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Abstract—Topic modeling is a commonly used text analysis
tool for discovering latent topics in a text corpus. However, while
topics in a text corpus often exhibit a hierarchical structure (e.g.,
cellphone is a sub-topic of electronics), most topic modeling meth-
ods assume a flat topic structure that ignores the hierarchical
dependency among topics, or utilize a predefined topic hierarchy.
In this work, we present a novel Hierarchical Deep Document
Model (HDDM) to learn topic hierarchies using a variational
autoencoder framework. We propose a novel objective function,
sum of log likelihood, instead of the widely used evidence lower
bound, to facilitate the learning of hierarchical latent topic
structure. The proposed objective function can directly model
and optimize the hierarchical topic-word distributions at all topic
levels. We conduct experiments on four real-world text datasets
to evaluate the topic modeling capability of the proposed HDDM
method compared to state-of-the-art hierarchical topic modeling
benchmarks. Experimental results show that HDDM achieves
considerable improvement over benchmarks and is capable of
learning meaningful topics and topic hierarchies. To further
demonstrate the practical utility of HDDM, we apply it to a real-
world medical notes dataset for clinical prediction. Experimental
results show that HDDM can better summarize topics in medical
notes, resulting in more accurate clinical predictions.

Index Terms—Topic Modeling, Deep Learning, Hierarchical
Modeling, Hierarchical Neural Topic Model, Textual Analysis.

I. INTRODUCTION

HE rapid growth of unstructured text data has provided an

exciting opportunity for researchers and practitioners to
arrive at novel insights. With the proliferation of such text data,
topic modeling methods that can automatically uncover latent
and relevant topics from a set of textual documents (corpus)
are of great importance. Topic models have been widely used
to make sense of textual data in various contexts including
social media [1]-[3], e-commerce [4], [5], and personalized
recommendation [6]. For example, marketers use topic mod-
eling methods to analyze high volumes of consumer reviews
to understand word-of-mouth [7], whereas risk management
teams use such models to monitor user-generated content
for product defects [8]. Topic models have also been used
for knowledge discovery across papers, tools, and datasets
appearing in scientific communities [9].

Topic modeling methods usually assume a flat topic struc-
ture. That is, all topics have the same level of abstraction
and there are no hierarchical relations among topics. For
example, when applying topic modeling to a collection of
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hotel consumer reviews, the model may learn latent topics
of booking reservations, customer services, booking, and hotel
location. However, in practice, topics of words and documents
can be naturally organized into hierarchies. A consumer re-
view on the topic of booking reservations is also relevant to
the more general topics of booking and customer services.
Moreover, topic hierarchies also manifest at the document
topic representation level. For example, in writing a clinical
note, a physician may describe a mild symptom in general
but a critical symptom in considerable detail. It is therefore
important to distinguish general topics from specific topics
in order to better summarize information from a text corpus.
As a result, neural variational inference based methods such
as neural topic model (NTM) [10], which represent topics as
a flat structure, often lead to suboptimal modeling in certain
hierarchical contexts. Compared to flat topic models which
suffer from data sparsity and are prone to overfitting [11],
[12], a hierarchical approach can combat these shortcomings.
For example, if data are too sparse to enable the term
Bronchiolitis to be placed within the Bronchitis concept, the
term can instead be appropriately modeled within the topic
Acute respiratory infections. Moreover, a hierarchical model is
particularly suitable for industry-level applications when data
is plentiful. For instance, it is reported that Google’s Rephil, a
core application in Google’s online advertising service, uses a
hierarchical “noisy-or”” network to model topic relations [13].

Prior topic modeling work has proposed several hierarchical
topic model extensions based on a Bayesian inference frame-
work. However, the effectiveness of these models in modeling
topic hierarchies is usually limited due to their inflexibility in
modeling the latent variable relationships (e.g., most rely on a
pre-defined topic hierarchy, etc.). We discuss these limitations
and gaps in greater detail in the Literature Review Section.
In this work, we propose a novel hierarchical deep document
model (HDDM) based on the deep variational autoencoder
(VAE) framework [14], [15]. The most straight-forward ap-
proach to applying VAE to a hierarchical topic model structure
is to simply stack multiple neural network layers together in
the encoder and decoder. However, simply stacking multiple
layers does not necessarily learn good feature hierarchies
[16], [17]. To tackle this challenge, we recursively correct the
generative distribution with a novel objective function, sum
of log likelihood, instead of the conventional evidence lower
bound objective (ELBO). Our proposed objective directly
models and optimizes the topic-word distribution from all topic
levels and can recover the general-specific topic hierarchies.

We evaluate our proposed HDDM method on four real-
world text datasets, covering a wide range of applications. Ex-
perimental results show that HDDM can significantly improve
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topic modeling performance, as measured by the model likeli-
hood on unseen data, compared with a battery of state-of-the-
art hierarchical topic modeling methods. Moreover, HDDM
also enhances topic quality, as evidenced by improvements
in both topic coherence and topic diversity. We also visualize
the learned topic hierarchies and find that HDDM can discover
meaningful and interpretable topic groups.

To further demonstrate the practical value of HDDM, we
conduct a clinical prediction task to infer patients’ diagnoses
from clinical notes. This clinical prediction task can help with
treatments, interventions, and healthcare policies. Compared
with a battery of state-of-the-art supervised approaches, in-
cluding deep learning and the bidirectional encoder represen-
tations from transformers (BERT) model (Devlin et al. 2018),
our unsupervised approach HDDM combined with simple
logistic regression substantially improves prediction accuracy.

The main contributions of this work are two-fold. First, we
propose a novel topic modeling method, HDDM, that uncovers
latent topic hierarchies from text collections. In addition to the
proposed hierarchical deep architecture, we develop a novel
objective function that facilitates effective learning. Compared
to traditional flat structure and hierarchical topic models,
HDDM can more effectively learn topic hierarchies directly
from the data without a predefined the hierarchy structure.
This results in better summarization of the latent semantics
in documents to enhance topic analysis and subsequent tasks.
Second, we demonstrate in the experiments that HDDM sig-
nificantly outperforms existing benchmarks in topic modeling.
Using a real-world clinical prediction task, we also show that
the improvement attributable to HDDM in topic modeling can
further lead to more accurate downstream clinical prediction.

Our work has important research implications. By using
deep learning and a novel objective function, we allow
more accurate topic modeling in the various contexts where
domain/testbed-specific hierarchy knowledge is unavailable
beforehand and must be learned inductively, in an end-to-
end manner. By showing the effectiveness not only for topic
modeling but also in a downstream task, our work also has
implications for the rising trend of predictive models featurized
with topic-model based predictor variables. Furthermore, our
work has practical implications for practitioners leveraging
text analytics in a broad array of applications where accurate
topic analysis may facilitate enhanced decision making [18].
We open-source the implementation of HDDM at https:/
github.com/yya518/hddm.

The remainder of this paper is organized as follows. In
the next section, we review related method development in
learning latent topic hierarchies from text corpora. Following
the literature review, we present our proposed novel topic mod-
eling approach, HDDM. In the ensuing section, we describe
the four real-world text datasets in our testbed and rigorously
evaluate our approach against various benchmarks. Then, we
examine an application of HDDM in healthcare analytics to
infer patient diagnoses from clinical notes. Lastly, we conclude
the paper with discussions and implications.

