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Abstract
AI systems are expected to impact the ways we communicate, learn, and interact with technology. However, there are still 
major concerns about their commonsense reasoning, and personalization. This article computationally explains causal (vs. 
statistical) inference, at different levels of abstraction, and provides three examples of how we can use do-operator, a math-
ematical operator for intervention, to address some of these concerns. The first example is from an educational module that 
I developed and implemented for undergraduate engineering students, as part of an educational research project with the US 
National Science Foundation. For the first time, to the best of my knowledge, 117 students could successfully use do-operator 
in a cybersecurity investment decision, according to Bloom’s learning taxonomy. Gender did not make a significant difference 
in the students’ performance, according to the Mann–Whitney U test. The second example explains using do-operator in 
assessing the effectiveness of intelligent tutoring systems, ITS, in receiving higher grades. The third example sheds light on 
combining online learning and offline learning, in reinforcement learning, to find the optimal policy that maximizes reward. 
To shed light on future research on explainability and personalization, I offer two recommendations: 1- Learn like System 2, 
the conscious learner (based on Bengio’s proposal for deep learning 2.0), and 2- Preference, a process, not an object (based 
on preference analysis of 25,646 registrants, entities and individuals purchasing domain names). In conclusion, this article 
contributes to achieving the goal of human–AI: Machines that think that learn and that create.
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1  Introduction

“Despite its success, statistical learning provides a rather 
superficial description of reality that only holds when the 
experimental conditions are fixed” (Schölkopf et al. 2021). 
For example, statistical learning assumes identically and 
independently distributed data (iid), i.e. test data have the 
same distribution as the training data. But “real data arrives 
to us in a form which is not iid, and so in practice what 
many practitioners of data science or researchers do when 
they collect data is to shuffle it to make it iid. Nature does 
not shuffle data, and we should not” (Goyal and Bengio 
2022). That is, we need to be able to formally represent 

“changes: consequence of an intervention on few causes 
or mechanisms” (Bengio 2020), e.g., changes of data 
distributions.

Causal reasoning, resting on interventions, enables us 
to formally represent changes. It allows us to decompose 
knowledge of the world into pieces and build abstract 
models of how the world works. It explains how changes in 
one variable, the cause, contributes to a change in the value 
of another variable, the effect, and generates commonsense 
explanations.

This is different from most of the existing machine 
learning and AI inference models that are based on statistical 
correlations (positive/negative/uncorrelated relations) with 
no causal implications. For example, an increase in ice 
cream sales could be correlated with an increase in violent 
crime. But this is not because ice cream causes crime. It is 
because both ice cream sales and violent crime are more 
common in hot weather (i.e., a confounder).

This article sheds light on the computational applications 
of causal (vs. statistical) reasoning in addressing various 
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issues with AI systems. Following a discussion of related 
work, I present some of the results of an educational research 
project with the US National Science Foundation. I also 
present example applications of causal learning in addressing 
issues with intelligent tutoring systems and reinforcement 
learning. Then, I offer two recommendations for the future 
AI research on explainability and personalization, and 
present conclusions.

2 � Related work

“If the AI behavior cannot be explained, then it will be dif-
ficult to trust its conclusions, and if the training inputs do 
not adequately represent the real environment, then we can-
not have confidence that it works correctly across all inputs 
that may occur in practical use” (Laplante and Kuhn 2022). 
But despite receiving increasing attention, and an in-depth 
work on explainable AI, e.g., (Chou et al. 2022; Buijsman 
2022), the existing AI systems still struggle with tasks that 
involve higher levels of reasoning. For example, when asked 
“what considerations are involved when transporting Egypt 
across the Golden Gate Bridge? ChatGPT failed to recognize 
that Egypt is a country and could not be transported across 
the Golden Gate Bridge, and produced a paragraph about 
weight, width, speed, and environment” (Denning 2023).

