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Abstract— Model uncertainty presents significant challenges
in vibration suppression of multi-inertia systems, which often
rely on inaccurate nominal mathematical models due to system
identification errors or unmodeled dynamics. An observer,
such as an extended state observer (ESO), can estimate the
discrepancy between the inaccurate nominal model and the true
model, thus improving control performance via disturbance
rejection. Conventional observer design is memoryless; once the
estimated disturbance is obtained and sent to the controller,
the data is discarded. In this paper, we propose a learning-
enabled ESO (L-ESO) with seamless integration of ESO and
machine learning. The machine learning model attempts to
predict the disturbance, using prior information to help the
observer achieve faster convergence in disturbance estimation.
Additionally, any imperfections in the machine learning model
can be compensated for by the ESO, providing an assurance
layer. We validated the effectiveness of this novel learning-
for-control paradigm through simulation and physical tests on
two-inertial motion control systems used for vibration studies.
Video: https://youtu.be/OUerJ4w_esk

Index Terms— Machine Learning, Disturbance Rejection,
Extended State Observer, Model Uncertainty

I. INTRODUCTION

Vibration suppression of multi-inertia systems is critical

in many engineering applications, including automotive sus-

pensions, series elastic actuators (SEA), and various other

motion control systems [1]. These systems often involve mul-

tiple inertia components with a two-inertia subsystem serving

as a fundamental block connected by flexible couplings,

which inherently cause resonance issues. This resonance

can cause dynamic stresses, energy wastes, and performance

degradation, therefore posing significant challenges to the

systems’ efficiency and stability [2], [3]. Given the funda-

mental challenge of system identification and the necessity

for real-time performance, it is common practice to employ

a simplified or inaccurate nominal dynamic model. Conse-

quently, the disturbances become inevitable, necessitating

their rejection to achieve robust control. The disturbance

includes internal (i.e., unknown or unmodelled parts of the

plant dynamics) and external (i.e., perturbations from the

outside affecting the dynamics) [4], [5].

The observer-based method has emerged as a promising

approach to estimating the disturbance for the subsequent
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design of a disturbance rejection controller. Among the array

of existing disturbance observers, the extended state observer

(ESO) [6] is gaining popularity due to its simplicity in

implementation. For the formulation of an ESO, the system

is modeled as a simple chained integrator with a total

disturbance term (also called lumped disturbance, f ) that

includes both internal and external disturbances. The total

disturbance is treated as an extended state to be estimated

together with other states. The estimated disturbance can be

mitigated through various means, including a simple state

feedback controller or more advanced control strategies such

as sliding mode control [7] and model predictive control [8].

The traditional Extended State Observer (ESO) operates

in a memoryless manner, discarding the estimation data once

transmitted to the controller. However, continuous operation

of a control system allows for improved disturbance under-

standing through collected operational data. Previous studies

[9], [10] show that a model-based ESO (MB-ESO), which

utilizes prior model information about the disturbance (such

as a detailed dynamic model obtained through system identi-

fication), demonstrates reduced sensitivity to noise compared

to a model-free ESO (MF-ESO) that assumes a simple

chained integrator as a nominal model. In order to circumvent

the need for extensive system identification and maximize

the utilization of disturbance information, we propose to

leverage machine learning, which has powerful capacities

for nonlinear optimization, to memorize and generalize the

past estimations from the ESO as a feedforward estimation

of the disturbance. The learning component is expected to

capture the internal dynamics as well as patterns of external

disturbances.

[11], [12], [13] combine ESO with iterative learning

control (ILC) for repetitive control tasks, while this work

focuses on general control tasks rather than just the repetitive

ones. In addition, we assume that system dynamics, as well

as disturbances, are unknown and not necessarily repetitive.

In [14], a neural network is utilized to tune the parameters

of ESO rather than explicitly learning the disturbance. Other

learning-for-control approaches such as [15] employ neural

networks to capture discrepancies between a nominal model

F̂ (xk, uk) and the true model F (xk, uk). Since the state

of the true model is unknown, the measured next state

xk+1 is used to update the error model represented by the

neural network. However, these methods always assume full-

state information is available. In addition, when the learning

performance falls short of expectations, it may result in sub-

optimal performance for subsequent model-based controllers.

