

DinoDroid: Testing Android Apps Using Deep Q-Networks

YU ZHAO, University of Cincinnati, Cincinnati, USA

BRENT HARRISON, University of Kentucky, Lexington, USA

TINGTING YU, University of Connecticut, Storrs, USA

The large demand of mobile devices creates significant concerns about the quality of mobile applications (apps). Developers need to guarantee the quality of mobile apps before it is released to the market. There have been many approaches using different strategies to test the GUI of mobile apps. However, they still need improvement due to their limited effectiveness. In this article, we propose DinoDroid, an approach based on deep Q-networks to automate testing of Android apps. DinoDroid learns a behavior model from a set of existing apps and the learned model can be used to explore and generate tests for new apps. DinoDroid is able to capture the fine-grained details of GUI events (e.g., the content of GUI widgets) and use them as features that are fed into deep neural network, which acts as the agent to guide app exploration. DinoDroid automatically adapts the learned model during the exploration without the need of any modeling strategies or pre-defined rules. We conduct experiments on 64 open-source Android apps. The results showed that DinoDroid outperforms existing Android testing tools in terms of code coverage and bug detection.

CCS Concepts: • Software and its engineering → Software testing and debugging;

Additional Key Words and Phrases: Mobile testing, deep q-networks, reinforcement learning

ACM Reference Format:

Yu Zhao, Brent Harrison, and Tingting Yu. 2024. DinoDroid: Testing Android Apps Using Deep Q-Networks. *ACM Trans. Softw. Eng. Methodol.* 33, 5, Article 122 (June 2024), 24 pages. <https://doi.org/10.1145/3652150>

1 INTRODUCTION

Mobile applications (apps) have become extremely popular with about three million apps in Google Play's app store [11]. The increase in app complexity has created significant concerns about the quality of apps. Also, because of the rapid releasing cycle of apps and limited human resources, it is difficult for developers to manually construct test cases. Therefore, different automated mobile app testing techniques have been developed and applied [27].

Test cases for mobile apps are often represented by sequences of GUI events¹ to mimic the interactions between users and apps. The goal of an automated test generator is generating such

¹In our setting, an event refers to an executable GUI widget associated with an action type (e.g., click, scroll, edit, swipe).

This research is supported in part by the NSF grant CCF-2342355, CCF-1652149, CCF-2403617, CCF-2402103, and CCF-2246186.

Authors' addresses: Y. Zhao, University of Cincinnati, Computer Science Department, Rhodes Hall 806B, Cincinnati, Ohio, 45221; e-mail: zhao3y3@ucmail.uc.edu; B. Harrison, University of Kentucky, Computer Science Department, 219 Davis Marksbury Building, Lexington, Kentucky, 40506; e-mail: harrison@cs.uky.edu; T. Yu (Corresponding author), University of Connecticut, Computer Science and Engineering Department, 371 Fairfield Way, Unit 4155, Storrs, Connecticut, 06269-4155; e-mail: tingting.yu@uconn.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1049-331X/2024/06-ART122

<https://doi.org/10.1145/3652150>

event sequences to achieve high code coverage and/or detecting bugs. A successful test generator is able to exercise the correct GUI widget on the current app page, so that when exercising that widget, it can bring the app to a new page, leading to the exploration of new events. However, existing mobile app testing tools often explore a limited set of events because they have limited capability of understanding which GUI events would expand the exploration like humans do. This can lead to automated test generators performing unnecessary actions that are unlikely to lead to new coverage or detect new bugs.

Many automated GUI testing approaches for mobile apps have been proposed, such as random testing [14, 50] and model-based testing [17, 18, 20]. Random testing (e.g., Monkey [14]) is popular in testing mobile apps because of its simplicity and availability. It generates tests by sending thousands of GUI events per second to the app. While random testing can sometimes be effective, it is difficult to explore hard-to-reach events to drive the app to new pages because of the nature of randomness. Model-based testing [20, 61] can improve code coverage by employing pre-defined strategies or rules to guide the app exploration. For example, A3E [20] employs **depth-first search (DFS)** to explore the model of an **app under test (AUT)** based on event-flow across app pages. Stoat [61] utilizes a stochastic Finite State Machine model to describe the behavior of AUT and then utilizes Markov Chain Monte Carlo sampling [25] to guide the testing. However, model-based testing often relies on human-designed models and it is almost impossible to precisely model an app's behavior. Also, many techniques apply pre-defined rules to the model for improving testing. For example, Stoat [61] designed rules to assign each event an execution weight in order to speed up exploration. However, these pre-defined rules are often derived from limited observations and may not generalize to a wide categories of apps.

To summarize, the inherent limitation of the above techniques is that they do not *automatically* understand GUI layout and the content of the GUI elements, so it is difficult for them to exercise the most effective events that will bring the app into new states. Recently, machine learning techniques have been proposed to perform GUI testing in mobile apps [29, 45, 48, 57]. For example, Humanoid [48] uses deep learning to learn from human-generated interaction traces and uses the learned model to guide test generation as a human tester. However, this approach relies on human-generated datasets (i.e., interaction traces) to train a model and needs to combine the model with a set of pre-defined rules to guide testing.

Reinforcement learning (RL) can teach machine to decide which events to explore rather than relying on pre-defined models or human-made strategies [38]. A Q-table is used to record the reward of each event and the information of previous testing knowledge. The reward function can be defined based on the differences between pages [57] or unique activities [45]. Reinforcement learners will learn to maximize cumulative reward with the goal of achieving higher code coverage or detecting more bugs.

While existing RL techniques have improved app testing, they focus on abstracting the information of app pages and then use the abstracted features to train behavior models for testing [24, 66]. For example, QBE [24], a Q-learning-based Android app testing tool, abstracts each app page into five categories based on the number of widgets (e.g., too-few, few, moderate, many, too-many). The five categories are used to decide which events to explore. However, existing RL techniques do not understand the fine-grained information of app pages like human testers normally do during testing, such as the execution frequencies and the content of GUI widgets. This is due to the limitation of the basic tabular setting of RL, which requires a finite number of states [41]. Therefore, the learned model may not capture the accurate behaviors of the app. Also, many RL-based techniques focus on training each app independently [15, 53, 57, 65, 66] and thus cannot transfer the model learned from one app to another.

To address the aforementioned challenges, we propose a novel approach, DinoDroid, based on **deep Q-networks (DQN)**. DinoDroid learns a behavior model from a set of existing apps and the learned model can be used to explore and generate tests for new apps. During the training process, DinoDroid is able to understand and learn the details of app events by leveraging a **deep neural network (DNN)** model [46]. More precisely, we have developed a set of features taken as input by DinoDroid. The insight of these features represents what a human tester would do during the exploration. For example, a human tester may decide which widget to execute based on its content or how many times it was executed in the past. DinoDroid does not use any pre-defined rules or thresholds to tune the parameters of these features but let the DQN agent learn a behavior model based on the feature values (represented by vectors) automatically obtained during training and testing phases.

A key novel component of DinoDroid is a DNN model that can process multiple complex features to predict Q value for each GUI event to guide Q-learning. With the DNN, DinoDroid can be easily extended to handle other types of features. Specifically, to test an app, DinoDroid first trains a set of existing apps to learn a behavior model. The DNN serves as an agent to compute Q values used to determine the action (i.e., which event to execute) at each iteration. In the meantime, DinoDroid maintains a special **event flow graph (EFG)** to record and update the feature vectors, which are used for DNN to compute Q values.

Because the features are often shared among different apps, DinoDroid is able to apply the model learned from existing apps to new AUTs. To do this, the agent continuously adapts the existing model to the new AUT by generating new actions to reach the desired testing goal (e.g., code coverage).

In summary, our article makes the following contributions:

- An approach to testing Android apps based on deep Q-learning.
- A novel and the first deep Q-learning model that can process complex features at a fine-grained level.
- An empirical study showing that the approach is effective at achieving higher code coverage and better bug detection than the state-of-the-art tools.
- The implementation of the approach as a publicly available tool, DinoDroid, along with all experiment data [9].

2 MOTIVATION AND BACKGROUND

In this section, we first describe a motivating example of DinoDroid, followed by the background of DQN, the problem formulation, and the discussion of existing work.

2.1 A Motivating Example

Figure 1 shows an example of the app *lockpatterngenerator* [1]. This simple example demonstrates the ideas of DinoDroid, but the real testing process is much more complex.

After clicking “Minimum length”, a message box pops up with a textfield and two clickable buttons. Therefore, the current page of the app has a total of five events (i.e., “restart”, “back”, “menu”, “OK”, and “Cancel”). The home button is not considered because it is not specific to the app. When a human tester encounters this page, he/she needs to decide which event to execute based on his/her prior experience. For example, a tester is likely to execute the events that have never been executed before. The tester may also need to know the execution context of the current page (e.g., the layout of next page) to decide which widget to exercise.

In this example, suppose none of the five events on the current page have been executed before. Intuitively, the tester tends to select the “OK” event to execute because it is more likely to bring the app to a new page. “Cancel” is very possible to be the next event to consider because “restart”,

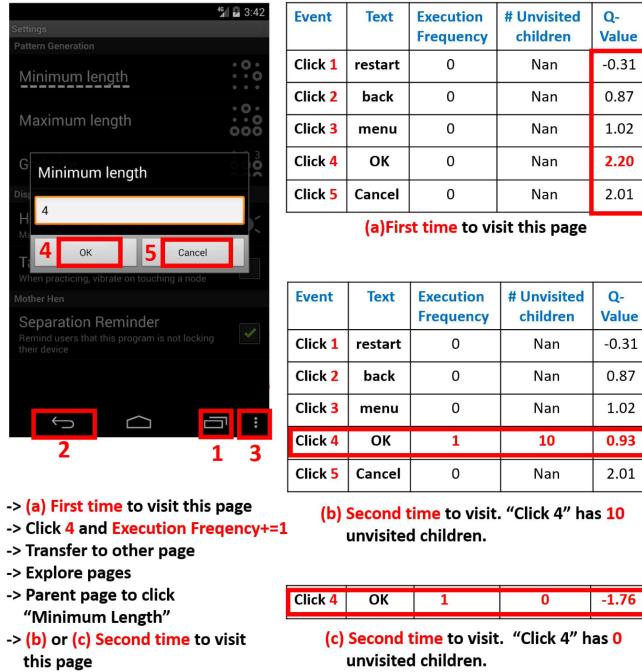


Fig. 1. A Motivating Example.

“back”, and “menu” are general events, so the tester may have already had experience in executing them when testing other apps. In summary, to decide whether an event has a higher priority to be executed, the tester may need to consider its “features”, such as how many times it was executed (i.e., execution frequency) and the content of the widget. DinoDroid is able to automatically learn a behavior model from a set of existing apps based on these features and the learned model can be used to test new apps.