Explaining concepts and observed phenomena in the 
form of causal mental models is as old as human cognitive 
systems. But to automate commonsense explanation, e.g., 
in ChatGPT, we need to express causal inference with 
algorithms or formal rules that take representations as 
input and produce representations as output. Pearl (2009) 
made a fundamental contribution to causal inference by 
developing do-calculus, a calculus for probabilistic and 
causal reasoning, and do-operator, the operator that allows to 
intervene–interventions of the form do(X = x), which forces 
the variable X to take only the value x , and have no other 
immediate effect. The do-operator is specifically helpful 
when we cannot conduct randomized controlled trials, RCT. 
For example, in the context of education, when conducting 
an RCT requires changing classroom sizes and substantial 

resources. Pearl’s causal reasoning has three levels, as 
summarized in Table 1, and briefly explained below.

•	 Level 1 (association). It invokes purely statistical 
relationships, defined by the naked data. For example, 
it uses εP(y|x) = p ” that stands for: “The probability of 
event Y = y , given that we observed event X = x is equal 
to p .” Queries at this layer are placed at the bottom level 
in the hierarchy because they only present associations 
and not causal relations.

•	 Level 2 (intervention). This level ranks higher than 
association because it involves not just observing “what 
is” but changing what we observe. For example, it uses 
“ P(y|do(x), z)ε that stands for: “The probability of event 
Y = y , given that we intervene and set the value of X to 
x and subsequently observe event Z = z.”

•	 Level 3 (counterfactuals). This is the highest level of the 
hierarchy because it subsumes interventional and associ-
ational questions. For example, it uses “ P

(
yx|x�, y�

)
ε that 

stands for: “The probability that event Y = y would be 
observed had X been x , given that we actually observed 
X to be x′ and Y  to be y′ .” (Pearl 2019)

I argue that such three-level hierarchy is beneficial to 
AI research and education, as it corresponds to Turing pro-
posal to classify a cognitive system in terms of queries it can 
answer. Specifically, do-operator, using graph theory, can 
help explain crosscutting concepts in different computational 
forms—languages familiar to the engineers and computer 
scientists. This can significantly help engineering and com-
puter science research and education with answering ques-
tions and reasoning at different levels of abstractions, using 
formal semantics and graphical representations.

Current methods of personalized decision-making are 
mainly based on average treatment effect, ATE, and pro-
pensity score of a population. This could be problematic 
because personalized models and individual (personalized) 
treatments are expected to target the behavior of an indi-
vidual, not the population that may not necessarily resemble 
that individual. That is, the propensity score of a population 
may not be the same as an individual’s propensity.

Table 1   Pearl’s causal hierarchy

Level Typical Activity Typical Questions

1. Association:P(y|x) Seeing (observing a certainphenomenon unfold) What is? How would seeing Xchange my belief 
in Y  ?

2. Intervention:P(y|do(x), z) Doing (acting in the world to bring about some 
state of affairs)

What if?
What if I do X?

3. Counterfactuals:P
(
yx|x′, y′

)
Imagining (thinking about alternative ways the 

world could be)
Why? Was it X that caused Y  ? What if I had acted 

differently?
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The reality is that, to develop personalized decision-
making models, we need interventional expressions for an 
individual, and this cannot be done by ATE and passive 
observations from a dataset alone, regardless of how big 
the dataset is. Formally speaking, the average treatment 
is expressed as:ATE = E(Y|X = 1) − E(Y|X = 0) . We can 
advance this, using do-operator, and express treatment 
effectiveness by the Individual Treatment Effect as: 
ITE = E(Y|do(X = 1)) − E(Y|do(X = 0)) . An advantage of 
ITE over ATE is that inATE , we need to have RCT, and the 
assumption of independence of other factors is implicit. But 
in ITE , we do not necessarily need to have RCT, and we 
explicitly denote, using do-operator, that treatment status is 
independent of other factors.

We can extend this approach by including counterfactual 
reasoning and bounds (point of estimate) on individual-level 
causation to assess the probability of causation for personal-
ized decision-making. The counterfactual view of causation, 
y would not have occurred if it was not for x , can help with 
the assessment of probability of causation. This is like using 
the legal concept of but for in settings such as the plaintiff 
must prove that y would not have occurred but for x . Pearl 
adapted this view to define the probability of necessity, PN , 
as the: “probability that event y would not have occurred in 
the absence of event x , given that x and y did in fact occur” 
(Pearl 2009). He developed conditions for which PN can be 
learned from data, and how data from both experimental and 
nonexperimental studies can be combined to yield informa-
tion that neither study alone can provide. He also developed 
bounds on individual-level causation. For example, assum-
ing identifiability (situations where interventional distribu-
tions can be obtained from the given data), we can define a 
lower bound for PN as:

This following section briefly explains my experiments 
where I used PN and the lower bound in a real-world cyber-
security scenario.