II. LITERATURE REVIEW

Topic modeling is a frequently used tool for discovering
latent semantics in a large collection of documents. Latent
Dirichlet Allocation (LDA) [19] is one of the most influential
topic modeling examples. We have witnessed growing popu-
larity in the usage of novel topic modeling methods to tackle
task-specific problems [20]-[23]. One common assumption in
topic modeling is that the topics have a flat structure. That
is, all topics have the same level of abstraction and there are
no hierarchical relations among topics. However, in practice,
topics can be naturally organized into hierarchies, where a
more general concept can include several more-specific topics.
Compared to the flat topic model, a hierarchical topic structure
can improve document modeling and generalization perfor-
mance [24]. To this end, several hierarchical topic models
based on the statistical Bayesian inference framework have
been proposed. Instead of using a flat Dirichlet distribution as
the topic distribution prior, these methods adopt a hierarchical
topic prior or non-parametric prior to explicitly model the topic
hierarchy. For example, Hierarchical LDA (hLDA) extends the
LDA model by assuming a two-level topic generative process
following the Chinese Restaurant Process [25]. A further
extension of hLLDA is the nested Hierarchical Dirichlet Process
(nHDP), which is a tree-structured generative model of text
that generalizes the nested Chinese Restaurant Process [26].
Both hLDA and nHDP model the tree structure as a random
variable, defined over a flexible (potentially infinite in number)
topic space. However, in practice the infinite models are
truncated to a maximum size. The Pachinko allocation model
(PAM) introduces multiple levels of latent supertopics on top
of the basic latent topics [24]. Each supertopic is a distribution
over the topics at the next level below. In order to efficiently
model the hierarchical topic prior and accelerate the inference
of the PAM model, prior work proposed a Sparse Backoff
Tree prior (SBT) [12]. To summarize, Bayesian inference-
based hierarchical modeling approaches usually replace LDA’s
flat Dirichlet prior with complicated hierarchical priors and
explicitly define the path between topic and sub-topics.

One drawback of the Bayesian inference-based approaches
is that they make strong assumptions on the latent variable
distribution. These assumptions limit the generalizability of
the models, which can easily lead to low model fitness, and
possibly to suboptimal predictive power [10], [27]. Moreover,
model inference and parameter estimation often become more
complex as topic models grow more expressive. To avoid
explicitly defining latent variable distributions, recent neural
topic modeling work approximates the intractable distributions
over the latent variables with variational autoencoders and thus
attains non-linear complex representations for documents with
good generalization ability [10], [14], [20], [28]. However,
these neural topic models are still flat, and it is challenging to
model latent topic hierarchies effectively using deep generative
models like deep VAEs for two reasons.

First, a straightforward way to extend a deep VAE model
to a hierarchical model is to stack multiple layers of en-
coder/decoder on top of each other. However, simple layer
stacking does not necessarily lead to good latent hierar-
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chies. Hierarchical latent variable models, by stacking multiple
layers of encoder/decoder, have trouble learning structured
features [17]. Therefore, recent efforts in building deep learn-
ing based hierarchical topic models focus on specifying the
topic hierarchy distributions [29]-[31]. For example, the tree-
structured neural topic model (TSNTM) uses a specially de-
signed doubly-recurrent neural network to model the hierarchi-
cal topic distribution [30]. TSNTM can be extended to a non-
parametric Tree-Structured Neural Topic Model (NnTSNTM).
The assumption on the hierarchical topic distribution restricts
the expressive power of topic modeling, and these methods
usually achieve unsatisfactory performance in document mod-
eling as measured by goodness-of-fit [31].

Second, as noted above, simple layer stacking does not
necessarily lead to good feature hierarchies. Several works
have tackled the difficulties of training deep VAEs [16], [32]
by proposing to add dependencies to the corresponding layer
of encoded documents when modeling the distribution of
latent layers. However, in this way, the dependency between
different latent layers becomes too complex to be modeled
as topic-subtopic distributions. In other words, the evidence
lower bound (ELBO), the default choice of training VAE
models, is no longer a suitable learning objective because
the intermediate latent layers of a hierarchical VAE cannot be
parameterized as topic distributions. Forcing the intermediate
latent layers to exhibit hierarchical topic distributions requires
designing a complicated fixed form of topic parameterization
which may restrict the complexity of the topic distribution,
thus limiting the modeling capacity. For example, Weibull
Hybrid Autoencoding Inference (WHAI) models its topic
proportions as a series of Gamma distributions with factorized
shape parameters depending on the previous layer [33], [34].

Third, as transformer-based language models advance the
field of NLP, clustering-based topic modeling methods that
utilize contextualized document embeddings as input represen-
tations become a viable solution [35]-[38]. In these methods,
instead of employing bag-of-words representation as document
inputs like traditional and neural topic models, they leverage
contextualized document embeddings as inputs. Then, they
utilize off-the-shelf clustering methods such as DBSCAN to
group documents into clusters, treating each cluster as a unique
topic. Subsequently, words with high weights, such as TF-IDF,
are considered as representative of topics. Due to the flexibility
of these methods, BERTopic can also be used to learn topic
hierarchies by employing hierarchical clustering methods [35].

Lastly, another research stream has focused on constructing
hierarchical information in topic models using context and/or
problem-specific hierarchical information and structure [39].
Examples include distant supervision via citation graphs [40],
domain knowledge [9], [41], [42], social media hashtags [43],
and social roles [44], not to mention explicitly supervised
topic models [4]. For instance, Guo et al [40] leverage citation
networks to learn a two-level topic model, where the topics
learned from cited documents are the topics from which a doc-
ument level topic allocation is sampled. Guided Hierarchical
Topic Models [41] use a Dirichlet Forest prior and predefined
domain knowledge as extra supervision. There has also been
interesting work in topic re-estimation [45] which is out of

TABLE I
EXTANT LITERATURE ON HIERARCHICAL TOPIC MODELING.
DL=DEEP LEARNING BASED, LTM=LATENT TOPIC MODELING,
PTH=PREDEFINED TOPIC HIERARCHY, TMH=TOPIC MODELING

HIERARCHY

Model DL LTM PTH TMH

hLDA [25] No  Conjugate Yes  Nested Chinese
Prior Restaurant Process

nHDP [26] No  Conjugate Yes  Nested Dirichlet Process
Prior

PAM [24] No  Conjugate Yes  Hierarchical Topic Prior
Prior

SBT [12] No  Conjugate Yes  Hierarchical Topic Prior
Prior

WHAI [33] Yes  Hierarchical No Multi-level VAE
Gamma (Directly stacking)

distribution

SawETM [34] Yes  Hierarchical No Multi-level VAE

Gamma (Directly stacking)
distribution
HNTM [29] Yes  Neural Yes Multi-level VAE
Network (Directly stacking)
TSNTM [30] Yes  Neural Yes Doubly-Recurrent
Network Neural Networks
HDDM (ours) Yes Neural No Multi-level
Network Hierarchial VAE

scope for this work. Our method, and our benchmarks, are
unsupervised and intended for general-purpose testbeds where
hierarchical topic hierarchies may manifest (i.e., not specific
to citation network or social media hashtags, etc.), and where
inductively modeling them might improve topic modeling and
downstream prediction tasks leveraging the generated topic
hierarchy.

A. Gaps and Novelty of Proposed Method

Having established the literature on extant hierarchical topic
modeling methods, we now describe our method novelty.
First, we propose a novel hierarchical deep document model,
HDDM, based on the variational autoencoder framework.
Instead of simply stacking multiple layers together, we ex-
plicitly model the dependencies between layers so that the top
layer governs the distribution of the sub-layers, indicating a
hierarchical structure. HDDM does not need to pre-specify
the topic hierarchy; instead we allow the topic hierarchies
(general-specific topic dependency) to emerge from the data
itself. Second, to address the challenge of using ELBO as the
objective, we propose a novel objective function by summing
up the log-likelihood of different latent VAE layers. We prove
that this objective is proportional to the model posterior. This
objective allows us to effectively and efficiently train a deep
hierarchical VAE model with topic distribution parameteriza-
tion. We conceptually summarize our work in comparison with
select relevant hierarchical topic modeling methods in Table 1.

