L)

Check for
updates

DinoDroid: Testing Android Apps Using Deep Q-Networks

YU ZHAQO, University of Cincinnati, Cincinnati, USA
BRENT HARRISON, University of Kentucky, Lexington, USA
TINGTING YU, University of Connecticut, Storrs, USA

The large demand of mobile devices creates significant concerns about the quality of mobile applications
(apps). Developers need to guarantee the quality of mobile apps before it is released to the market. There
have been many approaches using different strategies to test the GUI of mobile apps. However, they still
need improvement due to their limited effectiveness. In this article, we propose DinoDroid, an approach
based on deep Q-networks to automate testing of Android apps. DinoDroid learns a behavior model from a
set of existing apps and the learned model can be used to explore and generate tests for new apps. DinoDroid
is able to capture the fine-grained details of GUI events (e.g., the content of GUI widgets) and use them as
features that are fed into deep neural network, which acts as the agent to guide app exploration. DinoDroid
automatically adapts the learned model during the exploration without the need of any modeling strategies
or pre-defined rules. We conduct experiments on 64 open-source Android apps. The results showed that
DinoDroid outperforms existing Android testing tools in terms of code coverage and bug detection.

CCS Concepts: « Software and its engineering — Software testing and debugging;
Additional Key Words and Phrases: Mobile testing, deep g-networks, reinforcement learning

ACM Reference Format:
Yu Zhao, Brent Harrison, and Tingting Yu. 2024. DinoDroid: Testing Android Apps Using Deep Q-Networks.
ACM Trans. Softw. Eng. Methodol. 33, 5, Article 122 (June 2024), 24 pages. https://doi.org/10.1145/3652150

1 INTRODUCTION

Mobile applications (apps) have become extremely popular with about three million apps in
Google Play’s app store [11]. The increase in app complexity has created significant concerns about
the quality of apps. Also, because of the rapid releasing cycle of apps and limited human resources,
it is difficult for developers to manually construct test cases. Therefore, different automated mobile
app testing techniques have been developed and applied [27].

Test cases for mobile apps are often represented by sequences of GUI events' to mimic the
interactions between users and apps. The goal of an automated test generator is generating such

n our setting, an event refers to an executable GUI widget associated with an action type (e.g., click, scroll, edit, swipe).

This research is supported in part by the NSF grant CCF-2342355, CCF-1652149, CCF-2403617, CCF-2402103, and CCF-
2246186.

Authors’ addresses: Y. Zhao, University of Cincinnati, Computer Science Department, Rhodes Hall 806B, Cincinnati, Ohio,
45221; e-mail: zhao3y3@ucmail.uc.edu; B. Harrison, University of Kentucky, Computer Science Department, 219 Davis
Marksbury Building, Lexington, Kentucky, 40506; e-mail: harrison@cs.uky.edu; T. Yu (Corresponding author), University
of Connecticut, Computer Science and Engineering Department, 371 Fairfield Way, Unit 4155, Storrs, Connecticut, 06269-
4155; e-mail: tingting.yu@uconn.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1049-331X/2024/06-ART122

https://doi.org/10.1145/3652150

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:2 Y. Zhao et al.

event sequences to achieve high code coverage and/or detecting bugs. A successful test generator
is able to exercise the correct GUI widget on the current app page, so that when exercising that
widget, it can bring the app to a new page, leading to the exploration of new events. However,
existing mobile app testing tools often explore a limited set of events because they have limited
capability of understanding which GUI events would expand the exploration like humans do. This
can lead to automated test generators performing unnecessary actions that are unlikely to lead to
new coverage or detect new bugs.

Many automated GUI testing approaches for mobile apps have been proposed, such as random
testing [14, 50] and model-based testing [17, 18, 20]. Random testing (e.g., Monkey [14]) is
popular in testing mobile apps because of its simplicity and availability. It generates tests by
sending thousands of GUI events per second to the app. While random testing can sometimes be
effective, it is difficult to explore hard-to-reach events to drive the app to new pages because of
the natural of randomness. Model-based testing [20, 61] can improve code coverage by employing
pre-defined strategies or rules to guide the app exploration. For example, A3E [20] employs
depth-first search (DFS) to explore the model of an app under test (AUT) based on event-flow
across app pages. Stoat [61] utilizes a stochastic Finite State Machine model to describe the
behavior of AUT and then utilizes Markov Chain Monte Carlo sampling [25] to guide the testing.
However, model-based testing often relies on human-designed models and it is almost impossible
to precisely model an app’s behavior. Also, many techniques apply pre-defined rules to the model
for improving testing. For example, Stoat [61] designed rules to assign each event an execution
weight in order to speed up exploration. However, these pre-defined rules are often derived from
limited observations and may not generalize to a wide categories of apps.

To summarize, the inherent limitation of the above techniques is that they do not automatically
understand GUI layout and the content of the GUI elements, so it is difficult for them to exercise
the most effective events that will bring the app into new states. Recently, machine learning tech-
niques have been proposed to perform GUI testing in mobile apps [29, 45, 48, 57]. For example,
Humanoid [48] uses deep learning to learn from human-generated interaction traces and uses the
learned model to guide test generation as a human tester. However, this approach relies on human-
generated datasets (i.e., interaction traces) to train a model and needs to combine the model with
a set of pre-defined rules to guide testing.

Reinforcement learning (RL) can teach machine to decide which events to explore rather
than relying on pre-defined models or human-made strategies [38]. A Q-table is used to record the
reward of each event and the information of previous testing knowledge. The reward function can
be defined based on the differences between pages [57] or unique activities [45]. Reinforcement
learners will learn to maximize cumulative reward with the goal of achieving higher code coverage
or detecting more bugs.

While existing RL techniques have improved app testing, they focus on abstracting the informa-
tion of app pages and then use the abstracted features to train behavior models for testing [24, 66].
For example, QBE [24], a Q-learning-based Android app testing tool, abstracts each app page into
five categories based on the number of widgets (e.g., too-few, few, moderate, many, too-many).
The five categories are used to decide which events to explore. However, existing RL techniques
do not understand the fine-grained information of app pages like human testers normally do
during testing, such as the execution frequencies and the content of GUI widgets. This is due
to the limitation of the basic tabular setting of RL, which requires a finite number of states [41].
Therefore, the learned model may not capture the accurate behaviors of the app. Also, many
RL-based techniques focus on training each app independently [15, 53, 57, 65, 66] and thus cannot
transfer the model learned from one app to another.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:3

To address the aforementioned challenges, we propose a novel approach, DinoDroid, based on
deep Q-networks (DQN). DinoDroid learns a behavior model from a set of existing apps and the
learned model can be used to explore and generate tests for new apps. During the training process,
DinoDroid is able to understand and learn the details of app events by leveraging a deep neural
network (DNN) model [46]. More precisely, we have developed a set of features taken as input
by DinoDroid. The insight of these features represents what a human tester would do during the
exploration. For example, a human tester may decide which widget to execute based on its content
or how many times it was executed in the past. DinoDroid does not use any pre-defined rules or
thresholds to tune the parameters of these features but let the DQN agent learn a behavior model
based on the feature values (represented by vectors) automatically obtained during training and
testing phases.

A key novel component of DinoDroid is a DNN model that can process multiple complex fea-
tures to predict Q value for each GUI event to guide Q-learning. With the DNN, DinoDroid can
be easily extended to handle other types of features. Specifically, to test an app, DinoDroid first
trains a set of existing apps to learn a behavior model. The DNN serves as an agent to compute Q
values used to determine the action (i.e., which event to execute) at each iteration. In the meantime,
DinoDroid maintains a special event flow graph (EFG) to record and update the feature vectors,
which are used for DNN to compute Q values.

Because the features are often shared among different apps, DinoDroid is able to apply the model
learned from existing apps to new AUTs. To do this, the agent continuously adapts the existing
model to the new AUT by generating new actions to reach the desired testing goal (e.g., code
coverage).

In summary, our article makes the following contributions:

— An approach to testing Android apps based on deep Q-learning.

— A novel and the first deep Q-learning model that can process complex features at a fine-
grained level.

— An empirical study showing that the approach is effective at achieving higher code coverage
and better bug detection than the state-of-the-art tools.

— The implementation of the approach as a publicly available tool, DinoDroid, along with all
experiment data [9].

2 MOTIVATION AND BACKGROUND

In this section, we first describe a motivating example of DinoDroid, followed by the background
of DQN, the problem formulation, and the discussion of existing work.

2.1 A Motivating Example

Figure 1 shows an example of the app lockpatterngenerator [1]. This simple example demonstrates
the ideas of DinoDroid, but the real testing process is much more complex.

After clicking “Minimum length”, a message box pops up with a textfield and two clickable
buttons. Therefore, the current page of the app has a total of five events (i.e., “restart”, “back”,
“menu”, “OK”, and “Cancel”). The home button is not considered because it is not specific to the
app. When a human tester encounters this page, he/she needs to decide which event to execute
based on his/her prior experience. For example, a tester is likely to execute the events that have
never been executed before. The tester may also need to know the execution context of the current
page (e.g., the layout of next page) to decide which widget to exercise.

In this example, suppose none of the five events on the current page have been executed before.
Intuitively, the tester tends to select the “OK” event to execute because it is more likely to bring
the app to a new page. “Cancel” is very possible to be the next event to consider because “restart”,

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:4 Y. Zhao et al.

Event Text | Execution | # Unvisited | Q-
Frequency children Value
Click 1 | restart 0 Nan -0.31
Click2 | back 0 Nan 0.87
Click3 | menu 0 Nan 1.02
5i7 Click 4 OK 0 Nan 2.20
Minimum length
Click 5 | Cancel 0 Nan 2.01

(a)First time to visit this page

Event Text Execution # Unvisited Q-
Frequency children | Value
Click 1 | restart 0 Nan -0.31
Click2 | back 0 Nan 0.87
Click3 | menu 0 Nan 1.02
) |
Click 4 oK 1 10 0.93
2 13
Click 5 | Cancel 0 Nan 2.01

-> (a) First time to visit this page

-> Click 4 and Execution Fregency+=1
-> Transfer to other page

-> Explore pages

(b) Second time to visit. “Click 4” has 10
unvisited children.

