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Abstract—Topic modeling is a commonly used text analysis
tool for discovering latent topics in a text corpus. However, while
topics in a text corpus often exhibit a hierarchical structure (e.g.,
cellphone is a sub-topic of electronics), most topic modeling meth-
ods assume a flat topic structure that ignores the hierarchical
dependency among topics, or utilize a predefined topic hierarchy.
In this work, we present a novel Hierarchical Deep Document
Model (HDDM) to learn topic hierarchies using a variational
autoencoder framework. We propose a novel objective function,
sum of log likelihood, instead of the widely used evidence lower
bound, to facilitate the learning of hierarchical latent topic
structure. The proposed objective function can directly model
and optimize the hierarchical topic-word distributions at all topic
levels. We conduct experiments on four real-world text datasets
to evaluate the topic modeling capability of the proposed HDDM
method compared to state-of-the-art hierarchical topic modeling
benchmarks. Experimental results show that HDDM achieves
considerable improvement over benchmarks and is capable of
learning meaningful topics and topic hierarchies. To further
demonstrate the practical utility of HDDM, we apply it to a real-
world medical notes dataset for clinical prediction. Experimental
results show that HDDM can better summarize topics in medical
notes, resulting in more accurate clinical predictions.

Index Terms—Topic Modeling, Deep Learning, Hierarchical
Modeling, Hierarchical Neural Topic Model, Textual Analysis.

I. INTRODUCTION

THE rapid growth of unstructured text data has provided an

exciting opportunity for researchers and practitioners to

arrive at novel insights. With the proliferation of such text data,

topic modeling methods that can automatically uncover latent

and relevant topics from a set of textual documents (corpus)

are of great importance. Topic models have been widely used

to make sense of textual data in various contexts including

social media [1]–[3], e-commerce [4], [5], and personalized

recommendation [6]. For example, marketers use topic mod-

eling methods to analyze high volumes of consumer reviews

to understand word-of-mouth [7], whereas risk management

teams use such models to monitor user-generated content

for product defects [8]. Topic models have also been used

for knowledge discovery across papers, tools, and datasets

appearing in scientific communities [9].

Topic modeling methods usually assume a flat topic struc-

ture. That is, all topics have the same level of abstraction

and there are no hierarchical relations among topics. For

example, when applying topic modeling to a collection of
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hotel consumer reviews, the model may learn latent topics

of booking reservations, customer services, booking, and hotel

location. However, in practice, topics of words and documents

can be naturally organized into hierarchies. A consumer re-

view on the topic of booking reservations is also relevant to

the more general topics of booking and customer services.

Moreover, topic hierarchies also manifest at the document

topic representation level. For example, in writing a clinical

note, a physician may describe a mild symptom in general

but a critical symptom in considerable detail. It is therefore

important to distinguish general topics from specific topics

in order to better summarize information from a text corpus.

As a result, neural variational inference based methods such

as neural topic model (NTM) [10], which represent topics as

a flat structure, often lead to suboptimal modeling in certain

hierarchical contexts. Compared to flat topic models which

suffer from data sparsity and are prone to overfitting [11],

[12], a hierarchical approach can combat these shortcomings.

For example, if data are too sparse to enable the term

Bronchiolitis to be placed within the Bronchitis concept, the

term can instead be appropriately modeled within the topic

Acute respiratory infections. Moreover, a hierarchical model is

particularly suitable for industry-level applications when data

is plentiful. For instance, it is reported that Google’s Rephil, a

core application in Google’s online advertising service, uses a

hierarchical “noisy-or” network to model topic relations [13].

Prior topic modeling work has proposed several hierarchical

topic model extensions based on a Bayesian inference frame-

work. However, the effectiveness of these models in modeling

topic hierarchies is usually limited due to their inflexibility in

modeling the latent variable relationships (e.g., most rely on a

pre-defined topic hierarchy, etc.). We discuss these limitations

and gaps in greater detail in the Literature Review Section.

In this work, we propose a novel hierarchical deep document

model (HDDM) based on the deep variational autoencoder

(VAE) framework [14], [15]. The most straight-forward ap-

proach to applying VAE to a hierarchical topic model structure

is to simply stack multiple neural network layers together in

the encoder and decoder. However, simply stacking multiple

layers does not necessarily learn good feature hierarchies

[16], [17]. To tackle this challenge, we recursively correct the

generative distribution with a novel objective function, sum

of log likelihood, instead of the conventional evidence lower

bound objective (ELBO). Our proposed objective directly

models and optimizes the topic-word distribution from all topic

levels and can recover the general-specific topic hierarchies.

We evaluate our proposed HDDM method on four real-

world text datasets, covering a wide range of applications. Ex-

perimental results show that HDDM can significantly improve
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topic modeling performance, as measured by the model likeli-

hood on unseen data, compared with a battery of state-of-the-

art hierarchical topic modeling methods. Moreover, HDDM

also enhances topic quality, as evidenced by improvements

in both topic coherence and topic diversity. We also visualize

the learned topic hierarchies and find that HDDM can discover

meaningful and interpretable topic groups.

To further demonstrate the practical value of HDDM, we

conduct a clinical prediction task to infer patients’ diagnoses

from clinical notes. This clinical prediction task can help with

treatments, interventions, and healthcare policies. Compared

with a battery of state-of-the-art supervised approaches, in-

cluding deep learning and the bidirectional encoder represen-

tations from transformers (BERT) model (Devlin et al. 2018),

our unsupervised approach HDDM combined with simple

logistic regression substantially improves prediction accuracy.

The main contributions of this work are two-fold. First, we

propose a novel topic modeling method, HDDM, that uncovers

latent topic hierarchies from text collections. In addition to the

proposed hierarchical deep architecture, we develop a novel

objective function that facilitates effective learning. Compared

to traditional flat structure and hierarchical topic models,

HDDM can more effectively learn topic hierarchies directly

from the data without a predefined the hierarchy structure.

This results in better summarization of the latent semantics

in documents to enhance topic analysis and subsequent tasks.

Second, we demonstrate in the experiments that HDDM sig-

nificantly outperforms existing benchmarks in topic modeling.

Using a real-world clinical prediction task, we also show that

the improvement attributable to HDDM in topic modeling can

further lead to more accurate downstream clinical prediction.

Our work has important research implications. By using

deep learning and a novel objective function, we allow

more accurate topic modeling in the various contexts where

domain/testbed-specific hierarchy knowledge is unavailable

beforehand and must be learned inductively, in an end-to-

end manner. By showing the effectiveness not only for topic

modeling but also in a downstream task, our work also has

implications for the rising trend of predictive models featurized

with topic-model based predictor variables. Furthermore, our

work has practical implications for practitioners leveraging

text analytics in a broad array of applications where accurate

topic analysis may facilitate enhanced decision making [18].

We open-source the implementation of HDDM at https://

github.com/yya518/hddm.

The remainder of this paper is organized as follows. In

the next section, we review related method development in

learning latent topic hierarchies from text corpora. Following

the literature review, we present our proposed novel topic mod-

eling approach, HDDM. In the ensuing section, we describe

the four real-world text datasets in our testbed and rigorously

evaluate our approach against various benchmarks. Then, we

examine an application of HDDM in healthcare analytics to

infer patient diagnoses from clinical notes. Lastly, we conclude

the paper with discussions and implications.

II. LITERATURE REVIEW

Topic modeling is a frequently used tool for discovering

latent semantics in a large collection of documents. Latent

Dirichlet Allocation (LDA) [19] is one of the most influential

topic modeling examples. We have witnessed growing popu-

larity in the usage of novel topic modeling methods to tackle

task-specific problems [20]–[23]. One common assumption in

topic modeling is that the topics have a flat structure. That

is, all topics have the same level of abstraction and there are

no hierarchical relations among topics. However, in practice,

topics can be naturally organized into hierarchies, where a

more general concept can include several more-specific topics.

