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1. Introduction 
Although you may be unfamiliar with the term viscoelas-
ticity, viscoelastic fluids (VEFs) are ubiquitous in our daily 
lives. The shampoo you used this morning, the salad dress-
ing you ate yesterday, and about every biological fluid in 
your body; all of them are VEFs. As their name implies, 
viscoelastic materials exhibit both viscous and elastic be-
haviors. Viscous behavior is related to a fluid’s resistance 
to flow. The higher the viscosity, the more the fluid resists 
motion. Honey, for example, has a high viscosity, while 
water has a low viscosity. Conversely, elasticity pertains to 
reversible deformations, such as the snapback of a rubber 
band. 

Under applied deformations, VEFs display an instanta-
neous pure elastic response, followed by a time-dependent 
mechanical response and energy dissipation, characteristic 
of viscous liquids. The differences from one VEF to an-
other comes from the relative timescales of these elastic 
and viscous responses. This “duality” in the behavior of 
VEFs plays a critical role in their applications. For exam-
ple, paints can be thin enough to be applied with a brush, 
yet thick enough to stay on the wall. And although may-
onnaise appears semisolid in a jar, it can be easily spread 
on bread. 

The study of VEFs falls within the field of rheology. Rhe-
ology investigates how materials deform or flow during 
and after a load is applied. Measuring rheological proper-
ties is pertinent to all materials, from liquids such as water, 
polymers, and protein solutions to semisolids such as gels 
and creams and to solid polymers such as resins. Within 
rheology, at the most basic level, fluids can be divided 
into Newtonian and non-Newtonian according to their re-
sponse to flow. From a modeling point of view, all Newto-
nian fluids are described by the well-known Navier–Stokes 
equations [Bat99]. This set of equations works well on sys-
tems in which the flow does not alter the dynamics of indi-
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vidual constituents. In contrast, for non-Newtonian fluids, 
applied fields can alter the local microstructure. Hence, 
there is no single set of equations that can comprehen-
sively describe all non-Newtonian materials. What these 
fluids have in common is that their properties emerge from 
the collective behavior of many microstructural compo-
nents. 

The field of VEFs offers many opportunities for math-
ematical exploration, particularly in the development of 
new constitutive models and numerical techniques. The 
absence of a unified equation for VEFs and their wide range 
of applications in industrial and biological processes has 
resulted in extensive research activity in this field. How-
ever, there are still many issues that need to be addressed. 
On the numerical side, key challenges involve the loss of 
accuracy and convergence of numerical methods due to 
nonlinearities in the constitutive equations. Another chal-
lenge is the change of type of the partial differential equa-
tions (PDEs), which sometimes leads to a loss of well-
posedness. Additionally, in certain cases, fluid flows re-
sult in rapid changes of the solutions in specific regions, 
making it necessary to implement adaptive mesh tech-
niques. For reviews on this area, the reader is referred to 
[OP02,Keu04,AOP21]. 

Fractional calculus is another rapidly growing area in 
the field of VEFs. It provides a more detailed understand-
ing of the memory effect through the use of fractional 
derivatives [Mai22]. The behavior of VEFs falls on a spec-
trum between that of fully elastic solids and fully viscous 
fluids. Fractional models provide a unified framework 
to understand this entire range by varying the order of 
the fractional derivative. This allows fractional models to 
achieve comparable accuracy to classical models, but with 
fewer parameters, making data fitting less complex. 

In addition, the field of VEFs offers numerous oppor-
tunities for the mathematical analysis of existing consti-
tutive equations. To understand the dynamics of VEFs, 
it is crucial to evaluate the stability of these systems and 
understand how the interplay between viscous and elastic 
properties influences their behavior. However, there is still 
much to be explored regarding how different flow condi-
tions affect the solutions of these models. Only a limited 
subset of these equations has been thoroughly studied in 
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Figure 1. VEFs exist at different scales because their 
macroscopic responses depend on the dynamics of their 
microstructural components. 

terms of their existence and uniqueness [RT21]. Investi-
gating the connections between VEFs constitutive models 
and broader concepts in dynamical systems could uncover 
previously unexplored complexities. 

Perturbation analysis is another valuable field com-
monly used to gain insight and address unresolved issues 
pertaining to VEFs. Singular perturbation methods are es-
pecially well-suited for examining VEFs because they can 
effectively manage the wide range of temporal and spatial 
scales inherent in the dynamics of these materials. By an-
alyzing extreme cases of high and low elasticity, we can 
gain valuable insights into the underlying dynamics, cir-
cumventing the need to solve complex systems of equa-
tions. 

This review aims to introduce the reader to basic con-
cepts related to VEFs, focusing mainly on constitutive mod-
eling. We note that each class of VEFs has unique proper-
ties, posing different mathematical challenges. Providing 
a complete overview of every class of VEFs and their math-
ematical representations is beyond the scope of this intro-
ductory review. Instead, we discuss some commonalities 
and focus on a specific class of VEFs. When suitable, the 
reader will be referred to more in-depth reviews and text-
books. 