In contrast, our approach represents a novel paradigm that
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aims at learning the total disturbance with the help of output

measurements instead of true values for states. Furthermore,

our paradigm includes a correction mechanism for cases

where the learning component fails to accurately capture

the disturbances. The residual total disturbance, i.e., the

remainder excluding the disturbance already estimated by

the learning component, will be estimated by a conventional

ESO in a feedback correction manner. Through this seam-

less integration, even when the learning-based estimation

struggles to converge effectively, we can leverage the ESO

for feedback correction, thereby adding an extra layer of

robustness and assurance to the system.

In our new framework, as visualized in Fig. 1, we refer

to the learning-enabled extended state observer as L-ESO.

The estimation f̂ of the true total disturbance f consists of

f̂L and ∆f̂ , which are from the learning component and

the ESO, respectively. First, ESO uses the information of

control u and observation y to estimate the system’s states x̂
and the residual disturbance ∆f̂ . Second, ESO’s estimation,

including x̂ and u are fed as input to the learning component

for learning a regression model. The learning component car-

ries out the feedforward estimation f̂L, after which an online

optimization iteratively minimizes the difference between f̂L
and f̂ , allowing the learning component to approximate the

total disturbance accurately. In situations where imperfect

learning introduces errors, the ESO serves as an additional

layer to rectify.

Fig. 1: The proposed framework in this paper, where the red

and the blue blocks represent the L-ESO and the disturbance

rejection tracking controller, respectively. Once the total

disturbance is estimated, the tracking controller will be able

to reject disturbance.

The contributions of our work are summarized as follows:

• We propose a novel framework that combines machine

learning and ESO for feedforward estimation and feed-

back correction for a general disturbance rejection track-

ing control task. Compared with existing learning-for-

control frameworks, we estimate states and disturbances

in a unique way. We also have an extra error correction

mechanism for the learning component.

• The learning component serves as an add-on to existing

ESO-based control architecture. As shown in Fig. 1,

only a learning component and a few connections (in

green) are introduced. The advantage of our modular

design is two-fold: 1) no need to change the existing

framework; 2) users can customize the learning com-

ponents by choosing any appropriate machine learning

model.

• Our learning and estimation are real-time and online.

We showcase the efficacy of our framework through

simulations and a real-world two-inertia testbed as a

fundamental block for a multi-inertia system.

The remainder of this paper is structured as follows.

We first go through the preliminaries in Sec. II. Then, we

construct our framework in Sec. III. Simulation results of the

two-mass-spring benchmark system are presented in Sec. IV,

followed by the hardware experiments of a torsional plant in

Sec. V. Finally, we conclude our work and discuss possible

future research directions in Sec. VI.

II. PRELIMINARY

The multi-inertia system can be represented as the sum of

a nominal part and a nonlinear time-varying part:
(

˙̄x(t) = A0x̄(t) +B0u(t) + E0f(x(t), d(t), t)

y = C0x̄
(1)

where x̄ 2 R
n is the state vector, u 2 R is a control input,

y 2 R is a measured output, and f : Rn+1å[0,1] ! R is an

unknown function representing the time-varying uncertainty,

which contains external disturbance d(t) 2 R, unmodeled

dynamics, and parameter uncertainty. Terms A0, B0, E0 and

C0 are real and known matrices with appropriate dimensions.

For the particular case of a two-inertial system with n =
4, meaning two states for each inertial position/angle and

velocity/angular velocity, please refer to the details in the

example in Sec. IV. The justification of classifying (1) as a

nonlinear time-varying system can be found in [16], [17].

Traditionally, an ESO is established for a system in a

chained integrator form [6]. However, in our most recent

work [18], we have significantly expanded the applicability

scope of ESO and rigorously proved that for a general

system (1), given that Assumption 1 and the Assumption

2 are satisfied, an ESO can be established to estimate f by

releasing the chained integrator form requirement.

