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Quadrotor Fault-Tolerant Control at High Speed:
A Model-Based Extended State Observer for
Mismatched Disturbance Rejection Approach
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Abstract—Fault-tolerant control of a quadrotor in
extreme conditions, such as rotor failure and strong
winds, is exceptionally challenging due to its underactu-
ated nature, strong mismatched disturbances, and highly
nonlinear multi-input and multi-output properties. This let-
ter proposes a reduced attitude control approach that
combines a model-based extended state observer (MB-
ESO) and mismatched disturbance decoupling to control
a quadrotor under strong winds and complete loss of two
opposing rotors. Our MB-ESO based control provides a new
theoretical framework for more general nonlinear systems
by utilizing all measurable outputs, thereby maximizing
the use of all available information to design a robust
controller. Testing in a high-fidelity simulator shows that
our approach outperforms the state-of-the-art Incremental
Nonlinear Dynamic Inversion method.

Index Terms—Fault-tolerant control, flight control,
extended state observer, mismatched disturbance
rejection.

I. INTRODUCTION

M
ANY safety-critical and mission-critical quadrotors

operate in highly uncertain and adverse environments,

such as strong winds and the risk of rotor failures or attacks.

These conditions pose significant challenges, particularly due

to the complexities of modeling aerodynamics at high speeds

and the lack of actuator redundancy.

Fault-tolerant control (FTC) has been studied to improve

flight safety in the event of actuator failures [1], [2], [3], [4],

[5], [6], [7]. The relaxed hover approach in [8] even studied

the extreme case of three rotor failures. However, high-speed

and aggressive maneuvers are rarely addressed in the literature.
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Most existing works focus on stationary environments at low

speeds without significant disturbances.

Recently, incremental nonlinear dynamic inversion (INDI)

control algorithms have emerged as promising solutions

for quadrotors operating at high speeds with aggressive

maneuvers [3], [4], [5], [6]. This approach utilizes sensor

measurements and their derivatives to enhance robustness

against model uncertainty and external disturbances.

Active disturbance rejection control (ADRC) [9] is similar

to INDI in that it relies less on accurate model information.

An extended state observer (ESO), an essential component

in ADRC, estimates both the states and lumped disturbances,

including internal disturbances caused by model uncertainty

and external disturbances from the environment. A subsequent

disturbance rejection controller can be designed accordingly

once the disturbance has been estimated by the ESO. This

method, following the separation principle, offers a superior

modular design compared to direct robust methods such as

the adaptive fuzzy approach [10]. There are several works

on ADRC-based FTC [11], [12], however their focus is on

stationary environments at low speeds.

Moreover, existing controllers based on ADRC typically

require the original dynamic model to be divided into multiple

SISO subsystems, which must have the form of cascades of

integrators and matched disturbances. In this letter, we use

the necessary and sufficient conditions for the existence of a

model-based extended state observer (MB-ESO), as proposed

in our recent work [13], as a criterion to design MB-ESOs

for more general control-affine nonlinear systems subject to

mismatched disturbances. This letter employs a disturbance

decoupling controller design for multi-input, multi-output

(MIMO) affine nonlinear systems with mismatched distur-

bances [14]. The idea of reduced attitude control is used to

properly select controlled outputs [4] to ensure the stability

of the zero dynamics of the quadrotor when two opposing

rotors are available. Note that we use two opposing rotors

as a case study to facilitate comparison with the state of the

art [4]. By using reduced attitude for control output selection

along with our general observer and controller design, it is

straightforward to generalize to other cases, such as different

numbers of missing rotors or two adjacent missing rotors.

2475-1456 c© 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Houston. Downloaded on February 18,2025 at 21:35:07 UTC from IEEE Xplore.  Restrictions apply. 



2896 IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

Fig. 1. Visualizations of quadrotor and reduced attitude.

The main contribution is the extension of our MB-ESO the-

ory to a challenging quadrotor FTC within a new framework.

(1) Unlike existing ESO-based controls that require stringent

structural constraints, our new design has flexibility for a

broader range of nonlinear systems. (2) It utilizes all available

measured outputs and model information for observer design.

(3) We integrate the MB-ESO with mismatched disturbance

decoupling under the principle of reduced attitude, demonstrat-

ing superior robustness and tracking performance in strong

winds compared to the INDI [4].