III. METHOD: A NEURAL APPROACH TO MODELING TEXT
HIERARCHIES

A. Deep Generative Modeling for Text Analytics

We base our approach on the deep variational autoencoder
(VAE) framework which has been used in various text cat-
egorization studies [46], [47]. Recent neural text modeling
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studies, namely Gaussian softmax model (GSM) [10], have
used the VAE approach to model the generative process of
documents and employed gradient ascent to maximize the
objective function via evidence lower bound (ELBO). Com-
pared with Bayesian inference based statistical topic models
such as LDA, the deep VAE approach shows advantages
in modeling complex document representations, along with
strong generalization ability, as it approximates intractable
distributions using a deep neural network [14], [28], [48]. We
briefly describe the GSM approach below.

Suppose that we have a document collection D and a vocab-

ulary contains V' distinct words {w1,--- ,wy}. Let d € RV
be the bag of words representation of a document in D,
and contains Ny word tokens {z!,---,xV4}. The generative

process for document d € D is formulated as follows:

0 ~ G(po,03), (1)
"~ Multi(6,), for n € [1, Ny| ()
" ~ Multi(B,n), forn € [1, Ny] 3)

Assume there are K topics, GSM proposes that topic dis-
tribution 6 follows a Gaussian-softmax distribution G(ug,o3),
defined as: z ~ N (ug,03) and 0 = softmax(Wz). Here
the latent variable z follows a diagonal Gaussian distribution
with mean o and variance crg , and W is the neural network
parameter. 7" is the topic assignment for the n-th word token,
n € [1,Ng]. B,» € RV represents the topic distribution over
words given topic assignment 7.

A key difference in the generative process between Bayesian
text modeling and VAE based text modeling is that the latter
uses a Gaussian prior with a neural network to parameterize
the topic distribution, while the former has to use a conjugate
prior such as the Dirichlet distribution.

To do neural variational inference, an inference network
q(0]d) is constructed to approximate the posterior p(6|d).
Specifically, ¢(6|d) is formulated as a diagonal Gaussian distri-
bution: ¢(0|d) = N (u(d),0(d)). Here, u(d) and log(c?(d))
are functions of d that are modeled by two multilayer per-
ceptron neural networks. Since the posterior distribution is
intracable, the Evidence Lower Bound (ELBO) is often used
as a surrogate objective function to approximate the true
posterior distribution with ¢(6|d), and the objective function
is to maximize:

J (@) = Eq(oja)[log p(d|0)] — KL(q(z|d)[[p(2)).  (4)

where @ denotes the overall model parameters in the inference
and generative network. The network architecture of the VAE
based text model is presented in Figure 1.

While the deep generative framework benefits from an ap-
proximate complex distribution without relying on a conjugate
prior, the learned latent variables are flat, such as in GSM; that
is, the topics are not grouped hierarchically. Given concept
hierarchies are an important knowledge representation in web
and text mining [49], [50], we develop a novel deep generative
model that reduces the dimensionality of text documents to a
hierarchical topic space.

N(uo, 63)
a9 ~(z)~(6)—+d
q(0|d) p(d|o)

Fig. 1. Variational autoencoder based text modeling.

oo omo

B~E—0—@ e

Fig. 2. Our proposed hierarchical topic modeling approach.

p(d|61)

B. Learning Topic Hierarchies with a Deep Generative Model

Here we present our hierarchical deep document model,
HDDM, which groups latent topics in a text corpus into a
topic hierarchy. This model arranges the topics into a tree-
structure, with the purpose that more general topics should
appear near the root and more specialized topics should appear
near the bottom. The key novelty in desiging the hierarchi-
cal structure in HDDM is that it allows the latent variable
distributions of previous layers to govern the distributions
of subsequent layers. That is, the distribution of fine-grained
topics is stochastically determined by more coarse-grained
topics, allowing latent topic hierarchies to emerge from the
data. The HDDM network architecture is shown in Figure 2.

We propose that a document collection can be grouped in
a latent topic hierarchy, such that higher-level topics are more
coarse-grained and lower-level topics are more fine-grained.
Specifically, suppose that we have L+ 1 levels of topics, where
6y is fixed as the root topic, 6, is the first-level (general) topic
vector, and 6y, is the last-level (specific) topic vector. The [-th
level has K] topics and K; < K;1; for [ € [0, L]. We propose
that a document can be generated from each of the L layers
of topics respectively. That is, a document is a summarization
of general topics and specific topics. The generative process
of HDDM for document d € D is described as follows.

0 ~ G, 07), forle[l,L] (5)
'~ Multi(;), for n € [1, Ny] (6)
x" ~ Multi(Brn), for n € [1, Ny @)
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In this generative process, we first let the root topic 6y = 1
to be the same for all documents, and assign mj = 700t
to every token in every document. Then, the level-l topic
distribution 6; follows a Gaussian-softmax distribution with
mean /i, and variance o7. Different from GSM where 110 and
o2 are hyperparameters such as yp = 0 and 03 = I, we define
w and 012 as a function of #;_;. This means that the prior of
6, depends on 6;_;.

For the inference network, we design the multi-level VAE
such that the latent variable distributions consist of the previ-
ous level’ latent variables as well as the corresponding level
of encoded input. To facilitate topic modeling, we introduce
a topic—word distribution parameter matrix 3; € RE:xV for
each layer [. We apply the softmax function to ensure that each
entry in the column for 8, adds up to 1. For any [ € [1, L],
the inference network is defined recursively as follows:

q(0101-1,d) = N (Wi, (Wioy)?) ®)

Here, since the latent variable consists of previous level’s
latent variable (i.e., the prior of #; depends on 6;_;) and the
corresponding level’s encoded input (i.e., the prior of ; also
depends on the bag-of-words representation d), we use the
inverse-variance weighting as:

i) ©)
(10)

My = (:“q,laqiz2 + MPJU;,?)/(U
o =1/(o,7 +0,7)

where up’l,am and uq7170q7l are obtained from the neural
network as follows:

pp =Wy, 011, log(af,’ ) = softmax(W,_,6;-1), (11)
1 =Wy, .d, log(Ji ) = softmax(W,, ,d). (12)

For [ = 1, as 6y is fixed to the root topic, we directly let
= g1, 01 = 0q. Then q(z]20, 21, ..., 2121, d) = N, 01)
and we generate z; from this distribution.

C. Model Inference and Parameter Estimation

We now discuss the model inference and parameter estima-
tion for HDDM. Traditionally, evidence lower bound (ELBO)
is the objective function of deep variational autoencoder mod-
eling (c.f. Eq. 4). However, in HDDM, the intermediate latent
layers cannot be parameterized as topic distributions. To force
the intermediate latent layers to exhibit topic distributions
(leading to a hierarchical topic model), one would have to
design a complicated and fixed form of topic parameterization,
which might restrict the complexity of the topic distribution
and thus limit the modeling capacity. Therefore, we develop
a novel objective function, the sum of the log likelihood, to
directly model and optimize the topic—word distribution at
all topic levels and then approximate the supertopic—subtopic
distributions from the topic—word distributions. We define the
sum of the log likelihood objective function for document d
with N, word tokens as follows:

Ng L
?) = % > logp(x"|6n)

n=11=1

13)