Tab.(a)–Tab.(c) in Figure 1 are used to illustrate DinoDroid. In this example, DinoDroid dynamically records the *feature values* for each event, including the execution frequency, the number of events not executed on the next page (i.e., child page), and the text on the event associated with the event. Next, DinoDroid employs a deep neural network to predict the accumulative reward (i.e., Q value) of each event on the current page based on the aforementioned features and selects the event that has the largest Q value to execute.

Tab.(a) shows the feature values and Q values when the page appears the first time. Since “OK” has the largest Q value, it is selected for execution. DinoDroid continues exploring the events on the new page and updating the Q value. When the second time this page appears, the Q value of the event on executing “OK” button decreases because it is already executed. As a result, “Cancel” has the largest Q value and is selected for execution. In this case (Tab.(b)), the child page of “OK” contains 10 unexecuted events. However, suppose the child page contains zero unexecuted events (Tab.(c)), the Q value becomes much smaller. This is because DinoDroid tends to select the event whose child page contains more unexecuted events.

The underlying assumption of our approach is that the application under test should follow the **principle of least surprise (PLS)**. If an app does not meet the PLS, e.g., an “OK” textual widget is incorrectly associated with the functionality of “Cancel”, it would mislead DinoDroid when finding the right events to execute. Specifically, DinoDroid exploits the learned knowledge to execute

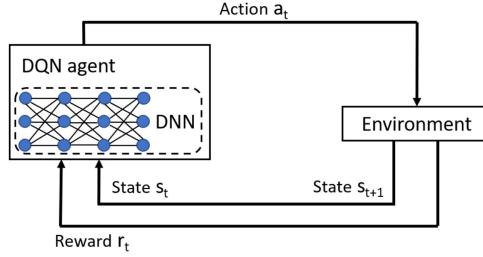


Fig. 2. Deep Q-Networks.

correct events that result in higher code coverage or triggering bugs. This simple motivating example serves to illustrate the concept and functionality of DQN. DQN utilizes its ability to analyze complex features and leverage its training knowledge to determine which event to execute. In Section 5.1, we provide an example demonstrating how DQN exhibits deeper exploration capabilities in comparison to other tools when confronted with a more intricate application scenario.

2.2 Background

2.2.1 Q-Learning. Q-learning [69] is a model-free reinforcement learning method which seeks to learn a behavior policy for any **finite Markov decision process (FMDP)**, Q-learning finds an optimal policy, π , that maximizes expected cumulative reward over a sequence of actions taken. Q-learning is based on trial-and-error learning in which an agent interacts with its environment and assigns utility estimates known as Q values to each state.

As shown in Figure 2 the agent iteratively interacts with the outside environment. At each iteration t , the agent selects an action $a_t \in A$ based on the current state $s_t \in S$ and executes it on the outside environment. After exercising the action, there is a new state $s_{t+1} \in S$, which can be observed by the agent. In the meantime, an immediate reward $r_t \in R$ is received. Then the agent will update the Q values using the Bellman equation [23] as follows:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha * (r_t + \gamma * \max_a Q(s_{t+1}, a) - Q(s_t, a_t)).$$

In this equation, α is a learning rate between 0 and 1, γ is a discount factor between 0 and 1, s_t is the state at time t , and a_t is the action taken at time t . Once learned, these Q values can be used to determine optimal behavior in each state by selecting action $a_t = \arg \max_a Q(s_t, a)$.

2.2.2 Deep Q-Networks. DQN are used to scale the classic Q-learning to more complex state and action spaces [19, 55]. For the classical Q-learning, $Q(s_t, a_t)$ are stored and visited in a Q table. It can only handle the fully observed, low-dimensional state and action space. As shown in Figure 2, in DQN, a DNN, specifically involving **convolutional neural networks (CNN)** [7], is a multi-layered neural network that for a given state s_t outputs Q values for each action $Q(s_t, a)$. Because a neural network can input and output high-dimensional state and action space, DQN has an ability to scale more complex state and action spaces. A neural network can also generalize Q values to unseen states, which is not possible when using a Q-table. It utilizes the follow loss function [19] to alter the network to minimize the **temporal difference (TD)** [28] error as a loss function $loss = r_t + \gamma * \max_a Q(s_{t+1}, a) - Q(s_t, a_t)$. The γ is the discount factor which is between 0 and 1. In other word, with the input of (s_t, a_t) , the neural network is trained to predict the Q value as

$$Q(s_t, a_t) = r_t + \gamma * \max_a Q(s_{t+1}, a). \quad (1)$$

So in a training sample, the input is (s_t, a_t) and output is the corresponding Q value which can be computed by $r_t + \gamma * \max_a Q(s_{t+1}, a)$.

2.3 Terminologies

A GUI *widget* is a graphical element of an app, such as a button, a text field, and a check box. An *event* is an executable GUI widget with a particular event type (e.g., click, long-click, swipe, edit), so a widget can be associated with one or more events. In our setting, a *state* s represents an app page (i.e., a set of widgets shown on the current screen). If the set of widgets is different, we have another page). We use s_t to represent the current state and s_{t+1} to represent the next state. A *reward* r is calculated based on the improvement of coverage. If code coverage increases, r is assigned a positive number ($r=5$ by default); otherwise, r is assigned a negative number ($r=-2$ by default). An *Agent* chooses which event to execute based on the accumulative rewards (i.e., Q values) on the current observed state. The chosen event is an *action*. For example, the agent performs an action by choosing to “click a button A” on the current page. A *Policy* is $\pi(a, s) = Pr(a_t = a | s_t = s)$, which maximizes the expected cumulative reward. Q-learning learns a policy to tell the agent what action to take.

2.4 Limitations of Existing Q-Learning Techniques

The techniques that are mostly related to DinoDroid are Q-learning-based Android app testing [15, 53, 57, 65]. These techniques are all based on a Q-table, which have several limitations. First, Q-table is not capable of handling high-dimensional features, such as text and image – adding a new feature space for a state to the Q-table will lead to its exponential growth. For example, a word embedding feature, represented as an M -dimension vector with N possible values, would need $O(m^n)$ columns in a Q-table. Second, most existing techniques use the resource ID of an event to represent the state in a Q-table. However, different apps can have different ID assignments. Therefore, these techniques often focus on training and testing individual apps and cannot train a model from multiple apps to test new apps. The only work that uses Q-table to transfer knowledge among apps is QBE [45]. In order to limit the size of Q-table, QBE abstracts the state (i.e., an app page) into five categories in terms of the number of widgets on the current page and actions into seven general categories (i.e., menu, back, click, long-click, text, swipe, contextual). However, such abstractions may cause the learning to lose a lot of important information when making decisions on which events to execute.

Unlike traditional Q-learning, DinoDroid designs a novel DNN model that can handle complex features with infinite feature space, such as word embedding with n -length vector and high-dimensional image matrix. DinoDroid is able to process these features at a fine-grained (i.e., widget) level as opposed to abstraction [45]. DinoDroid’s features are specifically designed to be general across apps, so the knowledge learned from existing apps can be transferred into new apps. For example, the feature regarding “execution frequency” applies to almost every app because exploring new events are always desirable. Also, when considering the “textual content” of events, an “OK” button in every app may have similar meaning across different apps.

3 DINODROID APPROACH

Figure 3 shows the overview of DinoDroid. An iteration t begins with an app page. In the current state s_t , DinoDroid selects the event e_t with the highest accumulative reward (i.e., Q value), performs the corresponding action a_t , and brings the app to a new state s_{t+1} . After performing a_t , DinoDroid employs a special event flow graph to generate feature values for each event in s_{t+1} . A reward r_t is generated based on the observed code coverage and app crashes. A positive number

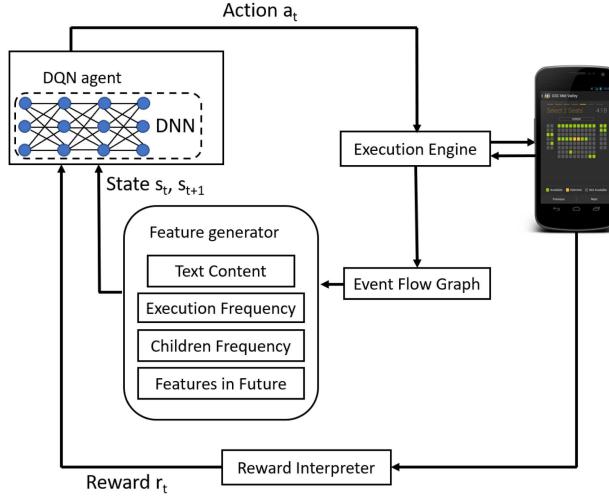


Fig. 3. Approach Overview.

is assigned to r_t if code coverage increases or a unique bug is detected and a negative number is assigned if the coverage does not change. The deep Q-network agent uses a neural network model to compute and update the Q value for the event e_t responding with a_t . The learning process continues iteratively from the apps provided as the training set. When testing a new app, DinoDroid uses the learned model as the initial model to guide the testing. The model is updated following the same process until a time limit is reached or the coverage reaches a plateau.

3.1 DinoDroid's Algorithm

Algorithm 1 shows the details of DinoDroid. When testing or training an app, DinoDroid first checks whether there exists a learned model, which saves all learned knowledge (weights on neural networks) of DinoDroid. If so, the model will be updated to adapt this app; otherwise, DinoDroid starts building a new model (Line 2). A memory is used to record the samples from earlier iterations (Line 3), where each sample contains the feature values of the executed event and the associated Q value. An **event flow graph** (EFG) is initialized for each app at the beginning of training or testing (Line 4). Note that the memory and the EFG will be abandoned after completing an iteration of the current app because the needed information has already been learned and saved in the model. The details of the EFG will be described in Section 3.2.2. Next, DinoDroid launches the app and reaches the first page. The initial state of DQN is obtained and the EFG is updated accordingly (Lines 5–6). The algorithm then takes the current page and the EFG to generate features for each GUI event on the current page (Line 7). DinoDroid considers three types of features as described in Section 3.2.