Compared to the flat topic model, a hierarchical topic structure

can improve document modeling and generalization perfor-

mance [24]. To this end, several hierarchical topic models

based on the statistical Bayesian inference framework have

been proposed. Instead of using a flat Dirichlet distribution as

the topic distribution prior, these methods adopt a hierarchical

topic prior or non-parametric prior to explicitly model the topic

hierarchy. For example, Hierarchical LDA (hLDA) extends the

LDA model by assuming a two-level topic generative process

following the Chinese Restaurant Process [25]. A further

extension of hLDA is the nested Hierarchical Dirichlet Process

(nHDP), which is a tree-structured generative model of text

that generalizes the nested Chinese Restaurant Process [26].

Both hLDA and nHDP model the tree structure as a random

variable, defined over a flexible (potentially infinite in number)

topic space. However, in practice the infinite models are

truncated to a maximum size. The Pachinko allocation model

(PAM) introduces multiple levels of latent supertopics on top

of the basic latent topics [24]. Each supertopic is a distribution

over the topics at the next level below. In order to efficiently

model the hierarchical topic prior and accelerate the inference

of the PAM model, prior work proposed a Sparse Backoff

Tree prior (SBT) [12]. To summarize, Bayesian inference-

based hierarchical modeling approaches usually replace LDA’s

flat Dirichlet prior with complicated hierarchical priors and

explicitly define the path between topic and sub-topics.

One drawback of the Bayesian inference-based approaches

is that they make strong assumptions on the latent variable

distribution. These assumptions limit the generalizability of

the models, which can easily lead to low model fitness, and

possibly to suboptimal predictive power [10], [27]. Moreover,

model inference and parameter estimation often become more

complex as topic models grow more expressive. To avoid

explicitly defining latent variable distributions, recent neural

topic modeling work approximates the intractable distributions

over the latent variables with variational autoencoders and thus

attains non-linear complex representations for documents with

good generalization ability [10], [14], [20], [28]. However,

these neural topic models are still flat, and it is challenging to

model latent topic hierarchies effectively using deep generative

models like deep VAEs for two reasons.

First, a straightforward way to extend a deep VAE model

to a hierarchical model is to stack multiple layers of en-

coder/decoder on top of each other. However, simple layer

stacking does not necessarily lead to good latent hierar-
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chies. Hierarchical latent variable models, by stacking multiple

layers of encoder/decoder, have trouble learning structured

features [17]. Therefore, recent efforts in building deep learn-

ing based hierarchical topic models focus on specifying the

topic hierarchy distributions [29]–[31]. For example, the tree-

structured neural topic model (TSNTM) uses a specially de-

signed doubly-recurrent neural network to model the hierarchi-

cal topic distribution [30]. TSNTM can be extended to a non-

parametric Tree-Structured Neural Topic Model (nTSNTM).

The assumption on the hierarchical topic distribution restricts

the expressive power of topic modeling, and these methods

usually achieve unsatisfactory performance in document mod-

eling as measured by goodness-of-fit [31].

Second, as noted above, simple layer stacking does not

necessarily lead to good feature hierarchies. Several works

have tackled the difficulties of training deep VAEs [16], [32]

by proposing to add dependencies to the corresponding layer

of encoded documents when modeling the distribution of

latent layers. However, in this way, the dependency between

different latent layers becomes too complex to be modeled

as topic-subtopic distributions. In other words, the evidence

lower bound (ELBO), the default choice of training VAE

models, is no longer a suitable learning objective because

the intermediate latent layers of a hierarchical VAE cannot be

parameterized as topic distributions. Forcing the intermediate

latent layers to exhibit hierarchical topic distributions requires

designing a complicated fixed form of topic parameterization

which may restrict the complexity of the topic distribution,

thus limiting the modeling capacity. For example, Weibull

Hybrid Autoencoding Inference (WHAI) models its topic

proportions as a series of Gamma distributions with factorized

shape parameters depending on the previous layer [33], [34].

Third, as transformer-based language models advance the

field of NLP, clustering-based topic modeling methods that

utilize contextualized document embeddings as input represen-

tations become a viable solution [35]–[38]. In these methods,

instead of employing bag-of-words representation as document

inputs like traditional and neural topic models, they leverage

contextualized document embeddings as inputs. Then, they

utilize off-the-shelf clustering methods such as DBSCAN to

group documents into clusters, treating each cluster as a unique

topic. Subsequently, words with high weights, such as TF-IDF,

are considered as representative of topics. Due to the flexibility

of these methods, BERTopic can also be used to learn topic

hierarchies by employing hierarchical clustering methods [35].

Lastly, another research stream has focused on constructing

hierarchical information in topic models using context and/or

problem-specific hierarchical information and structure [39].

Examples include distant supervision via citation graphs [40],

domain knowledge [9], [41], [42], social media hashtags [43],

and social roles [44], not to mention explicitly supervised

topic models [4]. For instance, Guo et al [40] leverage citation

networks to learn a two-level topic model, where the topics

learned from cited documents are the topics from which a doc-

ument level topic allocation is sampled. Guided Hierarchical

Topic Models [41] use a Dirichlet Forest prior and predefined

domain knowledge as extra supervision. There has also been

interesting work in topic re-estimation [45] which is out of

TABLE I
EXTANT LITERATURE ON HIERARCHICAL TOPIC MODELING.

DL=DEEP LEARNING BASED, LTM=LATENT TOPIC MODELING,
PTH=PREDEFINED TOPIC HIERARCHY, TMH=TOPIC MODELING

HIERARCHY

Model DL LTM PTH TMH

hLDA [25] No Conjugate
Prior

Yes Nested Chinese
Restaurant Process

nHDP [26] No Conjugate
Prior

Yes Nested Dirichlet Process

PAM [24] No Conjugate
Prior

Yes Hierarchical Topic Prior

SBT [12] No Conjugate
Prior

Yes Hierarchical Topic Prior

WHAI [33] Yes Hierarchical
Gamma
distribution

No Multi-level VAE
(Directly stacking)

SawETM [34] Yes Hierarchical
Gamma
distribution

No Multi-level VAE
(Directly stacking)

HNTM [29] Yes Neural
Network

Yes Multi-level VAE
(Directly stacking)

TSNTM [30] Yes Neural
Network

Yes Doubly-Recurrent
Neural Networks

HDDM (ours) Yes Neural
Network

No Multi-level
Hierarchial VAE

scope for this work. Our method, and our benchmarks, are

unsupervised and intended for general-purpose testbeds where

hierarchical topic hierarchies may manifest (i.e., not specific

to citation network or social media hashtags, etc.), and where

inductively modeling them might improve topic modeling and

downstream prediction tasks leveraging the generated topic

hierarchy.

A. Gaps and Novelty of Proposed Method

Having established the literature on extant hierarchical topic

modeling methods, we now describe our method novelty.

First, we propose a novel hierarchical deep document model,

HDDM, based on the variational autoencoder framework.

Instead of simply stacking multiple layers together, we ex-

plicitly model the dependencies between layers so that the top

layer governs the distribution of the sub-layers, indicating a

hierarchical structure. HDDM does not need to pre-specify

the topic hierarchy; instead we allow the topic hierarchies

(general-specific topic dependency) to emerge from the data

itself. Second, to address the challenge of using ELBO as the

objective, we propose a novel objective function by summing

up the log-likelihood of different latent VAE layers. We prove

that this objective is proportional to the model posterior. This

objective allows us to effectively and efficiently train a deep

hierarchical VAE model with topic distribution parameteriza-

tion. We conceptually summarize our work in comparison with

select relevant hierarchical topic modeling methods in Table I.

III. METHOD: A NEURAL APPROACH TO MODELING TEXT

HIERARCHIES

A. Deep Generative Modeling for Text Analytics

We base our approach on the deep variational autoencoder

(VAE) framework which has been used in various text cat-

egorization studies [46], [47]. Recent neural text modeling
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studies, namely Gaussian softmax model (GSM) [10], have

used the VAE approach to model the generative process of

documents and employed gradient ascent to maximize the

objective function via evidence lower bound (ELBO). Com-

pared with Bayesian inference based statistical topic models

such as LDA, the deep VAE approach shows advantages

in modeling complex document representations, along with

strong generalization ability, as it approximates intractable

distributions using a deep neural network [14], [28], [48]. We

briefly describe the GSM approach below.