-> Parent page to click ﬁckll Tok | 1t | 0 =3
“Minimum Length”

-> (b) or (c) Second time to visit (c) Second time to visit. “Click 4” has 0
this page unvisited children.

Fig. 1. A Motivating Example.

“back”, and “menu” are general events, so the tester may have already had experience in executing
them when testing other apps. In summary, to decide whether an event has a higher priority to be
executed, the tester may need to consider its “features”, such as how many times it was executed
(i.e., execution frequency) and the content of the widget. DinoDroid is able to automatically learn
a behavior model from a set of existing apps based on these features and the learned model can be
used to test new apps.

Tab.(a)-Tab.(c) in Figure 1 are used to illustrate DinoDroid. In this example, DinoDroid dynam-
ically records the feature values for each event, including the execution frequency, the number of
events not executed on the next page (i.e., child page), and the text on the event associated with
the event. Next, DinoDroid employs a deep neural network to predict the accumulative reward
(i.e., Q value) of each event on the current page based on the aforementioned features and selects
the event that has the largest Q value to execute.

Tab.(a) shows the feature values and Q values when the page appears the first time. Since “OK”
has the largest Q value, it is selected for execution. DinoDroid continues exploring the events on
the new page and updating the Q value. When the second time this page appears, the Q value of
the event on executing “OK” button decreases because it is already executed. As a result, “Cancel”
has the largest Q value and is selected for execution. In this case (Tab.(b)), the child page of “OK”
contains 10 unexecuted events. However, suppose the child page contains zero unexecuted events
(Tab.(c)), the Q value becomes much smaller. This is because DinoDroid tends to select the event
whose child page contains more unexecuted events.

The underlying assumption of our approach is that the application under test should follow the
principle of least surprise (PLS). If an app does not meet the PLS, e.g., an “OK” textual widget
is incorrectly associated with the functionally of “Cancel”, it would mislead DinoDroid when find-
ing the right events to execute. Specifically, DinoDroid exploits the learned knowledge to execute

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:5

Action a,
|
DQN agent

——R—®)

|

:% DNN | Environment
EFE—FE)

I State S, State Sy,q
Reward ry

Fig. 2. Deep Q-Networks.

correct events that result in higher code coverage or triggering bugs. This simple motivating ex-
ample serves to illustrate the concept and functionality of DQN. DON utilizes its ability to analyze
complex features and leverage its training knowledge to determine which event to execute. In Sec-
tion 5.1, we provide an example demonstrating how DQN exhibits deeper exploration capabilities
in comparison to other tools when confronted with a more intricate application scenario.

2.2 Background

2.2.1 Q-Learning. Q-learning [69] is a model-free reinforcement learning method which seeks
to learn a behavior policy for any finite Markov decision process (FMDP), Q-learning finds an
optimal policy, 7, that maximizes expected cumulative reward over a sequence of actions taken.
Q-learning is based on trial-and-error learning in which an agent interacts with its environment
and assigns utility estimates known as Q values to each state.

As shown in Figure 2 the agent iteratively interacts with the outside environment. At each
iteration ¢, the agent selects an action a, € A based on the current state s; € S and executes it on
the outside environment. After exercising the action, there is a new state s;4; € S, which can be
observed by the agent. In the meantime, an immediate reward r; € R is received. Then the agent
will update the Q values using the Bellman equation [23] as follows:

O(styar) «— Q(sp ar) +a s (ry +y * maaXQ(SHh a) — Q(s¢, ar)).

In this equation, « is a learning rate between 0 and 1, y is a discount factor between 0 and 1, s;
is the state at time ¢, and a; is the action taken at time . Once learned, these Q values can be used
to determine optimal behavior in each state by selecting action a; = argmax, Q(s;, a).

2.2.2 Deep Q-Networks. DQN are used to scale the classic Q-learning to more complex state
and action spaces [19, 55]. For the classical Q-learning, Q(s;, a;) are stored and visited in a Q
table. It can only handle the fully observed, low-dimensional state and action space. As shown in
Figure 2, in DQN, a DNN, specifically involving convolutional neural networks (CNN) [7], is
a multi-layered neural network that for a given state s, outputs Q values for each action Q(s;, a).
Because a neural network can input and output high-dimensional state and action space, DQN
has an ability to scale more complex state and action spaces. A neural network can also generalize
Q values to unseen states, which is not possible when using a Q-table. It utilizes the follow loss
function [19] to alter the network to minimize the temporal difference (TD) [28] error as a loss
function loss = ry +y = méixQ(sHl, a) — Q(s¢, az). The y is the discount factor which is between

0 and 1. In other word, with the input of (s;, a;), the neural network is trained to predict the
Q value as

O(ss,ar) =rs +y * méle(st+ls a). (1)

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:6 Y. Zhao et al.

So in a training sample, the input is (s;, a;) and output is the corresponding Q value which can
be computed by r; + y * maxQ(s;1, a).
a

2.3 Terminologies

A GUI widget is a graphical element of an app, such as a button, a text field, and a check box. An
event is an executable GUI widget with a particular event type (e.g., click, long-click, swipe, edit),
so a widget can be associated with one or more events. In our setting, a state s represents an app
page (i.e., a set of widgets shown on the current screen. If the set of widgets is different, we have
another page). We use s; to represent the current state and s;.1 to represent the next state. A reward
r is calculated based on the improvement of coverage. If code coverage increases, r is assigned a
positive number (r=>5 by default); otherwise, r is assigned a negative number (r=-2 by default). An
Agent chooses which event to execute based on the accumulative rewards (i.e., Q values) on the
current observed state. The chosen event is an action. For example, the agent performs an action
by choosing to “click a button A” on the current page. A Policy is n(a, s) = Pr(a; = als; = s), which
maximizes the expected cumulative reward. Q-learning learns a policy to tell the agent what action
to take.

2.4 Limitations of Existing Q-Learning Techniques

The techniques that are mostly related to DinoDroid are Q-learning-based Android app testing [15,
53, 57, 65]. These techniques are all based on a Q-table, which have several limitations. First, Q-
table is not capable of handling high-dimensional features, such as text and image — adding a new
feature space for a state to the Q-table will lead to its exponential growth. For example, a word
embedding feature, represented as an M-dimension vector with N possible values, would need
O(m"™) columns in a Q-table. Second, most existing techniques use the resource ID of an event
to represent the state in a Q-table. However, different apps can have different ID assignments.
Therefore, these techniques often focus on training and testing individual apps and cannot train a
model from multiple apps to test new apps. The only work that uses Q-table to transfer knowledge
among apps is QBE [45]. In order to limit the size of Q-table, QBE abstracts the state (i.e., an app
page) into five categories in terms of the number of widgets on the current page and actions into
seven general categories (i.e., menu, back, click, long-click, text, swipe, contextual). However, such
abstractions may cause the learning to lose a lot of important information when making decisions
on which events to execute.

Unlike traditional Q-learning, DinoDroid designs a novel DNN model that can handle com-
plex features with infinite feature space, such as word embedding with n-length vector and high-
dimensional image matrix. DinoDroid is able to process these features at a fine-grained (i.e., widget)
level as opposed to abstraction [45]. DinoDroid’s features are specifically designed to be general
across apps, so the knowledge learned from existing apps can be transferred into new apps. For
example, the feature regarding “execution frequency” applies to almost every app because explor-
ing new events are always desirable. Also, when considering the “textual content” of events, an
“OK” button in every app may have similar meaning across different apps.

3 DINODROID APPROACH

Figure 3 shows the overview of DinoDroid. An iteration ¢ begins with an app page. In the current
state s;, DinoDroid selects the event e; with the highest accumulative reward (i.e., Q value), per-
forms the corresponding action a;, and brings the app to a new state s;;. After performing a;,
DinoDroid employs a special event flow graph to generate feature values for each event in sy41. A
reward r; is generated based on the observed code coverage and app crashes. A positive number

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:7

Action a,
DQN agent
——8—0)
1
EFEED] Execution Engine
State s, Siyq
Feature generator

Text Content
4—| Event Flow Graph
Execution Frequency

Children Frequency

Features in Future

Reward Interpreter
Reward r,

Fig. 3. Approach Overview.

is assigned to r; if code coverage increases or a unique bug is detected and a negative number is
assigned if the coverage does not change. The deep Q-network agent uses a neural network model
to compute and update the Q value for the event e, responding with a;. The learning process con-
tinues iteratively from the apps provided as the training set. When testing a new app, DinoDroid
uses the learned model as the initial model to guide the testing. The model is updated following
the same process until a time limit is reached or the coverage reaches a plateau.

3.1 DinoDroid’s Algorithm

Algorithm 1 shows the details of DinoDroid. When testing or training an app, DinoDroid first
checks whether there exists a learned model, which saves all learned knowledge (weights on neural
networks) of DinoDroid. If so, the model will be updated to adapt this app; otherwise, DinoDroid
starts building a new model (Line 2). A memory is used to record the samples from earlier iterations
(Line 3), where each sample contains the feature values of the executed event and the associated Q
value. An event flow graph (EFG) is initialized for each app at the beginning of training or testing
(Line 4). Note that the memory and the EFG will be abandoned after completing an iteration of the
current app because the needed information has already been learned and saved in the model. The
details of the EFG will be described in Section 3.2.2. Next, DinoDroid launches the app and reaches
the first page. The initial state of DQN is obtained and the EFG is updated accordingly (Lines 5-6).
The algorithm then takes the current page and the EFG to generate features for each GUI event on
the current page (Line 7). DinoDroid considers three types of features as described in Section 3.2.

Now the iteration begins until a time limit is reached (Lines 8—22). To amplify the chance of
bug detection, DinoDroid issues a random system event at every 10 iterations (Lines 9-10) by us-
ing Stoat [61]’s system event generation library. At each iteration, DinoDroid uses a deep neural
network model to select the event with the highest accumulative reward (i.e., Q value) and per-
form the corresponding action (Line 11). The details of the getActionEvent will be described in
Section 3.3.2. After the execution, the algorithm obtains three kinds of information: the new page,
the current code coverage, and the crash log (may be empty) (Line 12). The information is used to
compute the reward r, (Line 13). Then, the event flow graph G is updated based on the new page
pr+1 (Line 14). With the updated G and the new page, the algorithm can generate features for each
event in the state s,,1 (Line 15). Based on s;, $;+1, a;, and r;, DinoDroid uses the Equation (1) in

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:8 Y. Zhao et al.