2. Multiscale Modeling of VEFs 
From a mathematical perspective, modeling challenges of 
VEFs arise from the need to describe the dynamics resulting 
from the complex interactions among microscopic con-
stituents and how such interactions dictate material prop-
erties and functions at the macroscale (Fig. 1). In short, 
there is a need for continuous communication across mul-
tiple scales of time and space. Ideally, a constitutive equa-
tion for VEFs should provide sufficient insight into the 
microscopic changes that lead to a given macroscopic re-
sponse. 

This coupling of micro and macro scales is particularly 
crucial for some materials. For example, one might like 
to study biochemical changes in the mucus network and 
their impact on the mucociliary clearance process, or per-
haps investigate how changes in the viscoelastic properties 
of the cytoplasm affect cellular function. In these situa-
tions, modeling platforms that consider dynamics at the 
microscale are better suited. 

To model the microstructure explicitly, we consider a 
VEF to be composed of two major components: a solvent 
and some dynamic network at the microscale. We consider 
the system to be a continuum. This means it can be de-
scribed by classical mechanics and its state under a defor-
mation is determined by the fundamental hydrodynamic 
fields of density, momenta, and energy, [Bat99, BCAH87], 

Conservation of mass: 
𝐷𝜌 
𝐷𝑡 + 𝜌𝛁 ⋅ 𝐮 = 0, 

Conservation of momentum: 
𝐷 (𝜌 𝐮) 
𝐷𝑡 = 𝛁 ⋅ 𝝈 + 𝜌𝐟b, 

Conservation of energy: 𝜌 𝐷𝑒 𝐷𝑡 = 𝝈 ∶ 𝛁𝐮 + 𝛁 ⋅ (𝜅𝛁𝑇) . 

Here 𝜌 represents the material density, 𝐮 the velocity field, 
𝝈 the Cauchy stress tensor, 𝐟b body forces, 𝑒 the internal 
energy per unit mass, 𝜅 the thermal conductivity and 𝑇 the 
temperature. And, the material derivative is defined as, 

𝐷 (⋅) 
𝐷𝑡 = 𝜕 (⋅) 

𝜕𝑡 + 𝐮 ⋅ 𝛁 (⋅) . 

If the flow is incompressible (𝜌 = constant), isothermal 
(𝑇 = constant), and in the absence of body forces (𝐟b = 0), 
the conservation equations become, 

𝛁 ⋅ 𝐮 = 0, (1a) 

𝜌 𝐷𝐮 
𝐷𝑡 = 𝛁 ⋅ 𝝈. (1b) 

The Cauchy stress tensor can be decomposed into 
isotropic and extra stress components, 

𝝈 = −𝑝 𝜹 + 𝝉, 
where 𝜹 is the identity tensor. At equilibrium, the isotropic 
component is the thermodynamic pressure, 𝑝, while the 
extra stress tensor, 𝝉, vanishes [Gra18]. Under these con-
siderations, the resulting conservation equations are, 

𝛁 ⋅ 𝐮 = 0, (2a) 

𝜌 𝐷𝐮 
𝐷𝑡 = −𝛁𝑝 + 𝛁 ⋅ 𝝉. (2b) 

For a viscous or Newtonian fluid, the stress is directly 
proportional to the strain rate, ̇ 𝜸 = 𝛁𝐮 + (𝛁𝐮)⊺ , so that 
𝝉 = 𝜂 ̇ 𝜸. In this case 𝝉 is known as a viscous stress and 𝜂 
is the fluid’s viscosity. We note that in some references, 
the strain rate tensor is defined as 𝐃 = 1 

2 
̇ 𝜸, and 𝝉 = 2 𝜂 𝐃. 

Here we follow the notation proposed in [BCAH87] and 
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use ̇ 𝜸. The resulting conservation of momentum equation 
is known as the incompressible Navier–Stokes equation, 

𝜌 𝐷𝐮 
𝐷𝑡 = −𝛁𝑝 + 𝜂𝚫𝐮. (3) 

Inspection of (3) shows that differences between materials 
will only affect the value of 𝜂, but not the functional form 
of the governing equations. Then, by varying the viscos-
ity constant, the same numerical algorithms can describe 
different materials, as long as they behave as Newtonian 
fluids. 

Coming back to (2a)–(2b), in the case of VEFs there 
is a need to introduce an extra term in stress, 𝝉𝑝, which 
accounts for the contributions from the microstructure, 
𝝉 = 𝜂 ̇ 𝜸+𝝉𝑝. In our discussion of (3) we noted that for New-
tonian fluids there is a single, general constitutive equa-
tion capable of describing different Newtonian materials, 
so that (3) suffices to describe a large class of fluids. In 
contrast, there is not a single all-encompassing constitu-
tive equation for viscoelastic materials. The details of 𝝉𝑝, 
particularly the constitutive equation that defines it, will 
differ depending on the material or the specific flow con-
ditions. Thus, the formulation of constitutive equations 
describing different viscoelastic materials is a prolific area 
of research [BCAH87,Lar99]. 