Assumption 1. (A0, C0) is observable.

Assumption 2. (A0, E0, C0) has no invariant zeros.

For system (1), under the Assumptions 1, and 2 , there

exists a matrix

S =
å
C0 C0A0 . . . C0A

n−1
0

åT
(2)

such that

Ā0 = SA0S
−1 =

2

6
6
6
4

0 1 . . . 0
...

. . .
. . .

...

0 . . . 0 1
�a0 �a1 . . . �an−1

3

7
7
7
5

B̄0 = SB0 =
å
0 0 . . . b

åT

C̄0 = C0S
−1 =

å
1 0 . . . 0

å

Ē0 = SE0 =
å
0 0 . . . 1

åT

(3)
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form the following new system

(

ẋ = Ā0x+ B̄0u+ Ē0f

y = C̄0x
(4)

The readers are referred to [18] for more details on the

matrix transformation. The new system (4) has an observable

canonical form such that an ESO can be established for

estimating f .

Remark 1. Assumption 2 is equivalent to the following

conditions. The proof can be found in [18].

C0E0 = 0, C0A0E0 = 0, . . . , C0A
n−1
0 E0 6= 0

According to whether or not the system dynamics are

available, we have the following two variants of ESO:

A. MB-ESO

If the model information, i.e., �a0,�a1, · · · ,�an−1, b, in

matrix Ā0 and B̄0 is available, we have

ẋ =

2

6
6
6
4

0 1 . . . 0
...

. . .
. . .

...

0 . . . 0 1
�a0 . . . . . . �an−1

3

7
7
7
5

| {z }

Ā0,MB

x+

2

6
6
6
4

0
0
...

b

3

7
7
7
5

|{z}

B̄0,MB

u+

2

6
6
6
4

0
0
...

1

3

7
7
7
5

|{z}

Ē0

d
|{z}

f

(5)

The total disturbance can be represented as f = d, where

d is the external disturbance, b is the true control gain.

B. MF-ESO

If the model information, i.e., �a0,�a1, · · · ,�an−1, b, in

matrix Ā0 and B̄0, is not available, we have

ẋ =

2

6
6
6
4

0 1 . . . 0
...

. . .
. . .

...

0 . . . 0 1
0 0 . . . 0

3

7
7
7
5

| {z }

Ā0,MF

x+

2

6
6
6
4

0
0
...

b0

3

7
7
7
5

| {z }

B̄0,MF

u+

2

6
4

0
...

1

3

7
5

|{z}

Ē0

(�a0x1 � · · ·� an−1xn + (b� b0)u+ d)
| {z }

f

(6)

where �a0x1� · · ·�an−1xn+(b� b0)u is the internal dis-

turbance (unknown/unmodelled dynamics), b0 is the nominal

control gain, and d is the external disturbance. In such a case,

the total disturbance becomes:

f = �a0x1 � · · ·� an−1xn + (b� b0)u+ d (7)

ESO treats the total disturbance f as an extended state,

such that a Luenberger observer can be designed to estimate

both the original system state x and the total disturbance f .

The augmented dynamic system is as follows:
8

><

>:

"

ẋ

ḟ

#

= A

"

x

f

#

+Bu+ Eḟ

y = Cx

(8)

where A =

ÿ
Ā0 Ē0

01×n 0

�

(n+1)×(n+1)

, B =

ÿ
B̄0

0

�

(n+1)×1

,

C = [C̄0, 0]1×(n+1), E = [0, · · · , 0, 1]T(n+1)×1.

The Luenberger observer has the following form:

"
˙̂x
˙̂
f

#

= A

ÿ
x̂

f̂

�

+Bu+ L

7

y � C

ÿ
x̂

f̂

�ç

(9)

where x̂ and f̂ are estimations of x and f , L is the observer

gain. We have the following estimation error dynamics:

ė = (A� LC)e+ Eḟ (10)

where e =
å

x� x̂ f � f̂
åT

.