We show in Theorem 1 that the sum of the log likelihood is
proportional to the parameter posterior. Therefore, instead of
maximizing ELBO to approximate the posterior distribution,
we can directly maximize the sum of the log likelihood.
Theorem 1. [7(®) is proportional to the parameter posterior.
Proof. We start by expanding p(z"|®, 0,01, ...,01) using
Bayes’s rule as follows: (n, ® are omitted for simplicity)

p(907 ’9L|1')p(.’17)
z|6o,...,01) = 14
p( | 0 L) p(90a "'aaL) ( )
p(&o,...,QL)
_ p(x]0o, ..., 0)p(01) _ p(z]0o)p(fo)  p(z) (16)
p(il?) p(x) p(e()a "'70L)
_ Lo p(@lo, -, 00) TTig p(6) (17)
p(z)* p(bo, -...0L)
_ p(@[00,01, ., 0) Ty p(x|6o, - -, 60) TIiZoP(60)
p(z)L p(bo, ..., 01)
(18)
We then cancel p(x|6, 01, ..., 01,) on both left-hand side and
right-hand side, and also p(6y), ..., p(61.), p(00, 01, ..., 01) are
untrainable priors. Then we obtain
L L
[1i2o P(01) 1/L
T) = xlbo, ..., 0)———= 19
p(o) = ([T platr .00 000 (19)
L
x [Hp(:t|90, | A Hp z|0))VYE 0)
1=1

since p(x|6o,...,0;) = p(x|6;). This means that we can
approximate the posterior by the geometric mean of likelihood
with respect to each topic level. After taking logarithms and
summing over the N; word tokens of the current document d,
we obtain the learning objective as

Ny 1 Ng L
= logp(x") = EZZ ogp(x"10)  (21)
n=1 n=1[]=1

This completes the proof. ]
The data likelihood p(z™|6;) in J(©) can be obtained by
marginalizing out the [-th level topic variable 7}

K;

> pla"|xf)p(ni16:)

n_
=1

p(x"16;) = = B nbh, (22)

where (], is the transpose of the z"-th column of the topic-
word distribution matrix of the I-th topic level.

D. Topic Hierarchy and Topic-word Re-Ranking

As shown in Figure 2, we explicitly model the multi-level
latent variable structure and allow it to emerge from the data.
The conditional distribution of the /-th level topic ¢ given the
(I — 1)-th level topic j can be written as:
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p(m =ilm-1 =j) =

-
p(m-1=73)

A% (23)
X Z [p(mi—1 = jlo = wi, 01-1)

k=1701-1

x p(m = ile = wi, 0—1)p(01-1)]dO1—1,

where ;1 and m; are conditionally independent given = and
0;_1. As the priors of 7; are close to uniform and the prior of
6,1 is concentrated in a very small interval, p(m; = i|m_1 =
j) can be approximated by Z/Y:ﬂp(ﬂl—l = jl = wg)p(m =
ilr = wy)]. Next, by further assuming that the prior of a
single word x is uniform over the vocabulary, the previous
approximation is proportional to

\%4

> Ip(z = wilm-1 = j)p(x = wylm = i),
k=1

(24)

which equals to Bl_l,jﬂﬂ, where f3;; is the [-th row of ;.
Finally, we have

p(m =ilm_1 = j) x ﬁl—mﬁ{i (25)

To obtain a deterministic topic hierarchy, we regard the (I —
1)-th level topic with the highest probability of generating
topic 7 on the [-th level as its parent topic: argmax; 81 ; BITZ

Additionally, recent literature has shown that simply re-
ranking the topic words as a post-processing technique
can enhance the interpretability of the learned topics for
probabilistic-based topic models [51]-[53] and for clustering-
based topic models [35], [54]. Motivated by this, we re-rank
the topic distribution over words as follows:

Bk,i,l
K
Zk:1 ﬁk,z‘,l

This means the re-ranked probability of word 7 for topic k at
level [ is normalized by the sum of topic-word probabilities
across all topics at level [.

To summarize, HDDM reduces unstructured, high-
dimensional text to a hierarchical latent topic space. We make
two fundamental contributions. First, we propose a novel
deep learning network that explicitly models the hierarchy of
latent topic variables. Second, we propose a novel objective
function to facilitate the effective learning of hierarchical
latent variables.

Bmz = (26)

IV. DATASET AND BENCHMARKS
A. Datasets

We now describe the four real-world text datasets used in
our experiments. The four datasets represent a wide range of
applications that are of high relevance to research and practice.
The dataset statistics are shown in Table II.

e Clinical Notes: We use the MIMIC-III dataset [55]. This
dataset contains de-identified electronic health record data
from various ICUs at the Beth Israel Deaconess Medi-
cal Center in Boston, Massachusetts. It contains 46,520

unique patient hospital admission records and information
on 61,532 ICU stays between 2001 and 2012, and thus
encompasses a diverse and very large population of ICU
patients. The dataset comprises clinical notes made during
the patients’ time in hospital, including electrocardiog-
raphy (ECG) reports, radiology reports, physicians’ and
nurses’ notes, and discharge summaries. For each note,
the date and time are recorded. We use the data and
perform our experiments in accordance with the MIMIC-
IIT data user agreement. The dataset is a benchmark
dataset that is widely used in the science community
for healthcare studies [56]. Following prior work, we
exclude records of hospital admissions with multiple ICU
stays or transfers between ICU units. We also exclude
records of hospital admissions for patients younger than
18 [56]. The final cohort in our analysis contains 33,798
unique patients with a total of 42,276 ICU stays. We
choose 100,000 physician notes as training data and the
remaining 41,624 physician notes as a held-out dataset.
We use 10,000 physician notes from the 100,000 training
set as a validation set.

o Online Reviews: The online review dataset is a collection
of movie reviews [57]. It contains 5,006 movie reviews
with an average length of 188 words.!

o Company Descriptions: We use a text dataset that con-
tains company descriptions. This dataset was included
to represent contexts where topic models are applied by
researchers and analysts to gauge the information con-
tent in firm-related documents and reports. This dataset
contains 29,867 company descriptions collected from
corresponding Wikipedia company pages [58].

o Newsgroup Posts: The 20 newsgroups dataset is a pub-
licly available? and widely used benchmark dataset for
evaluating topic modeling performance [59]. The dataset
contains 18,670 newsgroup posts on different topics such
as sports, politics and computers.

For the Newsgroup Posts data, we adopt the vocabulary
provided by Srivastava and Sutton [60] for direct comparison.
For the other three datasets, we choose the most frequent 2,000
words (exclude stop words) as the vocabulary for all datasets,
because choice of a very large vocabulary is likely to result in
slow inference and poor topic generation performance [61].

TABLE I
DATASET STATISTIC DESCRIPTIONS.

Dataset # Train  # Test  Avg. # Words
Clinical Notes 100,000 41,624 1,460.3
Online Reviews 3,337 1,669 131.6
Company Descriptions 30,169 12,930 422
Newsgroup Posts 11,218 7,452 84.6

B. Baselines
We consider the following methods as benchmarks for
comparison.

Uhttps://www.cs.cornell.edu/people/pabo/movie-review-data/
Zhttp://qwone.com/ jason/20Newsgroups/
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« Latent Dirichlet allocation (LDA) [19] is the most cited
and widely used topic modeling method. We adopt the
online LDA implementation in Gensim [62].

o Gaussian softmax model (GSM) [10] is the neural
topic model based on the deep variational autoencoder
framework. Similar to LDA, it assumes a flat topic
structure.

o Hierarchical LDA (hLDA) [25] is the hierarchical ex-
tension of LDA. It models a two-level hierarchical topic
model and assumes the topic generative process using
a nested Chinese Restaurant Process. We use the hLDA
paper’s originally released C code to implement hLDA.