ALGORITHM 1: DinoDroid’s testing

Require: App under test AUT, DQN’s Model M with before knowledge, execution time LIMIT
Ensure: updated new M

1: if M not exist then

2: M « buildNewModel() /*First time to run®/

3: Memory <« ¢ /*Memory stores previous samples */

4: G < ¢ /’Initialize event flow graph */

5: po «— execute(AUT) /*First lanuch to get the first page py*/

6: G < updateGraph(py, G) /*update G with new page®/

7: s «— featureGenerator(py,G) /*Every event in sy contains 3 features™/
8

9

: while t < LIMIT do
if t mod 10 equals 0 then

10: sendSystemEvent() /*send random system event*/
11: a; < getActionEvent(s;, M) /*Event selection */

12: pr+1, codeCoverage, crash «— execute(AUT, a;)

13: ry < rewardInterpreter(codeCoverage, crash)

14: G « updateGraph(p;+1, G) /*update G with new page™/
15: s;+1 < featureGenerator(p;+1,G)

16 (s ar) =re+y = m;le(stH, a) where y = 0.6

7. Q «— Q(st, ar)

18: batch « extractTrainBatch(Memory) U (a;,Q)

19: M « updateModel(batch, M) /*Learning for DQN */
20: Memory « Memory U (a;,Q)

21: St41 < Sp

22: return M

Section 2.2.2 to compute the Q value of each event in s; (Line 16). To train the neural network, it
uses a set of training samples, including both the current sample and history samples. Each sam-
ple uses a; as input and Q value as output (i.e., label). The history samples (obtained from earlier
iterations) are recorded in a memory (Lines 17-20). In each iteration, the history sample size is set
to be 4 due to cost-effectiveness. A larger history sample size can be set by users to retain more
historical information for training, but it may also lead to a much higher cost.

3.2 Feature Generation

DinoDroid generates features for each event e. These features are fed into a neural network as
shown in Figure 6 so that the agent can choose an action (i.e., which event to exercise). DinoDroid
currently supports three features, namely, execution frequency of current events, execution frequency
of children events, and textual content of events. DinoDroid employs an EFG at runtime to obtain the
features and transforms them into numerical data format vectors provided as inputs to the neural
network.

3.2.1 Types of Features. Execution frequency of current events (FCR). The insight behind
this feature is that a human often avoids repeatedly executing an event that brings the app to
the same page. Therefore, all GUI events should be given chances to execute. Instead of using
pre-defined rules or thresholds to weigh different events to decide which ones should be assigned
higher priorities to execute [61], DinoDroid automatically guides the selection of events based
on the recorded FCR feature value. FCR encodes the number of times that each event was

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:9

Event e

1" generation

ST [7c1oM <10
v P

m™ generation

Fig. 4. FCD extraction.

executed during the exploration. The feature value is updated by adding one when the event is
executed.

Execution frequency of children events (FCD). A human tester often makes a decision on
which event to execute not only based on the events of current page, but also the succeeding pages
(children pages) after executing an event. For example, if executing an event e brings the app into a
page containing many unexecuted events, e is likely to be selected over the other events that bring
the app into a page containing all events already being executed. Toward this end, DinoDroid uses
the execution frequencies of events on children pages as a feature for each event of the current page.
The mth (m > 0) generation of children pages are defined as the succeeding pages with distance
m from the current event in the event flow graph. As the example shown in Figure 4, the first
generation of children pages contains only one page (i.e., Page;), which results from executing
the selected event (by the agent) on the current page. The second generation of children pages
includes pages resulting from executing all events on the page (Page;). DinoDroid’s FCD feature
encodes the execution frequencies of events in the Kth generation of children pages. By default K
= 3, as we observed that if K > 3, it almost does not affect the selection of an event.

DinoDroid employs a fixed length feature vector for each generation of children pages. Intu-
itively, each element in the vector represents an event on the current generation and the value
of the element records the execution frequency of the event. However, a generation of children
pages may contain a number of events; encoding them all into a feature vector may lead to an
unbearable size of vectors for a neural network to train. Instead, DinoDroid encodes each element
in the vector as the number of events in the current generation that were executed N times, where
N is equal to the index of the vector. By default, the length of the vector is set to 10. For example,
if there is a total of 20 events in the current generation m, where 12 events were never executed
and 8 events were executed twice, the feature vector of m will be [12,0, 8,0, 0, 0,0, 0,0, 0]. Since K
is considered by DinoDroid, it will generate K vectors for the FCD feature.

Textual content of events (TXC). The textual content of events may help the agent make the
decision on which event to select. In the example of Figure 1, the meaning of “OK” event suggests
that it has a higher chance to bring the app to a new page than the other events. To obtain the
TXC feature for each event, DinoDroid first employs Word2Vec [47] to convert each word in the
event to a vector with a fixed length L. The Word2Vec model is trained from a public dataset text8
containing 16 million words and is provided along with the source code of Word2Vec [3].

The text on an event widget can have more than one words, such as “status bar shortcut” in
Figure 5. Therefore, we use the first N words to build the TXC feature. If the number of words on
an widget is smaller than N, DinoDroid fills the vectors with all zeros to pad the words. As a result,
the TXC feature is encoded as a matrix L * N, where L=400 and N = 6 by default. According to
Pennington et al. [58], L >300 has stable performance. We tried {300, 400} in our experiment and

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:10 Y. Zhao et al.

Appearance

Tap to choose full screen or dialog appearance

Invert notification color

Haptic feedback Text and icon are black now

Do not vibr. sing setting buttons Flashlight
Status bar integration Flashlight
Status bar shortcut Fapt ohttype

status bar sho Full brightness

Tap Tashlight shall go full
brightne

Invert notification color

ext and ico black now

Scroll to
bottom

Documentation
Flashlight

a flashlight type

Full brightness

een flashlight shall go ful

Documentation

Online Documentation

A=) — : ™

Preference Page, id=3 Preference Scroll Page id=4

@erence Page, id=3 \ Preference Page,n \

id text FCR | Next | Similar //Id text FCR [Next | Similar
o [Fresart’]| o - a0 M o [Frestart’]| o Y

1 [[back” || o +y” 1 [[back J[o | - [31

2 ||“menu” 0 - /4-2 2 |[“menu” 0 ~ 32

3 el [|4 3 [sausf[[2 | 8] 36
4 | “appre.” 0 - 4 [I“inver.” 0 - 3-7

5 | “haptic..” 0 5 (|“flash.” 0 - 3-8

6 [[saws][]2 | 8]] 43 6 |t o [- [39

7 ||“inver.” 0 4-4 7 |f“onlin.” 0 - 3-10
8 ||“flash.” 0 4-5 8 | “about” 0 -

9 (|“fullb.” 0 4-6 9 | “about.” 0 -

Q “onlin..” 0 4-7 / \ /

Fig. 5. Event Flow Graph Example.

found no different results. We use L=400 because a larger size can better represent the text. We set
N to be 6 because the word number on events is rarely up to 6 based on our observation.

Note that all configuration parameters (e.g., K, L, and N) can be adjusted to be larger values
by users to achieve potentially better coverage, but at the cost of substantial amount of time in
training and testing.

3.2.2 Compacted Event Flow Graph. DinoDroid uses an EFG to obtain features. The graph is
represented by G = (V, E). The set of vertices, V, represent events using their unique IDs. The set
of edges, E, represent event transitions (i.e., from the selected event e to all events in the next page)
triggered by executing e. Each vertex records the three types of features described in Section 3.2.1.
Figure 5 shows an example, where each page is associated with a list of vertices and their features.
The last label (“Similar”) will be discussed later in the section.

DinoDroid’s event flow graph is compacted in order to accommodate DQN. This is also the main
difference from traditional EFGs [17]. In traditional EFG, whenever a new page is encountered, it
will be added as a vertex to the EFG. However, if we use the vertices as states in DQN, it could cause
the states to be huge or even unbounded [21, 26, 54, 59, 61]. Also, when encountering a similar

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:11

page with a minor difference from an earlier page, if DinoDroid treats it as a new state, it could
generate unbounded fake new events and thus waste exploration time. For example, in Figure 5,
there are many same events on the pages triggered by the “scroll” event. If we consider all of the
events for each scroll triggered page, DinoDroid will waste time to execute the same events again
and again without code coverage increase. Therefore, such similar pages should be combined to
avoid this problem.

There have been techniques on compacting EFG for efficient exploration. For example, Stoat [61]
ignores the details of ListView events by categorizing it into “empty” and “non-empty”, so it can
merge two similar pages with only the ListView events are different into the same state. However, it
may lose important information since some of the events triggered by the items under the ListView
may be critical. In contrast, DinoDroid compacts the EFG by merging vertices instead of pages.
Specifically, whenever a new page P’ is encountered, DinoDroid retrieves the pages with the same
Android Activity ID [6] using Ul Automator [13] from the existing EFG. It then compares the text
of each vertex in P’ with the vertices of each of the retrieved pages. If the texts are the same, the
two events are merged into a single vertex. The “Similar” tag in Figure 5 records the information
of the merged vertex (i.e., page id—event id). As such, when an event e is executed, the feature
vectors/matrices of both e’s vertex and its merged vertex are updated. Therefore, the same events
will get an equal chance to be executed.

3.3 DinoDroid’s Deep Q-Networks

DinoDroid’s DQN agent examines the current state of the app and performs an action, i.e., selects
the event with the largest Q value.