Suppose that we have a document collection D and a vocab-

ulary contains V distinct words {w1, · · · , wV }. Let d ∈ R
V

be the bag of words representation of a document in D,

and contains Nd word tokens {x1, · · · , xNd}. The generative

process for document d ∈ D is formulated as follows:

θ ∼ G(µ0, σ
2
0), (1)

πn ∼ Multi(θd), for n ∈ [1, Nd] (2)

xn ∼ Multi(βπn), for n ∈ [1, Nd] (3)

Assume there are K topics, GSM proposes that topic dis-

tribution θ follows a Gaussian-softmax distribution G(µ0, σ
2
0),

defined as: z ∼ N (µ0, σ
2
0) and θ = softmax(Wz). Here

the latent variable z follows a diagonal Gaussian distribution

with mean µ0 and variance σ2
0 , and W is the neural network

parameter. πn is the topic assignment for the n-th word token,

n ∈ [1, Nd]. βπn ∈ R
V represents the topic distribution over

words given topic assignment πn.

A key difference in the generative process between Bayesian

text modeling and VAE based text modeling is that the latter

uses a Gaussian prior with a neural network to parameterize

the topic distribution, while the former has to use a conjugate

prior such as the Dirichlet distribution.

To do neural variational inference, an inference network

q(θ|d) is constructed to approximate the posterior p(θ|d).
Specifically, q(θ|d) is formulated as a diagonal Gaussian distri-

bution: q(θ|d) = N (µ(d), σ2(d)). Here, µ(d) and log(σ2(d))
are functions of d that are modeled by two multilayer per-

ceptron neural networks. Since the posterior distribution is

intracable, the Evidence Lower Bound (ELBO) is often used

as a surrogate objective function to approximate the true

posterior distribution with q(θ|d), and the objective function

is to maximize:

J (Φ) = Eq(θ|d)[log p(d|θ)]− KL(q(z|d)||p(z)). (4)

where Φ denotes the overall model parameters in the inference

and generative network. The network architecture of the VAE

based text model is presented in Figure 1.

While the deep generative framework benefits from an ap-

proximate complex distribution without relying on a conjugate

prior, the learned latent variables are flat, such as in GSM; that

is, the topics are not grouped hierarchically. Given concept

hierarchies are an important knowledge representation in web

and text mining [49], [50], we develop a novel deep generative

model that reduces the dimensionality of text documents to a

hierarchical topic space.

Fig. 1. Variational autoencoder based text modeling.

Fig. 2. Our proposed hierarchical topic modeling approach.

B. Learning Topic Hierarchies with a Deep Generative Model

Here we present our hierarchical deep document model,

HDDM, which groups latent topics in a text corpus into a

topic hierarchy. This model arranges the topics into a tree-

structure, with the purpose that more general topics should

appear near the root and more specialized topics should appear

near the bottom. The key novelty in desiging the hierarchi-

cal structure in HDDM is that it allows the latent variable

distributions of previous layers to govern the distributions

of subsequent layers. That is, the distribution of fine-grained

topics is stochastically determined by more coarse-grained

topics, allowing latent topic hierarchies to emerge from the

data. The HDDM network architecture is shown in Figure 2.

We propose that a document collection can be grouped in

a latent topic hierarchy, such that higher-level topics are more

coarse-grained and lower-level topics are more fine-grained.

Specifically, suppose that we have L+1 levels of topics, where

θ0 is fixed as the root topic, θ1 is the first-level (general) topic

vector, and θL is the last-level (specific) topic vector. The l-th
level has Kl topics and Kl < Kl+1 for l ∈ [0, L]. We propose

that a document can be generated from each of the L layers

of topics respectively. That is, a document is a summarization

of general topics and specific topics. The generative process

of HDDM for document d ∈ D is described as follows.

θl ∼ G(µl, σ
2
l ), for l ∈ [1, L] (5)

πn
l ∼ Multi(θl), for n ∈ [1, Nd] (6)

xn ∼ Multi(βπn
l
), for n ∈ [1, Nd] (7)
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In this generative process, we first let the root topic θ0 = 1
to be the same for all documents, and assign πn

0 = root
to every token in every document. Then, the level-l topic

distribution θl follows a Gaussian-softmax distribution with

mean µl and variance σ2
l . Different from GSM where µ0 and

σ2
0 are hyperparameters such as µ0 = 0 and σ2

0 = I , we define

µl and σ2
l as a function of θl−1. This means that the prior of

θl depends on θl−1.

For the inference network, we design the multi-level VAE

such that the latent variable distributions consist of the previ-

ous level’ latent variables as well as the corresponding level

of encoded input. To facilitate topic modeling, we introduce

a topic–word distribution parameter matrix βl ∈ R
Kl×V for

each layer l. We apply the softmax function to ensure that each

entry in the column for βl adds up to 1. For any l ∈ [1, L],
the inference network is defined recursively as follows:

q(θl|θl−1, d) = N (Wlµl, (Wlσl)
2) (8)

Here, since the latent variable consists of previous level’s

latent variable (i.e., the prior of θl depends on θl−1) and the

corresponding level’s encoded input (i.e., the prior of θl also

depends on the bag-of-words representation d), we use the

inverse-variance weighting as:

µl = (µq,lσ
−2
q,l + µp,lσ

−2
p,l )/(σ

−2
q,l + σ−2

p,l ) (9)

σl = 1/(σ−2
q,l + σ−2

p,l ) (10)

where µp,l, σ
2
p,l and µq,l, σ

2
q,l are obtained from the neural

network as follows:

µp,l = Wµp,l
θl−1, log(σ2

p,l) = softmax(Wσp,l
θl−1), (11)

µq,l = Wµq,l
d, log(σ2

q,l) = softmax(Wσq,l
d). (12)

For l = 1, as θ0 is fixed to the root topic, we directly let

µl = µq,l, σl = σq,l. Then q(zl|z0, z1, ..., zl−1, d) = N (µl, σl)
and we generate zl from this distribution.

C. Model Inference and Parameter Estimation

We now discuss the model inference and parameter estima-

tion for HDDM. Traditionally, evidence lower bound (ELBO)

is the objective function of deep variational autoencoder mod-

eling (c.f. Eq. 4). However, in HDDM, the intermediate latent

layers cannot be parameterized as topic distributions. To force

the intermediate latent layers to exhibit topic distributions

(leading to a hierarchical topic model), one would have to

design a complicated and fixed form of topic parameterization,

which might restrict the complexity of the topic distribution

and thus limit the modeling capacity. Therefore, we develop

a novel objective function, the sum of the log likelihood, to

directly model and optimize the topic–word distribution at

all topic levels and then approximate the supertopic–subtopic

distributions from the topic–word distributions. We define the

sum of the log likelihood objective function for document d
with Nd word tokens as follows:

J (Φ) =
1

L

Nd
∑

n=1

L
∑

l=1

log p(xn|θl) (13)

We show in Theorem 1 that the sum of the log likelihood is

proportional to the parameter posterior. Therefore, instead of

maximizing ELBO to approximate the posterior distribution,

we can directly maximize the sum of the log likelihood.

Theorem 1. J (Φ) is proportional to the parameter posterior.