Now the iteration begins until a time limit is reached (Lines 8–22). To amplify the chance of bug detection, DinoDroid issues a random system event at every 10 iterations (Lines 9–10) by using Stoat [61]’s system event generation library. At each iteration, DinoDroid uses a deep neural network model to select the event with the highest accumulative reward (i.e., Q value) and perform the corresponding action (Line 11). The details of the `getActionEvent` will be described in Section 3.3.2. After the execution, the algorithm obtains three kinds of information: the new page, the current code coverage, and the crash log (may be empty) (Line 12). The information is used to compute the reward r_t (Line 13). Then, the event flow graph G is updated based on the new page p_{t+1} (Line 14). With the updated G and the new page, the algorithm can generate features for each event in the state s_{t+1} (Line 15). Based on s_t , s_{t+1} , a_t , and r_t , DinoDroid uses the Equation (1) in

ALGORITHM 1: DinoDroid's testing

Require: App under test AUT , DQN's Model M with before knowledge, execution time $LIMIT$
Ensure: updated new M

```

1: if  $M$  not exist then
2:    $M \leftarrow \text{buildNewModel}()$  /*First time to run*/
3:   Memory  $\leftarrow \emptyset$  /*Memory stores previous samples */
4:    $G \leftarrow \emptyset$  /*Initialize event flow graph */
5:    $p_0 \leftarrow \text{execute}(AUT)$  /*First lanuch to get the first page  $p_0$ */
6:    $G \leftarrow \text{updateGraph}(p_0, G)$  /*update  $G$  with new page*/
7:    $s_0 \leftarrow \text{featureGenerator}(p_0, G)$  /*Every event in  $s_0$  contains 3 features*/
8: while  $t < LIMIT$  do
9:   if  $t$  mod 10 equals 0 then
10:    sendSystemEvent() /*send random system event*/
11:     $a_t \leftarrow \text{getActionEvent}(s_t, M)$  /*Event selection */
12:     $p_{t+1}$ , codeCoverage, crash  $\leftarrow \text{execute}(AUT, a_t)$ 
13:     $r_t \leftarrow \text{rewardInterpreter}(\text{codeCoverage}, \text{crash})$ 
14:     $G \leftarrow \text{updateGraph}(p_{t+1}, G)$  /*update  $G$  with new page*/
15:     $s_{t+1} \leftarrow \text{featureGenerator}(p_{t+1}, G)$ 
16:     $Q(s_t, a_t) = r_t + \gamma * \max_a Q(s_{t+1}, a)$  where  $\gamma = 0.6$ 
17:     $Q \leftarrow Q(s_t, a_t)$ 
18:    batch  $\leftarrow \text{extractTrainBatch}(\text{Memory}) \cup (a_t, Q)$ 
19:     $M \leftarrow \text{updateModel}(\text{batch}, M)$  /*Learning for DQN */
20:    Memory  $\leftarrow \text{Memory} \cup (a_t, Q)$ 
21:     $s_{t+1} \leftarrow s_t$ 
22: return  $M$ 

```

Section 2.2.2 to compute the Q value of each event in s_t (Line 16). To train the neural network, it uses a set of training samples, including both the current sample and history samples. Each sample uses a_t as input and Q value as output (i.e., label). The history samples (obtained from earlier iterations) are recorded in a memory (Lines 17–20). In each iteration, the history sample size is set to be 4 due to cost-effectiveness. A larger history sample size can be set by users to retain more historical information for training, but it may also lead to a much higher cost.

3.2 Feature Generation

DinoDroid generates features for each event e . These features are fed into a neural network as shown in Figure 6 so that the agent can choose an action (i.e., which event to exercise). DinoDroid currently supports three features, namely, *execution frequency of current events*, *execution frequency of children events*, and *textual content of events*. DinoDroid employs an EFG at runtime to obtain the features and transforms them into numerical data format vectors provided as inputs to the neural network.

3.2.1 Types of Features. **Execution frequency of current events (FCR).** The insight behind this feature is that a human often avoids repeatedly executing an event that brings the app to the same page. Therefore, all GUI events should be given chances to execute. Instead of using pre-defined rules or thresholds to weigh different events to decide which ones should be assigned higher priorities to execute [61], DinoDroid automatically guides the selection of events based on the recorded FCR feature value. FCR encodes the number of times that each event was

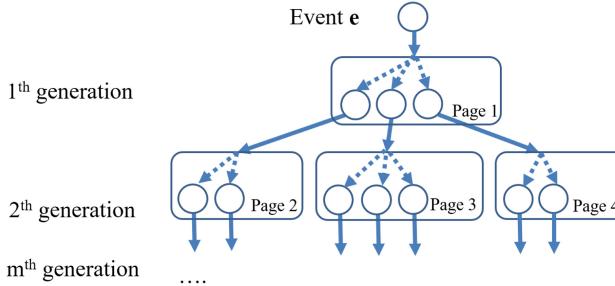


Fig. 4. FCD extraction.

executed during the exploration. The feature value is updated by adding one when the event is executed.

Execution frequency of children events (FCD). A human tester often makes a decision on which event to execute not only based on the events of current page, but also the succeeding pages (children pages) after executing an event. For example, if executing an event e brings the app into a page containing many unexecuted events, e is likely to be selected over the other events that bring the app into a page containing all events already being executed. Toward this end, DinoDroid uses the execution frequencies of events on children pages as a feature for each event of the current page. The m th ($m > 0$) generation of children pages are defined as the succeeding pages with distance m from the current event in the event flow graph. As the example shown in Figure 4, the first generation of children pages contains only one page (i.e., $Page_1$), which results from executing the selected event (by the agent) on the current page. The second generation of children pages includes pages resulting from executing all events on the page ($Page_1$). DinoDroid’s FCD feature encodes the execution frequencies of events in the K th generation of children pages. By default $K = 3$, as we observed that if $K > 3$, it almost does not affect the selection of an event.

DinoDroid employs a fixed length feature vector for each generation of children pages. Intuitively, each element in the vector represents an event on the current generation and the value of the element records the execution frequency of the event. However, a generation of children pages may contain a number of events; encoding them all into a feature vector may lead to an unbearable size of vectors for a neural network to train. Instead, DinoDroid encodes each element in the vector as the number of events in the current generation that were executed N times, where N is equal to the index of the vector. By default, the length of the vector is set to 10. For example, if there is a total of 20 events in the current generation m , where 12 events were never executed and 8 events were executed twice, the feature vector of m will be $[12, 0, 8, 0, 0, 0, 0, 0, 0, 0]$. Since K is considered by DinoDroid, it will generate K vectors for the FCD feature.

Textual content of events (TXC). The textual content of events may help the agent make the decision on which event to select. In the example of Figure 1, the meaning of “OK” event suggests that it has a higher chance to bring the app to a new page than the other events. To obtain the TXC feature for each event, DinoDroid first employs Word2Vec [47] to convert each word in the event to a vector with a fixed length L . The Word2Vec model is trained from a public dataset text8 containing 16 million words and is provided along with the source code of Word2Vec [3].

The text on an event widget can have more than one words, such as “status bar shortcut” in Figure 5. Therefore, we use the first N words to build the TXC feature. If the number of words on an widget is smaller than N , DinoDroid fills the vectors with all zeros to pad the words. As a result, the TXC feature is encoded as a matrix $L * N$, where $L=400$ and $N = 6$ by default. According to Pennington et al. [58], $L > 300$ has stable performance. We tried $\{300, 400\}$ in our experiment and

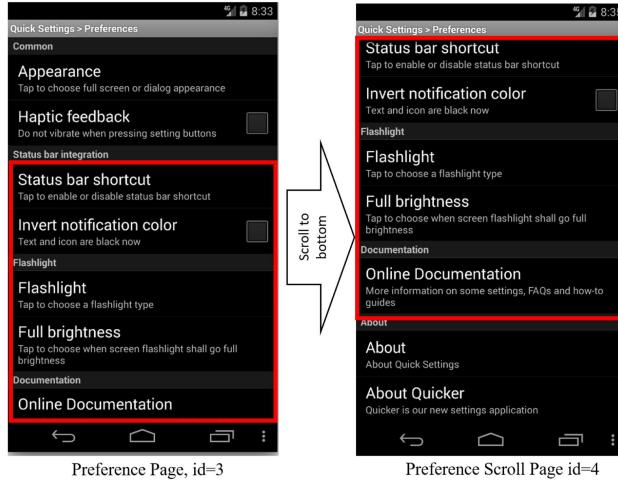
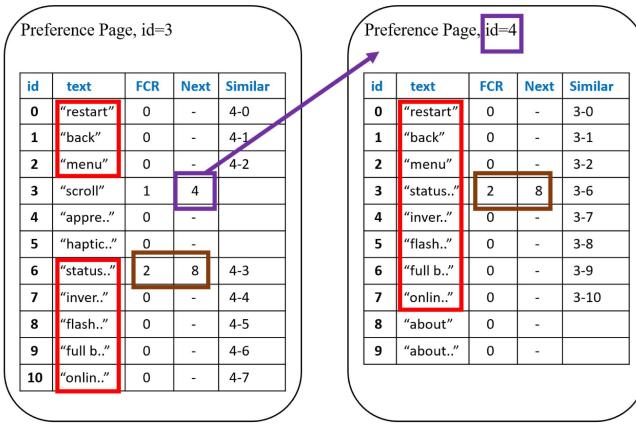


Fig. 5. Event Flow Graph Example.

found no different results. We use $L=400$ because a larger size can better represent the text. We set N to be 6 because the word number on events is rarely up to 6 based on our observation.

Note that all configuration parameters (e.g., K , L , and N) can be adjusted to be larger values by users to achieve potentially better coverage, but at the cost of substantial amount of time in training and testing.

3.2.2 Compacted Event Flow Graph. DinoDroid uses an EFG to obtain features. The graph is represented by $G = (V, E)$. The set of vertices, V , represent events using their unique IDs. The set of edges, E , represent event transitions (i.e., from the selected event e to all events in the next page) triggered by executing e . Each vertex records the three types of features described in Section 3.2.1. Figure 5 shows an example, where each page is associated with a list of vertices and their features. The last label ("Similar") will be discussed later in the section.

DinoDroid's event flow graph is compacted in order to accommodate DQN. This is also the main difference from traditional EFGs [17]. In traditional EFG, whenever a new page is encountered, it will be added as a vertex to the EFG. However, if we use the vertices as states in DQN, it could cause the states to be huge or even unbounded [21, 26, 54, 59, 61]. Also, when encountering a similar

page with a minor difference from an earlier page, if DinoDroid treats it as a new state, it could generate unbounded fake new events and thus waste exploration time. For example, in Figure 5, there are many same events on the pages triggered by the “scroll” event. If we consider all of the events for each scroll triggered page, DinoDroid will waste time to execute the same events again and again without code coverage increase. Therefore, such similar pages should be combined to avoid this problem.