+ Weibull hybrid autoencoding inference (WHAI) [33]
is a deep learning based hierarchical topic model. It uses
a hierarchy of Gamma distributions as the generative net-
work and a Weibull distribution in the inference network.
We implement WHALI using the authors’ released code.

o Hierarchical Neural Topic Model (HNTM) [29] learns
a hierarchical topic structure. It explicitly models the
dependency between different layers. The evidence lower
bound (ELBO) is used as the model objective.

o Tree-structured Neural Topic Model (TSNTM) [30]
models the topic hierarchies using a tree-structure, with
ELBO also used as the model objective. Similarly,
[31] propose an non-parametric version of TSNTM
(nTSNTM) which assumes an infinite number of topics.
For this benchmark, we use the TSNTM model.

o Sawtooth Factorial Topic Embeddings Guided GBN
(SawETM) [34] captures the dependencies and semantic
similarities between the topics in the embedding space
and it uses the Gamma belief network for modeling the
topic distributions of intermediate layers. We implement
SawETM using the authors’ released code.

In addition to the probabilistic and neural topic mod-
els mentioned above, we also incorporate a clustering-based
topic modeling approach BERTopic [35]. BERTopic ap-
plies a clustering method to contextualized document em-
beddings and utilizes a reranking technique [51], [63] to
identify representative words of topics. In our experiment,
we evaluate two versions of BERTopic: SBERT and Ada.
For SBERT, contextualized document embeddings are ob-
tained using the sentence-bert model [64], specifically the
all-MiniIM-L6-v2 model. For Ada, we utilize OpenAl’s
embedding model text—-embedding-ada-002. We con-
duct the experiments using the implementation provided by
BERTopic 3.

Among these benchmarks, LDA and GSM are flat topic
modeling benchmarks, and HDP, WHAI, TSNTM and HNTM
are the hierarchical topic modeling benchmarks. SBERT and
Ada are clustering-based topic modeling benchmarks.

V. DOCUMENT MODELING EXPERIMENTS

The most common evaluation for a probabilistic topic model
is to measure the goodness of fit on held-out test data. In this
section, we evaluate HDDM’s document modeling capability
against the benchmarks.

3https://maartengr.github.io/BERTopic/index html

A. Model Fitness

We measure the log-likelihood of models on the hold-out
set using perplexity. Perplexity is computed as a function of
the data log-likelihood of a held-out test set:

Dyest N
1
perplexity = exp(— E N E log p(z™[t)) 27
m=1 m op=1

where Dy.s; is the number of testing documents, N,
denotes the number of words in the m-th testing document,
and log p(z(™|t) is the log likelihood of the n-th word in the
m-th document. A lower perplexity number indicates a higher
data likelihood, which suggests that the topic model is easier
to generalize and better at predicting new unseen documents.

Since the baseline approaches include both non-hierarchical
and hierarchical methods, to have a fair comparison, we choose
three settings with different number of lowest-level topics:
32, 64 and 128. That is, for LDA and GSM, which are non-
hierarchical models, the number of topics is set to 32, 64 or
128. For the hierarchical methods, we set a three-level topic
hierarchy with 8-16-32, 16-32-64 and 32-64-128 respectively.
The hLDA model infers the topic hierarchies from data and
we find that the inferred topic number is consistent across
several runs. We also tuned the topic hierarchy from three-
levels to two-levels and increased/decreased the intermediate-
layers topics (keeping the lowest-level of topics the same).
The baseline models’ likelihoods do not change much, which
is consistent with findings reported in the literature [25], [33].

The main result is presented in Table III. First, we can see
that the proposed HDDM approach consistently outperforms
the baseline approaches in terms of document modeling perfor-
mance. This superiority holds true across various datasets and
regardless of the number of topics considered. For example, on
the Clinical Notes dataset, HDDM achieves a perplexity score
of 618.3, which is substantially lower than the benchmarking
models. Compared to hLDA, the difference is significant (p <
0.01). Second, it outperforms its non-hierarchical, ELBO-
based VAE counterpart, GSM, suggesting that more effective
hierarchical models can result in better document modeling.
Moreover, existing hierarchical neural topic models, including
WHAI, SawETM, HNTM and TSNTM, primarily relying on
the ELBO training objective, experience a degradation in
perplexity. This decline might be largely attributed to the
requirement of parametrizing intermediate latent layers as
topic distributions in ELBO-based models, potentially limiting
the model’s capacity. Clustering-based BERTopic approaches
SBERT and Ada do not rely on probabilistic models. For
instance, BERTopic assumes that documents within the same
cluster share the same topic, meaning each document is
assigned to one topic. Therefore, we do not report perplexity
for SBERT and Ada.

To better understand the impact of HDDM’s hierarchical
structure on model perplexity, we perform an ablation analysis
by varying the topic hierarchies. The effect of the number
of hierarchy layers on HDDM’s performance is depicted in
Table IV. Generally, the hierarchical structured topic model is
better than the single-layer topic model in terms of perplexity.
For the Newsgroups, Clinical Notes, and Reviews data, per-
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TABLE III
PERPLEXITY OF TOPIC MODELS ON FOUR DATASETS. WE REPORT STATISTICAL SIGNIFICANCE COMPARED TO HLDA UNDER A ONE-TAILED T-TEST.
* INDICATES p < 0.01.

Clinical Notes Reviews Company Descriptions Newsgroups

K=32 K=64 K=128 K=32 K=64 K=128 K=32 K=64 K=128 K=32 K=64 K=128
LDA 964.1 785.9 774.6 1325.0 1318.1 1105.4 813.2 732.4 667.7 1263.4 1084.8 1142.4
GSM 772.3 712.0 746.8 954.3 911.5 923.1* 5475 655.7 640.7 871.9 861.2 880.1
hLDA 861.5 745.3 833.5 963.7 1034.7 948.4 697.0 677.6 538.2 1069.9 958.7 921.0
WHAI 864.8 835.9 841.8 984.3 1149.5 962.4 879.3 820.4 773.6 990.4 9133 893.1
SawETM 852.4 766.9 702.1 943.7 859.2 938.9 655.2 589.6 520.5 930.8 906.6 842.3
HNTM 907.6 8224 779.2 898.3 1010.2 971.0 752.9 693.3 534.9 1014.1 955.4 879.8
TSNTM 843.2 779.8 754.5 1275.3 1185.6 1037.6 723.4 674.1 665.2 945.8 997.3 912.0
HDDM (ours) 745.0* 618.3* 598.6* 874.6* 832.9* 926.1 310.0* 267.9* 233.1* 675.6" 639.5" 684.2"

plexity decreases as the number of topic layers increases up
to three levels. In the case of Clinical Notes, the decreasing
perplexity trend continues for 4 levels (see 8-16-32-64 row
in Table IV). For the Company Descriptions dataset, the
trend is not as clear beyond the second level — perplexity
increases for the 3 and 4 level hierarchices. This could be
because of the nature of the datasets, and the exact choice
of topics per level. Nevertheless, the hierarchy ablation shows
the value of the hierarchical component of HDMM, which
works in conjunction with the sum of log-likelihood objective
function to garner enhanced performance relative to existing
hierarchical benchmarks.

TABLE IV
PERPLEXITY OF HDDM WITH DIFFERENT TOPIC HIERARCHIES. 16-64
MEANS THAT THERE ARE TWO LEVELS OF TOPICS WITH 16 SUPERTOPICS
AND 64 SUBTOPICS.