3 � Experiments

Here, I present some of the results of an educational research 
project with the US National Science Foundation, where 
I created and implemented curriculum modules that are 
focused on AI in cybersecurity and are infused with real-
world scenarios (Farahmand 2021). Following receiving 
an institutional review board, IRB, approval to allow 
data gathering from volunteer students, 117 engineering 
undergraduate students, with no related background, 

PN ≥

{
max 0,

P(y) − P(y|do(x�))
P(x, y)

}

voluntarily completed their homework, following a 40 min 
lecture. Our first module consisted of three parts.

Part 1 of the module included a quick review of the 
basic statistical and probabilistic concepts that students 
needed to understand the rest of the module. It also 
included examples on how standard Bayesian inference 
can be used in the assessment of suspects in a cybercrime 
investigation.

Part 2 of the module introduced intervening (vs. condi-
tioning) and causal reasoning, i.e., reasoning for situations 
where one intervenes in the world, thereby interfering in 
the natural course of the events. Key to this part was the 
fundamental distinction between regression coefficients 
and structural parameters, and how students can use both 
to predict causal effects in linear models, and work with 
Pearl’s do-calculus, a general calculus for identifying causal 
effects. For example, use do(X = x) to force the variable X 
to take the value x, having no other immediate effect. Part 2 
explained that a causal model can be interpreted as a Bayes-
ian network, which in addition to answering probability 
queries, can also answer intervention queries; and that the 
answer to an intervention query P(Y|do(z),X = x) is not 
generally the same as its corresponding probability query 
P(Y|Z = z,X = x).

Part 3 of the module introduced the concept of counter-
factuals–what would have happened had we chosen differ-
ently at a point in the past. Discussions followed on how to 
compute counterfactuals, estimate their probabilities (e.g., 
probability of necessity that captures the legal criterion of 
“but for”), and how to use counterfactuals to answer practi-
cal questions in cybersecurity (e.g., cyber attribution).

In part 3, I also introduced the three rules of do-Calculus 
rules. First, in simple terms, I explained do-calculus, a calcu-
lus for probabilistic and causal reasoning (in Pearl’s words, 
“machinery of causal calculus” ) is an axiomatic system for 
replacing probability formulas containing the do-operator 
with ordinary conditional probabilities that uses three rules:

•	 Rule 1 helps us to ignore observations. It says when we 
observe a variable W  that is irrelevant to Y  (possibly 
conditional on other variables Z ), then the probability 
distribution of Y  will not change.

•	 Rule 2 helps us to exchange actions with observations. It 
says if a set Z of variables blocks all backdoors from X 
to Y  , i.e., any path from X to Y  that starts with an arrow 
pointing into X , then conditional on Z , do(X) is equiva-
lent to observe (X).

•	 Rule 3 helps us to ignore actions. It says we can remove 
do(X) from P(Y|do(X)) in any case when there are no 
causal paths from X to Y . That is, if we do something that 
does not affect Y  , then the probability distribution of Y  
will not change.
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Then I provided a graphical explanation (see Fig. 1 next 
page) of do-calculus rules to show how to apply the rules 
of do-calculus and do-operator to untangle causation in a 
cybersecurity investment decision, to answer a “what if” 
question (level 2 of causal hierarchy, see Table 1).

In Fig. 1, X, Y , Z and W are arbitrary disjoint sets of nodes 
in a causal directed acyclic graphG , as depicted in Fig. 1a. 
Here, an arrow from one variable to another indicates that 
the first variable causes the second—that is, the value of the 
first variable is part of the function that determines the value 
of the second. Therefore, the second variable depends on the 
first for its value. G

X
 denotes the graph obtained by deleting 

from G all arrows pointing to nodes inX , and GX  denotes the 
graph obtained by deleting from G all arrows emerging from 
nodes inX.G

XZ
 , represents the deletion of both incoming and 

outgoing arrows. Figure 1b explains the three rules of do-
calculus to help with eliminating the do-operators from the 
query expression and working with the observational data. 
For example, Rule 3 provides conditions for introducing (or 
deleting) an external intervention do(Z = z) without affect-
ing the probability ofY = y.