There have been techniques on compacting EFG for efficient exploration. For example, Stoat [61] ignores the details of ListView events by categorizing it into “empty” and “non-empty”, so it can merge two similar pages with only the ListView events are different into the same state. However, it may lose important information since some of the events triggered by the items under the ListView may be critical. In contrast, DinoDroid compacts the EFG by merging vertices instead of pages. Specifically, whenever a new page P' is encountered, DinoDroid retrieves the pages with the same Android Activity ID [6] using UI Automator [13] from the existing EFG. It then compares the text of each vertex in P' with the vertices of each of the retrieved pages. If the texts are the same, the two events are merged into a single vertex. The “Similar” tag in Figure 5 records the information of the merged vertex (i.e., page id–event id). As such, when an event e is executed, the feature vectors/matrices of both e ’s vertex and its merged vertex are updated. Therefore, the same events will get an equal chance to be executed.

3.3 DinoDroid’s Deep Q-Networks

DinoDroid’s DQN agent examines the current state of the app and performs an action, i.e., selects the event with the largest Q value.

3.3.1 DNN Model. One of the key components in DinoDroid is a DNN model, which uses Equation (1) to compute the Q value. The DNN takes the features of the event from last action a_t as input and outputs the Q value, which is equal to $r_t + \gamma * \max_a Q(s_{t+1}, a)$. Comparing to regular RL using a Q-table, DNN is able to calculate Q values from any dimensions of features for each event. The DNN model involves feature handling and feature merging. The feature handling component employs a neural network algorithm to process each individual feature into a specific modality, represented by a one-dimension vector. The feature merging component combines the vectors of all features and passes them into the final fully connected layer [67] that is used to determine the event’s Q value. The purpose of the feature handling process is to help DNN make an accurate prediction.

Feature handling. DinoDroid employs specific DNN sub-models to process individual features according to their types. For example, as shown in Figure 6, the TXC feature is processed by a CNN based on **natural language processing (NLP)** and maxpool [43]. The FCR feature is handled by a fully connected layer [67], which is a common and efficient layer in neural network to process vectors. Other algorithms [42] could also be used but may involve additional cost.

DinoDroid’s DNN model can be easily extended to process other features. For example, users can take image as another type of feature by leveraging existing image classification algorithms [68]. The DNN model accepts the formats of single value, vector, and matrix. By default, single value and vector are handled by a fully connected layer and matrix is handled by 1-D CNN [7].

Feature merging. Since the DNN model predicts a Q value based on all features, it combines the vectors generated by the feature handling components into a large one-dimensional vector. All input features to the DNN share the unique loss function described in Section 2.2.2. We leverage Keras deep learning architecture, which is capable of accepting mixed multiple inputs [32]. It then utilizes a three-fully connected layers [8] to process the large vector and predicts a Q value.

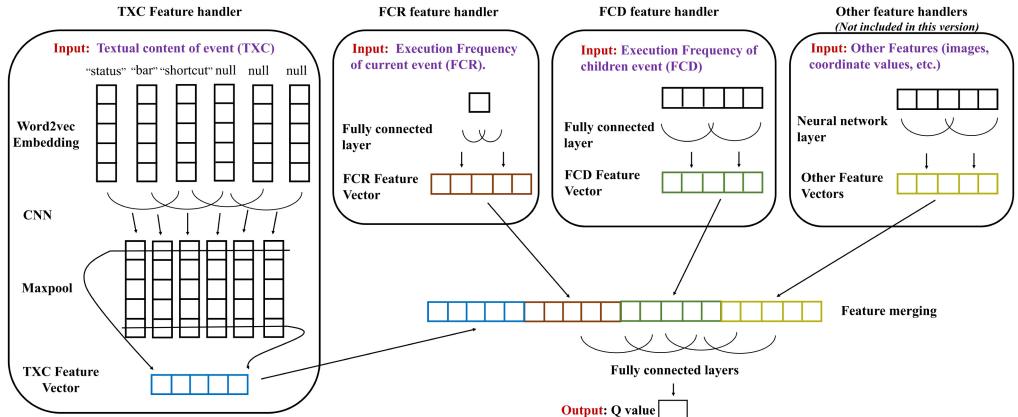


Fig. 6. Deep Q-Network Model.

The last layer with a linear activation to output just one value to represent the Q value. We use a stochastic gradient descent algorithm, Adam [4] to optimize the model with a learning rate 0.0001. The Adam optimization algorithm is an extension of stochastic gradient descent, which has been widely adopted for deep learning applications in computer vision and natural language processing [16, 34].

3.3.2 Action Selection. DinoDroid's DQN agent performs an action by selecting an event to execute from the current page. For editable events (e.g., text fields), DinoDroid automatically generates a random string with digit, char, and punctuation. DinoDroid maintains a Q value for each event. At the first T iterations, DinoDroid executes random events to construct the DQN model. Randomness is necessary for an agent navigating through a stochastic maze to learn the optimal policy [63]. By default, $T=20$. After that, DinoDroid starts to use DNN to select an event.

To determine which event to execute on the current page, DinoDroid uses the ϵ -greedy policy [64], a widely adopted policy in reinforcement learning, to select the next event. DinoDroid selects the event with the highest Q value with probability $1 - \epsilon$ and a random event with probability ϵ . The Q value is computed by the neural network model (Section 2.2.2). The value of ϵ can be adjusted by users. By default $\epsilon = 0.2$, which is the same as the value used in Q-testing [57]. In order to amplify the chance of bug detection, DinoDroid also generates system-level events at every 10 iterations, such as screen rotation, volume control, and phone calls [61].

3.3.3 Reward Function. In reinforcement learning, a reward is used to guide training and testing. DinoDroid's reward function is based on code coverage and bug detection. Specifically, DinoDroid sets the reward to a positive number ($r=5$) when the code coverage increases or revealing a unique crash and a negative number ($r=-2$) when the coverage does not change. To determine if a unique crash is revealed, we resort to the error message. In the log of an app execution, each crash is associated with an accurate error message. If the same error message has happened before, we ignore it. The absolute value of positive reward is larger than that of the negative reward is because the intention is to letting the machine favor higher coverage or detecting bugs. The reward values are configurable, however, these default values work well on different types of apps, as shown in the experiments.

Other reward functions, such as measuring the app page state changes may also be used [15, 29, 45, 57, 65]. For example, Q-testing [57] calculates the difference between the current page state and the states of recorded pages.

4 EVALUATION

To evaluate DinoDroid, we consider three research questions:

RQ1: How does DinoDroid compare with the state-of-the-art Android testing tools in terms of code coverage?

RQ2: How does DinoDroid compare with the state-of-the-art Android testing tools in terms of bug detection?

RQ3: Can DinoDroid understand the features and learn a correct model?

4.1 Datasets

We need to prepare datasets for evaluating our approach. Since Sapienz [52] and Stoat [61] are two of the baseline tools that contain publicly available datasets to compare with, we used the datasets from their articles [27]. The datasets contains a total of 68 apps that falls into 18 domains. We removed four apps because they crash right after launch on our Intel Atom(x86) emulator. The executable lines of code in the apps range from 109 to 22,208, indicating that they represent apps with different levels of complexity.

4.2 Implementation

We conducted our experiment on a four-core 3.60 GHZ CPU (with no GPU acceleration) physical x86 machine running with Ubuntu 16.04. With this machine, DinoDroid can send an event in 1.43 seconds on average. Diverse interactions including clicks, long-clicks, swipes, edits, back, and restarts are managed through the UI Automator [13] on emulators. Widget features and their corresponding Q values, derived from Equation (1), are dynamically identified during app interactions, enriching the learning mechanism. The system events issued during testing are obtained from Androguard [5]. DinoDroid uses Emma [10] to obtain statement coverage. Keras [12] is used to build and run the deep neural network. The DQN agent is implemented by ourselves using Python.

In Section 3, we provide a detailed exposition of our reinforcement learning model. Key specifications include a history buffer size of 4, utilization of the Adam optimizer [4] with a learning rate of 0.0001, a 0.6 refactor rate, and implementation of an ϵ -greedy policy [64] with ϵ set at 0.2. Regarding rewards, we assign a value of -2 for negative outcomes and +5 for positive ones.

4.3 Study Operation

We conducted a two-fold cross-validation by randomly splitting the entire dataset of 64 apps into two sets, each containing 32 apps. The experiment took a total of 128 hours to complete. Adding an additional fold would extend the duration by approximately three more days. In this process, we randomly selected one set as the training set and used the other set as the testing set. Subsequently, in the next fold, we reversed the roles, using the first set as the testing set and the second set as the training set. This approach ensures that each app in the dataset has an opportunity to be both in the training and testing sets, enhancing the robustness of our evaluation.

The testing time of DinoDroid is set to one hour for each app, which is consistent with many other Android app testing tools [48, 52, 57, 65]. The training time of DinoDroid is set to 32 hours for each app because we train each app in the training set (32 apps) for one hour. Given that RL has the tendency to exhibit high variability across runs, we repeat the testing for three times. The results are averaged over the 3 executions of each tool.

4.4 Comparison with Existing Tools

In our research, we aimed at comparing DinoDroid with representative existing tools to demonstrate its effectiveness and superiority. It would be impractical to allocate 64 hours for each existing

tool, considering the large number of tools available. Therefore, we carefully selected a diverse set of five tools for comparison: Monkey (random testing) [14], Sapienz (an optimization for Monkey) [52], QBE (learning-based testing with a pre-trained model) [45], Q-testing (learning-based testing without a pre-trained model) [57], and Stoat (model-based testing) [61]. Another criterion we considered when selecting the baseline tools was the suitability of the number of apps they support, ensuring comparability with the apps used in DinoDroid and other baseline tools. Both QBE and Q-testing utilize traditional Q-learning algorithms. While Q-testing does not incorporate a pre-trained model in its Q-learning approach, it has the capability to employ a pre-trained model specifically in reward prediction. On the other hand, QBE, similar to our proposed approach DinoDroid, incorporates a pre-trained model and offers the additional advantage of being able to train and test on different sets of apps. Monkey is a random testing tool. Stoat employs model-based testing and pre-defined heuristic methods to explore the less unexecuted actions. We selected Stoat as a representative model-based testing tool for comparison. Sapienz employs evolutionary testing. The details of the tools are discussed in Section 7. Through extensive evaluations, DinoDroid consistently outperformed all of these tools in terms of testing performance and efficiency.

The testing time for all tools is set to one hour. Like DinoDroid, we repeated the experiment three times. We followed previous work [27, 57] to set 200 milliseconds delay between events for Monkey to avoid abnormal behaviors. Stoat [61] allocates one hour for model construction phase and two hours for Gibbs sampling phase. To use Stoat in our one-hour testing, we followed the suggestion proposed in [57], in which each phase of Stoat is set to 30 minutes for the best performance.

Note that while the training time of DinoDroid is extensive, we believe the cost will be diluted as the number of apps increases. If new apps are added to the training set, the existing model is directly updated without training from scratch. For the existing non-learning-based tools (e.g., Monkey, Sapienz), updating pre-defined rules often needs huge professional human effort.