Broadly speaking, we understand relatively well the con-
nection between VEFs and external flow fields: the dynam-
ics of the underlying microstructure directly control the be-
havior of a VEF under these deformation fields. Therefore, 
when dealing with constitutive equations for VEFs, chal-
lenges arise at three main levels: 

• At the level of their derivation, since different ma-
terials require different mathematical descriptions 
of their microstructure; 

• At the level of their numerical simulation, since the 
resulting equations are of different class and each 
has its unique numerical challenges; 

• At the level of their mathematical treatment, since 
researchers have only established the existence 
and uniqueness of the solution of VEF constitu-
tive equations in only a few cases (See for example 
[Ren85, LM00, RT21]). 

The mathematical representation of the microstructure, 
the length scale at which this representation will be ren-
dered, and the numerical methods used to solve the result-
ing constitutive equations will all depend on the particu-
lars of the fluid and the chosen mathematical description. 
Accordingly, many studies have tackled one aspect or an-
other and even combinations of them. However, a full 
description is out of the scope of this review. Moving for-
ward, we focus our attention on one type of models which 
originates from kinetic theory and a specific category of 
VEFs: polymeric fluids. 

2.1. Coarse-grained representation of the microstruc-
ture. To better understand how we can develop mathe-
matical models of VEFs based on representations of the 
microstructure, here we will focus on polymeric fluids. 
In these fluids, polymer chains compose the microstruc-
ture. The underlying dynamics driving the material’s re-
sponse to deformation result from both individual chain 
configurations and interchain dynamics. Among others, 
these include coiling and uncoiling processes, hindered 
motion due to physical entanglements, hydrodynamic ef-
fects caused by the presence of other molecules, and in 
some cases, physical cross-linking between the polymer 
chains. 

Within the context of kinetic models and polymeric flu-
ids, various approaches have developed to describe the 
coupling between macroscopic responses and microstruc-
ture dynamics. One family of models is the so-called 
bead-spring models. These models use molecular coarse-
graining to describe the behavior of polymer chains repre-
sented as beads connected by massless springs. These mod-
els are based on molecular physics by considering the in-
teraction between individual polymer chains and the sur-
rounding fluid. The extra stress arising from the polymer 
molecules, i.e., the microstructure, depends strongly on 
their spatial configuration, the most important features be-
ing their orientation and their extension. 

The simplest of these models considers only two beads 
and it is known as the elastic dumbbell model. The config-
uration of each dumbbell is fully specified by its stretch-
ing and orientation. Although it is widely recognized 
that a dumbbell is too simple to be able to describe any 
complicated dynamics in polymeric molecules, it is also 
well known that stretching and orientation alone suffice 
to give a qualitative description of steady-state rheologi-
cal properties and flows with slow characteristic timescales 
[BCAH87]. Accordingly, these models had been exten-
sively used to develop “an elementary but broad under-
standing of the relation between macro-molecular mo-
tions and rheological phenomena” [BCAH87]. 
2.2. Dumbbell models. To model a given microstructure 
this class of models uses a coarse-grained approximation 
at the mesoscale consisting of noninteracting elastic dumb-
bells. The VEF system will be described by the dynamics 
of these dumbbells in a solvent. The solvent is assumed to 
be an incompressible Newtonian fluid of viscosity 𝜂𝑠. The 
configuration of the dumbbell is described by the end-to-
end connector vector 𝐐 = 𝐫2 − 𝐫1 and the center-of-mass 
vector 𝐫𝑐 = 1 

2 
(𝐫1 + 𝐫2). 
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To keep it short, this review only discusses homoge-
neous flows. This means that the velocity gradient is as-
sumed to be the same everywhere. We refer the reader to 
[BAB91] for a discussion on how to introduce spatial vari-
ations into the dumbbell equations. 

To capture the dynamics of each dumbbell, we start 
from a balance of forces at the inertia-less limit. That is 
we use Newton’s second law, 𝑚 ⃗ 𝐚 = ∑ 𝐅, but assume the 
mass is negligible [BCAH87, Ött96], 

0 = −𝜁 [𝑑𝐫𝑖 (𝑡) + (𝛁𝐮)⊺ ⋅ 𝐫𝑖 (𝑡)]⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟ 
Drag force 

− 𝐅 𝑖 (𝑡)⏟ 
Spring force 

+ √4𝑘𝐵 𝑇 𝜁 𝑑𝐖𝑖 (𝑡)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟ 
Thermal noise 

𝑖 = 1, 2. (4) 

Here 𝜁 is the drag coefficient, 𝐮 is the fluid velocity, 𝐅(𝑡) de-
notes a functional form of the spring force, and 𝑘𝐵 𝑇 is the 
thermal energy. 𝐖(𝑡) denotes a Wiener process where each 
component of the vector 𝐖(𝑡) is a random number drawn 
from a normal distribution with zero mean and variance 
equal to 1. 

Equation (4) shows that changes in the configuration of 
the dumbbell, namely its orientation and extension, are 
the result of three competing forces. The drag force, im-
posed by the solvent molecules onto the beads, has the 
tendency of aligning the dumbbells with the macroscopic 
flow. The thermal or Brownian force tends to randomize 
their configuration. And, the spring force tends to bring 
both beads together, which counteracts the stretching ef-
fects of the drag and thermal forces. 