Proof. We start by expanding p(xn|Φ, θ0, θ1, . . . , θL) using

Bayes’s rule as follows: (n,Φ are omitted for simplicity)

p(x|θ0, ..., θL) =
p(θ0, ..., θL|x)p(x)

p(θ0, ..., θL)
(14)

=
p(θL|x, θ0, ..., θL)...p(θ0|x)p(x)

p(θ0, ..., θL)
(15)

=
p(x|θ0, ..., θL)p(θL)

p(x)
. . .

p(x|θ0)p(θ0)

p(x)

p(x)

p(θ0, ..., θL)
(16)

=

∏L
l=0 p(x|θ0, . . . , θl)

p(x)L

∏L
l=0 p(θl)

p(θ0, ..., θL)
(17)

=
p(x|θ0, θ1, ..., θL)

∏L
l=1 p(x|θ0, . . . , θl)

p(x)L

∏L
l=0 p(θl)

p(θ0, ..., θL)
(18)

We then cancel p(x|θ0, θ1, ..., θL) on both left-hand side and

right-hand side, and also p(θ0), ..., p(θL), p(θ0, θ1, ..., θL) are

untrainable priors. Then we obtain

p(x) = [

L
∏

l=1

p(x|θ0, . . . , θl)

∏L
l=0 p(θl)

p(θ0, ..., θL)
]1/L (19)

∝ [
L
∏

l=1

p(x|θ0, ..., θl)]
1/L ≈ [

L
∏

l=1

p(x|θl)]
1/L (20)

since p(x|θ0, ..., θl) ≈ p(x|θl). This means that we can

approximate the posterior by the geometric mean of likelihood

with respect to each topic level. After taking logarithms and

summing over the Nd word tokens of the current document d,

we obtain the learning objective as

J (Θ) =

Nd
∑

n=1

log p(xn) =
1

L

Nd
∑

n=1

L
∑

l=1

log p(xn|θl) (21)

This completes the proof. ■

The data likelihood p(xn|θl) in J (Θ) can be obtained by

marginalizing out the l-th level topic variable πn
l :

p(xn|θl) =
Kl
∑

πn
l
=1

p(xn|πn
l )p(π

n
l |θl) = βT

l,xnθl, (22)

where βT
l,xn is the transpose of the xn-th column of the topic-

word distribution matrix of the l-th topic level.

D. Topic Hierarchy and Topic-word Re-Ranking

As shown in Figure 2, we explicitly model the multi-level

latent variable structure and allow it to emerge from the data.

The conditional distribution of the l-th level topic i given the

(l − 1)-th level topic j can be written as:
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p(πl = i|πl−1 = j) =

1

p(πl−1 = j)

×
V
∑

k=1

∫

θl−1

[p(πl−1 = j|x = wk, θl−1)

× p(πl = i|x = wk, θl−1)p(θl−1)]dθl−1,

(23)

where πl−1 and πl are conditionally independent given x and

θl−1. As the priors of πl are close to uniform and the prior of

θl−1 is concentrated in a very small interval, p(πl = i|πl−1 =
j) can be approximated by

∑V
k=1[p(πl−1 = j|x = wk)p(πl =

i|x = wk)]. Next, by further assuming that the prior of a

single word x is uniform over the vocabulary, the previous

approximation is proportional to

V
∑

k=1

[p(x = wk|πl−1 = j)p(x = wk|πl = i)], (24)

which equals to βl−1,jβ
T
l,i, where βl,i is the l-th row of βi.

Finally, we have

p(πl = i|πl−1 = j) ∝ βl−1,jβ
T
l,i (25)

To obtain a deterministic topic hierarchy, we regard the (l−
1)-th level topic with the highest probability of generating

topic i on the l-th level as its parent topic: argmaxj βl−1,jβ
T
l,i.

Additionally, recent literature has shown that simply re-

ranking the topic words as a post-processing technique

can enhance the interpretability of the learned topics for

probabilistic-based topic models [51]–[53] and for clustering-

based topic models [35], [54]. Motivated by this, we re-rank

the topic distribution over words as follows:

β̂k,i,l =
βk,i,l

∑K
k=1 βk,i,l

(26)

This means the re-ranked probability of word i for topic k at

level l is normalized by the sum of topic-word probabilities

across all topics at level l.
To summarize, HDDM reduces unstructured, high-

dimensional text to a hierarchical latent topic space. We make

two fundamental contributions. First, we propose a novel

deep learning network that explicitly models the hierarchy of

latent topic variables. Second, we propose a novel objective

function to facilitate the effective learning of hierarchical

latent variables.

IV. DATASET AND BENCHMARKS

A. Datasets

We now describe the four real-world text datasets used in

our experiments. The four datasets represent a wide range of

applications that are of high relevance to research and practice.

The dataset statistics are shown in Table II.

• Clinical Notes: We use the MIMIC-III dataset [55]. This

dataset contains de-identified electronic health record data

from various ICUs at the Beth Israel Deaconess Medi-

cal Center in Boston, Massachusetts. It contains 46,520

unique patient hospital admission records and information

on 61,532 ICU stays between 2001 and 2012, and thus

encompasses a diverse and very large population of ICU

patients. The dataset comprises clinical notes made during

the patients’ time in hospital, including electrocardiog-

raphy (ECG) reports, radiology reports, physicians’ and

nurses’ notes, and discharge summaries. For each note,

the date and time are recorded. We use the data and

perform our experiments in accordance with the MIMIC-

III data user agreement. The dataset is a benchmark

dataset that is widely used in the science community

for healthcare studies [56]. Following prior work, we

exclude records of hospital admissions with multiple ICU

stays or transfers between ICU units. We also exclude

records of hospital admissions for patients younger than

18 [56]. The final cohort in our analysis contains 33,798

unique patients with a total of 42,276 ICU stays. We

choose 100,000 physician notes as training data and the

remaining 41,624 physician notes as a held-out dataset.

We use 10,000 physician notes from the 100,000 training

set as a validation set.

• Online Reviews: The online review dataset is a collection

of movie reviews [57]. It contains 5,006 movie reviews

with an average length of 188 words.1

• Company Descriptions: We use a text dataset that con-

tains company descriptions. This dataset was included

to represent contexts where topic models are applied by

researchers and analysts to gauge the information con-

tent in firm-related documents and reports. This dataset

contains 29,867 company descriptions collected from

corresponding Wikipedia company pages [58].

• Newsgroup Posts: The 20 newsgroups dataset is a pub-

licly available2 and widely used benchmark dataset for

evaluating topic modeling performance [59]. The dataset

contains 18,670 newsgroup posts on different topics such

as sports, politics and computers.

For the Newsgroup Posts data, we adopt the vocabulary

provided by Srivastava and Sutton [60] for direct comparison.

For the other three datasets, we choose the most frequent 2,000

words (exclude stop words) as the vocabulary for all datasets,

because choice of a very large vocabulary is likely to result in

slow inference and poor topic generation performance [61].

TABLE II
DATASET STATISTIC DESCRIPTIONS.

Dataset # Train # Test Avg. # Words

Clinical Notes 100,000 41,624 1,460.3
Online Reviews 3,337 1,669 131.6

Company Descriptions 30,169 12,930 42.2
Newsgroup Posts 11,218 7,452 84.6

B. Baselines

We consider the following methods as benchmarks for

comparison.

1https://www.cs.cornell.edu/people/pabo/movie-review-data/
2http://qwone.com/ jason/20Newsgroups/
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• Latent Dirichlet allocation (LDA) [19] is the most cited

and widely used topic modeling method. We adopt the

online LDA implementation in Gensim [62].

• Gaussian softmax model (GSM) [10] is the neural

topic model based on the deep variational autoencoder

framework. Similar to LDA, it assumes a flat topic

structure.

• Hierarchical LDA (hLDA) [25] is the hierarchical ex-

tension of LDA. It models a two-level hierarchical topic

model and assumes the topic generative process using

a nested Chinese Restaurant Process. We use the hLDA

paper’s originally released C code to implement hLDA.

• Weibull hybrid autoencoding inference (WHAI) [33]

is a deep learning based hierarchical topic model. It uses

a hierarchy of Gamma distributions as the generative net-

work and a Weibull distribution in the inference network.

We implement WHAI using the authors’ released code.

• Hierarchical Neural Topic Model (HNTM) [29] learns

a hierarchical topic structure. It explicitly models the

dependency between different layers. The evidence lower

bound (ELBO) is used as the model objective.

• Tree-structured Neural Topic Model (TSNTM) [30]

models the topic hierarchies using a tree-structure, with

ELBO also used as the model objective. Similarly,

[31] propose an non-parametric version of TSNTM

(nTSNTM) which assumes an infinite number of topics.

For this benchmark, we use the TSNTM model.