Theorem 1. Under Assumption 1 and Assumption 2, the

eigenvalues A � LC can be placed at the left side of the

plane to make the estimation converge [18], [17].

All eigenvalues can be placed at �!o, which is called the

observer bandwidth of ESO [19].

III. LEARNING-ENABLED ESO

The model-based ESO in (5) and the model-free ESO in

(6) can be further expanded as follows:
2

6
6
6
6
6
6
6
6
4

0 1 . . . 0
...

. . .
. . .

...

0 . . . 0 1
�a0 . . . . . . �an−1
| {z }

Ā0,MB

Ē0

01×n 0

3

7
7
7
7
7
7
7
7
5

| {z }

AMB

ÿ
x̂

f̂

�

+

2

6
6
6
6
6
4

0
...

b0 + b� b0
| {z }

B̄0,MB

0

3

7
7
7
7
7
5

| {z }

BMB

u =

2

6
6
6
6
6
6
6
6
4

0 1 . . . 0
...

. . .
. . .

...

0 . . . 0 1
0 . . . . . . 0
| {z }

Ā0,MF

Ē0

01×n 0

3

7
7
7
7
7
7
7
7
5

| {z }

AMF

ÿ
x̂

f̂

�

+

2

6
6
6
6
6
4

0
...

b0
|{z}

B̄0,MF

0

3

7
7
7
7
7
5

| {z }

BMF

u+

ÿ
Ē0

0

�

(�a0x1 · · ·� an−1xn + (b� b0)u)

(11)

Remark 2. By incorporating model information, MF-ESO

becomes equivalent to MB-ESO.

Remark 3. The motivation for proposing the learning com-

ponent can be justified in that the model information is learn-

able to facilitate the incorporation of model information.
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Remark 4. The learning component is even possible to

learn the external disturbance together with the internal

disturbance to be incorporated.

Since the learning component has a feedforward esti-

mation f̂L for the total disturbance, ESO can serve as a

feedback correction to estimate the residual total disturbance

as ∆f̂ . The combination of the feedforward estimation and

the feedback correction is realized as follows:
"

˙̂x
˙

∆f̂

#

= A

ÿ
x̂

∆f̂

�

+Bu+ L

7

y � C

ÿ
x̂

∆f̂

�ç

+

ÿ
Ē0

0

�

f̂L

(12)

Since the learning component is expected to capture the

unknown dynamics, we employ a model-free ESO, see Fig.

1. The learning block in Fig. 1 is a function hθ(x, u)
parameterized by 7. To learn the total disturbance (see (7)),

we establish a mapping from the input (x̂ estimated by ESO

and control input u) to the output f̂ , where f̂ = f̂L +∆f̂ .

The total disturbance estimation consists of two parts: 1)

the feedforward estimation from the learning component

f̂L = hθ(x̂, u); 2) feedback correction for the residual

disturbance ∆f̂ by an MF-ESO. To optimize the parameters

of the machine learning model, a general regression problem

is formulated using the following cost function:

J(7) =
1

2

nX

i=1

(hθ(x̂
i, ui)� f̂ i)2 (13)

where n is the size of the training data. The details are in

Alg. 1. When the batch is not yet filled, we run the MF-

ESO (see Line 7-14, the learning component does not return

optimized parameters).

Our framework has superior modularity. The design of the

ESO is just a conventional model-free convention. We only

need to use the estimation from ESO to drive the training of

our learning component. First, the learning component can

serve as an add-on to existing ESO-based control architecture

by just adding a few connections. Second, the learning

component is so flexible that users can customize it by

choosing appropriate machine learning models, e.g., linear,

non-linear, parametric, non-parametric, etc.