3.3.1 DNN Model. One of the key components in DinoDroid is a DNN model, which uses
Equation (1) to compute the Q value. The DNN takes the features of the event from last action a;
as input and outputs the Q value, which is equal to r; + y * maxQ(s;+1, a). Comparing to regular RL

a

using a Q-table, DNN is able to calculate Q values from any dimensions of features for each event.
The DNN model involves feature handling and feature merging. The feature handling component
employs a neural network algorithm to process each individual feature into a specific modality,
represented by a one-dimension vector. The feature merging component combines the vectors of
all features and passes them into the final fully connected layer [67] that is used to determine the
event’s Q value. The purpose of the feature handling process is to help DNN make an accurate
prediction.

Feature handling. DinoDroid employs specific DNN sub-models to process individual features
according to their types. For example, as shown in Figure 6, the TXC feature is processed by a CNN
based on natural language processing (NLP) and maxpool [43]. The FCR feature is handled by
a fully connected layer [67], which is a common and efficient layer in neural network to process
vectors. Other algorithms [42] could also be used but may involve additional cost.

DinoDroid’s DNN model can be easily extended to process other features. For example, users can
take image as another type of feature by leveraging existing image classification algorithms [68].
The DNN model accepts the formats of single value, vector, and matrix. By default, single value
and vector are handled by a fully connected layer and matrix is handled by 1-D CNN [7].

Feature merging,. Since the DNN model predicts a Q value based on all features, it combines the
vectors generated by the feature handling components into a large one-dimensional vector. All
input features to the DNN share the unique loss function described in Section 2.2.2. We leverage
Keras deep learning architecture, which is capable of accepting mixed multiple inputs [32]. It
then utilizes a three-fully connected layers [8] to process the large vector and predicts a Q value.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:12 Y. Zhao et al.

TXC Feature handler FCR feature handler FCD feature handler Other feature handlers
(Not included in this version,

Input: Execution Frequency
of current event (FCR).

O

Fully connected
Jayer o

Vector

Input: Execution Frequency of Input: Other Features (images,
children event (FCD) coordinate values, etc.)

Fully connected W Neural network W
layer

layer
‘ o L
FCD Feature |II—_|—I Other Feature]
Vector

Vectors

[ITTTTTITTI T I TIT] | | Feature merging

TXC Feature // Fully connected layers

|
Output: Q value l:l

/ Input: Textual content of event (TXC)\
“status” “bar”“shortcut"null null null

‘Word2vec
Embedding

CNN

—

Maxpool

rrrig—
Qr1r1Ti1d—
Orrrifd—

LI T I~

Fig. 6. Deep Q-Network Model.

The last layer with a linear activation to output just one value to represent the Q value. We use
a stochastic gradient descent algorithm, Adam [4] to optimize the model with a learning rate
0.0001. The Adam optimization algorithm is an extension of stochastic gradient descent, which
has been widely adopted for deep learning applications in computer vision and natural language
processing [16, 34].

3.3.2 Action Selection. DinoDroid’s DQN agent performs an action by selecting an event to
execute from the current page. For editable events (e.g., text fields), DinoDroid automatically gen-
erates a random string with digit, char, and punctuation. DinoDroid maintains a Q value for each
event. At the first T iterations, DinoDroid executes random events to construct the DQN model.
Randomness is necessary for an agent navigating through a stochastic maze to learn the optimal
policy [63]. By default, T=20. After that, DinoDroid starts to use DNN to select an event.

To determine which event to execute on the current page, DinoDroid uses the e-greedy pol-
icy [64], a widely adopted policy in reinforcement learning, to select the next event. DinoDroid
selects the event with the highest Q value with probability 1 —¢ and a random event with probabil-
ity €. The Q value is computed by the neural network model (Section 2.2.2). The value of ¢ can be
adjusted by users. By default ¢ = 0.2, which is the same as the value used in Q-testing [57]. In order
to amplify the chance of bug detection, DinoDroid also generates system-level events at every 10
iterations, such as screen rotation, volume control, and phone calls [61].

3.3.3 Reward Function. In reinforcement learning, a reward is used to guide training and testing.
DinoDroid’s reward function is based on code coverage and bug detection. Specifically, DinoDroid
sets the reward to a positive number (r=5) when the code coverage increases or revealing a unique
crash and a negative number (r=-2) when the coverage does not change. To determine if a unique
crash is revealed, we resort to the error message. In the log of an app execution, each crash is
associated with an accurate error message. If the same error message has happened before, we
ignore it. The absolute value of positive reward is larger than that of the negative reward is because
the intention is to letting the machine favor higher coverage or detecting bugs. The reward values
are configurable, however, these default values work well on different types of apps, as shown in
the experiments.

Other reward functions, such as measuring the app page state changes may also be used [15,
29, 45,57, 65]. For example, Q-testing [57] calculates the difference between the current page state
and the states of recorded pages.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:13

4 EVALUATION
To evaluate DinoDroid, we consider three research questions:

RQ1: How does DinoDroid compare with the state-of-the-art Android testing tools in terms
of code coverage?

RQ2: How does DinoDroid compare with the state-of-the-art Android testing tools in terms
of bug detection?

RQ3: Can DinoDroid understand the features and learn a correct model?

4.1 Datasets

We need to prepare datasets for evaluating our approach. Since Sapienz [52] and Stoat [61] are
two of the baseline tools that contain publicly available datasets to compare with, we used the
datasets from their articles [27]. The datasets contains a total of 68 apps that falls into 18 domains.
We removed four apps because they crash right after launch on our Intel Atom(x86) emulator. The
executable lines of code in the apps range from 109 to 22,208, indicating that they represent apps
with different levels of complexity.

4.2 Implementation

We conducted our experiment on a four-core 3.60 GHZ CPU (with no GPU acceleration) physi-
cal x86 machine running with Ubuntu 16.04. With this machine, DinoDroid can send an event in
1.43 seconds on average. Diverse interactionsincluding clicks, long-clicks, swipes, edits, back, and
restartsare managed through the Ul Automator [13] on emulators. Widget features and their corre-
sponding Q values, derived from Equation (1), are dynamically identified during app interactions,
enriching the learning mechanism. The system events issued during testing are obtained from An-
droguard [5]. DinoDroid uses Emma [10] to obtain statement coverage. Keras [12] is used to build
and run the deep neural network. The DON agent is implemented by ourselves using Python.

In Section 3, we provide a detailed exposition of our reinforcement learning model. Key speci-
fications include a history buffer size of 4, utilization of the Adam optimizer [4] with a learning
rate of 0.0001, a 0.6 refactor rate, and implementation of an e-greedy policy [64] with ¢ set at 0.2.
Regarding rewards, we assign a value of -2 for negative outcomes and +5 for positive ones.

4.3 Study Operation

We conducted a two-fold cross-validation by randomly splitting the entire dataset of 64 apps into
two sets, each containing 32 apps. The experiment took a total of 128 hours to complete. Adding an
additional fold would extend the duration by approximately three more days. In this process, we
randomly selected one set as the training set and used the other set as the testing set. Subsequently,
in the next fold, we reversed the roles, using the first set as the testing set and the second set as
the training set. This approach ensures that each app in the dataset has an opportunity to be both
in the training and testing sets, enhancing the robustness of our evaluation.

The testing time of DinoDroid is set to one hour for each app, which is consistent with many
other Android app testing tools [48, 52, 57, 65]. The training time of DinoDroid is set to 32 hours
for each app because we train each app in the training set (32 apps) for one hour. Given that RL
has the tendency to exhibit high variability across runs, we repeat the testing for three times. The
results are averaged over the 3 executions of each tool.

4.4 Comparison with Existing Tools

In our research, we aimed at comparing DinoDroid with representative existing tools to demon-
strate its effectiveness and superiority. It would be impractical to allocate 64 hours for each existing

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:14 Y. Zhao et al.

tool, considering the large number of tools available. Therefore, we carefully selected a diverse
set of five tools for comparison: Monkey (random testing) [14], Sapienz (an optimization for Mon-
key) [52], OBE (learning-based testing with a pre-trained model) [45], Q-testing (learning-based
testing without a pre-trained model) [57], and Stoat (model-based testing) [61]. Another criterion
we considered when selecting the baseline tools was the suitability of the number of apps they
support, ensuring comparability with the apps used in DinoDroid and other baseline tools. Both
QBE and Q-testing utilize traditional Q-learning algorithms. While Q-testing does not incorporate
a pre-trained model in its Q-learning approach, it has the capability to employ a pre-trained model
specifically in reward prediction. On the other hand, QBE, similar to our proposed approach
DinoDroid, incorporates a pre-trained model and offers the additional advantage of being able
to train and test on different sets of apps. Monkey is a random testing tool. Stoat employs
model-based testing and pre-defined heuristic methods to explore the less unexecuted actions.
We selected Stoat as a representative model-based testing tool for comparison. Sapienz employs
evolutionary testing. The details of the tools are discussed in Section 7. Through extensive evalua-
tions, DinoDroid consistently outperformed all of these tools in terms of testing performance and
efficiency.

The testing time for all tools is set to one hour. Like DinoDroid, we repeated the experiment
three times. We followed previous work [27, 57] to set 200 milliseconds delay between events
for Monkey to avoid abnormal behaviors. Stoat [61] allocates one hour for model construction
phase and two hours for Gibbs sampling phase. To use Stoat in our one-hour testing, we followed
the suggestion proposed in [57], in which each phase of Stoat is set to 30 minutes for the best
performance.

Note that while the training time of DinoDroid is extensive, we believe the cost will be diluted
as the number of apps increases. If new apps are added to the training set, the existing model
is directly updated without training from scratch. For the existing non-learning-based tools (e.g.,
Monkey, Sapienz), updating pre-defined rules often needs huge professional human effort.

5 RESULTS AND ANALYSIS
5.1 RQI1: Code Coverage

Table 1 shows the results of code coverage obtained from DinoDroid and the other five tools on
64 apps. For each tool, we compute the average of the coverage scores collected in three test runs.
The test results and log files can be found in our experiment dataset [9].

On average, DinoDroid achieves 48.9% line coverage, which is 22.8%, 17.8% 13.7%, 16.1%, and
18.6% more effective than Monkey, Q-testing, QBE, Stoat, and Sapienz, respectively. Specifically,
DinoDroid achieved the highest coverage in 33 apps, compared to 16 apps in Sapienz, 9 in Stoat, 10
in Q-testing, 8 in QBE, and 5 in Monkey. The results indicate that DinoDroid is effective in achieving
high coverage.