5 RESULTS AND ANALYSIS

5.1 RQ1: Code Coverage

Table 1 shows the results of code coverage obtained from DinoDroid and the other five tools on 64 apps. For each tool, we compute the average of the coverage scores collected in three test runs. The test results and log files can be found in our experiment dataset [9].

On average, DinoDroid achieves 48.9% line coverage, which is 22.8%, 17.8%, 13.7%, 16.1%, and 18.6% more effective than Monkey, Q-testing, QBE, Stoat, and Sapienz, respectively. Specifically, DinoDroid achieved the highest coverage in 33 apps, compared to 16 apps in Sapienz, 9 in Stoat, 10 in Q-testing, 8 in QBE, and 5 in Monkey. The results indicate that *DinoDroid is effective in achieving high coverage*.

We analyzed the app code covered by different tools. Taking the app “Nectroid” [2] as an example, many events reside in deep levels of EFG, which require a number of steps to explore. For instance, two widgets are associated with important functionalities: “add a new site” and “delete a site”. Exercising the first widget requires 7 steps (launched page → menu → settings → select a site → new site → fill blankets → OK) and exercising the second widget requires 6 steps (launched page → menu → settings → select a site → Nectarine(long click) → delete → OK). Monkey, QBE, and Sapienz failed to cover the two particular sequences because they were not able to navigate the app to the deep levels. Q-testing failed to reach “delete a site”. It finished “add a new site”, but was not able to fill in any text information of the new site. Stoat was very close to reach “add a site”, but at the last step, it selected “Cancel” instead of “OK”. On the other hand, DinoDroid exercised the “OK” widget in 90% of pages that contain “OK”, “Cancel”, and a few other functional

Table 1. Testing Result for Comparison

#APP.	# LOC	Code Coverage						# Fault Triggered					
		Mon.	Qt.	QBE.	St.	Sap.	DD.	Mon.	Qt.	QBE.	St.	Sap.	DD.
soundboard	109	31	42	42	42	56	42	0/0	0/0	0/0	0/0	0/0	0/0
gestures	121	26	32	32	32	51	32	0/0	0/0	0/0	0/0	0/0	0/0
fileexplorer	126	31	40	40	40	31	40	0/0	0/0	0/0	0/0	0/0	0/0
adsdroid	236	13	40	29	29	33	25	3/3	3/3	0/0	5/2	3/2	3/0
MunchLife	254	65	63	65	65	71	66	0/0	0/0	0/0	0/0	0/0	0/0
Amazed	340	66	58	69	58	71	73	6/6	0/0	0/0	0/0	3/3	1/1
battery	342	72	71	69	71	54	73	0/0	0/0	0/0	0/0	3/3	1/1
manpages	385	58	58	62	48	67	63	0/0	0/0	0/0	3/0	0/0	3/0
RandomMusicPlayer	400	52	70	65	74	51	60	0/0	0/0	0/0	3/0	0/0	3/0
AnyCut	436	61	60	62	61	65	62	0/0	0/0	0/0	0/0	0/0	0/0
autoanswer	479	11	13	13	26	16	24	0/0	0/0	0/0	4/1	0/0	5/2
LNM	492	54	58	56	62	55	60	0/0	0/0	0/0	6/0	1/1	3/0
baterydog	556	62	55	62	54	67	62	1/1	0/0	0/0	1/1	0/0	0/0
yahtzee	597	38	10	43	49	43	57	1/1	0/0	3/3	3/0	0/0	6/3
LolcatBuilder	646	25	25	20	25	27	52	0/0	0/0	0/0	0/0	0/0	0/0
CounterdownTimer	650	58	60	69	77	45	77	0/0	0/0	0/0	0/0	0/0	0/0
lockpatterngenerator	669	78	69	75	66	79	78	0/0	0/0	0/0	0/0	0/0	0/0
whohasmystuff	729	46	65	66	67	32	74	3/3	0/0	0/0	3/0	0/0	3/0
Translate	799	45	44	43	40	48	47	0/0	0/0	0/0	0/0	0/0	0/0
wikipedia	809	25	27	26	27	29	27	0/0	0/0	0/0	0/0	0/0	6/3
DivideAndConquer	814	83	53	79	52	80	58	0/0	0/0	0/0	0/0	3/3	0/0
zooborns	817	34	20	29	35	36	35	0/0	3/3	0/0	4/1	0/0	3/0
multimssender	828	49	29	48	49	60	68	0/0	0/0	0/0	3/0	0/0	3/0
Mirrored	862	44	45	45	45	45	45	0/0	0/0	0/0	3/0	0/0	3/0
myLock	885	26	29	27	44	30	42	0/0	0/0	0/0	4/1	0/0	6/3
aLogCat	901	66	65	67	70	40	79	0/0	0/0	0/0	0/0	0/0	0/0
aGrep	928	45	38	49	37	54	57	1/0	3/3	9/6	2/2	3/3	9/6
dialer2	978	37	36	38	34	35	46	0/0	0/0	0/0	3/0	1/1	3/0
hndroid	1038	7	10	11	9	8	9	3/3	3/3	2/2	3/3	3/3	4/3
Bites	1060	32	36	28	42	39	50	3/3	3/3	1/1	11/8	3/3	14/11
tippy	1083	82	75	60	74	80	83	0/0	0/0	0/0	0/0	0/0	0/0
weight–chart	1116	38	40	61	41	55	75	2/2	2/2	1/1	3/3	1/1	3/3
importcontacts	1139	40	41	63	37	42	41	0/0	0/0	0/0	0/0	0/0	0/0
worldclock	1242	89	92	92	92	90	89	0/0	0/0	0/0	3/0	0/0	3/0
blokish	1245	41	36	50	36	44	50	3/3	0/0	3/3	0/0	1/1	3/3
aka	1307	53	78	80	61	80	64	2/2	2/2	3/3	0/0	3/3	9/9
Photostream	1375	20	22	14	24	27	21	3/3	3/3	3/3	9/6	3/3	6/3
dalvik–explorer	1375	39	67	69	69	70	70	3/3	3/0	4/3	3/0	4/3	6/3
tomdroid	1519	47	54	50	52	50	53	0/0	0/0	0/0	1/1	0/0	3/3
PasswordMaker	1535	57	61	53	56	33	56	1/1	4/4	8/8	12/9	3/3	11/8
frozenbubble	1706	81	55	58	55	78	74	0/0	0/0	0/0	0/0	0/0	0/0
aarddict	2197	13	31	28	30	14	18	0/0	0/0	0/0	6/6	0/0	0/0
swiftftp	2214	13	13	12	13	13	13	0/0	0/0	0/0	0/0	0/0	3/0
netcounter	2454	44	70	67	61	44	76	0/0	1/0	0/0	4/1	0/0	3/0
alarmclock	2491	64	67	64	67	37	70	3/3	1/1	0/0	8/2	3/3	7/1
Nectroid	2536	34	64	31	58	57	70	1/1	1/1	0/0	3/0	1/1	5/2
QuickSettings	2934	52	38	41	38	48	48	0/0	0/0	0/0	0/0	0/0	3/3
MyExpenses	2935	48	38	42	42	20	61	0/0	0/0	0/0	4/1	0/0	3/1
a2dp	3523	43	32	38	41	30	45	0/0	0/0	0/0	1/0	0/0	9/3
mnv	3673	22	44	34	43	8	45	3/3	2/2	3/3	3/3	1/1	6/3
hotdeath	3902	62	52	64	49	64	75	1/1	1/1	2/2	0/0	0/0	2/2
SyncMyPix	4104	21	20	20	25	21	26	0/0	0/0	0/0	3/0	0/0	3/0
jamendo	4430	21	16	24	14	23	26	1/1	1/1	2/2	7/3	0/0	9/3
mileage	4628	19	37	32	31	36	60	4/4	1/1	1/1	10/4	3/3	12/5
sanity	4840	19	25	16	22	15	34	2/2	3/0	2/0	2/0	4/1	5/2
fantastichmemo	8419	24	39	32	22	28	43	3/3	4/4	1/1	5/2	1/1	9/3
anymemo	8428	30	41	30	30	27	43	1/1	2/2	0/0	4/1	1/1	10/6
Book–Catalogue	9857	34	37	25	11	24	32	3/3	1/1	4/3	3/0	1/1	10/7
Wordpress	10100	5	3	4	5	4	8	0/0	0/0	0/0	9/6	0/0	10/4
passwordmanager	10833	10	3	5	7	4	8	1/1	0/0	0/0	0/0	0/0	2/0
aagtl	11724	15	18	16	16	17	17	5/5	4/4	3/3	4/4	6/6	4/4
morphoss	17148	12	17	19	18	11	25	4/4	0/0	1/1	6/3	2/2	10/4
addi	19945	14	16	18	17	19	18	6/6	3/3	3/3	6/3	3/3	6/3
k9mail	22208	5	7	11	7	5	7	0/0	0/0	0/0	6/1	1/1	7/1
Overall		39.8	41.5	43	42.1	41.2	48.9	73/72	54/47	59/52	189/78	63/59	269/130

DD.= DinoDroid. St.= Stoat Mon.= Monkey Sap.= Sapienz Qt.=Q-testing “a/b” indicates a=#crashes for all and b=#crashes without system level events.

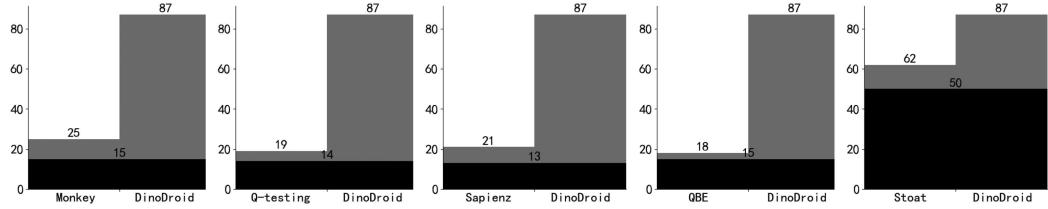


Fig. 7. Comparison of tools in detecting crashes.

widgets during the learning process. We conjecture that this is because DinoDroid is able to learn that clicking “OK” widget is more likely to increase coverage.

We also examined the efficiency of event numbers, similar to the approach taken in the existing work of Q-testing [57]. Our testing involved Monkey, Sapienz, QBE, Stoat, Q-testing, and DinoDroid, generating event numbers of 14,235, 12,992, 1,456, 2,044, 2,206, and 3,325, respectively, over the course of one hour. Monkey and Sapienz exhibited significantly higher event numbers compared to the others due to their reliance on model-based testing methodologies. DinoDroid showcased a similar level of event numbers as the other model-based testing tools. DinoDroid’s event number was elevated because it generates random intents, as illustrated in “sendSystemEvent” in Algorithm 1. DinoDroid exhibited a notable decrease in the number of generated events compared to Monkey within an equivalent testing time frame. This reduction can be attributed to DinoDroid’s utilization of model-based and learning-based testing methodologies. This reduction in event numbers is advantageous for bug reproduction or identifying key UI actions that trigger the occurrence of a bug.