All three parts of the first module included computational 
examples of the applications of causal inference in either 
tangible, real-life situations, or in real-world cybersecurity 
situations. Following completing part 3, students voluntarily 
completed the following example homework.

4 � Example homework problem: applying to 
do‑operator to a cybersecurity investment 
decision

In this problem, students learned how to use PN  and the 
lower bound in a real-world cybersecurity scenario. Assume 
board members of a company, Board, need to choose 
between two treatments to protect the company from certain 
malicious attacks. Treatment 1, offered by the chief secu-
rity officer, CSO, who recommends firewall plus antivirus 
software, and Treatment 2, offered by the chief financial 
officer, CFO, who argues that purchasing antivirus software 
is unnecessary and additional cost, and recommends a dif-
ferent treatment: The firewall alone.

The following is a summary of the experimental and 
observational data that is available to the Board:

•	 X : Treatment ( x′ representing CFO’s treatment, i.e., fire-
wall alone, x representing CSO’s treatment: i.e., firewall 
plus antivirus),

•	 Y  : Protecting the company ( y′ representing company 
unprotected,y representing company protected),

•	 P(y�) = 0.3,
•	 P(x�|y�) = 0.7,

•	 P(y|do(x)) = 0.39, and

•	 P(y|do(x�)) = 0.14.
	   The Board needs to determine if the CSO’s treatment 

is likely necessary to protect the company from certain 
malicious attacks. That is, Board needs to see if PN  is 
more probable than not, using the lower bounds on PN , 

Fig. 1   a Subgraphs of G used in the derivation of causal effects, b Rules of do- calculus
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and assess if PN ≥
P(y)−P(y|do(x�))

P(x,y)
 holds. Using standard 

probability axioms, the right-hand side of the inequal-
ity can be written as:

Using the available data, the Board finds the following:

Since PN  is greater than 0.5 , the Board can conclude 
that the CSO’s recommendation is necessary for compa-
ny’s protection from certain malicious attacks.

To assess students’ learning, using do-operator, I used 
Bloom taxonomy (Anderson et al. 2001), as in computer 
science education, like many other disciplines, Bloom tax-
onomy is widely used for students’ learning assessment 
(Fuller et all 2007; Gluga et al. 2012; Moore et al. 2023; 
Ng et al. 2021; Sulmont 2019). The learning assessment of 
the Joint Task Force on Computing Curricula, a collabora-
tive effort by the Association for Computing Machinery 
(ACM), IEEE-Computer Society (IEEE-CS), and Associa-
tion for Advancement of Artificial Intelligence (AAAI) 
is also aligned with the Bloom taxonomy (Kumar et al. 
2023).

The Bloom’s six levels of learning that I used in our 
assessment were 1-Remember, 2-Understand, 3-Apply, 
4-Analyze, 5-Evaluate, and 6-Create. All participants 
reached level 4. That is, they were able to remember, under-
stand, apply, and analyze the lecture materials in answering 
the homework questions. Fifty-three percent of participants 
reached levels 5 and 6. That is, in answering their homework 
questions, they were able to work with the do-operator to 
evaluate and justify a decision and put elements together 
in a creative new way. The average and the highest score 
for the male students were 85 and 100, and for the female 
students were 81 and 97, respectively. Gender did not make 
a significant difference in the students’ performance, accord-
ing to the Mann–Whitney U Test; p-value was found as 0.25, 
and the result was not significant at p < 0.05 . These results 
are significant, as the 117 students who participated in this 
study and voluntarily completed their homework, using do-
operator, had no related background.