We analyzed the app code covered by different tools. Taking the app “Nectroid” [2] as an ex-
ample, many events reside in deep levels of EFG, which require a number of steps to explore. For
instance, two widgets are associated with important functionalities: “add a new site” and “delete
a site”. Exercising the first widget requires 7 steps (launched page — menu — settings — select a
site — new site — fill blankets — OK) and exercising the second widget requires 6 steps (launched
page — menu — settings — select a site — Nectarine(long click) — delete — OK). Monkey, QBE,
and Sapienz failed to cover the two particular sequences because they were not able to navigate
the app to the deep levels. Q-testing failed to reach “delete a site”. It finished “add a new site”, but
was not able to fill in any text information of the new site. Stoat was very close to reach “add a
site”, but at the last step, it selected “Cancel” instead of “OK”. On the other hand, DinoDroid ex-

»

ercised the “OK” widget in 90% of pages that contain “OK”, “Cancel”, and a few other functional

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:15

Table 1. Testing Result for Comparison

#APP. #L0OC Code Coverage # Fault Triggered

Mon. Qt. OBE. St. Sap. DD. | Mon. Qt. OBE. St. Sap. DD.
soundboard 109 31 42 42 42 56 42 0/0 0/0 0/0 0/0 0/0 0/0
gestures 121 26 32 32 32 51 32 0/0 0/0 0/0 0/0 0/0 0/0
fileexplorer 126 31 40 40 40 31 40 0/0 0/0 0/0 0/0 0/0 0/0
adsdroid 236 13 40 29 29 33 25 3/3 3/3 0/0 5/2 3/2 3/0
MunchLife 254 65 63 65 65 71 66 0/0 0/0 0/0 0/0 0/0 0/0
Amazed 340 66 58 69 58 71 73 6/6 0/0 0/0 0/0 3/3 1/1
battery 342 72 71 69 71 54 73 0/0 0/0 0/0 3/3 1/1 9/9
manpages 385 58 58 62 48 67 63 0/0 0/0 0/0 3/0 0/0 3/0
RandomMusicPlayer 400 52 70 65 74 51 60 0/0 0/0 0/0 3/0 0/0 3/0
AnyCut 436 61 60 62 61 65 62 0/0 0/0 0/0 0/0 0/0 0/0
autoanswer 479 11 13 13 26 16 24 0/0 0/0 0/0 4/1 0/0 5/2
LNM 492 54 58 56 62 55 60 0/0 0/0 0/0 6/0 1/1 3/0
baterydog 556 62 55 62 54 67 62 1/1 0/0 0/0 1/1 0/0 0/0
yahtzee 597 38 10 43 49 43 57 1/1 0/0 3/3 3/0 0/0 6/3
LolcatBuilder 646 25 25 20 25 27 52 0/0 0/0 0/0 0/0 0/0 0/0
CounterdownTimer 650 58 60 69 77 45 77 0/0 0/0 0/0 0/0 0/0 0/0
lockpatterngenerator 669 78 69 75 66 79 78 0/0 0/0 0/0 0/0 0/0 0/0
whohasmystuff 729 46 65 66 67 32 74 3/3 0/0 0/0 3/0 0/0 3/0
Translate 799 45 44 43 40 48 47 0/0 0/0 0/0 0/0 0/0 0/0
wikipedia 809 25 27 26 27 29 27 0/0 0/0 0/0 0/0 0/0 6/3
DivideAndConquer 814 83 53 79 52 80 58 0/0 0/0 0/0 0/0 3/3 0/0
zooborns 817 34 20 29 35 36 35 0/0 3/3 0/0 4/1 0/0 3/0
multismssender 828 49 29 48 49 60 68 0/0 0/0 0/0 3/0 0/0 3/0
Mirrored 862 44 45 45 45 45 45 0/0 0/0 0/0 3/0 0/0 3/0
myLock 885 26 29 27 44 30 42 0/0 0/0 0/0 4/1 0/0 6/3
aLogCat 901 66 65 67 70 40 79 0/0 0/0 0/0 0/0 0/0 0/0
aGrep 928 45 38 49 37 54 57 1/0 3/3 9/6 2/2 3/3 9/6
dialer2 978 37 36 38 34 35 46 0/0 0/0 0/0 3/0 1/1 3/0
hndroid 1038 7 10 11 9 8 9 3/3 3/3 2/2 3/3 3/3 4/3
Bites 1060 32 36 28 42 39 50 3/3 3/3 1/1 11/8 3/3 14/11
tippy 1083 82 75 60 74 80 83 0/0 0/0 0/0 0/0 0/0 0/0
weight—chart 1116 38 40 61 41 55 75 2/2 2/2 1/1 3/3 1/1 3/3
importcontacts 1139 40 41 63 37 42 41 0/0 0/0 0/0 0/0 0/0 0/0
worldclock 1242 89 92 92 92 90 89 0/0 0/0 0/0 3/0 0/0 3/0
blokish 1245 41 36 50 36 44 50 3/3 0/0 3/3 0/0 1/1 3/3
aka 1307 53 78 80 61 80 64 2/2 2/2 3/3 0/0 3/3 9/9
Photostream 1375 20 22 14 24 27 21 3/3 3/3 3/3 9/6 3/3 6/3
dalvik—explorer 1375 39 67 69 69 70 70 3/3 3/0 4/3 3/0 4/3 6/3
tomdroid 1519 47 54 50 52 50 53 0/0 0/0 0/0 1/1 0/0 3/3
PasswordMaker 1535 57 61 53 56 33 56 1/1 4/4 8/8 12/9 3/3 11/8
frozenbubble 1706 81 55 58 55 78 74 0/0 0/0 0/0 0/0 0/0 0/0
aarddict 2197 13 31 28 30 14 18 0/0 0/0 0/0 6/6 0/0 0/0
swiftp 2214 13 13 12 13 13 13 0/0 0/0 0/0 0/0 0/0 3/0
netcounter 2454 44 70 67 61 44 76 0/0 1/0 0/0 4/1 0/0 3/0
alarmclock 2491 64 67 64 67 37 70 3/3 1/1 0/0 8/2 3/3 7/1
Nectroid 2536 34 64 31 58 57 70 1/1 1/1 0/0 3/0 1/1 5/2
QuickSettings 2934 52 38 41 38 48 48 0/0 0/0 0/0 0/0 0/0 3/3
MyExpenses 2935 48 38 42 42 20 61 0/0 0/0 0/0 4/1 0/0 3/1
a2dp 3523 43 32 38 41 30 45 0/0 0/0 0/0 1/0 0/0 9/3
mnv 3673 22 44 34 43 8 45 3/3 2/2 3/3 3/3 1/1 6/3
hotdeath 3902 62 52 64 49 64 75 1/1 1/1 2/2 0/0 0/0 2/2
SyncMyPix 4104 21 20 20 25 21 26 0/0 0/0 0/0 3/0 0/0 3/0
jamendo 4430 21 16 24 14 23 26 1/1 1/1 2/2 7/3 0/0 9/3
mileage 4628 19 37 32 31 36 60 4/4 1/1 1/1 10/4 3/3 12/5
sanity 4840 19 25 16 22 15 34 2/2 3/0 2/0 2/0 4/1 5/2
fantastichmemo 8419 24 39 32 22 28 43 3/3 4/4 1/1 5/2 1/1 9/3
anymemo 8428 30 41 30 30 27 43 11 2/2 0/0 4/1 1/1 10/6
Book—Catalogue 9857 34 37 25 11 24 32 3/3 1/1 4/3 3/0 1/1 10/7
Wordpress 10100 5 3 4 5 4 8 0/0 0/0 0/0 9/6 0/0 10/4
passwordmanager 10833 10 3 5 7 4 8 11 0/0 0/0 0/0 0/0 2/0
aagtl 11724 15 18 16 16 17 17 5/5 4/4 3/3 4/4 6/6 4/4
morphoss 17148 12 17 19 18 11 25 4/4 0/0 1/1 6/3 2/2 10/4
addi 19945 14 16 18 17 19 18 6/6 3/3 3/3 6/3 3/3 6/3
k9mail 22208 5 7 11 7 5 7 0/0 0/0 0/0 6/1 1/1 7/1
Overall 39.8 41.5 43 42.1 412 489 73/72 54/47 59/52 189/78 63/59 269/130

DD.= DinoDroid. St.= Stoat Mon.= Monkey Sap.= Sapienz Qt.=Q-testing “a/b” indicates a=#crashes for all and
b=#crashes without system level events.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:16 Y. Zhao et al.

87
80

60

40

20 18

0

0 Monkey DinoDroid o Q-testing DinoDroid 0 Sapienz DinoDroid 0 QBE DinoDroid

DinoDroid

Fig. 7. Comparison of tools in detecting crashes.

widgets during the learning process. We conjecture that this is because DinoDroid is able to learn
that clicking “OK” widget is more likely to increase coverage.

We also examined the efficiency of event numbers, similar to the approach taken in the exist-
ing work of Q-testing [57]. Our testing involved Monkey, Sapienz, QBE, Stoat, Q-testing, and Din-
oDroid, generating event numbers of 14,235, 12,992, 1,456, 2,044, 2,206, and 3,325, respectively, over
the course of one hour. Monkey and Sapienz exhibited significantly higher event numbers com-
pared to the others due to their reliance on model-based testing methodologies. DinoDroid show-
cased a similar level of event numbers as the other model-based testing tools. DinoDroid’s event
number was elevated because it generates random intents, as illustrated in “sendSystemEvent”
in Algorithm 1. DinoDroid exhibited a notable decrease in the number of generated events com-
pared to Monkey within an equivalent testing time frame. This reduction can be attributed to
DinoDroid’s utilization of model-based and learning-based testing methodologies. This reduction
in event numbers is advantageous for bug reproduction or identifying key UI actions that trigger
the occurrence of a bug.