5.2 RQ2: Bug Detection

Table 1 shows the number of unique bugs detected by the six tools (on the left of “/”). We reported the number of unique bugs detected in all three repeated runs. Like existing tools [52, 57, 61], we consider a bug to be a crash or an exception. The results showed that DinoDroid detected the largest number of bugs (269) compared to Monkey (73), Q-testing (54), QBE (59), Stoat (189), and Sapienz (63)). Specifically, DinoDroid detected most bugs in 38 apps, which is more effective than Monkey (5), Q-testing (0), QBE (3), Stoat (20), and Sapienz (2).

DinoDroid and Stoat detected a significantly larger number of bugs because they both use androguard [5] to issue system-level events to amplify the chance of bug detection (Section 3.3.2). When disabling system-level events, DinoDroid still detected the largest number of bugs (130), compared to Monkey (72), Q-testing (47), QBE (52), Stoat (78), and Sapienz (59). The numbers are reported in the right side of “/” in Table 1. Specifically, DinoDroid detected most number of bugs in 26 apps, which is more effective than Monkey (13), Q-testing (4), QBE (6), Stoat (11), and Sapienz (9). The above results suggest that *DinoDroid is effective in detecting bugs*.

Figure 7 shows the pairwise comparison of bug detection results between tools (with system-level events) in a single run. The black bars indicate the number of bugs detected in common and the grey bars indicate the number of bugs detected uniquely in each tool. For example, Stoat and DinoDroid detected 50 bugs in common. However, DinoDroid detected 37 bugs not detected by Stoat and Stoat detected 12 bugs not detected by DinoDroid.

5.3 RQ3: Understanding the Learned Model

The objective of our investigation in this RQ is to delve into the reasoning process of DQN with respect to the inputted features. Unlike heuristic methods that rely on predefined rules, machine learning involves storing rules within the weights of neural networks, making them less easily

interpretable. Guided by the principles of explainable machine learning, as articulated in [22], we aim at comprehending the decisions suggested by these systems to foster trust. To do this, we analyzed the logs generated by the DQN agent for the 64 apps.

5.3.1 Understanding the Behaviors of Individual Features. **FCR feature.** We first would like to understand the behavior of the FCR feature. Specifically, we would like to know whether DinoDroid will assign a higher priority to unexecuted events over executed events in the current page. We hereby computed the percentage of pages performing expected actions (i.e., triggering unexecuted events) among all pages. We consider only unexecuted and executed events instead of execution frequency because we need to silent the influence of children pages (i.e., the FCD feature) as unexecuted events do not invoke children pages. In total, there are 16,169 pages containing both executed and unexecuted events, with a total of 197,279 events; 85.2% of the pages performed expected actions. We then computed the probability of randomly selecting an event from each page and found that only 51.6% of the pages performed expected actions. The results show that DinoDroid indeed behaves better than a random approach.

FCD feature. We next would like to understand the behavior of the FCD feature. Specifically, we would like to know whether DinoDroid tends to select events with unexecuted children events over those with executed children events. To control the variation of event execution frequencies (FCR), we selected only pages that contain events with the same execution frequency from the traces. As a result, 495 pages with a total of 3,182 events were selected and 81.2 % of the pages performed expected actions (i.e., selecting events with unexecuted children events). When using a random selection, only 33.6% pages performed expected actions.

TXC feature. We also examined if DinoDroid is able to understand the content of events. To do this, we control the variations of FCR and FCD features by selecting pages that do not contain any executed events from the traces. A total of 3,060 pages were selected. We hypothesize that if Q values of these events are different (i.e., their textual content is different), DinoDroid is able to recognize the content of the widgets (i.e., perform expect actions). The results show that 91% of pages performed expected actions with the difference between highest Q value and lowest Q value greater than 10%.

The above results suggest that *the behaviors of the app features learned by DinoDroid are mostly expected.*

5.3.2 Understanding the Effectiveness of Individual Features. We next explore how each of the three features affects the coverage effectiveness of DinoDroid. To achieve this, we repeated the experiment but disabled the FCR feature, FCD feature, and TXC feature separately. The results suggest that DinoDroid’s average code coverage is higher than the coverage of the absence of FCR, FCD, and TXC by 0.7%, 2.4%, 3%, respectively. We conducted an evaluation of code coverage, comparing our approach to the random method. Our findings reveal that when using similar settings of Monkey, Sapienz, QBE, Stoat, and Q-testing, with the text input set as a random event and “sendSystemEvent” deleted in Algorithm 1, DinoDroid achieved a code coverage that was 12.4% higher than the random approach. Furthermore, when we solely removed the DQN strategy and employed randomization, DinoDroid still exhibited a code coverage that was 3.98% higher than the random method. These results highlight the effectiveness of DinoDroid in enhancing code coverage.

We found the results surprising. Prior to the experiment, we expected the FCR feature to be the most crucial feature during testing because using event frequency to guide the exploration is intuitive and has been a common strategy used in existing work [61]. However, the actual result suggests that the textual feature (TXT) contributes more than the other features. Therefore, it is very important for a tester or a tool to understand the meaning of text.

Table 2. DinoDroid’s Behavior on Every Feature Combination

FCR FCD \	0	1	2	3	4	5
$\langle(6\#1), (1\#1), (1\#1)\rangle$	-	3.45	2.32	1.2	-0.65	-0.47
$\langle(1\#6); (1\#1); (1\#1)\rangle$	-	2.57	0.23	-0.171	-3.35	-3.55
$\langle(1\#1); (6\#1); (1\#1)\rangle$	-	3.44	2.03	0.16	0.19	0.00
$\langle(1\#1); (1\#6); (1\#1)\rangle$	-	1.01	0.92	-0.31	-3.59	-3.96
$\langle(1\#1); (1\#1); (6\#1)\rangle$	-	1.92	0.97	1.07	-0.9	-3.2
$\langle(1\#1); (1\#1); (1\#6)\rangle$	-	1.09	0.81	0.21	-3.3	-4.53
$\langle(1\#1); (1\#1); (1\#1)\rangle$	-	1.01	0.78	-1.66	-3.86	-4.32
$\langle(0\#0); (0\#0); (0\#0)\rangle$	10.96	-4.42	-4.98	-5.09	-5.13	-5.14

$\langle(A\#B); (C\#D); (E\#F)\rangle$: the first generation has A unexecuted events and B events are executed once; the second generation has C unexecuted events and D events are executed once; the third generation has E unexecuted events and F events are executed once.

5.3.3 The Whole DQN Model Behaviors. The above experiment suggests how individual features affect the learning process of DinoDroid. We next conducted a deeper analysis to understand the behaviors of DinoDroid under the combination of the three features. To do this, we randomly selected a model from the two models learned from the 64 apps (by two cross-fold validation). We used this model to process the first page of the 32 apps, which were not used to train the model. We then manually set the values of FCR and TXC features while keeping the TXC feature as default and see how the model behaves.

As shown in Table 2, “FCR” indicates the execution frequency of the current event is executed and “FCD” indicates the three generations of children pages with the number of unexecuted events and the number of events being executed once (i.e., the first two elements in the feature vector). Each number in the table is the Q value averaged across all events with the same feature setting. For example, $\langle(6\#1); (1\#1); (1\#1)\rangle + “1”$ (the second row + the third column) indicates that when an event is executed once, the first generation of its children page contains six unexecuted events and one event is executed once, and the second and third generation of its children pages have one unexecuted events and one event is executed once.

DinoDroid learned the following behaviors as shown in Table 2. First, the Q value of $\langle(6\#1); (1\#1); (1\#1)\rangle$ is larger than that of $\langle(1\#6); (1\#1); (1\#1)\rangle$. This indicates that an event with more unexecuted children events in the first generation is more likely to be selected. Second, the Q value of $\langle(1\#1); (6\#1); (1\#1)\rangle$ is larger than that of $\langle(1\#1); (1\#6); (1\#1)\rangle$ and the Q value of $\langle(1\#1); (1\#1); (6\#1)\rangle$ is larger than that of $\langle(1\#1); (1\#1); (1\#6)\rangle$. This indicates the second and third generation (or perhaps the subsequence generations) of children events can also guide the exploration like the first generation. Third, the unexecuted event on the current page has the highest priority to be selected since its Q value is significantly larger (i.e., FCR=0). Fourth, with the same FCD feature values, the event with less execution frequency on the current page has a higher priority to be selected since the Q value is decreasing as the value of FCR increases.

All of the above behaviors align with the intuition on *how human would test apps* with the three types of features and demonstrate that DinoDroid’s DQN can *automatically learn these behaviors without the need to manually set heuristic rules*.

In our evaluation result in Table 1, we trained machine learning models for 32 hours (each app for one hour). The reason why we choose 32 apps (32 hours in total) to train is that we need to separate 64 apps from our dataset to be 32 apps in training and 32 apps in testing. We have also

conducted an additional experiment to examine the impact of training time on effectiveness. In this experiment, we trained the models for 16 hours and achieved a code coverage of 47.65625%. The evaluation results demonstrate that the code coverage obtained from 32 hours of training surpasses the coverage achieved with 16 hours of training by 1.9%.

6 LIMITATIONS AND THREATS TO VALIDITY

DinoDroid has several limitations. First, DinoDroid currently considers three features. As part of the future work, we will assess whether other features, such as images of widgets and the execution of sequences of actions that compose complete use cases, can improve the performance of DinoDroid. Second, DinoDroid handles feature values represented by matrices or vectors. However, some features may need more complex representations (e.g., multiple complex matrices) and processing them may take substantial amount of time. Third, in the current version, DinoDroid measures line coverage to train the apps, so we focus on open-source apps. DinoDroid can be extended to handle closed-source apps by collecting method-level coverage or using non-code-related rewards. Fourth, for a fair comparison, DinoDroid does not utilize extra advantageous features (e.g., login script, short message records, contact records) in its current version, because none of the state-of-the-art tools have such features by default. It is also very challenging to modify the tools to implement these features because we cannot control their installation of apps and do not know when to run the login scripts. Nevertheless, we believe that adding the extra functionality might increase the effectiveness of coverage and bug detection in DinoDroid and the existing tools. For example, after we added the login function in DinoDroid, k9 mail's code coverage was increased to 40% in one hour, compared with 7% coverage without the login function. Su et al. [62] implemented the login function and resolved some usability issues for the six tools in their study, but the apps in our benchmarks are emma instrumented and thus incompatible with their tools, which are jacoco instrumented. As part of future work, we will implement the extra advantageous features in DinoDroid, as well as in the state-of-the-art tools in our study. We will also compare DinoDroid with more existing tools, such as those studied in [62]. Fifth, the current version of our approach uses a fixed reward. Existing work (Q-testing [57]) has designed an adaptive reward function to exploit a neural network to calculate the difference between two states (app pages) to determine the reward value. We believe that our approach can work with the adaptive reward function by simply using Q-testing's trained model to determine the reward value.