IV. SIMULATION RESULTS

A. Two-Mass-Spring Problem Formulation

Fig. 2 depicts a two-mass-spring system scheming from

a well-known benchmark control problem [20]. The system

includes two masses: m1 and m2, which can slide freely over

a horizontal surface without friction. Note that it has been

proved that a non-friction setting is more challenging for a

controller design [9]. The masses are connected by a light

horizontal spring with a spring constant k. The system is

subject to two external disturbance forces w1 and w2, which

act on masses m1 and m2, respectively. The control signal u
is the force applied to mass m1. Both the positions of mass

m1 and mass m2 are measured, and either one can be used

as an output to be controlled.

Algorithm 1 L-ESO

Input: Control input u, system output y, learning rate µ,

batch size n, maximum running time Nmax

Output: Total disturbance f̂
1 Initialize:

2 machine learning input batch I
0 = ;

3 disturbance estimation by ESO batch ∆F
0 = ;

4 machine learning output batch FL
0 = ;

5 machine learning model parameter 7

6 machine learning output f̂0
L = 0

7 for i = 1 to n do

8 Get x̂i and ∆f̂ i by running L-ESO . see (12)

9 Compute ui
. see (21)

10 I
i := [Ii−1, [x̂i

1, x̂
i
2, . . . , x̂

i
n, u

i, 1]T ]

11 ∆F
i := [∆F

i−1,∆f̂ i]

12 FL
i := [FL

i−1, 0] . append data into three

batches

13 f̂ i
L = 0

14 end

15 for i = n to Nmax do

16 Get x̂i and ∆f̂ i by running L-ESO . see (12)

17 Update I
i

. pop oldest datum, push new

datum

18 Update ∆F
i

. pop oldest datum, push new

datum

19 Update 7
i

. According to (13)

20 FL
i = hθi(Ii)

21 f̂ i
L = hθi(xi)

22 f̂ i = f̂ i
L +∆f̂ i

. compute total disturbance

23 Compute ui
. see (21)

24 end

The states of the two-mass-spring system are the displace-

ments and velocities of the masses: x1 and x3 for mass m1,

and x2 and x4 for mass m2. The dynamics of the system

can be represented in the following state-space form:
2

6
6
4

ẋ1

ẋ2

ẋ3

ẋ4

3

7
7
5
=

2

6
6
4

0 0 1 0
0 0 0 1

� k
m1

k
m1

0 0
k
m2

� k
m2

0 0

3

7
7
5

2

6
6
4

x1

x2

x3

x4

3

7
7
5

+

2

6
6
4

0
0
1

m1

0

3

7
7
5
(u+ w1) +

2

6
6
4

0
0
0
1

m2

3

7
7
5
w2

y =
å
c1 c2 0 0

å å
x1 x2 x3 x4

åT

(14)

 

Fig. 2: Two-mass-spring system with uncertain parameters
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A time-varying unknown external disturbance w2 is from

the mass m2, control needs to be conducted on m1 to allow

x2 track any desired trajectory. For the output y, i.e., x2, a

chained integrator system is derived by taking the derivatives

of the output four times. The input and disturbance are in

the last channel of this fourth-order system with b = k
m1m2

:

y(4) = �k
m1 +m2

m1m2
ÿ +

k

m1m2
w2 +

1

m2
ẅ2 + bu (15)

B. ESO design

The states in the system are:

x =
å
y ẏ ÿ

...
y
åT

(16)

The state-space description of the system is
8

><

>:

"

ẋ

ḟ

#

= A

"

x

f

#

+Bu+ Eḟ

y = Cx

(17)

1) Model-free ESO: The state-space model is:

AMF =

2

6
6
6
6
4

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

3

7
7
7
7
5

, B =

2

6
6
6
6
4

0
0
0
b0
0

3

7
7
7
7
5

, C =

å
1 0 0 0 0

å
, E =

å
0 0 0 0 1

åT
. As we can see,

the model-free design assumes unknown dynamics, such that

the total disturbance f can be represented as:

f = �k
m1 +m2

m1m2
ÿ+

k

m1m2
w2 +

1

m2
ẅ2 + (b� b0)u (18)

where �km1+m2

m1m2

is the model parameter information, b0 is

the nominal control gain. We have

y(4) = f + b0u (19)

where everything besides b0u is considered as total distur-

bance (see (15)). It can be validated that such a system

satisfies Assumptions 1, 2, and 3. Therefore, an ESO can

be designed for the estimation of f , see (9).