# Topics Clinical ~ Reviews Company Newsgroups
Notes Descriptions
64 922.2 931.0 294.7 671.0
16-64 618.3 832.9 267.9 639.5
16-32-64 540.9 828.2 268.1 638.8
8-16-32-64 549.8 830.2 271.8 612.1

B. Topic Coherence and Topic Diversity

Examining the learned topic quality is also crucial to
evaluate the learned topic model [65], [66]. In this section,
we conduct experiments to evaluate HDDM’s ability to learn
high-quality topic words by considering two metrics: Topic
Coherence and Topic Diversity. Topic coherence measures
the interpretability of a topic by measuring the degree of se-
mantic similarity between high probability words in the topic.
Specifically, we use the Cy coherence measure, which aver-
ages the Normalized Pointwise Mutual Information (NPMI)
for every pair of words within a sliding window and returns
the mean of the NPMI for the given top words. In a systematic
study, this coherence measure gives the largest correlation with
human ratings [67]. Specifically, topic coherence C'y for topic
k and its top T" words (w1, wa, -+ ,wr) is defined as

Cy (k) = %Zcos(m(wi),m—Mi(th))

Here cos(+) is the cosine similarity, and

NPMi(uw) = (NPMI(w;. )} 1,0
T

NPMi(wy.7) = § S NPMI(w;, w;)
i=1

j=1,..,T

where NPMI(w;, w;) is the normalized pointwise mutual
information for a pair of words w; and w;.

Topic diversity (TD) is the percentage of unique words
in the top 7" words of all topics [37], [68]. A small value
close to zero for topic diversity indicates that the top 7" words
are duplicated across topics, suggesting redundant topics. It is
worth noting that topic coherence and topic diversity should be
considered together to measure topic quality because a topic
model with high topic coherence might simply repeat coherent
words across topics. Therefore, following the approach out-
lined in [37], we define the overall metric Topic Quality (TQ)
for the quality of a topic model’s topics as the product of its
topic coherence and topic diversity.

Additionally, we apply the re-ranking technique (i.e., Equa-
tion 26) to all topic modeling baselines, and report the topic
coherence, topic diversity, and topic quality scores at the
bottom level, i.e., the finest-grained topics, so that the results
are comparable [51], [53], [54], [63]. For the LDA baseline,
we also consider an alternative without using the topic-word
re-ranking technique, denoted as LDA-NR, for benchmarking.

The experiment results for topic coherence, topic diversity,
and overall topic quality are presented in Table V. We observe
that our method, HDDM, achieves the highest topic quality
score (TQ) across most cases within the four different datasets,
indicating its capability to generate highly interpretable and
diverse topics. In addition, it’s noteworthy that the superior
performance in TQ is primarily attributed to high topic di-
versity scores. In several instances, the topic diversity score
(TD) of HDDM exceeds 0.90, and sometimes even reaches
1.00, implying its ability in learning distinguishable and non-
duplicated topics. This characteristic can further facilitate
effective content analysis [66]. It is also worth noting that
HDDM consistently outperforms the clustering-based topic
model BERTopic (SBERT and Ada) in the learned topic co-
herence and topic diversity metrics. While BERTopic utilizes
pretrained large language models to obtain document embed-
dings, it regards all documents whose document embeddings
belong to a single cluster as one single document and explicitly
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TABLE V
Topric COHERENCE (Cy/), TOPIC DIVERSITY (TD), AND TOPIC QUALITY (TQ) METRICS ON FOUR DATASETS. FOR THE HIERARCHICAL TOPIC MODEL
METHODS, INCLUDING HDDM, THE EVALUATION UTILIZES THE BOTTOM-LEVEL (FINEST-GRAINED) TOPIC WORDS. SBERT AND ADA IMPLICITLY
RERANK TOPIC-WORDS. ALL OTHER BASELINES IMPLEMENT A POST-PROCESSING TOPIC-WORD RERANKING METHOD [51].

Clinical Notes Reviews
K=32 K=64 K=128 K=32 K=64 K=128

¢cy, ™O TQ Cy T TQ Cy T TQ Cy T TQ Cy T TQ Cy TD TQ
LDA-NR 037 042 016 035 048 0.17 033 048 016 034 036 012 032 037 012 03 0.3 0.09
LDA 050 071 036 050 047 023 054 041 022 052 08 045 054 074 040 058 045 0.26
GSM 038 054 020 040 057 023 033 056 019 042 072 030 042 045 0.19 045 030 0.13
hLDA 050 055 027 046 063 029 051 068 035 049 087 042 039 065 025 036 068 025
WHAI 051 048 024 048 074 035 055 061 033 044 045 020 036 081 030 047 056 0.26
SawETM 047 068 032 055 047 026 057 075 043 050 076 038 055 070 039 041 0.66 0.27
HNTM 044 072 031 055 052 028 050 067 033 036 073 026 047 073 035 033 065 022
TSNTM 054 0.64 034 057 048 027 049 057 028 053 078 041 052 075 039 047 057 027
SBERT 047 068 032 041 052 022 048 08 041 036 065 024 038 061 023 037 058 0.21
Ada 042 075 032 050 079 039 052 083 043 041 068 028 039 063 024 040 062 0.25
HDDM 048 087 042 042 081 034 053 095 050 043 098 043 049 08 042 054 058 031

Company Descriptions Newsgroups
K=32 K=64 K=128 K=32 K=64 K=128

Ccy, ™D TQ Cy T™ TQ Cy T TQ Cy T TQ Cy T TQ Cy TD TQ
LDA-NR 044 052 023 045 052 023 041 053 022 049 054 026 046 049 023 045 054 024
LDA 062 081 050 065 068 044 0.67 058 039 034 08 030 052 074 038 054 058 031
GSM 053 085 045 056 082 045 040 046 019 051 084 043 041 095 038 040 068 0.27
hLDA 048 0.70 033 036 073 026 056 067 038 042 068 029 047 067 032 045 065 0.29
WHAI 043 074 032 048 071 035 052 055 029 053 073 039 050 074 037 054 058 031
SawETM 049 090 044 049 077 038 061 057 035 059 074 044 064 049 031 058 059 034
HNTM 054 080 043 050 063 032 061 037 022 048 077 037 041 081 034 039 073 028
TSNTM 047 0.63 030 034 08 030 029 043 012 037 087 032 050 059 030 042 086 0.36
SBERT 051 085 043 048 072 035 046 063 029 047 078 037 049 0.69 034 046 057 0.26
Ada 056 063 035 057 076 043 058 085 049 048 083 040 052 075 039 055 060 0.33
HDDM 050 1.00 050 048 099 047 048 091 044 050 093 046 047 098 046 043 099 043

assumes that a document only exhibits one topic. In practice, TABLE VI

a document can naturally relate to multiple topics. Moreover,
BERTopic uses a simple TF-IDF-based technique to find the
most prominent words within a cluster (topic). In contrast,
the proposed HDDM models leverage deep neural networks
and explicitly model the hierarchical relationships between
topics. Even though the input document is represented in a
bag-of-words fashion, HDDM can still effectively discover the
hierarchical and topical relationships between words, thereby
achieving higher topic coherence and diversity.

To better understand the topic quality of our method, we
further evaluate the topic coherence and topic diversity at
different hierarchical levels. Specifically, we set the overall
hierarchy to three levels and evaluate different hierarchical
settings: 8-16-32, 16-32-64, and 32-64-128 respectively. We
measure the average topic coherence, topic diversity, and
topic quality across the three hierarchical settings and across
the four datasets. The results are presented in Table VI. It
shows that HDDM consistently achieves high topic coherence,
topic diversity, and corresponding topic quality at all three
levels. Moreover, the topic quality achieves the highest at
the top level, indicating that HDDM is capable of learning
distinguishable and diverse coarse-grained topics. The topic
quality gradually and slightly decreases as the hierarchy goes
down from coarse-grained to fine-grained.

AVERAGE SCORES OF TOPIC COHERENCE, TOPIC DIVERSITY, AND TOPIC
QUALITY METRICS FOR HDDM ACROSS FOUR DATASETS AT TOP,
MIDDLE, AND BOTTOM LEVELS.