5.2 RQ2: Bug Detection

Table 1 shows the number of unique bugs detected by the six tools (on the left of “/”). We reported
the number of unique bugs detected in all three repeated runs. Like existing tools [52, 57, 61], we
consider a bug to be a crash or an exception. The results showed that DinoDroid detected the
largest number of bugs (269) compared to Monkey (73), Q-testing (54), QBE (59), Stoat (189), and
Sapienz (63)). Specifically, DinoDroid detected most bugs in 38 apps, which is more effective than
Monkey (5), Q-testing (0), QBE (3), Stoat (20), and Sapnize (2).

DinoDroid and Stoat detected a significantly larger number of bugs because they both use andro-
guard [5] to issue system-level events to amplify the chance of bug detection (Section 3.3.2). When
disabling system-level events, DinoDroid still detected the largest number of bugs (130), compared
to Monkey (72), Q-testing (47), QBE (52), Stoat (78), and Sapienz (59). The numbers are reported in
the right side of “/” in Table 1. Specifically, DinoDroid detected most number of bugs in 26 apps,
which is more effective than Monkey (13), Q-testing (4), OBE (6), Stoat (11), and Sapnize (9). The
above results suggest that DinoDroid is effective in detecting bugs.

Figure 7 shows the pairwise comparison of bug detection results between tools (with system-
level events) in a single run. The black bars indicate the number of bugs detected in common and
the grey bars indicate the number of bugs detected uniquely in each tool. For example, Stoat and
DinoDroid detected 50 bugs in common. However, DinoDroid detected 37 bugs not detected by
Stoat and Stoat detected 12 bugs not detected by DinoDroid.

5.3 RQ3: Understanding the Learned Model

The objective of our investigation in this RQ is to delve into the reasoning process of DQN with
respect to the inputted features. Unlike heuristic methods that rely on predefined rules, machine
learning involves storing rules within the weights of neural networks, making them less easily

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:17

interpretable. Guided by the principles of explainable machine learning, as articulated in [22], we
aim at comprehending the decisions suggested by these systems to foster trust. To do this, we
analyzed the logs generated by the DQN agent for the 64 apps.

5.3.1 Understanding the Behaviors of Individual Features. FCR feature. We first would like to
understand the behavior of the FCR feature. Specifically, we would like to know whether Din-
oDroid will assign a higher priority to unexecuted events over executed events in the current
page. We hereby computed the percentage of pages performing expected actions (i.e., triggering
unexecuted events) among all pages. We consider only unexecuted and executed events instead
of execution frequency because we need to silent the influence of children pages (i.e., the FCD
feature) as unexecuted events do not invoke children pages. In total, there are 16,169 pages con-
taining both executed and unexecuted events, with a total of 197,279 events; 85.2% of the pages
performed expected actions. We then computed the probability of randomly selecting an event
from each page and found that only 51.6% of the pages performed expected actions. The results
show that DinoDroid indeed behaves better than a random approach.

FCD feature. We next would like to understand the behavior of the FCD feature. Specifically, we
would like to know whether DinoDroid tends to select events with unexecuted children events
over those with executed children events. To control the variation of event execution frequencies
(FCR), we selected only pages that contain events with the same execution frequency from the
traces. As a result, 495 pages with a total of 3,182 events were selected and 81.2 % of the pages
performed expected actions (i.e., selecting events with unexecuted children events). When using
a random selection, only 33.6% pages performed expected actions.

TXC feature. We also examined if DinoDroid is able to understand the content of events. To do
this, we control the variations of FCR and FCD features by selecting pages that do not contain
any executed events from the traces. A total of 3,060 pages were selected. We hypothesize that if
Q values of these events are different (i.e., their textual content is different), DinoDroid is able to
recognize the content of the widgets (i.e., perform expect actions). The results show that 91% of
pages performed expected actions with the difference between highest Q value and lowest Q value
greater than 10%.

The above results suggest that the behaviors of the app features learned by DinoDroid are mostly
expected.

5.3.2 Understanding the Effectiveness of Individual Features. We next explore how each of the
three features affects the coverage effectiveness of DinoDroid. To achieve this, we repeated the
experiment but disabled the FCR feature, FCD feature, and TXC feature separately. The results
suggest that DinoDroid’s average code coverage is higher than the coverage of the absence of FCR,
FCD, and TXC by 0.7%, 2.4%, 3%, respectively. We conducted an evaluation of code coverage, com-
paring our approach to the random method. Our findings reveal that when using similar settings of
Monkey, Sapienz, QBE, Stoat, and Q-testing, with the text input set as a random event and “sendSys-
temEvent” deleted in Algorithm 1, DinoDroid achieved a code coverage that was 12.4% higher than
the random approach. Furthermore, when we solely removed the DON strategy and employed
randomization, DinoDroid still exhibited a code coverage that was 3.98% higher than the random
method. These results highlight the effectiveness of DinoDroid in enhancing code coverage.

We found the results surprising. Prior to the experiment, we expected the FCR feature to be
the most crucial feature during testing because using event frequency to guide the exploration is
intuitive and has been a common strategy used in existing work [61]. However, the actual result
suggests that the textual feature (TXT) contributes more than the other features. Therefore, it is
very important for a tester or a tool to understand the meaning of text.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:18 Y. Zhao et al.

Table 2. DinoDroid’s Behavior on Every Feature Combination

FCR

D 0 1 2 3 4 5

<(6#1), (1#1), (1#1)> | - | 345 [232 | 1.2 |-0.65|-047
<(1#6); (1#1); (1#1)> | - | 257 | 0.23 [-0.171 | -3.35 | -3.55
<(1#1); (6#1); (1#1)> | - | 3.44 [203 | 0.16 | 0.19 | 0.00
<(1#1); (1#6); (1#1)> | - | 1.01 | 092 | -031 | -3.59 | -3.96
<(1#1); (1#1); (6#1)> | - | 192 | 097 | 1.07 | -09 | -3.2
<(1#1); (1#1); (1#6)> | - | 1.09 | 0.81 | 021 | -3.3 | -4.53
<(1#1); (1#1); (1#1)> | - | 1.01 | 0.78 | -1.66 | -3.86 | -4.32
<(0#0); (0#0); (0#0)> | 10.96 | -4.42 | -4.98 | -5.09 | -5.13 | -5.14

<(A#B); (C#D); (E#F)>: the first generation has A unexecuted events and B events are
executed once; the second generation has C unexecuted events and D events are
executed once; the third generation has E unexecuted events and F events are
executed once.

5.3.3 The Whole DQN Model Behaviors. The above experiment suggests how individual fea-
tures affect the learning process of DinoDroid. We next conducted a deeper analysis to understand
the behaviors of DinoDroid under the combination of the three features. To do this, we randomly
selected a model from the two models learned from the 64 apps (by two cross-fold validation). We
used this model to process the first page of the 32 apps, which were not used to train the model. We
then manually set the values of FCR and TXC features while keeping the TXC feature as default
and see how the model behaves.

As shown in Table 2, “FCR” indicates the execution frequency of the current event is executed
and “FCD” indicates the three generations of children pages with the number of unexecuted events
and the number of events being executed once (i.e., the first two elements in the feature vector).
Each number in the table is the Q value averaged across all events with the same feature setting.
For example, <(6#1); (1#1); (1#1)> + “1” (the second row + the third column) indicates that when
an event is executed once, the first generation of its children page contains six unexecuted events
and one event is executed once, and the second and third generation of its children pages have one
unexecuted events and one event is executed once.

DinoDroid learned the following behaviors as shown in Table 2. First, the Q value of
(6#1);(1#1);(1#1) is larger than that of (1#6);(1#1);(1#1). This indicates that an event with more un-
executed children events in the first generation is more likely to be selected. Second, the Q value
of (1#1);(6#1);(1#1) is larger than that of (1#1);(1#6);(1#1) and the Q value of (1#1); (1#1); (6#1) is
larger than that of (1#1); (1#1); (1#6). This indicates the second and third generation (or perhaps
the subsequence generations) of children events can also guide the exploration like the first gen-
eration. Third, the unexecuted event on the current page has the highest priority to be selected
since its Q value is significantly larger (i.e., FCR=0). Fourth, with the same FCD feature values, the
event with less execution frequency on the current page has a higher priority to be selected since
the Q value is decreasing as the value of FCR increases.

All of the above behaviors align with the intuition on how human would test apps with the three
types of features and demonstrate that DinoDroid’s DQN can automatically learn these behaviors
without the need to manually set heuristic rules.

In our evaluation result in Table 1, we trained machine learning models for 32 hours (each app
for one hour). The reason why we choose 32 apps (32 hours in total) to train is that we need to
separate 64 apps from our dataset to be 32 apps in training and 32 apps in testing. We have also

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:19

conducted an additional experiment to examine the impact of training time on effectiveness. In
this experiment, we trained the models for 16 hours and achieved a code coverage of 47.65625%.
The evaluation results demonstrate that the code coverage obtained from 32 hours of training
surpasses the coverage achieved with 16 hours of training by 1.9%.

6 LIMITATIONS AND THREATS TO VALIDITY

DinoDroid has several limitations. First, DinoDroid currently considers three features. As part
of the future work, we will assess whether other features, such as images of widgets and the
execution of sequences of actions that compose complete use cases, can improve the performance
of DinoDroid. Second, DinoDroid handles feature values represented by matrices or vectors. How-
ever, some features may need more complex representations (e.g., multiple complex matrices) and
processing them may take substantial amount of time. Third, in the current version, DinoDroid
measures line coverage to train the apps, so we focus on open-source apps. DinoDroid can be
extended to handle closed-source apps by collecting method-level coverage or using non-code-
related rewards. Fourth, for a fair comparison, DinoDroid does not utilize extra advantageous
features (e.g., login script, short message records, contact records) in its current version, because
none of the state-of-the-art tools have such features by default. It is also very challenging to
modify the tools to implement these features because we cannot control their installation of apps
and do not know when to run the login scripts. Nevertheless, we believe that adding the extra
functionality might increase the effectiveness of coverage and bug detection in DinoDroid and
the existing tools. For example, after we added the login function in DinoDroid, k9 mail’s code
coverage was increased to 40% in one hour, compared with 7% coverage without the login function.
Su et al. [62] implemented the login function and resolved some usability issues for the six tools
in their study, but the apps in our benchmarks are emma instrumented and thus incompatible
with their tools, which are jacoco instrumented. As part of future work, we will implement the
extra advantageous features in DinoDroid, as well as in the state-of-the-art tools in our study.
We will also compare DinoDroid with more existing tools, such as those studied in [62]. Fifth, the
current version of our approach uses a fixed reward. Existing work (Q-testing [57]) has designed
an adaptive reward function to exploit a neural network to calculated the difference between two
states (app pages) to determine the reward value. We believe that our approach can work with the
adaptive reward function by simply using Q-testing’s trained model to determine the reward value.