II. PRELIMINARY AND PROBLEM FORMULATION

Notation: Boldface symbols like P denote vectors or

matrices, while non-boldface symbols like p denote scalars.

Superscripts [ · ]I and [ · ]B indicate coordinates expressed in

the inertial and body frames, respectively. Subscripts specify

relationships or attributes; e.g., xI represents the x-axis in the

inertial frame. 0m×n denotes a m by n zero matrix and Im×m

denotes an m-dimension identity matrix.

A. Quadrotor Dynamic Model

Let FI = {OI, xI, yI, zI} denote a right-hand inertial frame

fixed to the ground, where xI , yI , and zI point to the north,

east, and points down, respectively. As shown in Fig. 1,

FB = {OB, xB, yB, zB} is a right-hand body frame fixed to the

quadrotor with OB located at the center of mass, and xB, yB

and zB pointing forward, right and down, respectively.

The complete dynamical model is as follows [4]:

Ṗ
I
= VI (1a)

mvV̇
I
= mvgI + RIBFB (1b)

ṘIB = RIB�B
× (1c)

Iv�̇
B

= −�B
×Iv�

B + MB (1d)

where the translation dynamics are described in (1a) and (1b),

and the rotation dynamics are described in (1c) and (1d); PI =

[X, Y, Z]T , VI = [Vx, Vy, Vz]
T , and gI = [0, 0, g]T are the

position, velocity, and gravity vectors in FI ; �B = [p, q, r]T is

the angular velocity vector in FB including pitch rate, roll rate,

and yaw rate; RIB represents the rotation matrix from FB to

FI ; �B
× denotes the skew-symmetric matrix such that �B

×a =

�B × a for the vector cross product × and any vector a ∈ R
3;

mv and Iv represent the gross mass and inertial matrix of the

quadrotor. The resultant force FB and moment MB applied to

the center of mass of the quadrotor in FB are modeled as:

FB =

⎡

⎢

⎣

0

0

−κ0

∑4
i=1 ω2

i

⎤

⎥

⎦
+ Fa (2)

MB =

⎡

⎢

⎣

bκ0 −bκ0 −bκ0 bκ0

lκ0 lκ0 −lκ0 −lκ0

τ0 −τ0 τ0 −τ0

⎤

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ω2
1

ω2
2

ω2
3

ω2
4

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎣

0

0

−γ r

⎤

⎥

⎦

+

⎡

⎢

⎣

Ipq(ω1 − ω2 + ω3 − ω4)

−Ipp(ω1 − ω2 + ω3 − ω4)

Ip(ω̇1 − ω̇2 + ω̇3 − ω̇4)

⎤

⎥

⎦
+ Ma (3)

where κ0 and τ0 are coefficients of the thrust and the reaction

torque; b and l are geometric parameters of the quadrotor

shown in Fig. 1; ωi is the angular speed of the ith rotor rotating

about the z axis in FB; γ is the damping coefficient on yaw;

Ip represents the moment of inertial of each rotor inducing

the gyroscopic moment; Fa and Ma are additional forces and

torques caused by quadrotor model uncertainty, unmodeled

aerodynamic effects and external wind.

B. Reduced Attitude Control

Due to the inability to control the yaw angle in rotor failure

cases, reduced attitude control [4], [8] simplifies the original

attitude control to thrust vector pointing, compromising yaw

control. nB in Fig. 1 is a unit vector fixed to the body frame,

as a rotation axis of the damaged quadrotor, and pointing in

the same direction as the averaged thrust. To achieve position

control, nB must align with the reference unit vector nB
d , which

is generated by the outer-loop controller for nI
d in FI and

subsequently converted to FB. Eq. (1c) is replaced by the first

two of the following relaxed attitude kinematic equations, as

nB
d is a unit vector with two independent components [4]:

⎡

⎣

ḣ1

ḣ2

ḣ3

⎤

⎦ =

⎡

⎣

0 r −q

−r 0 p

q −p 0

⎤

⎦

⎡

⎣

h1

h2

h3

⎤

⎦ +

⎡

⎣

λ1

λ2

λ3

⎤

⎦ (4)

where nB
d = [h1, h2, h3]T , RT

IBṅI
d = [λ1, λ2, λ3]T is a distur-

bance vector, and nI
d is nB

d expressed in FI . For the quadrotor

with two opposing rotors failure, nB = [0, 0,−1]T is chosen

for the maximized energy efficiency. h1 and h2 should be both

stabilized to zero to align nB with nB
d .

