition, the CARE Principles for 
Indigenous Data Governance provides guidelines for engagement 
with Indigenous Peoples rights and interests (Carroll et al., 2021, 
2022). Since recent reviews have revealed that a large proportion 
of archived genomic data sets lack spatiotemporal metadata, grow-
ing awareness of the community on best practices for data curation 
is urgently needed (Crandall et al., 2023; Toczydlowski et al., 2021). 
The Genomics Observatories Metadatabase (GEOME) (Deck 
et al., 2017; Riginos et al., 2020) provides a user- friendly portal for 
uploading spatiotemporal FAIR metadata and linking it to genomic 
data stored in the International Nucleotide Sequence Database 
Collaboration (Cochrane et al., 2016). Crandall et al. (2023) provides 
a thorough overview of common genomic metadata gaps and guide-
lines for avoiding them, and Leigh et al. (2024) provides a set of rec-
ommendations for genomic data archival.

In addition to genomic and spatiotemporal metadata, what else 
should be archived? The basic elements of the ODMAP (Overview, 
Data, Model, Assessment and Prediction) protocol, a standard pro-
tocol for reporting species distribution models, can serve as a guide-
line for archiving data, code, and outputs (Zurell et al., 2020). Even 
when code is properly archived, it can be difficult to reproduce as 
hardware and software changes over time. Thus, key outputs of the 
code, such as the evaluation and forecasts (the ‘AP’ in ‘ODMAP’), 
should be carefully archived in addition to the data. When the fore-
casts by a specific method are made publicly available, this facilitates 
comparison of new methods on the same data set. In addition, stud-
ies should follow best practices for crafting clean code (Filazzola & 
Lortie, 2022) and for archiving data and code (Jenkins et al., 2023).

Studies that follow the best practices for the curation of data, 
code and outputs will enable methods comparisons, which in turn 

will drive rapid advances in the field. In a best case scenario, such 
studies will become standardized benchmark data sets and used to 
compare methods on a common ground. Standardized benchmark 
data sets are commonly used in computer science to drive advance-
ments in algorithm development, such as in the image recognition of 
handwritten digits (LeCun et al., 2021), and benchmarks are urgently 
needed in the field of genomic forecasting.

4  |  SUMMARY AND CHECKLIST

In summary, it is becoming more accessible to molecular ecologists 
to build forecasting models, but evaluating their limitations in a 
particular study system requires careful planning and experimen-
tation. If investigators conduct such experiments without clearly 
reporting basic design elements, it may be hard to understand why 
models work in some cases and not others. It is important for re-
viewers to recognize that field experiments have many logistical 
hurdles, and for this reason it is unlikely that any single study will 
meet all these design elements. Nevertheless, investigators should 
strive to design informative experiments and explain the limitations 
of their design. The following checklist will be helpful in planning 
and reporting:

• Element 1: The type of evaluation
• Use a current- future evaluation design to test predictions of a 

population's response to climate change.
• Use a common garden evaluation design to test predictions of 

the performance of multiple genotypes at the restoration site.
• Element 2: Independence between training and ground- truth 

data
• To avoid circularity, samples used to train the model are differ-

ent from samples used to ultimately ground- truth the model.
• Show that sample sizes are sufficient for model training and 

ground- truthing.
• Element 3: The ground- truth metric(s)

• Report how each ground- truth metric was measured or 
calculated.

• Report when test individuals that will form the basis for the 
ground- truth data are genotyped relative to when the ground- 
truthing started.

• Consider the strengths and drawbacks of different ground- 
truth metrics in the interpretation.

• Element 4: The evaluation metric(s)
• Report the correlation between the ground- truth metric and 

the forecast for each common garden, because this can be eas-
ily compared across studies.

• Show that the evaluation metric accurately captures predictive 
performance of the model.

• Avoid inflating model performance via overfitting.
• Element 5: Relationships among training samples and test samples

• Report the number of training and test samples.
• Show the marker set has sufficient coverage of the genome.
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• If necessary, genotype the same markers in training samples 
and test samples.

• Report the degree of (non)independence among test and train-
ing samples as relatedness and/or FST.

• Use jackknife to explore how model performance changes when 
particular test genotypes are removed from the evaluation.

• Element 6: The training and test environments: quantification, 
novelty, uncertainty and variability
• Measure the multivariate environment in the same way in the 

training and ground- truth/test datasets.
• Show that the chosen environmental variables are relevant to 

fitness.
• Quantify the common garden test environment during the pe-

riod of the test.
• Report the degree of climate novelty between each test envi-

ronment and all the training environments.
• Element 7: Model training

• Maintain independent training and ground- truth datasets by 
partitioning training data into folds for hyperparameter tuning.

• Report how training data were divided into folds for 
cross- validation.

• Interpret cross- validation as a summary of model fit, informed 
by the type of folding.

• Element 8: Forecast sensitivity and uncertainty
• Report the sensitivity of the forecasts to the set of populations 

used in training, genomic marker set, the set of climate vari-
ables used in training and/or the climate change scenario, as 
applicable.

• Element 9: Data Ethics and Reproducibility
• Deposit genomic data in the International Nucleotide Sequence 

Database and link it to spatiotemporal metadata with GEOME.
• Follow FAIR and CARE Guiding Principles for data stewardship.
• Follow the ODMAP (Overview, Data, Model, Assessment and 

Prediction) protocol for archiving the forecasting model and 
the evaluation.

• Follow best practices for crafting and archiving code.
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