The primary threat to the external validity of this work involves the representativeness of the
apps used in our study. Other apps may exhibit different behaviors. We reduce this threat to some
extent by using a set of apps developed and released by prior research work [27], which has been
extensively used by existing Android testing research [48, 56]. These apps were also used by the
baseline tools (i.e., Stoat [61], Sapienz [52]) in our study.

Some widgets may use icons (images) rather than text to interact with users. DinoDroid’s current
features do not include images because of the high computation costs. However, it has no problem
adding images in the framework (other features in Figure 6) in the future version.

The primary threat to internal validity involves potential errors in the implementations of Din-
oDroid. We control this threat by testing our tools extensively and verifying their results against
a small-scale program for which we can manually determine the correct results.

DinoDroid requires a dedicated training phase. While the initial 32 hours of training may ap-
pear significant, they establish a strong base for attaining consistent and dependable performance
during subsequent testing iterations. To expedite the overall training time and improve the practi-
cality of DinoDroid in real-world scenarios, we can employ techniques such as parallelization or
leveraging distributed computing resources [40], active learning [70], and machine learning with
transformed data [71].

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:20 Y. Zhao et al.

7 RELATED WORK

There have been a number of techniques on automated Android GUI testing. Random testing [14]
uses random strategies to generate events. Because of its simplicity and availability, it can send
thousands of events per second to the apps and can thus get high code coverage. However, the
generated events may be largely redundant and ineffective. DynoDroid [50] improved random
testing by exploring the app in a manner that can avoid testing redundant widgets. But it may
still be ineffective in reaching functionalities involving deep levels of the app due to randomness.
Sapienz [52] uses multi-objective search-based testing to maximize coverage and fault revelation
at the same time to optimize test sequences and minimize length. TimeMachine [30] enhances
random testing with the ability to jump to a state in the past.

Model-based [17, 18, 20, 21, 35, 36, 72—74] build and use a GUI model of the app to generate
tests. The models are usually represented by finite state machines to model app states and their
transitions. For example, Stoat [61] utilizes a stochastic Finite State Machine model to describe
the behavior of app under test. Section 2.2 discusses Stoat. APE [36] is a Monkey-based model
testing tool. It can increase the testing precision by optimizing the model. Unlike model-based
testing, DinoDroid does not need to model the app behaviors. Instead, it can automatically learn
app behaviors by deep Q-networks.

Systematic testing tools, such as symbolic execution [33, 51], aims at generating test cases to
cover some code that is hard to reach. While symbolic execution may be able to exercise function-
alities that are hard to reach, it is less scalable and not effective in code coverage or bug detection.

Machine learning techniques have also been used in testing Android apps. These techniques can
be classified into two categories [57]. The techniques in the first category typically have an explicit
training process to learn knowledge from existing apps then apply the learned experience on new
apps [24, 29, 45, 48, 49]. For example, QBE [45] learns how to test android apps in a training set by
a Q-learning. As discussed in Section 2.4, QBE is not able to capture fine-grained app behaviors
due to the limitations of Q-learning.

In addition to QBE, Degott et al. [24] use learning to identify valid interactions for a GUI
widget (e.g., whether a widget accepts interactions). It then uses this information to guide app
exploration. Their following work [29] uses MBA reinforcement learning to guide the exploration
based on the abstracted features: valid interactions and invalid interactions. However, like QBE,
these techniques can not handle complex app features because of the high-level abstraction of
state information.

Humanoid [48] employs deep learning to train a model from labeled human-generated inter-
action traces and uses the model together with a set of heuristic rules to guide the exploration
of new apps. The result of deep learning is only used to select one event from the unexplored
events on the current page. If all events on the current page are explored, the heuristic rules will
be used to compute the shortest path in a graph to find a page with unexplored events. In contrast,
DinoDroid does not need to manually build/label the training set or use any pre-defined search
strategies or rules to guide testing. AppFlow [39] generates GUI tests from high-level, manually
written test cases. It leverages machine learning to match screens and widgets to individual tests.
Juha Eskonen et al. [31], Faraz YazdaniBanafsheDaragh et al. [75], and Zigian Zhang et al. [76] em-
ploy deep reinforcement learning to perform Ul testing for applications. These works specifically
focus on the image feature and do not perform extensive empirical studies by comparing other
tools to assess their performance. In contrast, DinoDroid’s feature merging component is able to
handle multiple complex features. DinoDroid targets at Android apps and performs an extensive
empirical study.

The techniques in the second category do not have explicit training process [15, 44, 53, 57, 65, 66].
Instead, they use Q-learning to guide the exploration of individual apps, where each app generates

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:21

a unique behavior model. These techniques share the same limitations with Q-learning, where
complex features cannot be maintained in the Q-table. For example, QDROID [66], DRIFT [37],
and ARES [60] design the deep neural network agents to guide the exploration of Android apps.
However, like QBE, the widgets are abstracted into several categories or boolean values. The
abstraction of the states and actions may cause the loss of information in individual widgets.
Wuji [77] combines reinforcement learning with evolutionary algorithms to test Android game
apps. It designs a unique state vector for each game used as the position of the player character
or the health points. Therefore, Wuji can not transfer the learned knowledge to new apps.
Q-testing [57] s main contribution is the design of a reward function to improve the performance
of Q-testing by calculating the difference between the current state and the recorded states. Our
work is orthogonal to Q-testing and one can improve the performance of DinoDroid by utilizing
Q-testing’s reward function.

8 CONCLUSIONS

We have presented DinoDroid, an automated approach to test Android application. It is a deep Q-
learning-based approach, which can learn how to test android application rather than depending
on heuristic rules. DinoDroid can take more complex features than existing learning-based meth-
ods as the input by using a Deep Q learning-based structure. With these features, DinoDroid can
process complex features on the pages of an app. Based on these complex features, DinoDroid can
learn a policy targeting at achieving high code coverage. We have evaluated DinoDroid on 64 apps
from a widely used benchmark and showed that DinoDroid outperforms the state-of-the-art and
state-of-practice Android GUI testing tools in both code coverage and bug detection. By analyzing
the testing traces of the 64 apps, we are also able to tell that the machine really understands the
features and provides a sensible strategy to generate tests.

REFERENCES

[1] 2013. lockpatterngenerator. Retrieved from https://github.com/dharmik/lockpatterngenerator. Access date 2024.
] 2015. nectroid. Retrieved from https://github.com/cknave/nectroid. Access date: 2024.
] 2021. word2vec. Retrieved from https://github.com/dav/word2vec. Access date: 2024.
[4] 2022. adam. Retrieved from https://keras.io/api/optimizers/adam/. Access date: 2024.
] 2022. Androguard. Retrieved from https://github.com/androguard/androguard. Access date: 2024.
] 2022. Android Activity. Retrieved from https://developer.android.com/reference/android/app/Activity. Access date:
2024.
] 2022. Conv1D layer. Retrieved from https://keras.io/api/layers/convolutionjayers/convolution1d/. Access date: 2024.
] 2022. Dense layer. Retrieved from https://keras.io/api/layers/corejayers/dense/. Access date: 2024.
] 2022. DinoDroid. Retrieved from https://github.com/softwareTesting123/DinoDroid. Access date: 2024.
0] 2022. EMMA. Retrieved from http://emma.sourceforge.net/. Access date: 2024.
] 2022. Google Play Data. Retrieved from https://en.wikipedia.org/wiki/Googleplay. Access date: 2024.
] 2022. Keras. Retrieved from https://keras.io/. Access date: 2024.
] 2022.UI Automator. Retrieved from https://developer.android.com/training/testing/other- components/ui-automator.
Access date: 2024.
[14] 2022. Ul/Application Exerciser Monkey. Retrieved from https://developer.android.com/studio/test/monkey.html. Ac-
cess date: 2024.
[15] David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée Bryce. 2018. Reinforcement learning for android gui
testing. In Proceedings of the International Workshop on Automating TEST Case Design, Selection, and Evaluation. 2-8.
[16] Md Nawab Yousuf Ali, Md Golam Sarowar, Md Lizur Rahman, Jyotismita Chaki, Nilanjan Dey, and Jodo Manuel RS
Tavares. 2019. Adam deep learning with SOM for human sentiment classification. International Journal of Ambient
Computing and Intelligence 10, 3 (2019), 92-116.
[17] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De Carmine, and Atif M. Memon. 2012.
Using GUI ripping for automated testing of android applications. In Proceedings of the International Conference on
Automated Software Engineering. 258-261.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:22 Y. Zhao et al.

(18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]

[31]

[32]
[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]

[43]

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung Ta, and Atif M Memon. 2015. Mobi-
GUITAR: Automated model-based testing of mobile apps. IEEE Software 32, 5 (2015), 53-59.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. Deep reinforcement
learning: A brief survey. IEEE Signal Processing Magazine 34, 6 (2017), 26-38.

Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration for systematic testing of android apps.
In Proceedings of the ACM SIGPLAN Notices. 641-660.

Young-Min Baek and Doo-Hwan Bae. 2016. Automated model-based android GUI testing using multi-level GUI com-
parison criteria. In Proceedings of the International Conference on Automated Software Engineering. 238-249.

Vaishak Belle and Ioannis Papantonis. 2021. Principles and practice of explainable machine learning. Frontiers in Big
Data (2021), 39.

Richard Bellman. 1952. On the theory of dynamic programming. National Academy of Sciences of the United States of
America 38, 8 (1952), 716.