Rearranging (4), gives the following two stochastic dif-
ferential equations (SDEs) describing the evolution of 
each bead’s position, 

𝑑 𝐫1(𝑡) = (𝛁𝐮) ⊺ ⋅ 𝐫1(𝑡) − 𝐅1(𝑡) 𝜁 
+ 
√ 

4𝑘𝐵 𝑇 
𝜁 

𝑑𝐖1(𝑡), (5a) 

𝑑 𝐫2(𝑡) = (𝛁𝐮) ⊺ ⋅ 𝐫2(𝑡) − 𝐅2(𝑡) 𝜁 
+ 
√ 

4𝑘𝐵 𝑇 
𝜁 

𝑑𝐖2(𝑡). (5b) 

Since the spatial location of the dumbbells is not relevant 
under the homogeneous flow assumption, the only vari-
able of interest is the end-to-end vector, 𝐐. By subtracting 
(5a) from (5b), we obtain the SDE describing the evolu-

tion of 𝐐, 

𝑑𝐐𝑡 = (𝛁𝐮) ⊺ ⋅ 𝐐𝑡 − 2 
𝜁 
𝐅 (𝐐𝑡) + 

√ 
4𝑘𝐵𝑇 
𝜁 

𝑑𝐖𝑡. (6) 

The only remaining task is to establish the form of the 
spring law, denoted as 𝐅(𝐐), where 𝐅1 = −𝐅2 = 𝐅. 
2.2.1. Hookean dumbbells. For Hookean dumbbells 
𝐅(𝐐) = 𝐻𝐐, where 𝐻 is the spring constant. With this, 
(6) becomes, 

𝑑𝐐𝑡 = (𝛁𝐮) ⊺ ⋅ 𝐐𝑡 − 2𝐻 
𝜁 
𝐐𝑡 + 

√ 
4𝑘𝐵 𝑇 
𝜁 

𝑑𝐖𝑡 . (7) 

For convenience, we will make these equations non-
dimensional. To couple these equations with the conser-
vation equations, we will scale the time using the macro-
scopic timescale, 𝑡∗ . In addition, we introduce the follow-
ing characteristic microscopic time and length scales, re-
spectively, 

𝜆 = 
𝜁 
4𝐻 , 𝐿𝑚 = √ 

𝑘𝐵 𝑇 
𝐻 . 

The nondimensional variables are then given by, 

̃ 𝐐 = 𝐐 ⋅ (
√ 

𝐻 
𝑘𝐵𝑇 ) , ̃𝑡 = 𝑡 𝑡∗ . 

Scaling (7) and dropping the tildes gives, 

𝑑𝐐𝑡 = (𝛁𝐮) ⊺ ⋅ 𝐐𝑡 − 1 
2 𝐷𝑒 𝐐𝑡 + √ 

1 
𝐷𝑒 𝑑𝐖𝑡, (8) 

where the nondimensional group 𝐷𝑒 = 𝜆/𝑡∗ is the so-
called Deborah number. Since it is the ratio of micro-to-
macro characteristic timescales, this dimensionless group 
compares how long it takes for a material to adapt to defor-
mations relative to the process’s characteristic timescale. 

Note that, we could have chosen a different macro-
scopic timescale, namely, 𝐿/𝑈 , where 𝐿 and 𝑈 are, re-
spectively, characteristic macroscopic length and velocity. 
Here, the resulting nondimensional group, 𝑊 𝑖 = 𝜆 𝑈 /𝐿, is 
called the Weissenberg number, and it represents the ratio of 
elastic to viscous forces. For many applications 𝐷𝑒 = 𝑊 𝑖 
and it is very common to confuse these two nondimen-
sional groups. To better understand the difference be-
tween 𝐷𝑒 and 𝑊 𝑖, we recommend reading [Poo12]. 
2.2.2. FENE dumbbells. The linear spring law used in the 
Hookean dumbbell model is unphysical, since it allows 
the end-to-end vector, 𝐐, to stretch without limit. One 
modification of this law uses finitely extensible nonlinear elas-
tic (FENE) springs laws. FENE-type models are derived by 
introducing Warner’s force law [BCAH87], 

𝐹 (𝐐) = 𝐻𝐐 
1 − (𝑄/𝑄max)

2 , (9) 

where 𝑄2 = |𝐐|2 = 𝐐⋅𝐐 and 𝑄max is the maximum allowed 
extension of the dumbbell. 
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Introducing this spring law into (6) and nondimension-
alizing as before gives 

𝑑𝐐𝑡 = (𝛁𝐮) ⊺ ⋅ 𝐐𝑡 − 1 
2𝐷𝑒 ( 

𝐐𝑡 
1 − 𝑄2/𝑏 ) 

+ 1 
√𝐷𝑒 

𝑑𝐖𝑡, (10) 

where 𝑏 = 𝐻 𝑄2 
max/(𝑘𝐵 𝑇 ).

Finally, we note that, in this dumbbell formulation, we 
only considered the most basic dynamics. Still, dumb-
bell models can integrate other physical assumptions. For 
instance, certain models account for a nonisotropic drag 
[BD83] while others include breaking and reforming dy-
namics [VMC07]. 

