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Abstract— Model uncertainty presents significant challenges
in vibration suppression of multi-inertia systems, which often
rely on inaccurate nominal mathematical models due to system
identification errors or unmodeled dynamics. An observer,
such as an extended state observer (ESO), can estimate the
discrepancy between the inaccurate nominal model and the true
model, thus improving control performance via disturbance
rejection. Conventional observer design is memoryless; once the
estimated disturbance is obtained and sent to the controller,
the data is discarded. In this paper, we propose a learning-
enabled ESO (L-ESO) with seamless integration of ESO and
machine learning. The machine learning model attempts to
predict the disturbance, using prior information to help the
observer achieve faster convergence in disturbance estimation.
Additionally, any imperfections in the machine learning model
can be compensated for by the ESO, providing an assurance
layer. We validated the effectiveness of this novel learning-
for-control paradigm through simulation and physical tests on
two-inertial motion control systems used for vibration studies.
Video: https://youtu.be/OUerJ4w_esk

Index Terms— Machine Learning, Disturbance Rejection,
Extended State Observer, Model Uncertainty

I. INTRODUCTION

Vibration suppression of multi-inertia systems is critical
in many engineering applications, including automotive sus-
pensions, series elastic actuators (SEA), and various other
motion control systems [1]. These systems often involve mul-
tiple inertia components with a two-inertia subsystem serving
as a fundamental block connected by flexible couplings,
which inherently cause resonance issues. This resonance
can cause dynamic stresses, energy wastes, and performance
degradation, therefore posing significant challenges to the
systems’ efficiency and stability [2], [3]. Given the funda-
mental challenge of system identification and the necessity
for real-time performance, it is common practice to employ
a simplified or inaccurate nominal dynamic model. Conse-
quently, the disturbances become inevitable, necessitating
their rejection to achieve robust control. The disturbance
includes internal (i.e., unknown or unmodelled parts of the
plant dynamics) and external (i.e., perturbations from the
outside affecting the dynamics) [4], [5].

The observer-based method has emerged as a promising
approach to estimating the disturbance for the subsequent
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design of a disturbance rejection controller. Among the array
of existing disturbance observers, the extended state observer
(ESO) [6] is gaining popularity due to its simplicity in
implementation. For the formulation of an ESO, the system
is modeled as a simple chained integrator with a total
disturbance term (also called lumped disturbance, f) that
includes both internal and external disturbances. The total
disturbance is treated as an extended state to be estimated
together with other states. The estimated disturbance can be
mitigated through various means, including a simple state
feedback controller or more advanced control strategies such
as sliding mode control [7] and model predictive control [8].

The traditional Extended State Observer (ESO) operates
in a memoryless manner, discarding the estimation data once
transmitted to the controller. However, continuous operation
of a control system allows for improved disturbance under-
standing through collected operational data. Previous studies
[9], [10] show that a model-based ESO (MB-ESO), which
utilizes prior model information about the disturbance (such
as a detailed dynamic model obtained through system identi-
fication), demonstrates reduced sensitivity to noise compared
to a model-free ESO (MF-ESO) that assumes a simple
chained integrator as a nominal model. In order to circumvent
the need for extensive system identification and maximize
the utilization of disturbance information, we propose to
leverage machine learning, which has powerful capacities
for nonlinear optimization, to memorize and generalize the
past estimations from the ESO as a feedforward estimation
of the disturbance. The learning component is expected to
capture the internal dynamics as well as patterns of external
disturbances.

[11], [12], [13] combine ESO with iterative learning
control (ILC) for repetitive control tasks, while this work
focuses on general control tasks rather than just the repetitive
ones. In addition, we assume that system dynamics, as well
as disturbances, are unknown and not necessarily repetitive.
In [14], a neural network is utilized to tune the parameters
of ESO rather than explicitly learning the disturbance. Other
learning-for-control approaches such as [15] employ neural
networks to capture discrepancies between a nominal model
F(mk,uk) and the true model F(xzj,uy). Since the state
of the true model is unknown, the measured next state
41 1s used to update the error model represented by the
neural network. However, these methods always assume full-
state information is available. In addition, when the learning
performance falls short of expectations, it may result in sub-
optimal performance for subsequent model-based controllers.
In contrast, our approach represents a novel paradigm that
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aims at learning the total disturbance with the help of output
measurements instead of true values for states. Furthermore,
our paradigm includes a correction mechanism for cases
where the learning component fails to accurately capture
the disturbances. The residual total disturbance, i.e., the
remainder excluding the disturbance already estimated by
the learning component, will be estimated by a conventional
ESO in a feedback correction manner. Through this seam-
less integration, even when the learning-based estimation
struggles to converge effectively, we can leverage the ESO
for feedback correction, thereby adding an extra layer of
robustness and assurance to the system.