The observer gain is chosen where all the eigenvalues

of AMF � LC are placed at �!o [19], i.e., LMF =
[5!o 10!2

o 10!3
o 5!4

o !
5
o ].

2) Model-based ESO: The model-based design has the

following state-space representation:

AMB =

2

6
6
6
6
4

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 �km1+m2

m1m2

0 1

0 0 0 0 0

3

7
7
7
7
5

, B =

2

6
6
6
6
4

0
0
0
b0
0

3

7
7
7
7
5

, C =

å
1 0 0 0 0

å
, E =

å
0 0 0 0 1

åT
. In contrast to

the above-mentioned model-free design, such a system tries

to leverage the prior knowledge of the dynamic model, by

assuming �km1+m2

m1m2

is known (see (15)). In this case, the

total disturbance becomes:

f =
k

m1m2
w2 +

1

m2
ẅ2 + (b� b0)u (20)

such that y(4) = �km1+m2

m1m2

ÿ + f + b0u
The observer gain is chosen where all eigenvalues of

AMB � LC are placed at �!o [19]. Let a = �km1+m2

m1m2

,

the coefficients of LMB are listed in Table I.

Parameters Values

LMB,1 5ωo

LMB,2 a+ 10ω2
o

LMB,3 5aωo + 10ω3
o

LMB,4 a
2 + 10aω2

o + 5ω4
o

LMB,5 5a2ωo + 10aω3
o + ω

5
o

TABLE I: coefficients of LMB

3) L-ESO: As shown in (18), the internal disturbance has

a linearly structured mapping between the input (state and

control) and the output (disturbance). Therefore, a linear

regression model is a reasonable choice for the learning

component, with hθ(·) = 7
T
å
x̂1 x̂2 x̂3 x̂4 u 1

åT
.

Note that as we mentioned before, the learning model is

flexible to be linear, nonlinear, parametric, non-parametric,

etc. Our contribution is not about the complexity of the

learning model but the novel design to seamlessly combine

machine learning models with an ESO. A batch gradient

descent method is used for optimizing the cost function. In

our experiments, we initialize 7 with all zeros.

C. Controller Design

The control law for the system (19) can be designed as:

u =
�f̂ + u0

b0
(21)

such that

y(4) = u0 (22)

It can be controlled by a state feedback controller

u0 = �Kx̂ = k1(r � x̂1)� k2x̂2 � k3x̂3 � k4x̂4 (23)

with a control gain K =
å
!
4
c 4!3

c 6!2
c 4!c

å
, where !c

is the close-loop natural frequency [19].

D. Simulation Results

The system parameters are taken from the benckmark

problem [20], i.e., m1 = m2 = 1 kg, k = 1 N/m,

c1 = 0, c2 = 1. Tracking a desired trajectory for the

position of mass m2 is the control objective. A sinusoidal

wave with a frequency of 1 rad/s and amplitude 1 is applied

in the training phase for L-ESO. After 110 seconds, a step

reference is given to all three approaches. A band-limited

white noise with noise power 10−12 is added at the system

output side. A sinusoidal external disturbance with frequency

á/10 rad/s is applied on m2 as w2 starting at 150 s. The

learning algorithm is running online. The learning phase

is designed to emulate the typical operational scenarios of

the machine under general conditions, whereas the step

response is employed to assess and compare the tracking

performance. All the control parameters are set identically

for fair comparison.
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The controller bandwidth !c and the observer bandwidth

!o are set to 1 rad/s and 10 rad/s, respectively. The control

gain is set to 1. All three approaches share such same settings

for fair comparison.
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ting from 120s.

The tracking performance and the control input are shown

in Fig. 3 and Fig. 4, respectively.