=
P(y) − P(y|do(x�))

P(y|x)P(x)

=
P(y) − P(y|do(x�))
(
1 −

P(x|y�)P(y�)
p(x)

)
P(x)

=
P(y) − P(y|do(x�)
P(x) − P(x|y�)P(y�)

PN ≥
0.7 − 0.14

1 − (1 − 0.7) × 0.3
, or = 0.62 > 0.5

5 � Example applications

The following two examples shed light on the applications of 
do-operator and causal learning in addressing issues with intel-
ligent tutoring systems and reinforcement learning.

5.1 � Applying do‑operator to assess 
the effectiveness of intelligent tutoring systems

This example sheds light on using do-operator and the three 
levels of causal reasoning in assessing the effectiveness of 
intelligent tutoring systems, ITS, in receiving higher grades.

Assuming to succeed in a new program, Teacher 1, 
who strongly believes in the power of encouragement, has 
encouraged students to work harder by doing more homework, 
using an intelligent tutoring system, ITS, that provides worked 
examples. However, Teacher 2 presents a counterargument: 
Program’s success is substantive, achieved mainly due to the 
unique features of the curriculum covered, and the increase 
in homework efforts cannot alone account for the success 
observed. But Teacher 2 does not provide any data to support 
his counterargument. To respond, Teacher 1, using graph 
theory and do-operator, can explain his argument at three 
levels, as shown in Fig. 2.

At level 1, Teacher 1, using conditional probability, assesses 
the degree of association between students receiving higher 
grades, and worked examples, using ITS. At this level, Teacher 
1 explains his argument as: The probability of receiving higher 
grade, given the observation of students using ITS. This is 
the common method of reasoning, used by machine learning 
research, that invokes purely statistical relationships, defined 
by the naked data.

At level 2, Teacher 1, using do-operator, does interven-
tion (vs. conditioning) to simulate an RCT. Intervention ranks 
higher than association because it involves not just seeing 
“what is” but changing what we see. At this level, Teacher 1 
explains his argument as: The probability of receiving higher 
grade, given the students were made to use ITS.

At level 3, Teacher 1 uses counterfactual reasoning. This is 
the highest level of causal reasoning because it subsumes inter-
ventional and associational questions. At this level, Teacher 
1 explains his argument as: The probability of not receiving 
higher grades, given the students received higher grades and 
did not use ITS.

DoWhy (2023), a Python library, and DAGitty (Textor 
2023), an R package, are examples of the tools that are pub-
licly available and used by researchers and practitioners with 
interest in do-operator.



	 AI & SOCIETY

5.2 � Applying do‑operator to combine online 
and offline learning

This example sheds light on combining online learning and 
offline learning, in reinforcement learning, RL, to find the 
optimal policy that maximizes reward.

RL methods that learn behaviors based on feedback from 
the environment are closer to causality research than the 
machine learning mainstream. RL methods can be catego-
rized into two groups: 1) Online learning, where agents per-
form experiments themselves, and 2) Offline or off-policy 
learning, where agents learn from other agents’ actions. 
Offline learning is specifically helpful when conducting RCT 
is not feasible.

RL “uses the formal framework of Markov decision pro-
cesses to define the interaction between a learning agent 
and its environment in terms of states, actions, and rewards. 
This framework is intended to be a simple way of represent-
ing essential features of the artificial intelligence problem. 
These features include a sense of cause and effect, a sense 
of uncertainty and nondeterminism, and the existence of 
explicit goals.” (Sutton and Barto 2018) For example, in 
assessing ITS performance, we can consider problems in 
the framework of Markov decision process, where an agent 
collects rewards over time by performing actions in an envi-
ronment, as briefly described below. 

Assume we plan to choose the optimal policy for an ITS. 
We can define a Markov decision process as follows:

•	 States: States that can be defined based on student’s per-
formance, and level of knowledge of the subject

•	 Actions: Actions that the agent can take to change the 
student’s state, e.g., presenting worked examples

•	 Rewards: Rewards that student receive based on perfor-
mance, e.g., “Excellent”, “ + 1”

•	 Training: Observing actions
•	 Goal: Finding the optimal policy that maximizes reward

However, there are some challenges with interpretabil-
ity of reinforcement models. For example, offline learning 
methods “have a long history of using importance sampling 
and yet still are not well understood”. (Sutton and Barto 
2018).