In our new framework, as visualized in Fig. 1, we refer
to the learning-enabled extended state observer as L-ESO.
The estimation f of the true total disturbance f consists of
fL and A f, which are from the learning component and
the ESO, respectively. First, ESO uses the information of
control v and observation y to estimate the system’s states &
and the residual disturbance A f . Second, ESO’s estimation,
including 2 and wu are fed as input to the learning component
for learning a regression model. The learning component car-
ries out the feedforward estimation f 1., after which an online
optimization iteratively minimizes the difference between f L
and f , allowing the learning component to approximate the
total disturbance accurately. In situations where imperfect
learning introduces errors, the ESO serves as an additional
layer to rectify.

Disturbance Rejection Tracking Control f’L

L-ESOD

Fig. 1: The proposed framework in this paper, where the red
and the blue blocks represent the L-ESO and the disturbance
rejection tracking controller, respectively. Once the total
disturbance is estimated, the tracking controller will be able
to reject disturbance.

The contributions of our work are summarized as follows:

« We propose a novel framework that combines machine
learning and ESO for feedforward estimation and feed-
back correction for a general disturbance rejection track-
ing control task. Compared with existing learning-for-
control frameworks, we estimate states and disturbances
in a unique way. We also have an extra error correction
mechanism for the learning component.

o The learning component serves as an add-on to existing
ESO-based control architecture. As shown in Fig. 1,
only a learning component and a few connections (in
green) are introduced. The advantage of our modular
design is two-fold: 1) no need to change the existing

framework; 2) users can customize the learning com-
ponents by choosing any appropriate machine learning
model.

e Our learning and estimation are real-time and online.
We showcase the efficacy of our framework through
simulations and a real-world two-inertia testbed as a
fundamental block for a multi-inertia system.

The remainder of this paper is structured as follows.
We first go through the preliminaries in Sec. II. Then, we
construct our framework in Sec. III. Simulation results of the
two-mass-spring benchmark system are presented in Sec. IV,
followed by the hardware experiments of a torsional plant in
Sec. V. Finally, we conclude our work and discuss possible
future research directions in Sec. VI.

II. PRELIMINARY

The multi-inertia system can be represented as the sum of
a nominal part and a nonlinear time-varying part:

{fv(t) = Aoz (t) + Bou(t) + Eof (x(t), d(t),1)

y = Cot (D

where £ € R™ is the state vector, u € R is a control input,
y € R is a measured output, and f : R""1x [0, 00] — R is an
unknown function representing the time-varying uncertainty,
which contains external disturbance d(t) € R, unmodeled
dynamics, and parameter uncertainty. Terms Ag, By, Fy and
Cy are real and known matrices with appropriate dimensions.
For the particular case of a two-inertial system with n =
4, meaning two states for each inertial position/angle and
velocity/angular velocity, please refer to the details in the
example in Sec. IV. The justification of classifying (1) as a
nonlinear time-varying system can be found in [16], [17].

Traditionally, an ESO is established for a system in a
chained integrator form [6]. However, in our most recent
work [18], we have significantly expanded the applicability
scope of ESO and rigorously proved that for a general
system (1), given that Assumption 1 and the Assumption
2 are satisfied, an ESO can be established to estimate f by
releasing the chained integrator form requirement.

Assumption 1. (A, Cy) is observable.
Assumption 2. (A, Ey, Cy) has no invariant zeros.

For system (1), under the Assumptions 1, and 2 , there
exists a matrix

S=1[Co Codo CoAp]" @)

such that

Ay =SAS 1= " R :
0 ... 0 1
~t “on-1l o 3)
By=SBy=[0 0 ... b"
Co=CoS™'=[1 0 ... 0

Eg=SEy,=[0 0 ... 1]

—aq
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form the following new system

{il) = Aoﬂ? + Bou + Eof (4)

y:C’Ox

The readers are referred to [18] for more details on the
matrix transformation. The new system (4) has an observable
canonical form such that an ESO can be established for
estimating f.