• Sawtooth Factorial Topic Embeddings Guided GBN

(SawETM) [34] captures the dependencies and semantic

similarities between the topics in the embedding space

and it uses the Gamma belief network for modeling the

topic distributions of intermediate layers. We implement

SawETM using the authors’ released code.

In addition to the probabilistic and neural topic mod-

els mentioned above, we also incorporate a clustering-based

topic modeling approach BERTopic [35]. BERTopic ap-

plies a clustering method to contextualized document em-

beddings and utilizes a reranking technique [51], [63] to

identify representative words of topics. In our experiment,

we evaluate two versions of BERTopic: SBERT and Ada.

For SBERT, contextualized document embeddings are ob-

tained using the sentence-bert model [64], specifically the

all-MiniLM-L6-v2 model. For Ada, we utilize OpenAI’s

embedding model text-embedding-ada-002. We con-

duct the experiments using the implementation provided by

BERTopic 3.

Among these benchmarks, LDA and GSM are flat topic

modeling benchmarks, and HDP, WHAI, TSNTM and HNTM

are the hierarchical topic modeling benchmarks. SBERT and

Ada are clustering-based topic modeling benchmarks.

V. DOCUMENT MODELING EXPERIMENTS

The most common evaluation for a probabilistic topic model

is to measure the goodness of fit on held-out test data. In this

section, we evaluate HDDM’s document modeling capability

against the benchmarks.

3https://maartengr.github.io/BERTopic/index.html

A. Model Fitness

We measure the log-likelihood of models on the hold-out

set using perplexity. Perplexity is computed as a function of

the data log-likelihood of a held-out test set:

perplexity = exp(−
Dtest
∑

m=1

1

Nm

Nm
∑

n=1

log p(x(n)|t)) (27)

where Dtest is the number of testing documents, Nm

denotes the number of words in the m-th testing document,

and log p(x(n)|t) is the log likelihood of the n-th word in the

m-th document. A lower perplexity number indicates a higher

data likelihood, which suggests that the topic model is easier

to generalize and better at predicting new unseen documents.

Since the baseline approaches include both non-hierarchical

and hierarchical methods, to have a fair comparison, we choose

three settings with different number of lowest-level topics:

32, 64 and 128. That is, for LDA and GSM, which are non-

hierarchical models, the number of topics is set to 32, 64 or

128. For the hierarchical methods, we set a three-level topic

hierarchy with 8-16-32, 16-32-64 and 32-64-128 respectively.

The hLDA model infers the topic hierarchies from data and

we find that the inferred topic number is consistent across

several runs. We also tuned the topic hierarchy from three-

levels to two-levels and increased/decreased the intermediate-

layers topics (keeping the lowest-level of topics the same).

The baseline models’ likelihoods do not change much, which

is consistent with findings reported in the literature [25], [33].

The main result is presented in Table III. First, we can see

that the proposed HDDM approach consistently outperforms

the baseline approaches in terms of document modeling perfor-

mance. This superiority holds true across various datasets and

regardless of the number of topics considered. For example, on

the Clinical Notes dataset, HDDM achieves a perplexity score

of 618.3, which is substantially lower than the benchmarking

models. Compared to hLDA, the difference is significant (p <
0.01). Second, it outperforms its non-hierarchical, ELBO-

based VAE counterpart, GSM, suggesting that more effective

hierarchical models can result in better document modeling.

Moreover, existing hierarchical neural topic models, including

WHAI, SawETM, HNTM and TSNTM, primarily relying on

the ELBO training objective, experience a degradation in

perplexity. This decline might be largely attributed to the

requirement of parametrizing intermediate latent layers as

topic distributions in ELBO-based models, potentially limiting

the model’s capacity. Clustering-based BERTopic approaches

SBERT and Ada do not rely on probabilistic models. For

instance, BERTopic assumes that documents within the same

cluster share the same topic, meaning each document is

assigned to one topic. Therefore, we do not report perplexity

for SBERT and Ada.

To better understand the impact of HDDM’s hierarchical

structure on model perplexity, we perform an ablation analysis

by varying the topic hierarchies. The effect of the number

of hierarchy layers on HDDM’s performance is depicted in

Table IV. Generally, the hierarchical structured topic model is

better than the single-layer topic model in terms of perplexity.

For the Newsgroups, Clinical Notes, and Reviews data, per-
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TABLE III
PERPLEXITY OF TOPIC MODELS ON FOUR DATASETS. WE REPORT STATISTICAL SIGNIFICANCE COMPARED TO HLDA UNDER A ONE-TAILED T-TEST.

∗ INDICATES p < 0.01.

Clinical Notes Reviews Company Descriptions Newsgroups

K=32 K=64 K=128 K=32 K=64 K=128 K=32 K=64 K=128 K=32 K=64 K=128

LDA 964.1 785.9 774.6 1325.0 1318.1 1105.4 813.2 732.4 667.7 1263.4 1084.8 1142.4
GSM 772.3 712.0 746.8 954.3 911.5 923.1∗ 547.5 655.7 640.7 871.9 861.2 880.1
hLDA 861.5 745.3 833.5 963.7 1034.7 948.4 697.0 677.6 538.2 1069.9 958.7 921.0
WHAI 864.8 835.9 841.8 984.3 1149.5 962.4 879.3 820.4 773.6 990.4 913.3 893.1
SawETM 852.4 766.9 702.1 943.7 859.2 938.9 655.2 589.6 520.5 930.8 906.6 842.3
HNTM 907.6 822.4 779.2 898.3 1010.2 971.0 752.9 693.3 534.9 1014.1 955.4 879.8
TSNTM 843.2 779.8 754.5 1275.3 1185.6 1037.6 723.4 674.1 665.2 945.8 997.3 912.0
HDDM (ours) 745.0∗

618.3∗
598.6∗

874.6∗
832.9∗ 926.1 310.0∗

267.9∗
233.1∗

675.6∗
639.5∗

684.2∗

plexity decreases as the number of topic layers increases up

to three levels. In the case of Clinical Notes, the decreasing

perplexity trend continues for 4 levels (see 8-16-32-64 row

in Table IV). For the Company Descriptions dataset, the

trend is not as clear beyond the second level – perplexity

increases for the 3 and 4 level hierarchices. This could be

because of the nature of the datasets, and the exact choice

of topics per level. Nevertheless, the hierarchy ablation shows

the value of the hierarchical component of HDMM, which

works in conjunction with the sum of log-likelihood objective

function to garner enhanced performance relative to existing

hierarchical benchmarks.

TABLE IV
PERPLEXITY OF HDDM WITH DIFFERENT TOPIC HIERARCHIES. 16-64

MEANS THAT THERE ARE TWO LEVELS OF TOPICS WITH 16 SUPERTOPICS

AND 64 SUBTOPICS.

# Topics Clinical
Notes

Reviews Company
Descriptions

Newsgroups

64 922.2 931.0 294.7 671.0
16-64 618.3 832.9 267.9 639.5

16-32-64 540.9 828.2 268.1 638.8
8-16-32-64 549.8 830.2 271.8 612.1

B. Topic Coherence and Topic Diversity

Examining the learned topic quality is also crucial to

evaluate the learned topic model [65], [66]. In this section,

we conduct experiments to evaluate HDDM’s ability to learn

high-quality topic words by considering two metrics: Topic

Coherence and Topic Diversity. Topic coherence measures

the interpretability of a topic by measuring the degree of se-

mantic similarity between high probability words in the topic.

Specifically, we use the CV coherence measure, which aver-

ages the Normalized Pointwise Mutual Information (NPMI)

for every pair of words within a sliding window and returns

the mean of the NPMI for the given top words. In a systematic

study, this coherence measure gives the largest correlation with

human ratings [67]. Specifically, topic coherence CV for topic

k and its top T words (w1, w2, · · · , wT ) is defined as

CV (k) =
1

T

T
∑

i=1

cos(
−−−→
NPMI(wi),

−−−→
NPMI(w1:T ))

Here cos(·) is the cosine similarity, and

−−−→
NPMI(wi) = {NPMI(wi, wj)}j=1,...,T

−−−→
NPMI(w1:T ) =

{

T
∑

i=1

NPMI(wi, wj)

}

j=1,...,T

where NPMI(wi, wj) is the normalized pointwise mutual

information for a pair of words wi and wj .