Cy TD TQ
level mean (std) mean (std) mean (std)
top 0.50 (0.04)  0.96 (0.05) 0.48 (0.05)
middle  0.48 (0.03) 0.92 (0.10) 0.44 (0.05)
bottom  0.47 (0.04) 0.90 (0.12) 0.42 (0.06)

C. Hierarchical Structure Visualization

An advantage of unsupervised text modeling is the ability
to visually present latent topics and examine the face validity
of the outcomes. Such visualization serves as an exploratory
tool for end-users to understand latent themes in the text
corpus and facilitate effective content analysis. In Figure 3,
we present the learned hierarchical topic structures from the
Company Descriptions dataset. Due to space constraints, we
display the hierarchy under the super-topic T10, focusing on
financial markets indicated by top words such as “bank,’
“invest,” “exchange,” “’stock,” and "financial.” Further, T10 is
divided into four sub-branches: T17, T27, T33, and T35, each
representing different topics. For instance, T17 may signify the
stock market topic, with top words like “exchange,” “’stock,”
“list,” ”index,” and “’trade,” while T27 could represent banking
services, indicated by words such as “card,” “payment,” and
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Fig. 3. Topic hierarchy for super-topic T10. The top 10 words with the highest probability (after reranking) under each super-/sub-topic are shown. All words
are shown in their stemmed forms. The T-number is the topic index; for example, T17 is the 17th topic in the model.

“loan.” In addition, T33 suggests the topic of corporate finance,
with words like “firm,” capital,” “equity,” and “buyout,’
while T35 may pertain to life and real estate insurance, with
words like nation,” “insurance,” “life,” and real estate.”
Furthermore, these intermediate topics are further divided into
sub-topics. For example, T17 (stock market) is subdivided into
TS59 (possibly representing the US market) and T70 (possibly
representing the UK market).

In summary, in this section, we conducted experiments
to evaluate the topic modeling capability of our proposed
approach and demonstrated its efficacy relative to the state-
of-the-art, in document modeling and topic quality tasks. To
better understand the utility of the proposed hierarchical topic
model, we next study its effectiveness in a downstream predic-
tive modeling task in healthcare: patient diagnosis prediction.

VI. APPLICATION: HIERARCHICAL TOPIC MODELING ON
CLINICAL NOTES

Learning from complex, high-dimensional clinical data is
a key challenge for healthcare enhancement. Uncovering in-
sights from abundant clinical notes allows hospitals to develop
better predictive capabilities, enabling them to identify high-
risk patients and facilitate clinicians’ decision making [69],
[70]. For example, predicting patients’ ICU length of stay
based on early clinical notes helps hospitals to manage their
resources [69]. Inferring patients’ diagnoses from early clinical
notes can also help with interventions and healthcare policies.

In this section, we evaluate the practical utility of hier-
archical topic modeling in extracting key information from
clinical notes. In particular, we consider two clinical prediction
tasks: ICU length of stay prediction and patient diagnosis
prediction. Following prior literature [56], we use different
types of clinical notes for different prediction tasks due to
the nature of task. For the ICU length of stay prediction, we
use ICU notes taken in the first 48 hours of a visit, including
nurses’ notes and physicians’ notes, to predict the number of
days remaining in the ICU. For the patient diagnosis prediction
task, we use clinical notes taken in the first 24 hours of a
visit, including ECG notes and radiology notes, of a patient’s
admission to hospital to predict the patient’s diagnosis. Note
that a patient may not necessarily be transferred to an ICU

within the first 24 hours. Following the literature [56], we
obtain 25 conditions commonly recorded in the MIMIC-III
ICD-9 diagnosis table. Thus, the problem becomes a multi-
label classification problem, wherein each patient is associated
with multiple diagnoses.

A. Predictive Methods

Since topic modeling is an unsupervised text analysis ap-
proach, we first train the topic model on the training clinical
notes, and then we obtain and infer the topic vectors of training
and testing clinical notes. We then use a logistic regression
model on the topic vectors as the supervised learning model.
Therefore, the clinical task prediction becomes a two-stage
learning process: first clinical notes are represented in low-
dimensional topic distributions, and second, the learned topic
features serve as input for a logistic regression model [19],
[71]. In the experiment, we include one flat topic modeling
approach (LDA) and one hierarchical topic modeling approach
(hLDA) in our benchmarking.

In addition to the unsupervised topic modeling methods, we
also consider two supervised deep learning approaches for a
fair comparison. The first is a deep learning model Bi-LSTM
as a baseline. In this model, the input words of a clinical
note are represented as pre-trained GloVE word embeddings
[72]. We keep all tokens in the vocabulary, removing only
punctuation and numbers. We choose this model as a baseline
because LSTM models have been used to analyze clinical
notes in prior predictive analytics literature [73].

We also fine-tune a pretrained language model, BERT.
BERT is a popular transformer-based architecture that has
achieved state-of-the-art results across numerous natural lan-
guage processing tasks [74], [75]. However, directly fine-
tuning BERT with clinical notes is not possible, because BERT
requires a fixed input sequence length (512 tokens), which is
usually exceeded by clinical notes. To handle the maximum
length problem, we adopt long-document strategy afforded by
the RoBERTa model [76], which is a hierarchical transformer
designed to handle long text. Using this model, the input text
is divided into k£ segments. The segments are then fed into a
frozen BERT layer to obtain the representations. The output
of the BERT layer then serves as the input to a bidirectional
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LSTM (Bi-LSTM) layer. As a result, the model is no longer
constrained by the maximum document length.

Note that the purpose of this experiment is to examine
the capability of our proposed approach, HDDM, in learning
from complex, high-dimensional clinical data. The outcome
of HDDM can be then integrated into sophisticated clinical
prediction models such as Doctor Al [77] or models with
multimodal data such as vital signs or lab tests [73], [78].

B. Evaluation Metrics

We use the area under the receiver operating characteristic
(ROC) curve (AUC) for prediction evaluation. An ROC curve
is a two-dimensional graph in which the true positive rate
is plotted against the false positive rate for various decision
threshold settings. The AUC score measures the area under
the ROC curve, giving a single score for classifier model
performance. The value of the AUC score ranges from 0.5 to
1; models with higher AUC scores yield better predictions. We
split the dataset into 80% training, 10% validation and 10%
testing data. We train and tune the models on the training and
validation sets, respectively. We further evaluate the models on
the testing set. We repeat the experiment 30 times by changing
the data split random seed.

C. Task 1: ICU Length of Stay Prediction

This task aims to predict the number of days after a patient
is transferred into the ICU. Length of stay has frequently been
used as a measure of ICU resource use [79], and accurately
predicting length of stay is important for ICU scheduling and
resource management. It also aids decision making on treat-
ments, interventions, and healthcare policies. Early clinical
information, such as nursing notes, are particularly valuable,
especially as information such as laboratory culture results
may not be available at the beginning of a patient’s ICU
stay [79]. Thus, a dependable means of early ICU length stay
prediction would have a major positive impact on ICU care.

Following [56], we frame the length of stay prediction as a
classification problem with eight classes (six classes for each
day after 48 hours after transferal to the ICU, one for stays of
more than one week but fewer than two weeks, and one for
stays over two weeks). We report the one-vs-rest multi-class
classification performance in Table VII. HDDM consistently
performs better than the baseline models. Overall, the macro-
AUC score of HDDM is 0.743, while those of the state-of-the-
art deep learning approaches, BERT and Bi-LSTM, are 0.679
and 0.646, respectively. Thus, HDDM makes a substantial and
significant improvements. For example, HDDM improves over
BERT predictions by 9.4% and Bi-LSTM by 15.0%. Similarly,
HDDM outperforms its unsupervised counterparts LDA and
hLDA by a large margin. We believe that there are two reasons
why unsupervised HDDM with simple logistic regression out-
performs state-of-the-art deep learning approaches. First, this
unsupervised dimensionality-reduction approach is effective
because it addresses the characteristics of clinical notes: noisy,
unstructured, and high-dimensional. Second, clinical notes are
usually very long, i.e., over 1,000 word tokens. Therefore, the
BERT model is constrained by document length. Although

TABLE VII
AUC SCORES FOR ICU LENGTH OF STAY PREDICTION PERFORMANCE,
BASED ON NOTES TAKEN WITHIN THE FIRST 48 HOURS OF TRANSFER TO
THE ICU. “RATIO” REFERS TO THE PERCENTAGE OF CORRESPONDING
CLASS LABELS. “TOTAL” REFERS TO THE MACRO-AUC SCORE.