C. Problem Formulation

To illustrate the design of MB-ESO based control for the

inner-loop controller more clearly, the dynamical model of the

quadrotor after replacement can be written in the following

affine nonlinear system with disturbance w:

ẋ = f (x) + G(x)u + Q(x)w

y = H(x) (5)

where x = [Z, Vz, h1, h2, p, q, r]T , u = [ω2
1, ω

2
2, ω

2
3, ω

2
4]T ,

f (x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Vz

g

h2r − h3q

−h1r + h3p

qr
(

Iy − Iz

)

/Ix

rp(Iz − Ix)/Iy
(

−γ r + pq(Ix − Iy)
)

/Iz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (6)
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Fig. 2. Configuration of the cascaded control using PID as
outer-loop position control and MB-ESO based control as inner-loop
altitude/attitude control.

G(x) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0

− κ0R33
mv

− κ0R33
mv

− κ0R33
mv

− κ0R33
mv

0 0 0 0

0 0 0 0
bκ0

Ix
− bκ0

Ix
− bκ0

Ix

bκ0

Ix
lκ0

Iy

lκ0

Iy
− lκ0

Iy
− lκ0

Iy
τ0

Iz
− τ0

Iz

τ0

Iz
− τ0

Iz

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (7)

Q(x) =

[

01×6

I6×6

]

, (8)

H(x) =

[

Z

h1 cos χ + h2 sin χ

]

, (9)

w = [Fa,z, λ1, λ2, Ma,x, Ma,y, Ma,z]
T represents a disturbance

vector in the inner-loop of the quadrotor, Iv = diag(Ix, Iy, Iz)

is a diagonal inertia matrix, R33 is the element at the third row

and the third column of RIB, and the rotor induced gyroscopic

moment is ignored. Every state can be measured or estimated.

Since there remain two functional rotors, a maximum of two

outputs can be controlled. The same outputs in [4] are used

in (9), where the second output y2 is the projection of nB
d onto

the axis x of a new coordinate system obtained by rotating the

body frame FB about zB by an angle χ . The zero dynamics of

the quadrotor can be stabilized by properly selecting χ , see [4]

for more details. Without loss of generality, in this letter, we

consider the case that rotors 2 and 4 remain functional, i.e.,

ω2
1 and ω2

3 are assumed to be zero.

The research problem addressed in this letter is how to

maximally exploit all available measured outputs and known

model information to better estimate the disturbance w, thereby

improving control performance and robustness for the two-

input, two-output affine nonlinear system (5).

III. PROPOSED FRAMEWORK

Fig. 2 shows a schematic overview of our framework, which

consists of an outer-loop horizontal position controller and an

inner-loop attitude and altitude controller.

A. Controller Design for Outer-Loop Horizontal Position

To make a fair comparison with the INDI [4], our framework

shares the same outer-loop PID controller generating desired

rotation axis nI
d in FI , which can be obtained as

nI
d =

aI
ref − gI

||aI
ref − gI ||

(10)

where

aI
ref =

⎡

⎣

−kpex−kd ėx−ki

∫

exdt

−kpey−kd ėy−ki

∫

eydt

Z̈ref

⎤

⎦;

ex = X − Xref and ey = Y − Yref are the horizontal position

error in FI ; kp, ki, and kd are tunable PID parameters; Xref,

Yref, and Zref represent the position of a reference trajectory.

B. Controller Design for Inner-Loop Altitude and Attitude

1) Design of MB-ESO: The objective of designing the

MB-ESO is to maximally exploit all available measured

outputs and model information to estimate disturbances in the

dynamic model. The sufficient and necessary conditions for the

existence of an MB-ESO proposed in [13] are: 1) the system

is observable, and 2) there is no invariant zero between the

output and the disturbance. For system (5) with disturbance

vector w, the output vector for observers can be chosen as yo =

[Z, h1, h2, p, q, r]T . It can be easily verified that the system (5)

with output yo can be transferred in a normal form, with a

disturbance vector relative degree of {2, 1, 1, 1, 1, 1}. The sum

of these degrees is 7, which is equivalent to the number of

states. Therefore, the system is observable and has no zero

dynamics between w and yo [15].