Remark 1. Assumption 2 is equivalent to the following
conditions. The proof can be found in [18].

CoEo =0,CoA0Ey =0,...,CoAy  Ey #0

According to whether or not the system dynamics are
available, we have the following two variants of ESO:

A. MB-ESO
If the model information, i.e., —ap, —ai, -, —ap—1,b, in
matrix Ay and By is available, we have
0 1 ... 0 0 0
. 0 0
T = : T+ u+ d
0 0 1 Y
—Q —Ap—1 b 1
= ~~ N
Ao,mB Bo,mB Ey
(5)

The total disturbance can be represented as f = d, where
d is the external disturbance, b is the true control gain.

B. MF-ESO

If the model information, i.e., —ag, —a1,- -+ , —Qn_1,b, in
matrix Ay and By, is not available, we have

o 1 ... 0 0
. 0
T = ' T+ || ut
0 ... 0 1 :
0 0 ... 0 bo
——
~ Ao mF Bo,mF (6)
0
Y (magry — - = ap—12n + (b —bo)u + d)
1 f
~
Ey
where —agx; — -+ — ap_12, + (b—bg)u is the internal dis-

turbance (unknown/unmodelled dynamics), by is the nominal
control gain, and d is the external disturbance. In such a case,
the total disturbance becomes:

f=—aoz1— - —apn_12, + (b—bo)u+d @)

ESO treats the total disturbance f as an extended state,
such that a Luenberger observer can be designed to estimate

both the original system state = and the total disturbance f.
The augmented dynamic system is as follows:

T T :
| =A +Bu+ Ef
f f ®)
y=Cx
where A = [OAO %O} , B = [BBO} ,
Ixn (n+1)x(n+1) (n+1)x1

C= [é()ao]lx(n+1)7 E= [07 t 5071]6L+1)X1'

The Luenberger observer has the following form:

et ol o

where Z and f are estimations of x and f, L is the observer
gain. We have the following estimation error dynamics:

é=(A—LC)e+ Ef

T

(10)

where e = [z — & f—f]

Theorem 1. Under Assumption 1 and Assumption 2, the
eigenvalues A — LC can be placed at the left side of the
plane to make the estimation converge [18], [17].

All eigenvalues can be placed at —w,, which is called the
observer bandwidth of ESO [19].

III. LEARNING-ENABLED ESO

The model-based ESO in (5) and the model-free ESO in
(6) can be further expanded as follows:

0 1 - 0
0
K EQ R .
0 0 1 T :
~ + _ u =
R (S
= Bo,mB
Ao,mMmB 0
01><n 0 ﬁ—/
— - Bue
~ AmB
0 1 0
0
- E_O R .
0 . 0 1 x :
0 ... ... 0 H+ Qo |
—_— Bo,mF
Ao, mF 0
O1xn 0 i —_———r
Bur
o AMmF
E
00 (—apx1 - — ap_1@y + (b —bo)u)

Y

Remark 2. By incorporating model information, MF-ESO
becomes equivalent to MB-ESO.

Remark 3. The motivation for proposing the learning com-
ponent can be justified in that the model information is learn-
able to facilitate the incorporation of model information.

3420

Authorized licensed use limited to: University of Houston. Downloaded on April 13,2025 at 22:32:50 UTC from IEEE Xplore. Restrictions apply.



Remark 4. The learning component is even possible to
learn the external disturbance together with the internal
disturbance to be incorporated.