#days Ratio LDA  hLDA Bi-LSTM BERT HDDM
2-3 0352 0563 0576  0.653 0.620  0.660
3-4 0.189 0589 0.571 0.630 0.635  0.664
4-5 0.114  0.600 0.631 0.601 0.631 0.711
5-6 0.070 0.608 0.618  0.606 0.658  0.682
6-7 0.049 0.598 0.640  0.618 0.655  0.767
7-8 0.035 0.663 0.651 0.566 0.677  0.768
8-14 0.107 0.741 0.725 0.714 0.746  0.806
>14 0.083 0.726 0.733  0.778 0.810  0.885
Total 0.636 0.643  0.646 0.679  0.743

we apply heuristics to address the long document concern, the
BERT model is still prone to under/overfitting.

D. Task 2: Inferring Patient Diagnoses

We study another important clinical prediction task: patient
diagnosis inference. This task may be crucial for healthcare
outcomes. For example, inferring patients’ diagnoses using
early clinical notes such as radiology reports can help physi-
cians to assess the severity of patients’ illnesses and thus
assist clinicians with decision making. In this experiment,
we consider inferring patient diagnoses after 24 hours of
hospitalization. We consolidate the dataset consisting of all
clinical notes within 24 hours of admission to hospital (not
necessarily to an ICU). Following the literature [56], we obtain
25 conditions commonly recorded in the MIMIC-III ICD-9
diagnosis table. Thus, as noted earlier, the problem becomes
a multi-label classification problem, wherein each patient is
associated with multiple diagnoses.

The patient diagnosis prediction results are presented in
Table VIII, leading to the following findings. HDDM consis-
tently outperforms the text analytics baselines both substan-
tially and significantly. For example, across all prediction at
admission tasks, HDDM outperforms BERT by 8.7% in terms
of Macro-AUROC (0.796 vs. 0.732). HDDM also significantly
outperforms LDA and hLDA (0.702 and 0.706, respectively).
Moreover, we can see that the improvements of HDDM over
benchmark methods are consistent across different diagnoses
types. In particular, HDDM attains the best AUC on 24
out of 25 diagnosis class labels. Overall, the results suggest
that HDDM is capable of accurately extracting clinically-
relevant information from complex, high-dimensional clinical
notes resulting in performance gains in topic modeling and
downstream prediction tasks.

VII. CONCLUSION

Traditional topic modeling assumes that there are no topic
hierarchies - however, many real-world textual contexts are
comprised of concept hierarchies encompassing general and
finer-grained subtopics. Failure to explicitly model hierarchi-
cal relationships may result in poor performance in topic
analysis, and may also cascade into poorer performance in
downstream predictive analytics tasks. Although Bayesian and



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

TABLE VIII
PATIENT DIAGNOSES USING NOTES TAKEN WITHIN 24 HOURS OF HOSPITALIZATION. PREVALENCE DENOTES PERCENTAGE OF COHORT WITH DIAGNOSIS.

Diagnosis Prevalence LDA hLDA LSTM BERT HDDM
Acute and unspecified renal failure 0.214 0.720 0.718 0.719  0.709  0.799
Acute cerebrovascular disease 0.073 0.850 0.852 0.889  0.924 00915
Acute myocardial infarction 0.104 0.774 0.776  0.777  0.857  0.887
Cardiac dysrhythmias 0.321 0.722 0.722 0.684  0.754  0.773
Chronic kidney disease 0.134 0.712 0.721  0.719  0.729  0.804
Chronic obstructive pulmonary disease 0.130 0.663 0.675 0.638  0.640 0.730
Complication of surgical/medical care 0.208 0.650 0.659 0.672  0.679 0.735
Conduction disorder 0.072 0.718 0.722 0.693  0.660  0.835
Congestive heart failure 0.268 0.744 0.745 0.737  0.822  0.840
Coronary atherosclerosis and related 0.323 0.771 0.755 0.780  0.840  0.863
Diabetes mellitus with complications 0.095 0.726  0.729  0.701 0.711  0.819
Diabetes mellitus without complications  0.193 0.545 0.556  0.625 0.595 0.635
Disorder of lipid metabolism 0.290 0.621 0.624 0.711 0.683  0.733
Essential hypertension 0.419 0.594 0591 0.630 0.585  0.651
Fluid and electrolyte disorder 0.269 0.635 0.633 0.703 0.666  0.742
Gastrointestinal hemorrhage 0.073 0.776  0.776  0.739 0.737  0.865
Hypertension with complications 0.132 0.711 0.718  0.691 0.699  0.794
Other liver disease 0.089 0.744 0.748 0.698  0.803  0.845
Other lower respiratory disease 0.052 0.585 0.586 0.646  0.636  0.694
Other upper respiratory disease 0.041 0.660 0.664  0.638 0.736  0.826
Pleurisy 0.087 0.636 0.649 0.662 0.663  0.713
Pneumonia 0.139 0.701 0.707 0.738  0.734  0.807
Respiratory failure 0.181 0.746  0.748  0.793 0.833  0.865
Septicemia 0.143 0.775 0.778 0.756  0.815  0.863
Shock 0.079 0.783 0.787 0.732  0.782  0.872
Macro-AUROC 0.702 0.706  0.711 0.732  0.796

deep learning-based hierarchical methods have been proposed,
existing methods have limitations such as reliance on pre-
defined hierarchies or lack of methods/functions for layer
stacking. To address this research gap, we propose HDDM,
a hierarchical topic model that organizes latent topics in a
hierarchical structure using deep VAE and employs a new ob-
jective that can effectively learn super/sub-topic dependencies.

We conduct experimental analysis on several real-world
datasets to evaluate the performance of HDDM. First, HDDM
better fits the data, as demonstrated by lower perplexity scores
across several datasets. Second, HDDM demonstrates its capa-
bility to learn distinguishable and diverse topics, as evidenced
by metrics such as topic coherence and topic diversity. Third,
topics learned via HDDM and used as input features for patient
diagnosis prediction outperform other topic-modeling features
and more advanced deep learning approaches.

As hierarchical topic modeling is particularly suitable for
industry-level applications when data is plentiful (see Google’s
Rephil for example), this paper, which offers an effective and
efficient solution to hierarchical neural topic modeling, has
potential to make contributions to large web scale applications.
Future work can also build upon the proposed framework and
incorporate prior knowledge or document structural informa-
tion to improve the document modeling capacity. Moreover, a
growing body of research is focusing on identifying effective
data analytics strategies for deriving actionable insights [20].

This research has limitations that can be improved in the
future. First, HDDM infers the tree structure automatically
from the text dataset. In some applications, researchers or prac-
titioners may have prior knowledge about the topic hierarchies;

future work can investigate incorporating domain knowledge
to further enhance the quality of the learned topic hierarchies
[80]. Second, in this work, we study four real-world datasets
spanning consumer reviews, news articles, and clinical notes.
Given the hierarchical nature of topics and documents, future
work can empirically test HDDM in web-scale corpora.
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