I argue that like deep learning methods that have ben-
efited from large datasets and methods that could scale to 
large amounts of data, RL methods can benefit from do-
operator and graph theory. Such a combination enables us to 
draw conclusions about new policies, by combining observa-
tions and knowledge about the data-generating mechanisms. 
Such combination also enables us to benefit from both online 
and offline learning in a formal setting and systematically 
combine the results of our limited interventional studies 
with our diverse prior experiences, and observational data 
(logged data).

Consider our goal of finding the optimal policy that max-
imizes reward. It can formally be expressed as: Learning 
a policy � s.t. sequence of actions �(.) =

(
X1,X2,… ,Xn

)
 

maximizes rewardE�(Y|do(X)) . To achieve this goal, 
we can do a combination of online learning by an agent, 
who performs experiments itself with input: experiments {(
do

(
Xi

)
, Yi

)}
 and learnP(Y|do(X)) , and offline learning by 

an agent, who learns from other agents’ actions with input: 
samples 

{(
do

(
Xi

)
, Yi

)}
 and learnP(Y|do(X)) . Such combi-

nations allow agents to systematically combine the observa-
tions and interventions it’s already collecting to construct an 
equivalence class of causal models (Zhang and Bareinboim 
2020). Such combinations are also the roots of the concept 
of transfer learning in reinforcement learning – the use of 
observational (or offline) data to aid in the performance of 
an agent in an experimental (or online) setting.

One of the first works on using causality to combine 
observational and experimental data came in Forney et al. 
2017, which proposed a counterfactual approach to the 
fusion of the two types of data within a multi-armed bandit 
setting. In this work, the authors approached the problem of 

Fig. 2   Three levels of causal reasoning, using conditional probability (level 1) and do- operator (levels 2 and 3)
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unobserved confounders when relating the two data sources 
by using a counterfactual quantity called the effect of the 
treatment on the treated (ETT) to estimate the causal effect 
of the action upon the reward, which they combined with 
empirically observed results from experimentation. Moving 
beyond the setting of multi-armed bandits, Gasse et al. 2021 
followed a similar approach to Zhang and Bareinboim 2020, 
by creating causal bounds from a combination of observa-
tional and interventional data. Wang et al. 2021 introduced 
a value iteration approach to improve sample efficiency 
by combining online and offline data in settings with con-
founded observational data. They proposed a method called 
de-confounded optimistic value iteration (DOVI), which 
uses causal inference to adjust for confounded behavior 
observed in offline data. Like Zhang and Bareinboim 2017, 
Kamath et al. 2023 showed that informative observational 
data provably improves efficiency in the online setting.

6 � Recommendations for future research

Here, I offer two recommendations for future research on 
explainability and preference analysis in AI systems.

6.1 � Learn like system 2, the conscious learner.

One aspect of preference in AI research has been stud-
ied under (inductive) biases, factors that lead a learner to 
favor one hypothesis over another that are independent of 
the observed data. “A remaining important question for AI 
research aiming at human-level performance then is to iden-
tify inductive biases that are most relevant to the human per-
spective on the world around us” (Goyal and Bengio 2022).

To address this need, Bengio based on Kahneman’s Sys-
tem 1 and 2 thinking (Kahneman 2011), has proposed to 
move from current deep learning, DL, to DL 2.0, where 
System 1 is unconscious, fast, intuitive, and emotional, and 
System 2 is conscious, slower, more deliberative, and more 
logical. Bengio argues that the origin of explainability issues 
in machine learning is in taking a System 1 approach to learn 
from data.

Figure 3a shows a situation where we are driving in a 
familiar neighborhood, e.g., from work to home, where we 
don’t need any map, and don’t need to think about turning to 
left or to right. It is off the top of our head! This is System 
1—how the current machine learning answers queries. 
Here, there is knowledge about how to solve problems, but 
it is implicit. That is why we have explainability issues in 
machine learning.