Since the learning component has a feedforward esti-
mation fL for the total disturbance, ESO can serve as a
feedback correction to estimate the residual total disturbance
as A f . The combination of the feedforward estimation and
the feedback correction is realized as follows:

“ala ererr(melaf) < o
(12) ®
Since the learning component is expected to capture the °
unknown dynamics, we employ a model-free ESO, see Fig. 10
1. The learning block in Fig. 1 is a function hg(z,u) 1
parameterized by 6. To learn the total disturbance (see (7)), 12
we establish a mapping from the input (Z estimated by ESO
and control input u) to the output f , where f = fL + A f .13
The total disturbance estimation consists of two parts: 1) 14
the feedforward estimation from the learning component 15
fL = he(&,u); 2) feedback correction for the residual 16
disturbance A f by an MF-ESO. To optimize the parameters 17
of the machine learning model, a general regression problem
is formulated using the following cost function:

z

1
2
3
4
5
6
Af 7

18

(13) 19
20

J0) = 3 D (ha(a', ) = 'Y

where n is the size of the training data. The details are in a
Alg. 1. When the batch is not yet filled, we run the MF- 2
ESO (see Line 7-14, the learning component does not return 2
optimized parameters). 2

Our framework has superior modularity. The design of the
ESO is just a conventional model-free convention. We only
need to use the estimation from ESO to drive the training of
our learning component. First, the learning component can
serve as an add-on to existing ESO-based control architecture
by just adding a few connections. Second, the learning
component is so flexible that users can customize it by
choosing appropriate machine learning models, e.g., linear,
non-linear, parametric, non-parametric, etc.

IV. SIMULATION RESULTS

A. Two-Mass-Spring Problem Formulation

Fig. 2 depicts a two-mass-spring system scheming from
a well-known benchmark control problem [20]. The system
includes two masses: m; and mo, which can slide freely over
a horizontal surface without friction. Note that it has been
proved that a non-friction setting is more challenging for a
controller design [9]. The masses are connected by a light
horizontal spring with a spring constant k. The system is
subject to two external disturbance forces w; and ws, which
act on masses mj and meo, respectively. The control signal u
is the force applied to mass m;. Both the positions of mass
my and mass mo are measured, and either one can be used
as an output to be controlled.

Algorithm 1 L-ESO

Input: Control input u, system output y, learning rate «,
batch size n, maximum running time N,,q,

Output: Total disturbance f

Initialize:

machine learning input batch 70 = ()

disturbance estimation by ESO batch AF? = ()

machine learning output batch F,° = )

machine learning model parameter 6

machine learning output f? =0

for i =11t ndo

Get #* and Af* by running L-ESO > see (12)

Compute ul > see (21)

Th=[T07Y [, 2%, 28wt 1T

AF = [AF L A7

Fr'i=[F7'0] > append data into three
batches

fi =0

end
for : = n to N,,u. do

Get 2 and Af by running L-ESO > see (12)

Update Z° > pop oldest datum, push new
datum

Update AF* > pop oldest datum, push new
datum

Update 6° > According to (13)

Fr' = hei(Z°)
[ = he: (")
f :f};—&—Afi > compute total disturbance
Compute u* > see (21)

end

The states of the two-mass-spring system are the displace-
ments and velocities of the masses: x1 and x3 for mass my,
and xo and z4 for mass ms. The dynamics of the system
can be represented in the following state-space form:

1

i 0 0 01 [z,
io| | 0 0 0 1| |a
is| T |- mik 0 0| |z
o m% —me 0 0] |24
0 0 (14)
0 0
+ | 1 (u+wy) + 0 Wo
0 L

|=

Q__Q Q__Q

Fig. 2: Two-mass-spring system with uncertain parameters
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A time-varying unknown external disturbance ws is from
the mass mo, control needs to be conducted on m; to allow
x9 track any desired trajectory. For the output y, i.e., z2, a
chained integrator system is derived by taking the derivatives
of the output four times. The input and disturbance are in

the last channel of this fourth-order system with b = ml’jm.

k 1
W gt M, wy + — 1y + bu

Yy 15)
mims mims m2
B. ESO design
The states in the system are:
.. AT
e=[y 9 § V] (16)
The state-space description of the system is
T x :
| =A +Bu+ Ef
b f (17)
y=Cx
1) Model-free ESO: The state-space model is:
01 0 0 O 0
0 01 0O 0
Ayr = |0 0 0 1 0|, B = 0], ¢ =
0 0 001 bo
0 00 0O 0

1 000 0,E=[0 0 0 0 1]". As we can see,
the model-free design assumes unknown dynamics, such that
the total disturbance f can be represented as:

k
f:—km1+m2"+

1.
wo + — W2 + (b —bo)u (18)
mimso mims ma
where —k% is the model parameter information, by is
the nominal control gain. We have

y = f + bou (19)

where everything besides bou is considered as total distur-
bance (see (15)). It can be validated that such a system
satisfies Assumptions 1, 2, and 3. Therefore, an ESO can
be designed for the estimation of f, see (9).