Topic diversity (TD) is the percentage of unique words

in the top T words of all topics [37], [68]. A small value

close to zero for topic diversity indicates that the top T words

are duplicated across topics, suggesting redundant topics. It is

worth noting that topic coherence and topic diversity should be

considered together to measure topic quality because a topic

model with high topic coherence might simply repeat coherent

words across topics. Therefore, following the approach out-

lined in [37], we define the overall metric Topic Quality (TQ)

for the quality of a topic model’s topics as the product of its

topic coherence and topic diversity.

Additionally, we apply the re-ranking technique (i.e., Equa-

tion 26) to all topic modeling baselines, and report the topic

coherence, topic diversity, and topic quality scores at the

bottom level, i.e., the finest-grained topics, so that the results

are comparable [51], [53], [54], [63]. For the LDA baseline,

we also consider an alternative without using the topic-word

re-ranking technique, denoted as LDA-NR, for benchmarking.

The experiment results for topic coherence, topic diversity,

and overall topic quality are presented in Table V. We observe

that our method, HDDM, achieves the highest topic quality

score (TQ) across most cases within the four different datasets,

indicating its capability to generate highly interpretable and

diverse topics. In addition, it’s noteworthy that the superior

performance in TQ is primarily attributed to high topic di-

versity scores. In several instances, the topic diversity score

(TD) of HDDM exceeds 0.90, and sometimes even reaches

1.00, implying its ability in learning distinguishable and non-

duplicated topics. This characteristic can further facilitate

effective content analysis [66]. It is also worth noting that

HDDM consistently outperforms the clustering-based topic

model BERTopic (SBERT and Ada) in the learned topic co-

herence and topic diversity metrics. While BERTopic utilizes

pretrained large language models to obtain document embed-

dings, it regards all documents whose document embeddings

belong to a single cluster as one single document and explicitly
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TABLE V
TOPIC COHERENCE (CV ), TOPIC DIVERSITY (TD), AND TOPIC QUALITY (TQ) METRICS ON FOUR DATASETS. FOR THE HIERARCHICAL TOPIC MODEL

METHODS, INCLUDING HDDM, THE EVALUATION UTILIZES THE BOTTOM-LEVEL (FINEST-GRAINED) TOPIC WORDS. SBERT AND ADA IMPLICITLY

RERANK TOPIC-WORDS. ALL OTHER BASELINES IMPLEMENT A POST-PROCESSING TOPIC-WORD RERANKING METHOD [51].

Clinical Notes Reviews

K=32 K=64 K=128 K=32 K=64 K=128

CV TD TQ CV TD TQ CV TD TQ CV TD TQ CV TD TQ CV TD TQ

LDA-NR 0.37 0.42 0.16 0.35 0.48 0.17 0.33 0.48 0.16 0.34 0.36 0.12 0.32 0.37 0.12 0.3 0.3 0.09
LDA 0.50 0.71 0.36 0.50 0.47 0.23 0.54 0.41 0.22 0.52 0.86 0.45 0.54 0.74 0.40 0.58 0.45 0.26
GSM 0.38 0.54 0.20 0.40 0.57 0.23 0.33 0.56 0.19 0.42 0.72 0.30 0.42 0.45 0.19 0.45 0.30 0.13
hLDA 0.50 0.55 0.27 0.46 0.63 0.29 0.51 0.68 0.35 0.49 0.87 0.42 0.39 0.65 0.25 0.36 0.68 0.25
WHAI 0.51 0.48 0.24 0.48 0.74 0.35 0.55 0.61 0.33 0.44 0.45 0.20 0.36 0.81 0.30 0.47 0.56 0.26
SawETM 0.47 0.68 0.32 0.55 0.47 0.26 0.57 0.75 0.43 0.50 0.76 0.38 0.55 0.70 0.39 0.41 0.66 0.27
HNTM 0.44 0.72 0.31 0.55 0.52 0.28 0.50 0.67 0.33 0.36 0.73 0.26 0.47 0.73 0.35 0.33 0.65 0.22
TSNTM 0.54 0.64 0.34 0.57 0.48 0.27 0.49 0.57 0.28 0.53 0.78 0.41 0.52 0.75 0.39 0.47 0.57 0.27
SBERT 0.47 0.68 0.32 0.41 0.52 0.22 0.48 0.86 0.41 0.36 0.65 0.24 0.38 0.61 0.23 0.37 0.58 0.21
Ada 0.42 0.75 0.32 0.50 0.79 0.39 0.52 0.83 0.43 0.41 0.68 0.28 0.39 0.63 0.24 0.40 0.62 0.25
HDDM 0.48 0.87 0.42 0.42 0.81 0.34 0.53 0.95 0.50 0.43 0.98 0.43 0.49 0.86 0.42 0.54 0.58 0.31

Company Descriptions Newsgroups

K=32 K=64 K=128 K=32 K=64 K=128

CV TD TQ CV TD TQ CV TD TQ CV TD TQ CV TD TQ CV TD TQ

LDA-NR 0.44 0.52 0.23 0.45 0.52 0.23 0.41 0.53 0.22 0.49 0.54 0.26 0.46 0.49 0.23 0.45 0.54 0.24
LDA 0.62 0.81 0.50 0.65 0.68 0.44 0.67 0.58 0.39 0.34 0.89 0.30 0.52 0.74 0.38 0.54 0.58 0.31
GSM 0.53 0.85 0.45 0.56 0.82 0.45 0.40 0.46 0.19 0.51 0.84 0.43 0.41 0.95 0.38 0.40 0.68 0.27
hLDA 0.48 0.70 0.33 0.36 0.73 0.26 0.56 0.67 0.38 0.42 0.68 0.29 0.47 0.67 0.32 0.45 0.65 0.29
WHAI 0.43 0.74 0.32 0.48 0.71 0.35 0.52 0.55 0.29 0.53 0.73 0.39 0.50 0.74 0.37 0.54 0.58 0.31
SawETM 0.49 0.90 0.44 0.49 0.77 0.38 0.61 0.57 0.35 0.59 0.74 0.44 0.64 0.49 0.31 0.58 0.59 0.34
HNTM 0.54 0.80 0.43 0.50 0.63 0.32 0.61 0.37 0.22 0.48 0.77 0.37 0.41 0.81 0.34 0.39 0.73 0.28
TSNTM 0.47 0.63 0.30 0.34 0.89 0.30 0.29 0.43 0.12 0.37 0.87 0.32 0.50 0.59 0.30 0.42 0.86 0.36
SBERT 0.51 0.85 0.43 0.48 0.72 0.35 0.46 0.63 0.29 0.47 0.78 0.37 0.49 0.69 0.34 0.46 0.57 0.26
Ada 0.56 0.63 0.35 0.57 0.76 0.43 0.58 0.85 0.49 0.48 0.83 0.40 0.52 0.75 0.39 0.55 0.60 0.33
HDDM 0.50 1.00 0.50 0.48 0.99 0.47 0.48 0.91 0.44 0.50 0.93 0.46 0.47 0.98 0.46 0.43 0.99 0.43

assumes that a document only exhibits one topic. In practice,

a document can naturally relate to multiple topics. Moreover,

BERTopic uses a simple TF-IDF-based technique to find the

most prominent words within a cluster (topic). In contrast,

the proposed HDDM models leverage deep neural networks

and explicitly model the hierarchical relationships between

topics. Even though the input document is represented in a

bag-of-words fashion, HDDM can still effectively discover the

hierarchical and topical relationships between words, thereby

achieving higher topic coherence and diversity.

To better understand the topic quality of our method, we

further evaluate the topic coherence and topic diversity at

different hierarchical levels. Specifically, we set the overall

hierarchy to three levels and evaluate different hierarchical

settings: 8-16-32, 16-32-64, and 32-64-128 respectively. We

measure the average topic coherence, topic diversity, and

topic quality across the three hierarchical settings and across

the four datasets. The results are presented in Table VI. It

shows that HDDM consistently achieves high topic coherence,

topic diversity, and corresponding topic quality at all three

levels. Moreover, the topic quality achieves the highest at

the top level, indicating that HDDM is capable of learning

distinguishable and diverse coarse-grained topics. The topic

quality gradually and slightly decreases as the hierarchy goes

down from coarse-grained to fine-grained.