Before we move forward, we note that dumbbell models 
are not the only, nor the most prominent, class of mod-
els used to describe polymeric systems. We have chosen 
this particular class of models for specific reasons. Among 
them, the Hookean dumbbell model, although physically 
unrealistic, stands out as the only model in its class with 
an exact closure [BCAH87,BAB91]. This allows for a more 
coherent explanation of the transition through the differ-
ent length scales that are discussed in this review. We ac-
knowledge that dumbbell models have their limitations, 
especially when dealing with complex flows. These draw-
backs primarily stem from their oversimplification of sev-
eral key aspects in polymer physics. For instance, they do 
not account for entanglements, excluded volume effects, 
nor internal chain dynamics. For a deeper understanding 
of more physically relevant models, we highly recommend 
the book by Doi and Edwards [DEE88]. For readers inter-
ested in the analytical and numerical solutions to SDEs-
based models, the book by Öttinger is another excellent 
starting point [Ött96]. 
2.3. Fokker–Planck representation. In the previous sec-
tion, we discussed how SDEs can describe the evolution 
of the end-to-end vector 𝐐𝑡. This implies that 𝐐𝑡 is a sto-
chastic or random process. To fully capture the system’s 
dynamics, it is necessary to solve thousands of SDEs. Now, 
if instead of “following” individual realizations of this pro-
cess, i.e., solving (8) or (10), we decide to “follow” ensem-
bles of realizations, we would need a different set of equa-
tions. This new set of equations should describe the same 
system, but instead of using stochastic variables, it uses de-
terministic variables that fluctuate because of stochasticity. 
To accomplish this we use the probability density function 
(PDF), 𝜓 (𝐐, 𝑡), which describes the probability of finding 
dumbbells with configurations in the interval (𝐐, 𝐐 + 𝑑𝐐) 
at time 𝑡. Risken’s book [Ris84] excellently explains the 
differences between these two representations, which we 
summarize in Fig. 2. 

Let Ψ (𝐫, 𝐐, 𝑡) represent the configuration number den-
sity function, so that the number density of dumbbells 

Figure 2. Levels of description of a system using Langevin 
and Fokker–Planck Equations. Figure adapted from [Ris84]. 

with end-to-end vector 𝐐 and center of mass at position 
𝐫, at time 𝑡 is given by, 

𝑛 (𝐫, 𝑡) = ∫ Ψ 𝑑𝐐. 

In the homogeneous case the spatial dependence can be 
neglected, so that Ψ = 𝑛 𝜓 (𝐐, 𝑡). 

When dealing with PDFs, one can do an expansion with 
similar flavor as the Taylor expansion taught in calculus. 
This expansion is known as the Kramers–Moyal expansion 
[Ris84]. If the expansion is truncated after the second term, 
the resulting equation is called a Fokker–Planck equation, 
also known as the forward Kolmogorov equation. A brief 
summary of how Brownian dynamics can be described 
by Langevin and their corresponding Fokker–Planck equa-
tions is given in [MDV20], but for a more comprehensive 
treatment, see [Ris84]. 

The general form of a Fokker–Planck equation on the 
variable 𝐐 is 

𝜕𝜓 
𝜕𝑡 = − 𝜕 

𝜕𝐐 [𝐴 (𝐐, 𝑡) 𝜓 (𝐐, 𝑡)] 

+ 1 
2 
𝜕2 

𝜕𝐐2 [𝐁 (𝐐, 𝑡) 𝐁⊺ (𝐐, 𝑡) 𝜓 (𝐐, 𝑡)] , (11) 

which corresponds to the Langevin equation, 

𝑑𝐐𝑡 = 𝐴 (𝐐𝑡, 𝑡) + 𝐁 (𝐐𝑡, 𝑡) 𝑑𝐖𝑡. (12) 

Thus, we can use (12) together with (8) or (10) to ob-
tain the Fokker–Planck equations corresponding to the 
Hookean and FENE models. 
Hookean dumbbells 

𝜕𝜓 
𝜕𝑡 = − 𝜕 

𝜕𝐐 [((𝛁𝐮) 
⊺ ⋅ 𝐐 − 1 

2𝐷𝑒 𝐐) 𝜓] 

+ 1 
𝐷𝑒 

𝜕2𝜓 
𝜕𝐐2 (13) 
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FENE dumbbells 
𝜕𝜓 
𝜕𝑡 = − 𝜕 

𝜕𝐐 [((𝛁𝐮) 
⊺ ⋅ 𝐐 

− 1 
2𝐷𝑒 ( 𝐐 

1 − 𝑄2/𝑏 )) 𝜓] + 1 
𝐷𝑒 

𝜕2𝜓 
𝜕𝐐2 . (14) 

Just like it was the case for the Langevin equations, we 
can relate each term in the Fokker–Planck equations with 
their physical counterpart. Since the derivatives are on 𝐐, 
this means these terms depend on the dumbbell’s config-
uration. In (13)–(14) the first term on the right-hand side 
describes transport by the macroscopic flow. The second 
term relates to the spring force, whose effect is to concen-
trate the distribution function about 𝐐 = 0. The last term 
represents diffusion in configuration space; its effect is to 
“spread out” the distribution function. 