Reference [13] addresses only single-disturbance single-

output (SDSO) linear systems, while the system in (5) is

a multi-disturbance multi-output (MDMO) affine nonlinear

system. To apply the results from [13], (5) is decomposed into

six SDSO systems based on the disturbance vector relative

degree, each containing a nonlinear term in the same channel

as the disturbance. The disturbance vector w is treated as an

extended state vector, enabling the design of six MB-ESOs:
⎡

⎢

⎣

˙̂
Z
˙̂
Vz

˙̂
Fa,z

⎤

⎥

⎦
=

⎡

⎣

−L1,1 1 0

−L2,1 0 1

−L3,1 0 0

⎤

⎦

⎡

⎣

Ẑ

V̂z

F̂a,z

⎤

⎦ +

⎡

⎣

01×4

G2(x)

01×4

⎤

⎦u

+

⎡

⎣

0

f 2(x)

0

⎤

⎦ +

⎡

⎣

L1,1

L2,1

L3,1

⎤

⎦Z, (11)

[

˙̂
h1

˙̂
λ1

]

=

[

−L1,2 1

−L2,2 0

][

ĥ1

λ̂1

]

+

[

f 3(x)

0

]

+

[

L1,2

L2,2

]

h1, (12)

[

˙̂
h2

˙̂
λ2

]

=

[

−L1,3 1

−L2,3 0

][

ĥ2

λ̂2

]

+

[

f 4(x)

0

]

+

[

L1,3

L2,3

]

h2, (13)

[

˙̂p
˙̂

Ma,x

]

=

[

−L1,4 1

−L2,4 0

][

p̂

M̂a,x

]

+

[

G5(x)

01×4

]

u

+

[

f 5(x)

0

]

+

[

L1,4

L2,4

]

p, (14)

[

˙̂q
˙̂

Ma,y

]

=

[

−L1,5 1

−L2,5 0

][

q̂

M̂a,y

]

+

[

G6(x)

01×4

]

u

+

[

f 6(x)

0

]

+

[

L1,5

L2,5

]

q, (15)

[

˙̂r
˙̂

Ma,z

]

=

[

−L1,6 1

−L2,6 0

][

r̂

M̂a,z

]

+

[

G7(x)

01×4

]

u
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+

[

f 7(x)

0

]

+

[

L1,6

L2,6

]

r, (16)

where Ẑ, V̂z, ĥ1, ĥ2, p̂, q̂, r̂, F̂a,z, λ̂1, λ̂2, M̂a,x, M̂a,y, and M̂a,z

are estimates; Gi(x) is the ith row of G(x) for i = 1, . . . , 7;

f i(x) is the ith row of f (x) for i = 1, . . . , 7; Li,j is the ith

tunable observer gain for the jth MB-ESO for i = 1, . . . , 3

and j = 1, . . . , 6, which can be determined by the place of

eigenvalues of MB-ESO. For simplicity, the eigenvalues of the

ith MB-ESO are all placed at −νoi, where νoi is the observer

bandwidth of ESO [16].

Remark 1: Although [13] mainly considers discrete-time

systems, it also generalizes to the case of continuous-time

systems proposed in [17].

Next, we will show that the error dynamics of the MB-ESOs

proposed for system (5) are the same as those in [13], [17].

For simplicity, we will use the MB-ESO described in (11)

as an example. The augmented component of system (5)

corresponding to (11) is
⎡

⎣

Ż

V̇z

Ḟa,z

⎤

⎦ =

⎡

⎣

0 1 0

0 0 1

0 0 0

⎤

⎦

⎡

⎣

Z

Vz

Fa,z

⎤

⎦ +

⎡

⎣

01×4

G2(x)

01×4

⎤

⎦u

+

⎡

⎣

0

f 2(x)

0

⎤

⎦ +

⎡

⎣

0

0

1

⎤

⎦Ḟa,z. (17)

Subtracting (11) from (17) yields the error dynamics:

ė = (Ao − LCo)e + EoḞa,z, (18)

where

e =

⎡

⎣

Z − Ẑ

Vz − V̂z

Fa,z − F̂a,z

⎤

⎦, Ao =

⎡

⎣

0 1 0

0 0 1

0 0 0

⎤

⎦, L =

⎡

⎣

L1,1

L2,1

L3,1

⎤

⎦,

Co = [1, 0, 0], and Eo = [0, 0, 1]T . Therefore, we verify

that the condition in [13] holds for this system, and by

applying pole placement to the observer, we can guarantee the

convergence of disturbance estimation.