Nataniel P. Borges, Maria Gomez, and Andreas Zeller. 2018. Guiding app testing with mined interaction models. In
Proceedings of the International Conference on Mobile Software Engineering and Systems. IEEE, 133-143.

Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolis-hastings algorithm. The American Statis-
tician 49, 4 (1995), 327-335.

Wontae Choi, George Necula, and Koushik Sen. 2013. Guided gui testing of android apps with minimal restart and
approximate learning. In Proceedings of the ACM SIGPLAN Notices. ACM, 623-640.

Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Automated test input generation for android:
Are we there yet?. In Proceedings of the International Conference on Automated Software Engineering. 429-440.

Peter Dayan. 1993. Improving generalization for temporal difference learning: The successor representation. Neural
Computation 5, 4 (1993), 613-624.

Christian Degott, Nataniel P. Borges Jr, and Andreas Zeller. 2019. Learning user interface element interactions. In
Proceedings of the International Symposium on Software Testing and Analysis. 296—-306.

Zhen Dong, Marcel Bohme, Lucia Cojocaru, and Abhik Roychoudhury. 2020. Time-travel testing of android apps. In
Proceedings of the International Conference on Software Engineering. IEEE, 481-492.

Juha Eskonen, Julen Kahles, and Joel Reijonen. 2020. Automating GUI testing with image-based deep reinforcement
learning. In Proceedings of the International Conference on Autonomic Computing and Self-Organizing Systems. IEEE,
160-167.

Qishuo Gao, Samsung Lim, and Xiuping Jia. 2018. Hyperspectral image classification using convolutional neural net-
works and multiple feature learning. Remote Sensing 10, 2 (2018), 299.

Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android testing via synthetic symbolic
execution. In Proceedings of the International Conference on Automated Software Engineering. 419-429.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. 2015. Draw: A recurrent neural net-
work for image generation. In Proceedings of the International Conference on Machine Learning. 1462-1471.

Tianxiao Gu, Chun Cao, Tianchi Liu, Chengnian Sun, Jing Deng, Xiaoxing Ma, and Jian Lii. 2017. Aimdroid: Activity-
insulated multi-level automated testing for android applications. In Proceedings of the International Conference on
Software Maintenance and Evolution. 103-114.

Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao, Qirun Zhang, Jian Lu, and Zhendong Su.
2019. Practical GUI testing of android applications via model abstraction and refinement. In Proceedings of the 2019
IEEE/ACM 41st International Conference on Software Engineering. IEEE, 269-280.

Luke Harries, Rebekah Storan Clarke, Timothy Chapman, Swamy VPLN Nallamalli, Levent Ozgur, Shuktika Jain,
Alex Leung, Steve Lim, Aaron Dietrich, José Miguel Hernandez-Lobato, and others. 2020. Drift: Deep reinforcement
learning for functional software testing. arXiv preprint arXiv:2007.08220 (2020).

M. Mainegra Hing, Aart van Harten, and P. C. Schuur. 2007. Reinforcement learning versus heuristics for order accep-
tance on a single resource. Journal of Heuristics 13, 2 (2007), 167-187.

Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: Using machine learning to synthesize robust, reusable Ul tests.
In Proceedings of the Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 269-282.

Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. 2018. Exploring hidden dimensions in parallelizing convolutional
neural networks. In Proceedings of the ICML. 2279-2288.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I. Jordan. 2018. Is Q-learning provably efficient? Advances
in Neural Information Processing Systems 31, (2018).

Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough. 2018. Predicting the computational
cost of deep learning models. In Proceedings of the 2018 IEEE International Conference on Big Data. IEEE, 3873-3882.
Y. Chen. 2015. Convolutional neural network for sentence classification. University of Waterloo.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

DinoDroid: Testing Android Apps Using Deep Q-Networks 122:23

[44]

(45]

(46]
(47]

(48]

Yavuz Koroglu and Alper Sen. 2021. Functional test generation from UI test scenarios using reinforcement learning
for android applications. Software Testing, Verification and Reliability 31, 3 (2021), e1752.

Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tanriverdi, and Yunus Donmez. 2018. QBE:
QLearning-based exploration of android applications. In Proceedings of the International Conference on Software Testing,
Verification and Validation. 105-115.

Hugo Larochelle, Yoshua Bengio, Jérome Louradour, and Pascal Lamblin. 2009. Exploring strategies for training deep
neural networks. Journal of Machine Learning Research 10, 1 (2009), 1-40.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with lessons learned from word
embeddings. Transactions of the Association for Computational Linguistics 3, 2015 (2015), 211-225.

Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A deep learning-based approach to auto-
mated black-box android app testing. In Proceedings of the International Conference on Automated Software Engineering.
1070-1073.

[49] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test transfer across mobile apps through semantic mapping.

(50]
(51]
(52]

(53]

[54]

[55]

[56]

(57]

In Proceedings of the International Conference on Automated Software Engineering. 42—53.

Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input generation system for android apps.
In Proceedings of the Joint Meeting on Foundations of Software Engineering. 224-234.

Riyadh Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented evolutionary testing of android apps.
In Proceedings of the International Symposium on Foundations of Software Engineering. 599-609.

Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for android applications. In
Proceedings of the International Symposium on Software Testing and Analysis. 94-105.

Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro Santoro. 2012. Autoblacktest: Automatic black-box
testing of interactive applications. In Proceedings of the International Conference on Software Testing, Verification and
Validation. 81-90.

Atif Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. GUI ripping: Reverse engineering of graphical user inter-
faces for testing. In Proceedings of the Working Conference on Reverse Engineering. 260-269.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Mar-
tin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou,
Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-level control through
deep reinforcement learning. Nature 518, 7540 (2015), 529-533.

Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas, Christopher Vendome, and Denys Poshyvanyk. 2016.
Automatically discovering, reporting and reproducing android application crashes. In Proceedings of the 2016 IEEE
International Conference on Software Testing, Verification and Validation. IEEE, 33-44.

Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020. Reinforcement learning based curiosity-
driven testing of android applications. In Proceedings of the International Symposium on Software Testing and Analysis.
153-164.

[58] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation.

[59]
[60]

[61]

[62]

[63]
[64]

[65]

[66]

(67]

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. 1532-1543.

Michael Pradel, Parker Schuh, George Necula, and Koushik Sen. 2014. EventBreak: Analyzing the responsiveness of
user interfaces through performance-guided test generation. ACM SIGPLAN Notices 49, 10 (2014), 33-47.

Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. 2022. Deep reinforcement learning for black-
box testing of android apps. ACM Transactions on Software Engineering and Methodology 31, 4 (2022), 1-29.

Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong Su. 2017.
Guided, stochastic model-based GUI testing of android apps. In Proceedings of the Joint Meeting on Foundations of
Software Engineering. 245-256.

Ting Su, Jue Wang, and Zhendong Su. 2021. Benchmarking automated GUI testing for android against real-world
bugs. In Proceedings of the 29th ACM Jjoint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 119-130.

Arryon D. Tijsma, Madalina M Drugan, and Marco A Wiering. 2016. Comparing exploration strategies for g-learning
in random stochastic mazes. In Proceedings of the Symposium Series on Computational Intelligence. 1-8.

Michel Tokic and Giinther Palm. 2011. Value-difference based exploration: Adaptive control between epsilon-greedy
and softmax. In Proceedings of the Annual Conference on Artificial Intelligence. 335-346.

Thi Anh Tuyet Vuong and Shingo Takada. 2018. A reinforcement learning based approach to automated testing of
android applications. In Proceedings of the International Workshop on Automating TEST Case Design, Selection, and
Evaluation. 31-37.

Thi Anh Tuyet Vuong and Shingo Takada. 2019. Semantic analysis for deep g-network in android GUI testing. In
Proceedings of the SEKE. 123-170.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. 2013. Regularization of neural networks using
dropconnect. In Proceedings of the International Conference on Machine Learning. PMLR, 1058-1066.

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

122:24 Y. Zhao et al.

[68] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu. 2016. Cnn-rnn: A unified framework
for multi-label image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2285-2294.

[69] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8, 3—4 (1992), 279-292.

[70] Xiaoxue Wu, Wei Zheng, Xiang Chen, Yu Zhao, Tingting Yu, and Dejun Mu. 2021. Improving high-impact bug report
prediction with combination of interactive machine learning and active learning. Information and Software Technology
133, May 2021 (2021), 106530.

[71] Peng Xu, Xiatian Zhu, and David A Clifton. 2023. Multimodal learning with transformers: A survey. IEEE Transactions
on Pattern Analysis and Machine Intelligence 45, 10 (2023), 12113-12132.

[72] Jiwei Yan, Linjie Pan, Yaqi Li, Jun Yan, and Jian Zhang. 2018. LAND: A user-friendly and customizable test generation
tool for android apps. In Proceedings of the International Symposium on Software Testing and Analysis. 360-363.

[73] Jiwei Yan, Tianyong Wu, Jun Yan, and Jian Zhang. 2017. Widget-sensitive and back-stack-aware GUI exploration for
testing android apps. In Proceedings of the International Conference on Software Quality, Reliability and Security. 42-53.

[74] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A grey-box approach for automated GUI-model generation of mobile
applications. In Proceedings of the International Conference on Fundamental Approaches to Software Engineering. 250—
265.

[75] Faraz YazdaniBanafsheDaragh and Sam Malek. 2021. Deep GUI: Black-box GUI input generation with deep learning.
In Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering. 905-916.

[76] Zigian Zhang, Yulei Liu, Shengcheng Yu, Xin Li, Yexiao Yun, Chunrong Fang, and Zhenyu Chen. 2022. UniRLTest:
Universal platform-independent testing with reinforcement learning via image understanding. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis. 805-808.

[77] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu, Ruimin Shen, Yingfeng Chen, and
Changjie Fan. 2019. Wuji: Automatic online combat game testing using evolutionary deep reinforcement learning. In
Proceedings of the International Conference on Automated Software Engineering. 772-784.

Received 19 October 2022; revised 13 February 2024; accepted 20 February 2024

ACM Trans. Softw. Eng. Methodol., Vol. 33, No. 5, Article 122. Publication date: June 2024.