In contrast, Fig. 3b shows driving in an unfamiliar neigh-
borhood, where we need to become slower, perhaps con-
sult with Google Map, and need to deal with what could 
go wrong. With System 2, we are not only conscious, but 
also are able to express our thinking verbally, something 
that we are unable to do with current machine learning. As 
illustrated in Fig. 3b, you ask the other person not to talk 
to you because you must focus your thoughts on your driv-
ing. This conscious processing is slower, like you need to 
think carefully before you act. It is logical. You can explain 
to people why you are making such choices. This is like a 
situation when we are designing an algorithm. Our mind 
processes information sequentially and the knowledge that 
we manipulate is explicit. Therefore, we can explain to oth-
ers why we did, or did not, do something. This is the kind 
of capability that machine learning needs to have, so it can 
help AI systems to manipulate the semantic concepts that we 
may even know already.

Fig. 3   a System 1 versus b System 2 thinking  (Source: Bengio 2020, used with permission)
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The kind of explainability that Bengio and the AI com-
munity desire for DL 2.0 needs relaxing assumptions such 
as the identically and independently distributed, iid, data. It 
requires the learner to discover models that capture the effect 
of interventions and distribution changes that can be realized 
by performing level 2 and 3 actions, in Pearl’s hierarchy, 
using do-operator.

6.2 � Preference, a process, not an object.

Human preferences are not objects that can be identified. 
They are often constructed in the process of elicitation, 
and the AI community needs to investigate the constructive 
nature of human preferences–opposed to stable preferences. 
As Kahneman (2011) explained: “preferences are frame-
bound rather than reality-bound”, and “preferences between 
the same objective outcomes reverse with different formula-
tions”. Kahneman’s argument sharply contradicts the axioms 
of expected utility theory, the dominant decision theory in 
AI and machine learning.

I studied Kahneman’s argument in the context of domain 
name registration where.com is always assumed to be the 
most preferred top-level domain, TLD, name (Farahmand 
2017). I studied how online users choose domain names, 
looking at decisions from 25,646 registrants (the entities 
and individuals purchasing domain names) from a set that 
included the.com,.net,.cc, and.tv TLDs. I developed a behav-
ioral-economic distance metric, using behavioral economics 
and decision science research, and evaluated how the simi-
larity effect—a type of contextual effect—influences domain 
name choice. My results indicate that preference depends not 
only on being or not being a.com, but also on what choices 
the registrant was given and the presentation context. This 
goes against independence of irrelevant alternatives (IIA) 
principle of expected utility theory: people have a stable, 
well defined, and discernible order of preferences and always 
choose the course of action that maximizes their preferences 
(utilities). That is, in contrast to expected utility theory, we 

cannot assume that people have a stable, well defined, and 
discernible order of preferences and always choose the 
course of action that maximizes their preferences.

The registration records contained three main parts: 
1) Keyword, the original query by the registrant that 
specified the domain name without a TLD extension, 2) 
Registered domain, the domain name and the TLD selected 
for registration, and 3) Similarity score, a measure of the 
suggestion’s similarity to the keyword. Figure 4 shows 
registrant preference as a function of behavioral-economic 
distance metric. Figure 4a depicts density when [keyword].
com is available; Fig. 4b depicts density when it is not, 
showing the move from.com to.net as the preferred TLD 
when keyword.com. became unavailable.

7 � Conclusions

This article sheds light on how we can advance personaliza-
tion in AI systems to causal (vs. purely statistical) learning 
and presents computational examples and recommendations 
to illustrate how causal learning can lead to a human-like 
explainability. It formulates how to use casual reasoning, at 
different levels of abstraction, to address AI research issues, 
e.g., use commonsense explanation in conversational AI. It 
proposes to advance RL research by systematically comb-
ing observations and interventions, using do-operator, and 
goes beyond ATE, by bounding the entire distribution of 
individual causal effects.

This article contributes to engineering and computer sci-
ence education by advancing design thinking—formulating 
solution-based and user-centric rather than problem-based 
approaches. It presents measurable outcomes of introducing, 
for the first time to the best of our knowledge, a Turing-
Award winning research (Pearl’s do-calculus) to engineering 
education. This article also contributes to research on AI 
systems by integrating causal reasoning into personalization, 

Fig. 4   Depicting density graphs that give the percentage of registrants choosing a TLD as a function of behavioral economic distance when 
[keyword].com is a) available, and b unavailable
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commonsense explanation, and achieving the goal of 
human–AI: Machines that think that learn and that create.
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