TABLE VI
AVERAGE SCORES OF TOPIC COHERENCE, TOPIC DIVERSITY, AND TOPIC

QUALITY METRICS FOR HDDM ACROSS FOUR DATASETS AT TOP,
MIDDLE, AND BOTTOM LEVELS.

CV TD TQ

level mean (std) mean (std) mean (std)

top 0.50 (0.04) 0.96 (0.05) 0.48 (0.05)
middle 0.48 (0.03) 0.92 (0.10) 0.44 (0.05)
bottom 0.47 (0.04) 0.90 (0.12) 0.42 (0.06)

C. Hierarchical Structure Visualization

An advantage of unsupervised text modeling is the ability

to visually present latent topics and examine the face validity

of the outcomes. Such visualization serves as an exploratory

tool for end-users to understand latent themes in the text

corpus and facilitate effective content analysis. In Figure 3,

we present the learned hierarchical topic structures from the

Company Descriptions dataset. Due to space constraints, we

display the hierarchy under the super-topic T10, focusing on

financial markets indicated by top words such as ”bank,”

”invest,” ”exchange,” ”stock,” and ”financial.” Further, T10 is

divided into four sub-branches: T17, T27, T33, and T35, each

representing different topics. For instance, T17 may signify the

stock market topic, with top words like ”exchange,” ”stock,”

”list,” ”index,” and ”trade,” while T27 could represent banking

services, indicated by words such as ”card,” ”payment,” and
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Fig. 3. Topic hierarchy for super-topic T10. The top 10 words with the highest probability (after reranking) under each super-/sub-topic are shown. All words
are shown in their stemmed forms. The T-number is the topic index; for example, T17 is the 17th topic in the model.

”loan.” In addition, T33 suggests the topic of corporate finance,

with words like ”firm,” ”capital,” ”equity,” and ”buyout,”

while T35 may pertain to life and real estate insurance, with

words like ”nation,” ”insurance,” ”life,” and ”real estate.”

Furthermore, these intermediate topics are further divided into

sub-topics. For example, T17 (stock market) is subdivided into

T59 (possibly representing the US market) and T70 (possibly

representing the UK market).

In summary, in this section, we conducted experiments

to evaluate the topic modeling capability of our proposed

approach and demonstrated its efficacy relative to the state-

of-the-art, in document modeling and topic quality tasks. To

better understand the utility of the proposed hierarchical topic

model, we next study its effectiveness in a downstream predic-

tive modeling task in healthcare: patient diagnosis prediction.

VI. APPLICATION: HIERARCHICAL TOPIC MODELING ON

CLINICAL NOTES

Learning from complex, high-dimensional clinical data is

a key challenge for healthcare enhancement. Uncovering in-

sights from abundant clinical notes allows hospitals to develop

better predictive capabilities, enabling them to identify high-

risk patients and facilitate clinicians’ decision making [69],

[70]. For example, predicting patients’ ICU length of stay

based on early clinical notes helps hospitals to manage their

resources [69]. Inferring patients’ diagnoses from early clinical

notes can also help with interventions and healthcare policies.

In this section, we evaluate the practical utility of hier-

archical topic modeling in extracting key information from

clinical notes. In particular, we consider two clinical prediction

tasks: ICU length of stay prediction and patient diagnosis

prediction. Following prior literature [56], we use different

types of clinical notes for different prediction tasks due to

the nature of task. For the ICU length of stay prediction, we

use ICU notes taken in the first 48 hours of a visit, including

nurses’ notes and physicians’ notes, to predict the number of

days remaining in the ICU. For the patient diagnosis prediction

task, we use clinical notes taken in the first 24 hours of a

visit, including ECG notes and radiology notes, of a patient’s

admission to hospital to predict the patient’s diagnosis. Note

that a patient may not necessarily be transferred to an ICU

within the first 24 hours. Following the literature [56], we

obtain 25 conditions commonly recorded in the MIMIC-III

ICD-9 diagnosis table. Thus, the problem becomes a multi-

label classification problem, wherein each patient is associated

with multiple diagnoses.

A. Predictive Methods

Since topic modeling is an unsupervised text analysis ap-

proach, we first train the topic model on the training clinical

notes, and then we obtain and infer the topic vectors of training

and testing clinical notes. We then use a logistic regression

model on the topic vectors as the supervised learning model.

Therefore, the clinical task prediction becomes a two-stage

learning process: first clinical notes are represented in low-

dimensional topic distributions, and second, the learned topic

features serve as input for a logistic regression model [19],

[71]. In the experiment, we include one flat topic modeling

approach (LDA) and one hierarchical topic modeling approach

(hLDA) in our benchmarking.
In addition to the unsupervised topic modeling methods, we

also consider two supervised deep learning approaches for a

fair comparison. The first is a deep learning model Bi-LSTM

as a baseline. In this model, the input words of a clinical

note are represented as pre-trained GloVE word embeddings

[72]. We keep all tokens in the vocabulary, removing only

punctuation and numbers. We choose this model as a baseline

because LSTM models have been used to analyze clinical

notes in prior predictive analytics literature [73].
We also fine-tune a pretrained language model, BERT.

BERT is a popular transformer-based architecture that has

achieved state-of-the-art results across numerous natural lan-

guage processing tasks [74], [75]. However, directly fine-

tuning BERT with clinical notes is not possible, because BERT

requires a fixed input sequence length (512 tokens), which is

usually exceeded by clinical notes. To handle the maximum

length problem, we adopt long-document strategy afforded by

the RoBERTa model [76], which is a hierarchical transformer

designed to handle long text. Using this model, the input text

is divided into k segments. The segments are then fed into a

frozen BERT layer to obtain the representations. The output

of the BERT layer then serves as the input to a bidirectional
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LSTM (Bi-LSTM) layer. As a result, the model is no longer

constrained by the maximum document length.

Note that the purpose of this experiment is to examine

the capability of our proposed approach, HDDM, in learning

from complex, high-dimensional clinical data. The outcome

of HDDM can be then integrated into sophisticated clinical

prediction models such as Doctor AI [77] or models with

multimodal data such as vital signs or lab tests [73], [78].

B. Evaluation Metrics

We use the area under the receiver operating characteristic

(ROC) curve (AUC) for prediction evaluation. An ROC curve

is a two-dimensional graph in which the true positive rate

is plotted against the false positive rate for various decision

threshold settings. The AUC score measures the area under

the ROC curve, giving a single score for classifier model

performance. The value of the AUC score ranges from 0.5 to

1; models with higher AUC scores yield better predictions. We

split the dataset into 80% training, 10% validation and 10%

testing data. We train and tune the models on the training and

validation sets, respectively. We further evaluate the models on

the testing set. We repeat the experiment 30 times by changing

the data split random seed.

C. Task 1: ICU Length of Stay Prediction

This task aims to predict the number of days after a patient

is transferred into the ICU. Length of stay has frequently been

used as a measure of ICU resource use [79], and accurately

predicting length of stay is important for ICU scheduling and

resource management. It also aids decision making on treat-

ments, interventions, and healthcare policies. Early clinical

information, such as nursing notes, are particularly valuable,

especially as information such as laboratory culture results

may not be available at the beginning of a patient’s ICU

stay [79]. Thus, a dependable means of early ICU length stay

prediction would have a major positive impact on ICU care.