1) MB-ESO and L-ESO have similar performance for the

step reference tracking (see the zoom-in plot from 126

s to 134 s, Fig. 3) after the training phase, see the

position plot of m2 in Fig. 3, which are better than

MF-ESO in terms of overshoot percentage (0 vs. 5‰

) and settling time (12s vs. 16s).

2) For external disturbance rejection (see the zoom-in plot

from 170 s to 195 s, Fig. 3), L-ESO’s performance is

the best. By re-visiting (7), if the external disturbance

has a linear component, a linear regression component

can still capture it, e.g., the trends of going up and

down in a sinusoidal external disturbance.

3) Adding external disturbance information to the ob-

server can help reduce the required bandwidth. In our

experiments, we found that MF-ESO and MB-ESO

will need three times more bandwidth to achieve the

same performance as the L-ESO.

4) The control input of the L- ESO has more fluctuations

compared with MF-ESO and MB-ESO, as shown in

Fig. 4. This is caused by the noise signal and the batch

gradient descent method we choose to minimize the

cost function. It can be smoothened by increasing the

batch size in this example.

V. HARDWARE EXPERIMENTS RESULTS

We conduct physical experiments on our ECP Model 205

torsional testbed [21], see Fig.5. It is a mechanical system

that consists of a flexible vertical shaft connecting two disks

- a lower disk and an upper disk. Each disk is equipped with

an encoder for position measurement. A DC servo motor

drives the lower disk through a belt and pulley system, which

provides a 3:1 speed reduction ratio. The system can be used

to study the vibration of a torsional two-mass-spring system.

Fig. 5: ECP Model 205 torsional testbed

A personal computer with MATLAB®Simulink Desktop

Real-Time™ installed is used for computation. The computer

is also equipped with a four-channel quadrature encoder

input card (NI-PCI6601) and a multi-function analog and

digital I/O card (NI-PCI6221). These cards interface with

the torsional plant Model 205 for real-time data acquisition

and control.

A. System Model

Since the MB-ESO, as a baseline approach, needs the

dynamics information, we first use MATLAB®System iden-

tification toolbox and get the transfer function: G(s) =
4.6×104

s4+1.901s3+1683s2+1812s+0.1032 .

B. ESO and Controller Design

As this testbed is again a fourth-order dynamic system,

the same ESO design pipeline shown before can be applied.

C. Experiment Results

Tracking a desired trajectory for the upper disk is the

control objective. A sinusoidal wave with a frequency of

á/2 rad/s and an amplitude 0.5á is applied in the training

phase of L-ESO. !c and !o are set to 90 rad/s and 40 rad/s,

respectively. The control gain is 5.5 å 104. A trapezoidal

profile reference with the final value á is used.

From the results illustrated in Fig. 6 and Fig. 7, we

have the following observations: 1) L-ESO has the best

performance among all the methods after the training phase
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in terms of overshoot percentage and settling time. The

reasons for L-ESO outperforming MB-ESO could be the

imperfection of system identification or that our approach

can learn internal as well as external disturbance. 2) The

fluctuation of control input of L-ESO is between MF-ESO

and MB-ESO, as shown in Fig. 7, which is different from

the simulation result. This is because the learning rate is

conservatively chosen due to the large noise in the hardware.

Also, the trapezoidal profile reference is more smooth than

the step reference, which is beneficial for learning.

VI. CONCLUSIONS

A novel learning-enabled extended state observer L-ESO

with the capacity to memorize and generalize from past

estimated disturbances is proposed in this paper. The ma-

chine learning model is seamlessly integrated into existing

disturbance rejection control architecture as a flexible add-

on for boosting robustness performance against unknown and

time-varying disturbances. Compared with existing learning

for control framework, our new paradigm does not rely on

access to full states. In addition, the learning is guarded

by disturbance rejection that provides an extra assurance

layer to compensate for the imperfections of the machine

learning model. The efficacy of the proposed approach has

been supported by simulation and hardware experiments. In

the future, we will further validate in real robotic testbeds.
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