Just as with the previous section, we will avoid going 
into details about solution strategies for these Fokker– 
Planck equations in order to maintain brevity and accessi-
bility in this review. However, the book by Risken [Ris84] 
is a good starting point for those interested in this subject. 
2.4. Macroscopic representation. So far, we have de-
scribed two ways in which we can capture the dynamics of 
a microstructure comprising chains represented by elastic 
dumbbells. The first representation considers the equation 
of motion of individual dumbbells given by SDEs. The sec-
ond representation considers ensembles of dumbbells and 
gives the evolution equation for their PDFs as partial differ-
ential equations (PDEs). The next logical step is to discuss 
how to couple these dynamics with the macroscopic flow 
field described by the conservation of mass and momen-
tum equations. 

As discussed in previous sections, the equations for the 
conservation of mass and momentum of an isothermal, in-
compressible, viscoelastic fluid, in the absence of external 
forces, are given by 

𝛁 ⋅ 𝐮 = 0, (15a) 

𝜌 𝐷𝐮 
𝐷𝑡 = −𝛁𝑝 + 𝜂𝑠𝚫𝐮 + 𝛁 ⋅ 𝝉𝑝 . (15b) 

Here we have used the notation 𝜂𝑠 to denote the viscosity 
of the Newtonian component of the VEF, i.e., the solvent. 
We will scale this equations as, 

̃𝑡 = 𝑡 𝑡∗ , 𝐱̃ = 𝐱 
𝑈 𝑡∗ , ̃𝑝 = 

𝑝 
𝜌𝑈 2 , ̃ 𝐮 = 𝐮 

𝑈 , ̃𝝉𝑝 = 
𝝉𝑝 

𝑛𝑘𝐵 𝑇 , 

where 𝑡∗ and 𝑈 are characteristic time and velocity, 𝑛 is the 
dumbbells’ number density, and 𝑘𝐵 𝑇 is the thermal energy. 
Dropping the tildes, gives 

𝛁 ⋅ 𝐮 = 0, (16a) 
𝐷𝐮 
𝐷𝑡 = −𝛁𝑝 + 

𝛽 
𝑅𝑒 𝚫𝐮 + 

1 − 𝛽 
𝑅𝑒 𝐷𝑒 𝛁 ⋅ 𝝉𝑝. (16b) 

Here, 𝛽 = 𝜂𝑠/𝜂0 is the ratio of the solvent to the total vis-
cosity, where 𝜂0 = 𝜂𝑠 + 𝜂𝑝 is the zero-shear rate viscosity 

Figure 3. Components of the stress tensor, where 𝜏𝑖𝑗 are 
stresses resulting from forces in the 𝑖-direction, acting in the 
face of the volume with normal vector in the 𝑗-direction. In 
general, 𝝉 is a symmetric tensor; see proof for symmetry in 
Appendix A1 of [OP02]. 

of the fluid, with 𝜂𝑝 = 𝑛𝑘𝐵 𝑇 𝜆 being the polymer contribu-
tion to the viscosity. And, 𝑅𝑒 = 𝜌𝑈 2𝑡∗/𝜂0 is the Reynolds 
number, which is the ratio of inertial to viscous forces. 

Together with a constitutive equation for 𝝉𝑝 , (16) give the 
mathematical description, in time and space, of the resulting 
flow field of a VEF. However, these equations are applicable 
only when considering the fluid as a continuous medium. 
This means that we need to find an expression for 𝝉𝑝 that 
can “translate” the dynamics at the microscopic and meso-
scopic levels, described in previous sections, to the contin-
uum level. 

As dumbbells move about the solvent fluid, there is a 
drag force imposed on the beads by the fluid’s velocity, 𝐮. 
This drag on the beads causes an extra stress on the solvent, 
which in turns changes its velocity. This exchange between 
the dumbbells and the fluid depends on the momentum 
transferred between the beads in each dumbbell, which 
is modulated by the connector vector 𝐐. Because of this 
dependence on 𝐐, momentum transfer perpendicular to 
the flow exerts additional viscous forces, i.e., resistance to 
flow. While momentum transfer parallel to the flow gives 
elastic properties to the fluid. 

In order to understand how single dumbbells con-
tribute to the stress, let’s start by examining the significance 
of each entry in the stress tensor. In three-dimensional 
space, the stress tensor is a 3 × 3 matrix. If we consider 
a piece of fluid as a cube, then the 𝑖, 𝑗 entry corresponds 
to the stress resulting from a force in the ̂ 𝑖 direction im-
posed in the face with a normal vector in the ̂ 𝑗 direction; 
see Fig. 3. 