The primary threat to the external validity of this work involves the representativeness of the apps used in our study. Other apps may exhibit different behaviors. We reduce this threat to some extent by using a set of apps developed and released by prior research work [27], which has been extensively used by existing Android testing research [48, 56]. These apps were also used by the baseline tools (i.e., Stoat [61], Sapienz [52]) in our study.

Some widgets may use icons (images) rather than text to interact with users. DinoDroid's current features do not include images because of the high computation costs. However, it has no problem adding images in the framework (other features in Figure 6) in the future version.

The primary threat to internal validity involves potential errors in the implementations of DinoDroid. We control this threat by testing our tools extensively and verifying their results against a small-scale program for which we can manually determine the correct results.

DinoDroid requires a dedicated training phase. While the initial 32 hours of training may appear significant, they establish a strong base for attaining consistent and dependable performance during subsequent testing iterations. To expedite the overall training time and improve the practicality of DinoDroid in real-world scenarios, we can employ techniques such as parallelization or leveraging distributed computing resources [40], active learning [70], and machine learning with transformed data [71].

7 RELATED WORK

There have been a number of techniques on automated Android GUI testing. Random testing [14] uses random strategies to generate events. Because of its simplicity and availability, it can send thousands of events per second to the apps and can thus get high code coverage. However, the generated events may be largely redundant and ineffective. DynoDroid [50] improved random testing by exploring the app in a manner that can avoid testing redundant widgets. But it may still be ineffective in reaching functionalities involving deep levels of the app due to randomness. Sapienz [52] uses multi-objective search-based testing to maximize coverage and fault revelation at the same time to optimize test sequences and minimize length. TimeMachine [30] enhances random testing with the ability to jump to a state in the past.

Model-based [17, 18, 20, 21, 35, 36, 72–74] build and use a GUI model of the app to generate tests. The models are usually represented by finite state machines to model app states and their transitions. For example, Stoat [61] utilizes a stochastic Finite State Machine model to describe the behavior of app under test. Section 2.2 discusses Stoat. APE [36] is a Monkey-based model testing tool. It can increase the testing precision by optimizing the model. Unlike model-based testing, DinoDroid does not need to model the app behaviors. Instead, it can automatically learn app behaviors by deep Q-networks.

Systematic testing tools, such as symbolic execution [33, 51], aims at generating test cases to cover some code that is hard to reach. While symbolic execution may be able to exercise functionalities that are hard to reach, it is less scalable and not effective in code coverage or bug detection.

Machine learning techniques have also been used in testing Android apps. These techniques can be classified into two categories [57]. The techniques in the first category typically have an explicit training process to learn knowledge from existing apps then apply the learned experience on new apps [24, 29, 45, 48, 49]. For example, QBE [45] learns how to test android apps in a training set by a Q-learning. As discussed in Section 2.4, QBE is not able to capture fine-grained app behaviors due to the limitations of Q-learning.

In addition to QBE, Degott et al. [24] use learning to identify valid interactions for a GUI widget (e.g., whether a widget accepts interactions). It then uses this information to guide app exploration. Their following work [29] uses MBA reinforcement learning to guide the exploration based on the abstracted features: valid interactions and invalid interactions. However, like QBE, these techniques can not handle complex app features because of the high-level abstraction of state information.

Humanoid [48] employs deep learning to train a model from labeled human-generated interaction traces and uses the model together with a set of heuristic rules to guide the exploration of new apps. The result of deep learning is only used to select one event from the unexplored events on the current page. If all events on the current page are explored, the heuristic rules will be used to compute the shortest path in a graph to find a page with unexplored events. In contrast, DinoDroid does not need to manually build/label the training set or use any pre-defined search strategies or rules to guide testing. AppFlow [39] generates GUI tests from high-level, manually written test cases. It leverages machine learning to match screens and widgets to individual tests. Juha Eskonen et al. [31], Faraz YazdaniBanafsheDaragh et al. [75], and Ziqian Zhang et al. [76] employ deep reinforcement learning to perform UI testing for applications. These works specifically focus on the image feature and do not perform extensive empirical studies by comparing other tools to assess their performance. In contrast, DinoDroid’s feature merging component is able to handle multiple complex features. DinoDroid targets at Android apps and performs an extensive empirical study.

The techniques in the second category do not have explicit training process [15, 44, 53, 57, 65, 66]. Instead, they use Q-learning to guide the exploration of individual apps, where each app generates

a unique behavior model. These techniques share the same limitations with Q-learning, where complex features cannot be maintained in the Q-table. For example, QDROID [66], DRIFT [37], and ARES [60] design the deep neural network agents to guide the exploration of Android apps. However, like QBE, the widgets are abstracted into several categories or boolean values. The abstraction of the states and actions may cause the loss of information in individual widgets. Wuji [77] combines reinforcement learning with evolutionary algorithms to test Android game apps. It designs a unique state vector for each game used as the position of the player character or the health points. Therefore, Wuji can not transfer the learned knowledge to new apps. Q-testing [57]’s main contribution is the design of a reward function to improve the performance of Q-testing by calculating the difference between the current state and the recorded states. Our work is orthogonal to Q-testing and one can improve the performance of DinoDroid by utilizing Q-testing’s reward function.

8 CONCLUSIONS

We have presented DinoDroid, an automated approach to test Android application. It is a deep Q-learning-based approach, which can learn how to test android application rather than depending on heuristic rules. DinoDroid can take more complex features than existing learning-based methods as the input by using a Deep Q learning-based structure. With these features, DinoDroid can process complex features on the pages of an app. Based on these complex features, DinoDroid can learn a policy targeting at achieving high code coverage. We have evaluated DinoDroid on 64 apps from a widely used benchmark and showed that DinoDroid outperforms the state-of-the-art and state-of-practice Android GUI testing tools in both code coverage and bug detection. By analyzing the testing traces of the 64 apps, we are also able to tell that the machine really understands the features and provides a sensible strategy to generate tests.

REFERENCES

- [1] 2013. lockpatterngenerator. Retrieved from <https://github.com/dharmik/lockpatterngenerator>. Access date 2024.
- [2] 2015. nectroid. Retrieved from <https://github.com/cknave/nectroid>. Access date: 2024.
- [3] 2021. word2vec. Retrieved from <https://github.com/dav/word2vec>. Access date: 2024.
- [4] 2022. adam. Retrieved from <https://keras.io/api/optimizers/adam/>. Access date: 2024.
- [5] 2022. Androguard. Retrieved from <https://github.com/androguard/androguard>. Access date: 2024.
- [6] 2022. Android Activity. Retrieved from <https://developer.android.com/reference/android/app/Activity>. Access date: 2024.
- [7] 2022. Conv1D layer. Retrieved from <https://keras.io/api/layers/convolutionayers/convolution1d/>. Access date: 2024.
- [8] 2022. Dense layer. Retrieved from <https://keras.io/api/layers/corelayers/dense/>. Access date: 2024.
- [9] 2022. DinoDroid. Retrieved from <https://github.com/softwareTesting123/DinoDroid>. Access date: 2024.
- [10] 2022. EMMA. Retrieved from <http://emma.sourceforge.net/>. Access date: 2024.
- [11] 2022. Google Play Data. Retrieved from <https://en.wikipedia.org/wiki/Googleplay>. Access date: 2024.
- [12] 2022. Keras. Retrieved from <https://keras.io/>. Access date: 2024.
- [13] 2022. UI Automator. Retrieved from <https://developer.android.com/training/testing/other-components/ui-automator>. Access date: 2024.
- [14] 2022. UI/Application Exerciser Monkey. Retrieved from <https://developer.android.com/studio/test/monkey.html>. Access date: 2024.
- [15] David Adamo, Md Khorrom Khan, Sreedevi Koppula, and Renée Bryce. 2018. Reinforcement learning for android gui testing. In *Proceedings of the International Workshop on Automating TEST Case Design, Selection, and Evaluation*. 2–8.
- [16] Md Nawab Yousuf Ali, Md Golam Sarowar, Md Lizur Rahman, Jyotismita Chaki, Nilanjan Dey, and João Manuel RS Tavares. 2019. Adam deep learning with SOM for human sentiment classification. *International Journal of Ambient Computing and Intelligence* 10, 3 (2019), 92–116.
- [17] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore De Carmine, and Atif M. Memon. 2012. Using GUI ripping for automated testing of android applications. In *Proceedings of the International Conference on Automated Software Engineering*. 258–261.