Following [56], we frame the length of stay prediction as a

classification problem with eight classes (six classes for each

day after 48 hours after transferal to the ICU, one for stays of

more than one week but fewer than two weeks, and one for

stays over two weeks). We report the one-vs-rest multi-class

classification performance in Table VII. HDDM consistently

performs better than the baseline models. Overall, the macro-

AUC score of HDDM is 0.743, while those of the state-of-the-

art deep learning approaches, BERT and Bi-LSTM, are 0.679

and 0.646, respectively. Thus, HDDM makes a substantial and

significant improvements. For example, HDDM improves over

BERT predictions by 9.4% and Bi-LSTM by 15.0%. Similarly,

HDDM outperforms its unsupervised counterparts LDA and

hLDA by a large margin. We believe that there are two reasons

why unsupervised HDDM with simple logistic regression out-

performs state-of-the-art deep learning approaches. First, this

unsupervised dimensionality-reduction approach is effective

because it addresses the characteristics of clinical notes: noisy,

unstructured, and high-dimensional. Second, clinical notes are

usually very long, i.e., over 1,000 word tokens. Therefore, the

BERT model is constrained by document length. Although

TABLE VII
AUC SCORES FOR ICU LENGTH OF STAY PREDICTION PERFORMANCE,

BASED ON NOTES TAKEN WITHIN THE FIRST 48 HOURS OF TRANSFER TO

THE ICU. “RATIO” REFERS TO THE PERCENTAGE OF CORRESPONDING

CLASS LABELS. “TOTAL” REFERS TO THE MACRO-AUC SCORE.

# days Ratio LDA hLDA Bi-LSTM BERT HDDM

2-3 0.352 0.563 0.576 0.653 0.620 0.660

3-4 0.189 0.589 0.571 0.630 0.635 0.664

4-5 0.114 0.600 0.631 0.601 0.631 0.711

5-6 0.070 0.608 0.618 0.606 0.658 0.682

6-7 0.049 0.598 0.640 0.618 0.655 0.767

7-8 0.035 0.663 0.651 0.566 0.677 0.768

8-14 0.107 0.741 0.725 0.714 0.746 0.806

>14 0.083 0.726 0.733 0.778 0.810 0.885

Total 0.636 0.643 0.646 0.679 0.743

we apply heuristics to address the long document concern, the

BERT model is still prone to under/overfitting.

D. Task 2: Inferring Patient Diagnoses

We study another important clinical prediction task: patient

diagnosis inference. This task may be crucial for healthcare

outcomes. For example, inferring patients’ diagnoses using

early clinical notes such as radiology reports can help physi-

cians to assess the severity of patients’ illnesses and thus

assist clinicians with decision making. In this experiment,

we consider inferring patient diagnoses after 24 hours of

hospitalization. We consolidate the dataset consisting of all

clinical notes within 24 hours of admission to hospital (not

necessarily to an ICU). Following the literature [56], we obtain

25 conditions commonly recorded in the MIMIC-III ICD-9

diagnosis table. Thus, as noted earlier, the problem becomes

a multi-label classification problem, wherein each patient is

associated with multiple diagnoses.

The patient diagnosis prediction results are presented in

Table VIII, leading to the following findings. HDDM consis-

tently outperforms the text analytics baselines both substan-

tially and significantly. For example, across all prediction at

admission tasks, HDDM outperforms BERT by 8.7% in terms

of Macro-AUROC (0.796 vs. 0.732). HDDM also significantly

outperforms LDA and hLDA (0.702 and 0.706, respectively).

Moreover, we can see that the improvements of HDDM over

benchmark methods are consistent across different diagnoses

types. In particular, HDDM attains the best AUC on 24

out of 25 diagnosis class labels. Overall, the results suggest

that HDDM is capable of accurately extracting clinically-

relevant information from complex, high-dimensional clinical

notes resulting in performance gains in topic modeling and

downstream prediction tasks.

VII. CONCLUSION

Traditional topic modeling assumes that there are no topic

hierarchies - however, many real-world textual contexts are

comprised of concept hierarchies encompassing general and

finer-grained subtopics. Failure to explicitly model hierarchi-

cal relationships may result in poor performance in topic

analysis, and may also cascade into poorer performance in

downstream predictive analytics tasks. Although Bayesian and
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TABLE VIII
PATIENT DIAGNOSES USING NOTES TAKEN WITHIN 24 HOURS OF HOSPITALIZATION. PREVALENCE DENOTES PERCENTAGE OF COHORT WITH DIAGNOSIS.

Diagnosis Prevalence LDA hLDA LSTM BERT HDDM

Acute and unspecified renal failure 0.214 0.720 0.718 0.719 0.709 0.799
Acute cerebrovascular disease 0.073 0.850 0.852 0.889 0.924 0.915
Acute myocardial infarction 0.104 0.774 0.776 0.777 0.857 0.887
Cardiac dysrhythmias 0.321 0.722 0.722 0.684 0.754 0.773
Chronic kidney disease 0.134 0.712 0.721 0.719 0.729 0.804
Chronic obstructive pulmonary disease 0.130 0.663 0.675 0.638 0.640 0.730
Complication of surgical/medical care 0.208 0.650 0.659 0.672 0.679 0.735
Conduction disorder 0.072 0.718 0.722 0.693 0.660 0.835
Congestive heart failure 0.268 0.744 0.745 0.737 0.822 0.840
Coronary atherosclerosis and related 0.323 0.771 0.755 0.780 0.840 0.863
Diabetes mellitus with complications 0.095 0.726 0.729 0.701 0.711 0.819
Diabetes mellitus without complications 0.193 0.545 0.556 0.625 0.595 0.635
Disorder of lipid metabolism 0.290 0.621 0.624 0.711 0.683 0.733
Essential hypertension 0.419 0.594 0.591 0.630 0.585 0.651
Fluid and electrolyte disorder 0.269 0.635 0.633 0.703 0.666 0.742
Gastrointestinal hemorrhage 0.073 0.776 0.776 0.739 0.737 0.865
Hypertension with complications 0.132 0.711 0.718 0.691 0.699 0.794
Other liver disease 0.089 0.744 0.748 0.698 0.803 0.845
Other lower respiratory disease 0.052 0.585 0.586 0.646 0.636 0.694
Other upper respiratory disease 0.041 0.660 0.664 0.638 0.736 0.826
Pleurisy 0.087 0.636 0.649 0.662 0.663 0.713
Pneumonia 0.139 0.701 0.707 0.738 0.734 0.807
Respiratory failure 0.181 0.746 0.748 0.793 0.833 0.865
Septicemia 0.143 0.775 0.778 0.756 0.815 0.863
Shock 0.079 0.783 0.787 0.732 0.782 0.872

Macro-AUROC 0.702 0.706 0.711 0.732 0.796

deep learning-based hierarchical methods have been proposed,

existing methods have limitations such as reliance on pre-

defined hierarchies or lack of methods/functions for layer

stacking. To address this research gap, we propose HDDM,

a hierarchical topic model that organizes latent topics in a

hierarchical structure using deep VAE and employs a new ob-

jective that can effectively learn super/sub-topic dependencies.
We conduct experimental analysis on several real-world

datasets to evaluate the performance of HDDM. First, HDDM

better fits the data, as demonstrated by lower perplexity scores

across several datasets. Second, HDDM demonstrates its capa-

bility to learn distinguishable and diverse topics, as evidenced

by metrics such as topic coherence and topic diversity. Third,

topics learned via HDDM and used as input features for patient

diagnosis prediction outperform other topic-modeling features

and more advanced deep learning approaches.
As hierarchical topic modeling is particularly suitable for

industry-level applications when data is plentiful (see Google’s

Rephil for example), this paper, which offers an effective and

efficient solution to hierarchical neural topic modeling, has

potential to make contributions to large web scale applications.

Future work can also build upon the proposed framework and

incorporate prior knowledge or document structural informa-

tion to improve the document modeling capacity. Moreover, a

growing body of research is focusing on identifying effective

data analytics strategies for deriving actionable insights [20].
This research has limitations that can be improved in the

future. First, HDDM infers the tree structure automatically

from the text dataset. In some applications, researchers or prac-

titioners may have prior knowledge about the topic hierarchies;

future work can investigate incorporating domain knowledge

to further enhance the quality of the learned topic hierarchies

[80]. Second, in this work, we study four real-world datasets

spanning consumer reviews, news articles, and clinical notes.

Given the hierarchical nature of topics and documents, future

work can empirically test HDDM in web-scale corpora.
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