The observer gain is chosen where all the eigenvalues
of Ayyp — LC are placed at —w, [19], ie., Lyrp =
[bw, 10w? 10w? 5wl Wi

2) Model-based ESO: The model-based design has the
following state-space representation:

0 1 0 0 0 0
00 1 00 0
Avp = [0 0 0 1 0/,B=|0],C=
0 0 —kmdme o 1 bo
00 00 0
1 000 0,E=[0 00 0 1]". In contrast to

the above-mentioned model-free design, such a system tries

to leverage the prior knowledge of the dynamic model, by
assuming fk% is known (see (15)). In this case, the
total disturbance becomes:

such that y(*) = —EIUEm2 4 4 f 4 pyy
The observer gain is chosen where all eigenvalues of
Ayp — LC are placed at —w, [19]. Let @ = —kTatm2

the coefficients of Lj;p are listed in Table I. e

Parameters Values
Ly Swo
LI\/IB,Z a+ 10(4)3
LI\/IB,S 5awo + 10(«12
Lypa a? + IOawg + 5w§,1
L]\/IB,B 5(120.)0 + IOawg + U.)g

TABLE I: coefficients of L/

3) L-ESO: As shown in (18), the internal disturbance has
a linearly structured mapping between the input (state and
control) and the output (disturbance). Therefore, a linear
regression model is a reasonable choice for the learnit}g
component, with hg(-) = 67 [&1 &2 @3 4 u 1] .
Note that as we mentioned before, the learning model is
flexible to be linear, nonlinear, parametric, non-parametric,
etc. Our contribution is not about the complexity of the
learning model but the novel design to seamlessly combine
machine learning models with an ESO. A batch gradient
descent method is used for optimizing the cost function. In
our experiments, we initialize 6 with all zeros.

C. Controller Design

The control law for the system (19) can be designed as:

u= —ftuw 1)
bo
such that
y =g (22)
It can be controlled by a state feedback controller
ug = —Kzi = kl(’l" - 2231) - kgi’g - kg.fg - k4§74 (23)

with a control gain K = [wf dw?  6w? 4wc], where w,

is the close-loop natural frequency [19].

D. Simulation Results

The system parameters are taken from the benckmark
problem [20], ie., m; = mgo = 1 kg, kK = 1 N/m,
c1 = 0, co = 1. Tracking a desired trajectory for the
position of mass mo is the control objective. A sinusoidal
wave with a frequency of 1 rad/s and amplitude 1 is applied
in the training phase for L-ESO. After 110 seconds, a step
reference is given to all three approaches. A band-limited
white noise with noise power 1072 is added at the system
output side. A sinusoidal external disturbance with frequency
/10 rad/s is applied on mqy as wy starting at 150 s. The
learning algorithm is running online. The learning phase
is designed to emulate the typical operational scenarios of
the machine under general conditions, whereas the step
response is employed to assess and compare the tracking

k 1 . performance. All the control parameters are set identically
f= P + P + (b~ bo)u 20) for fair comparison.
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The controller bandwidth w. and the observer bandwidth
w, are set to 1 rad/s and 10 rad/s, respectively. The control
gain is set to 1. All three approaches share such same settings
for fair comparison.

Position

0.8

0.6

0.4

m, position(m)

0.2

0

02 . . . . .
120 140 160 180 200 220 240 260

Time (s)

Fig. 3: Tracking performance for MB-ESO, MF-ESO, L-ESO
plotting from 120s.

Control input

MB-ESO

5 L L L L L L
120 140 160 180 200 220 240 260

NN

160 180 200 220

05

240 260

—

T T T

05 1

120 140 160 180 200 220 240 260
Time (s)

120 140

1 T T

Fig. 4: Control signal for MB-ESO, MF-ESO, L-ESO plot-
ting from 120s.

The tracking performance and the control input are shown
in Fig. 3 and Fig. 4, respectively.