Reference [13] examines the connection between the

MB-ESO and the unknown input observer (UIO), also known

as the disturbance decoupled observer [18]. Established UIO

theory supports MB-ESO development. Reference [19] proves

geometrically that the number of decoupled disturbances in an

observer cannot exceed the number of measured outputs. In

this letter, the number of disturbances equals the number of

measured outputs, ensuring maximal utilization of measure-

ments for disturbance estimation in the MB-ESOs.

2) Control Design for Mismatched Disturbances: To design

a control law u that makes the system output y follow the

reference trajectory [Zref, h1,ref cos χ+h2,ref sin χ ]T , the effects

of disturbance w on system (5) should be eliminated from

y. However, w cannot be canceled out directly in the input

channel since w is not in the same channel as the control

input u, making w mismatched disturbances. The disturbance

decoupling method proposed in [14] is adopted in this letter

to reject mismatched disturbances.

The system (5) is converted into the normal form via

a coordinate transformation �(x) =
[

η, ξ
]T

[15], where η

represents the states of the zero dynamics, see [4],

ξ = [ξ1, ξ2, ξ3, ξ4]T

=
[

H1(x), Lf H1(x), H2(x), Lf H2(x)
]T

, (19)

Hi(x) denotes the ith real-valued function in the vector field

H(x), and Lf Hi(x) is the first order Lie derivative of Hi(x)

along the vector field f (x). Since the zero dynamics of

system (5) can be stabilized by properly selecting χ and

control input u cannot change the place of zeros, the following

subsystem under the new coordinates �(x) without zero

dynamics is used to design the control law:

ξ̇ = Acξ + Bc[α(x) + B(x)u] + Dc(x)w

y = Ccξ (20)

where

Ac =

⎡

⎢

⎢

⎣

0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

⎤

⎥

⎥

⎦

, Bc =

⎡

⎢

⎢

⎣

0 0

1 0

0 0

0 1

⎤

⎥

⎥

⎦

, Cc =

⎡

⎢

⎢

⎣

1 0

0 0

0 1

0 0

⎤

⎥

⎥

⎦

T

,

Dc(x) =

⎡

⎢

⎢

⎣

LQ1
H1 LQ2

H1 · · · LQ6
H1

LQ1
Lf H1 LQ2

Lf H1 · · · LQ6
Lf H1

LQ1
H2 LQ2

H2 · · · LQ6
H2

LQ1
Lf H2 LQ2

Lf H2 · · · LQ6
Lf H2

⎤

⎥

⎥

⎦

,

α(x) =

[

L2
f H1

L2
f H2

]

,B(x) =

[

LG2
Lf H1 LG4

Lf H1

LG2
Lf H2 LG4

Lf H2

]

,

u = [ω2
2, ω

2
4]T are the inputs of functional rotors 2 and 4,

Qi is the ith column of Q(x), Gi is the ith column of G(x),

LQj Lf Hi is the first order Lie derivative of Hi(x) first along the

vector field f (x) and then along the vector filed Qj(x), L2
f Hi

is the second order Lie derivative of Hi(x) along the vector

field f (x).

Since there exists a disturbance term Dc(x)w in the

system (20), a disturbance decoupling control law to compen-

sate for the disturbances in the outputs y in steady state is

given in the following [14]:

u = B
−1(x)[−α(x) + u0 + �(x)w] (21)

where

�(x) =

[

γ11(x) γ12(x) · · · γ16(x)

γ21(x) γ22(x) · · · γ26(x)

]

,

u0 =
[

−c1
1(ξ1 − Zref) − c1

2ξ2 − c2
1ξ3 − c2

2ξ4

]T
, �(x) is

determined such that the effects of w are eliminated in the

output channels in steady state, and ci
1 and ci

2 can be calculated

by placing all poles of the ith feedback loop at −νci, where

νci is called the controller bandwidth [16].