The contribution to the stress from a single dumbbell is 
then given by Kramer’s relation [BCAH87, Ött96], 

𝒯 = 𝐻𝑓(𝐐) ⊗ 𝐐 − 𝑘𝐵 𝑇𝜹, 

where 𝐹 (𝐐) = 𝐻𝑓(𝐐) is the spring force, 𝜹 the identity ma-
trix, and ⊗ indicates the tensor product of vectors. And, 
we can connect 𝐐, at the microscopic or mesoscopic scales, 
to the macroscopic stress using ensemble averages. In 
the configuration space represented by 𝐐, the ensemble 
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average of any function 𝑔(𝐐) is given by 

⟨𝑔(𝐐)⟩ = ∫ 𝑔(𝐐) Ψ(𝐫, 𝐐, 𝑡) 𝑑𝐐. (17) 

We use (17) to find the stress resulting from the collective 
dynamics all of dumbbells as 

𝝉𝑝 = ⟨𝒯⟩ = 𝑛 ∫ 𝐻𝑓(𝐐) 𝐐 𝜓 𝑑𝐐 − 𝑛𝑘𝐵 𝑇𝜹, 

= 𝑛𝐻 ⟨𝑓(𝐐) 𝐐⟩ − 𝑛𝑘𝐵 𝑇𝜹, 

where 𝑛 ⟨𝐹(𝐐) 𝐐⟩ is the contribution from the tension on 
the spring with spring law 𝐹(𝐐), and 𝑛𝑘𝐵 𝑇 capture effects 
due to Brownian motion. 

• For Hookean springs, 𝑓(𝐐) = 𝐐 and we obtain, 

𝝉𝑝 = ⟨𝐐𝐐⟩ − 𝜹. (18) 

• For FENE springs 𝑓(𝐐) = 𝐐/(1 − (𝑄/𝑄max)
2), so 

that, 

𝝉𝑝 = ⟨ 𝐐𝐐 
1 − 𝑄2/𝑏 ⟩ − 𝜹. (19) 

Here, we used the same nondimensionalization as before. 
To find a constitutive equation for 𝝉𝑝, we start with 

the general form of the Fokker–Planck equation for elas-
tic dumbbells, 

𝜕𝜓 
𝜕𝑡 = − 𝜕 

𝜕𝐐 [((𝛁𝐮) 
⊺ ⋅ 𝐐 − 

𝑓(𝐐) 
𝐷𝑒 ) 𝜓] + 1 

𝐷𝑒 
𝜕2𝜓 
𝜕𝐐2 . 

Recall that in this representation we assume the spring 
force is of the form 𝐅(𝐐) = 𝐻𝑓(𝐐). To find an expression 
for ⟨𝐐𝐐⟩, we multiply (20) throughout by 𝐐𝐐, and inte-
grate over the configuration space. We use the divergence 
theorem and the fact that 𝜓 → ∞ as 𝐐 → ∞ to obtain 
[BCAH87] 

𝜕 ⟨𝐐𝐐⟩ 
𝜕𝑡 = (𝛁𝐮) ⊺ ⋅ ⟨𝐐𝐐⟩ + ⟨𝐐𝐐⟩ ⋅ (𝛁𝐮) 

− 1 
𝐷𝑒 ⟨𝐐𝑓(𝐐)⟩ + 1 

𝐷𝑒 𝜹. 

If we define the upper convected derivative as, 

(⋅)(1) = 𝜕 (⋅) 
𝜕𝑡 − (𝛁𝐮) ⊺ ⋅ (⋅) − (⋅) ⋅ (𝛁𝐮) , 

we arrive at, 

⟨𝐐𝐐⟩ (1) = − 1 
𝐷𝑒 ⟨𝐐𝑓(𝐐)⟩ + 1 

𝐷𝑒 𝜹. (20) 

In the next sections we show how we can use (20) to 
formulate constitutive equations for 𝝉𝑝 corresponding the 
Hookean and FENE dumbbells. 

2.4.1. Hookean dumbbells. In this case 𝑓(𝐐) = 𝐐, so that 

⟨𝐐𝐐⟩ (1) = − 1 
𝐷𝑒 ⟨𝐐𝐐⟩ + 1 

𝐷𝑒 𝜹. 

Using (18) we obtain the constitutive equation for the ex-
tra stress tensor of Hookean dumbbells, 

𝐷𝑒 𝝉𝑝,(1) + 𝝉𝑝 = 𝐷𝑒 ̇𝜸. (21) 

This is the well-known Upper Convected Maxwell (UCM) 
model [BCAH87]. We should emphasize that the UCM 
model provides an exact closure to the Hookean dumbbell 
model because (21) can be directly obtained from (8). As 
we will see below, this is not the case for the FENE dumb-
bells. 

Finally, if instead of considering a constitutive equation 
for only 𝝉𝑝, we consider the total extra stress, 𝝉 = 𝜂𝑠𝚫𝐮 + 𝝉𝑝, 
the constitutive equation for 𝝉 is known as the Oldroyd-B 
Model. For a discussion of the mathematical considera-
tions and challenges arising from the description of VEF 
using this model, see [RT21]. 
2.4.2. FENE dumbbells. For FENE dumbbells, (20) gives, 

⟨𝐐𝐐⟩ (1) = − 1 
𝐷𝑒 ⟨ 𝐐𝐐 

1 − 𝑄2/𝑏 ⟩ + 1 
𝐷𝑒 𝜹. 