- [18] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung Ta, and Atif M Memon. 2015. Mobi-GUITAR: Automated model-based testing of mobile apps. *IEEE Software* 32, 5 (2015), 53–59.
- [19] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. 2017. Deep reinforcement learning: A brief survey. *IEEE Signal Processing Magazine* 34, 6 (2017), 26–38.
- [20] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration for systematic testing of android apps. In *Proceedings of the ACM SIGPLAN Notices*. 641–660.
- [21] Young-Min Baek and Doo-Hwan Bae. 2016. Automated model-based android GUI testing using multi-level GUI comparison criteria. In *Proceedings of the International Conference on Automated Software Engineering*. 238–249.
- [22] Vaishak Belle and Ioannis Papantonis. 2021. Principles and practice of explainable machine learning. *Frontiers in Big Data* (2021), 39.
- [23] Richard Bellman. 1952. On the theory of dynamic programming. *National Academy of Sciences of the United States of America* 38, 8 (1952), 716.
- [24] Nataniel P. Borges, Maria Gómez, and Andreas Zeller. 2018. Guiding app testing with mined interaction models. In *Proceedings of the International Conference on Mobile Software Engineering and Systems*. IEEE, 133–143.
- [25] Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolis-hastings algorithm. *The American Statistician* 49, 4 (1995), 327–335.
- [26] Wontae Choi, George Necula, and Koushik Sen. 2013. Guided gui testing of android apps with minimal restart and approximate learning. In *Proceedings of the ACM SIGPLAN Notices*. ACM, 623–640.
- [27] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. 2015. Automated test input generation for android: Are we there yet?. In *Proceedings of the International Conference on Automated Software Engineering*. 429–440.
- [28] Peter Dayan. 1993. Improving generalization for temporal difference learning: The successor representation. *Neural Computation* 5, 4 (1993), 613–624.
- [29] Christian Degott, Nataniel P. Borges Jr, and Andreas Zeller. 2019. Learning user interface element interactions. In *Proceedings of the International Symposium on Software Testing and Analysis*. 296–306.
- [30] Zhen Dong, Marcel Bohme, Lucia Cojocaru, and Abhik Roychoudhury. 2020. Time-travel testing of android apps. In *Proceedings of the International Conference on Software Engineering*. IEEE, 481–492.
- [31] Juha Eskonen, Julen Kahles, and Joel Reijonen. 2020. Automating GUI testing with image-based deep reinforcement learning. In *Proceedings of the International Conference on Autonomic Computing and Self-Organizing Systems*. IEEE, 160–167.
- [32] Qishuo Gao, Samsung Lim, and Xiuping Jia. 2018. Hyperspectral image classification using convolutional neural networks and multiple feature learning. *Remote Sensing* 10, 2 (2018), 299.
- [33] Xiang Gao, Shin Hwei Tan, Zhen Dong, and Abhik Roychoudhury. 2018. Android testing via synthetic symbolic execution. In *Proceedings of the International Conference on Automated Software Engineering*. 419–429.
- [34] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Rezende, and Daan Wierstra. 2015. Draw: A recurrent neural network for image generation. In *Proceedings of the International Conference on Machine Learning*. 1462–1471.
- [35] Tianxiao Gu, Chun Cao, Tianchi Liu, Chengnian Sun, Jing Deng, Xiaoxing Ma, and Jian Lü. 2017. Aimdroid: Activity-insulated multi-level automated testing for android applications. In *Proceedings of the International Conference on Software Maintenance and Evolution*. 103–114.
- [36] Tianxiao Gu, Chengnian Sun, Xiaoxing Ma, Chun Cao, Chang Xu, Yuan Yao, Qirun Zhang, Jian Lu, and Zhendong Su. 2019. Practical GUI testing of android applications via model abstraction and refinement. In *Proceedings of the 2019 IEEE/ACM 41st International Conference on Software Engineering*. IEEE, 269–280.
- [37] Luke Harries, Rebekah Storan Clarke, Timothy Chapman, Swamy VPLN Nallamalli, Levent Ozgur, Shuktika Jain, Alex Leung, Steve Lim, Aaron Dietrich, José Miguel Hernández-Lobato, and others. 2020. Drift: Deep reinforcement learning for functional software testing. arXiv preprint arXiv:2007.08220 (2020).
- [38] M. Mainegra Hing, Aart van Harten, and P. C. Schuur. 2007. Reinforcement learning versus heuristics for order acceptance on a single resource. *Journal of Heuristics* 13, 2 (2007), 167–187.
- [39] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: Using machine learning to synthesize robust, reusable UI tests. In *Proceedings of the Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering*. 269–282.
- [40] Zhihao Jia, Sina Lin, Charles R Qi, and Alex Aiken. 2018. Exploring hidden dimensions in parallelizing convolutional neural networks. In *Proceedings of the ICML*. 2279–2288.
- [41] Chi Jin, Zeyuan Allen-Zhu, Sébastien Bubeck, and Michael I. Jordan. 2018. Is Q-learning provably efficient? *Advances in Neural Information Processing Systems* 31, (2018).
- [42] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough. 2018. Predicting the computational cost of deep learning models. In *Proceedings of the 2018 IEEE International Conference on Big Data*. IEEE, 3873–3882.
- [43] Y. Chen. 2015. Convolutional neural network for sentence classification. *University of Waterloo*.

- [44] Yavuz Koroglu and Alper Sen. 2021. Functional test generation from UI test scenarios using reinforcement learning for android applications. *Software Testing, Verification and Reliability* 31, 3 (2021), e1752.
- [45] Yavuz Koroglu, Alper Sen, Ozlem Muslu, Yunus Mete, Ceyda Ulker, Tolga Tanrıverdi, and Yunus Donmez. 2018. QBE: QLearning-based exploration of android applications. In *Proceedings of the International Conference on Software Testing, Verification and Validation*. 105–115.
- [46] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. 2009. Exploring strategies for training deep neural networks. *Journal of Machine Learning Research* 10, 1 (2009), 1–40.
- [47] Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Improving distributional similarity with lessons learned from word embeddings. *Transactions of the Association for Computational Linguistics* 3, 2015 (2015), 211–225.
- [48] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. 2019. Humanoid: A deep learning-based approach to automated black-box android app testing. In *Proceedings of the International Conference on Automated Software Engineering*. 1070–1073.
- [49] Jun-Wei Lin, Reyhaneh Jabbarvand, and Sam Malek. 2019. Test transfer across mobile apps through semantic mapping. In *Proceedings of the International Conference on Automated Software Engineering*. 42–53.
- [50] Aravind Machiry, Rohan Tahiliani, and Mayur Naik. 2013. Dynodroid: An input generation system for android apps. In *Proceedings of the Joint Meeting on Foundations of Software Engineering*. 224–234.
- [51] Riyadah Mahmood, Nariman Mirzaei, and Sam Malek. 2014. Evodroid: Segmented evolutionary testing of android apps. In *Proceedings of the International Symposium on Foundations of Software Engineering*. 599–609.
- [52] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for android applications. In *Proceedings of the International Symposium on Software Testing and Analysis*. 94–105.
- [53] Leonardo Mariani, Mauro Pezze, Oliviero Riganelli, and Mauro Santoro. 2012. Autoblocktest: Automatic black-box testing of interactive applications. In *Proceedings of the International Conference on Software Testing, Verification and Validation*. 81–90.
- [54] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. 2003. GUI ripping: Reverse engineering of graphical user interfaces for testing. In *Proceedings of the Working Conference on Reverse Engineering*. 260–269.
- [55] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015. Human-level control through deep reinforcement learning. *Nature* 518, 7540 (2015), 529–533.
- [56] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher Vendome, and Denys Poshyvanyk. 2016. Automatically discovering, reporting and reproducing android application crashes. In *Proceedings of the 2016 IEEE International Conference on Software Testing, Verification and Validation*. IEEE, 33–44.
- [57] Minxue Pan, An Huang, Guoxin Wang, Tian Zhang, and Xuandong Li. 2020. Reinforcement learning based curiosity-driven testing of android applications. In *Proceedings of the International Symposium on Software Testing and Analysis*. 153–164.
- [58] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove: Global vectors for word representation. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing*. 1532–1543.
- [59] Michael Pradel, Parker Schuh, George Necula, and Koushik Sen. 2014. EventBreak: Analyzing the responsiveness of user interfaces through performance-guided test generation. *ACM SIGPLAN Notices* 49, 10 (2014), 33–47.
- [60] Andrea Romdhana, Alessio Merlo, Mariano Ceccato, and Paolo Tonella. 2022. Deep reinforcement learning for black-box testing of android apps. *ACM Transactions on Software Engineering and Methodology* 31, 4 (2022), 1–29.
- [61] Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, and Zhendong Su. 2017. Guided, stochastic model-based GUI testing of android apps. In *Proceedings of the Joint Meeting on Foundations of Software Engineering*. 245–256.
- [62] Ting Su, Jue Wang, and Zhendong Su. 2021. Benchmarking automated GUI testing for android against real-world bugs. In *Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering*. 119–130.
- [63] Arryon D. Tijmsma, Madalina M Drugan, and Marco A Wiering. 2016. Comparing exploration strategies for q-learning in random stochastic mazes. In *Proceedings of the Symposium Series on Computational Intelligence*. 1–8.
- [64] Michel Tokic and Günther Palm. 2011. Value-difference based exploration: Adaptive control between epsilon-greedy and softmax. In *Proceedings of the Annual Conference on Artificial Intelligence*. 335–346.
- [65] Thi Anh Tuyet Vuong and Shingo Takada. 2018. A reinforcement learning based approach to automated testing of android applications. In *Proceedings of the International Workshop on Automating TEST Case Design, Selection, and Evaluation*. 31–37.
- [66] Thi Anh Tuyet Vuong and Shingo Takada. 2019. Semantic analysis for deep q-network in android GUI testing. In *Proceedings of the SEKE*. 123–170.
- [67] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. 2013. Regularization of neural networks using dropconnect. In *Proceedings of the International Conference on Machine Learning*. PMLR, 1058–1066.

- [68] Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang, Chang Huang, and Wei Xu. 2016. Cnn-rnn: A unified framework for multi-label image classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2285–2294.
- [69] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. *Machine Learning* 8, 3–4 (1992), 279–292.
- [70] Xiaoxue Wu, Wei Zheng, Xiang Chen, Yu Zhao, Tingting Yu, and Dejun Mu. 2021. Improving high-impact bug report prediction with combination of interactive machine learning and active learning. *Information and Software Technology* 133, May 2021 (2021), 106530.
- [71] Peng Xu, Xiatian Zhu, and David A Clifton. 2023. Multimodal learning with transformers: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 45, 10 (2023), 12113–12132.
- [72] Jiwei Yan, Linjie Pan, Yaqi Li, Jun Yan, and Jian Zhang. 2018. LAND: A user-friendly and customizable test generation tool for android apps. In *Proceedings of the International Symposium on Software Testing and Analysis*. 360–363.
- [73] Jiwei Yan, Tianyong Wu, Jun Yan, and Jian Zhang. 2017. Widget-sensitive and back-stack-aware GUI exploration for testing android apps. In *Proceedings of the International Conference on Software Quality, Reliability and Security*. 42–53.
- [74] Wei Yang, Mukul R. Prasad, and Tao Xie. 2013. A grey-box approach for automated GUI-model generation of mobile applications. In *Proceedings of the International Conference on Fundamental Approaches to Software Engineering*. 250–265.
- [75] Faraz YazdaniBanafsheDaragh and Sam Malek. 2021. Deep GUI: Black-box GUI input generation with deep learning. In *Proceedings of the 36th IEEE/ACM International Conference on Automated Software Engineering*. 905–916.
- [76] Ziqian Zhang, Yulei Liu, Shengcheng Yu, Xin Li, Yexiao Yun, Chunrong Fang, and Zhenyu Chen. 2022. UniRLTest: Universal platform-independent testing with reinforcement learning via image understanding. In *Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis*. 805–808.
- [77] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu, Ruimin Shen, Yingfeng Chen, and Changjie Fan. 2019. Wuji: Automatic online combat game testing using evolutionary deep reinforcement learning. In *Proceedings of the International Conference on Automated Software Engineering*. 772–784.

Received 19 October 2022; revised 13 February 2024; accepted 20 February 2024