For simplicity, the first subsystem is used to illustrate how

to derive the first row of �(x). Substituting (21) into (20), the

first subsystem can be written as
[

ξ̇1

ξ̇2

]

=

[

0 1

−c1
1 −c1

2

][

ξ1

ξ2

]

+

[

0

1

]

c1
1Zref

+

[ ∑6
i=1 LQi H1wi

∑6
i=1 LQi Lf H1wi

]

+

[

0
∑6

i=1 γ1iwi

]

y1 =
[

1 0
]

[

ξ1

ξ2

]

. (22)
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TABLE I
PARAMETERS OF THE QUADROTOR

TABLE II
CONTROL PARAMETERS OF THE MB-ESO BASED CONTROL

The last two terms in (22) should have zero impact on the

output y1 in steady state, which can be formulated as

[

1 0
]

[

0 1

−c1
1 −c1

2

]−1[ ∑6
i=1 LQi H1wi

∑6
i=1

(

LQi Lf H1 + γ1i

)

wi

]

= 0. (23)

Solving (23) for γ1i yields

γ1i = −LQi Lf H1 − c1
2LQi H1 ∀i = 1, . . . , 6. (24)

IV. SIMULATION RESULTS

To make a fair comparison between our approach and the

notable INDI fault-tolerant control [4], we use the same open-

source simulator1 developed by the authors. The parameters

of the quadrotor in Table I are used in the designs of the INDI

and ours. The maximum tilt angle of the quadrotor is set to

30 degrees. The angular speed range of each rotor lies in 0

rad/s to 1200 rad/s. We use the same noise settings as [4],

with power values of 1 × 10−8, 1 × 10−8, 2 × 10−4, and 1 ×

10−5 applied to position, attitude, angular velocity, and rotor

speed measurements, respectively, using Band-Limited White

Noise in Simulink R©. The observer bandwidths and control

bandwidths in the inner-loop and the PID gains in the outer-

loop for the proposed control method are given in Table II.

The control gains in the inner-loop for the INDI method are

given in Table III with the same outer-loop parameters.

Fig. 3(a) shows that the tracking performances on the X

axis for ours and INDI are similar without any over-shooting.

However, due to aggressive maneuvering and significant

unmodeled aerodynamics, substantial fluctuations occur on the

Y and Z axes and y2 when the quadrotor tries to follow the step

reference on the X axis, as illustrated in Fig. 3(b), Fig. 3(c),

1Available at https://github.com/SihaoSun/INDI_Quadrotor_FTC and last
accessed in December 2024.

TABLE III
CONTROL PARAMETERS OF THE INDI

Fig. 3. Trajectory tracking comparison under windless condition.

and Fig. 3(d). Fig. 3 also verifies that the tracking performance

of ours is much better than that of INDI. Moreover, Fig. 4

shows that even with better control performance the control

signals of ours are less noisy than that of INDI.

To test the robustness of ours and INDI against model uncer-

tainty and external disturbances with aggressive maneuvering,

the maximum tilt angle of the quadrotor is changed to 60

degrees and a wind gust (−15, 0, 0) m/s filtered by a low-pass

filter with a transfer function 1/(4s+1), the same setting in the

environment1, is simulated continuously. The same reference

trajectory as in Fig. 3 is used in the simulation. Fig. 5 shows

the trajectory tracking results of ours and INDI simulating for

10 seconds. Both methods perform similarly during the first

7 seconds, when the wind strength remains relatively low. The

position deviation from the reference is primarily caused by

the outer-loop controller, which lacks the disturbance rejection

capacity. After that, the quadrotor controlled by the INDI

approach crashes. The robustness of INDI against the strong

wind can be improved by using higher attitude control gains

(i.e., k2,p and k2,d). However, this improvement is achieved by

sacrificing the tracking performance, as illustrated in Fig. 6

with different k2,p = 200 and k2,d = 30.

V. CONCLUSION

This letter proposes a novel FTC design based on the

necessary and sufficient conditions for the existence of

MB-ESO and the mismatched disturbance decoupling for a

quadrotor experiencing two opposing rotor complete failures.

Simulation results demonstrate that the proposed controller
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Fig. 4. Comparison of angular speed commands of rotor 2 and 4.

Fig. 5. 3-D trajectories of the quadrotor under strong wind via MB-ESO
and INDI. The star represents the starting point.

Fig. 6. 3-D trajectories of the quadrotor under strong wind via MB-ESO
and INDI. The inner-loop control parameters, k2,p and k2,d , of the INDI
are changed to 200 and 30, respectively.

outperforms the well-known INDI against disturbances caused

by significant aerodynamic effects in extreme conditions.
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