Because of the nonlinear term, it is not possible to obtain 
a close-form constitutive equation of 𝝉𝑝 for FENE dumb-
bells. Instead, several closures have been suggested to 
allow the formulation of macroscopic constitutive equa-
tions. Here we will discuss the so-called Peterlin approx-
imation, which results in the FENE-P model [BCAH87]. 
Other FENE closures are discussed in [DLY05]. 

Peterlin proposed a separate average of the numerator 
and denominator of the spring law [BCAH87], 

⟨𝐐𝐐⟩ (1) = − 1 
𝐷𝑒 

⟨𝐐𝐐⟩ 
1 − ⟨𝑄2⟩ /𝑏 + 1 

𝐷𝑒 𝜹, (22) 

𝝉𝑝 = ⟨𝐐𝐐⟩ 
1 − ⟨𝑄2⟩ /𝑏 − 𝜹. (23) 

In this way, instead of restricting the length of individual 
dumbbells to be less than 𝑄max, the Peterlin’s approxima-
tion relaxes the restriction where only the average dumb-
bell length needs to be less than the prescribed maximum 
extension. Individual dumbbell lengths can thus exceed 
𝑄max as long as the average stays within bounds. 

For convenience, we define a nondimensional configu-
ration tensor, 𝐀, as 

𝐀 ≡ 𝑑 ⟨𝐐𝐐⟩ ⟨𝑄2⟩ 0 
, (24) 

where ⟨𝑄2⟩0 is the mean-square end-to-end spring length 
at equilibrium (absence of flow) and 𝑑 = 3 is the dimen-
sionality [BCAH87]. Note that if we scale the end-to-end 
vector as before, we have a nondimensional conformation 
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Figure 4. Solutions in simple shear flow for macroscopic 
models (solid lines) compared to stochastic simulations 
(dashed lines). For simple shear flow, the velocity is 
prescribed as 𝐮 = [ ̇ 𝛾0 𝑦, 0, 0]

⊺ . Defining 𝐷𝑒 = 𝜆 ̇ 𝛾0 gives the 
nondimensional velocity as 𝐮 = [𝑦, 0, 0]⊺ . (A) Hookean 
dumbbell vs. UCM model. (B) FENE dumbbell vs. FENE-P 
model. 

tensor 𝐀 = 3 ⟨𝐐𝐐⟩. The constitutive equation for 𝐀 in 
three-dimensions is then found as, 

𝝉𝑝 = 𝐀 
1 − trace (𝐀) /(3𝑏) − 𝜹. (25a) 

𝐷𝑒𝐀(1) + 𝐀 
1 − trace (𝐀) /(3𝑏) = 𝜹. (25b) 

To elucidate the trade-offs involved in the Peterlin ap-
proximation, in Fig. 4 we show solutions of (8), (10), (21), 
and (25) under simple shear flow. We compare the macro-
scopic closures given by the UCM and FENE-P models with 
their corresponding stochastic counterparts: the Hookean 
and FENE models. Since the UCM model is an exact clo-
sure of the Hookean dumbbell model, solutions to (8) 
and (21) will always agree with each other, as shown in 
Fig. 4(A). On the other hand, the approximation used in 
the FENE-P formulation leads to deviation between solu-
tions of (10) and (25). Fig. 4(B) shows that these dif-
ferences are more noticeable at higher deformation rates, 
when dumbbells are close to their maximum extension. 

As mentioned above, FENE-P is not the only closure pro-
posed for the FENE model. The mathematical analysis of 
various closures for the FENE model remains an active area 
of research, involving the exploration of different approxi-
mations and/or higher order moments, e.g., [DLY05]. 

3. Conclusions 
This review aims to introduce the reader to the fundamen-
tal aspects of mathematical modeling of viscoelastic fluids 
(VEFs). The most important factor being that the underly-
ing microstructure of VEFs is what determines their prop-
erties at the macroscale. This microstructure can comprise 
polymer molecules, colloidal particles, emulsion drops, 
etc. The common characteristic is that these structures are 
larger than the solvent molecules and, as a result, bring 
about additional stresses to the system. This results in 
two components of the extra stress, one from the New-
tonian component (solvent) and the other from the mi-
crostructure. We discussed three levels of description used 
in modeling this microstructure. The first description 
focuses on the evolution of individual dumbbells using 
Langevin-type SDEs. The second description is concerned 
with the evolution of the PDF of the dumbbell’s configura-
tion through Fokker–Planck equations. The third descrip-
tion provides information at the macroscopic level using 
PDEs. 

Among the different representations, macroscopic con-
stitutive models offer a higher level of computational fea-
sibility, enabling us to find solutions in complex flows or 
geometries. However, by using these models, one must 
make a compromise regarding how accurately we can de-
scribe the underlying molecular physics. Similarly, al-
though computationally expensive, Langevin or Fokker– 
Planck descriptions are more amenable to incorporating 
additional degrees of freedom. This allows us to develop 
models that better capture the intricacies of physical pro-
cesses. Hence, in finding the appropriate level of descrip-
tion from a mathematical standpoint, it is important to 
strike a balance between the complexity of molecular in-
formation and the computational costs involved. 
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