1) MB-ESO and L-ESO have similar performance for the
step reference tracking (see the zoom-in plot from 126
s to 134 s, Fig. 3) after the training phase, see the
position plot of my in Fig. 3, which are better than
MF-ESO in terms of overshoot percentage (0 vs. 5%o
) and settling time (12s vs. 16s).

2) For external disturbance rejection (see the zoom-in plot
from 170 s to 195 s, Fig. 3), L-ESO’s performance is
the best. By re-visiting (7), if the external disturbance
has a linear component, a linear regression component
can still capture it, e.g., the trends of going up and
down in a sinusoidal external disturbance.

3) Adding external disturbance information to the ob-
server can help reduce the required bandwidth. In our
experiments, we found that MF-ESO and MB-ESO
will need three times more bandwidth to achieve the
same performance as the L-ESO.

4) The control input of the L- ESO has more fluctuations
compared with MF-ESO and MB-ESO, as shown in
Fig. 4. This is caused by the noise signal and the batch
gradient descent method we choose to minimize the
cost function. It can be smoothened by increasing the
batch size in this example.

V. HARDWARE EXPERIMENTS RESULTS

We conduct physical experiments on our ECP Model 205
torsional testbed [21], see Fig.5. It is a mechanical system
that consists of a flexible vertical shaft connecting two disks
- a lower disk and an upper disk. Each disk is equipped with
an encoder for position measurement. A DC servo motor
drives the lower disk through a belt and pulley system, which
provides a 3:1 speed reduction ratio. The system can be used
to study the vibration of a torsional two-mass-spring system.

Fig. 5: ECP Model 205 torsional testbed

A personal computer with MATLAB®Simulink Desktop
Real-Time™ installed is used for computation. The computer
is also equipped with a four-channel quadrature encoder
input card (NI-PCI6601) and a multi-function analog and
digital I/O card (NI-PCI6221). These cards interface with
the torsional plant Model 205 for real-time data acquisition
and control.

A. System Model

Since the MB-ESO, as a baseline approach, needs the
dynamics information, we first use MATLAB®System iden-

tification toolbox and get the transfer function: G(s) =
4.6x10*
5T+1.90155 168352+ 1812540.1032 "

B. ESO and Controller Design

As this testbed is again a fourth-order dynamic system,
the same ESO design pipeline shown before can be applied.

C. Experiment Results

Tracking a desired trajectory for the upper disk is the
control objective. A sinusoidal wave with a frequency of
/2 rad/s and an amplitude 0.57 is applied in the training
phase of L-ESO. w. and w, are set to 90 rad/s and 40 rad/s,
respectively. The control gain is 5.5 x 10%. A trapezoidal
profile reference with the final value 7 is used.

From the results illustrated in Fig. 6 and Fig. 7, we
have the following observations: 1) L-ESO has the best
performance among all the methods after the training phase
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Position

35

Upper disk position (Rad)

0 0.5 1 1.5 2 25 3
Time (s)

Fig. 6: Upper disk position tracking: MB-ESO, MF-ESO,
and L-ESO

Control input

Torque (Nm)

15
Time (s)

Fig. 7: Control signal for MB-ESO, MF-ESO, L-ESO

in terms of overshoot percentage and settling time. The
reasons for L-ESO outperforming MB-ESO could be the
imperfection of system identification or that our approach
can learn internal as well as external disturbance. 2) The
fluctuation of control input of L-ESO is between MF-ESO
and MB-ESO, as shown in Fig. 7, which is different from
the simulation result. This is because the learning rate is
conservatively chosen due to the large noise in the hardware.
Also, the trapezoidal profile reference is more smooth than
the step reference, which is beneficial for learning.

VI. CONCLUSIONS

A novel learning-enabled extended state observer L-ESO
with the capacity to memorize and generalize from past
estimated disturbances is proposed in this paper. The ma-
chine learning model is seamlessly integrated into existing
disturbance rejection control architecture as a flexible add-
on for boosting robustness performance against unknown and
time-varying disturbances. Compared with existing learning
for control framework, our new paradigm does not rely on
access to full states. In addition, the learning is guarded
by disturbance rejection that provides an extra assurance
layer to compensate for the imperfections of the machine
learning model. The efficacy of the proposed approach has
been supported by simulation and hardware experiments. In
the future, we will further validate in real robotic testbeds.
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