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Abstract

Al systems are expected to impact the ways we communicate, learn, and interact with technology. However, there are still
major concerns about their commonsense reasoning, and personalization. This article computationally explains causal (vs.
statistical) inference, at different levels of abstraction, and provides three examples of how we can use do-operator, a math-
ematical operator for intervention, to address some of these concerns. The first example is from an educational module that
I developed and implemented for undergraduate engineering students, as part of an educational research project with the US
National Science Foundation. For the first time, to the best of my knowledge, 117 students could successfully use do-operator
in a cybersecurity investment decision, according to Bloom’s learning taxonomy. Gender did not make a significant difference
in the students’ performance, according to the Mann—Whitney U test. The second example explains using do-operator in
assessing the effectiveness of intelligent tutoring systems, ITS, in receiving higher grades. The third example sheds light on
combining online learning and offline learning, in reinforcement learning, to find the optimal policy that maximizes reward.
To shed light on future research on explainability and personalization, I offer two recommendations: 1- Learn like System 2,
the conscious learner (based on Bengio’s proposal for deep learning 2.0), and 2- Preference, a process, not an object (based
on preference analysis of 25,646 registrants, entities and individuals purchasing domain names). In conclusion, this article
contributes to achieving the goal of human—Al: Machines that think that learn and that create.
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1 Introduction

“Despite its success, statistical learning provides a rather
superficial description of reality that only holds when the
experimental conditions are fixed” (Scholkopf et al. 2021).
For example, statistical learning assumes identically and
independently distributed data (iid), i.e. test data have the
same distribution as the training data. But “real data arrives
to us in a form which is not iid, and so in practice what
many practitioners of data science or researchers do when
they collect data is to shuffle it to make it iid. Nature does
not shuffle data, and we should not” (Goyal and Bengio
2022). That is, we need to be able to formally represent
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“changes: consequence of an intervention on few causes
or mechanisms” (Bengio 2020), e.g., changes of data
distributions.

Causal reasoning, resting on interventions, enables us
to formally represent changes. It allows us to decompose
knowledge of the world into pieces and build abstract
models of how the world works. It explains how changes in
one variable, the cause, contributes to a change in the value
of another variable, the effect, and generates commonsense
explanations.

This is different from most of the existing machine
learning and Al inference models that are based on statistical
correlations (positive/negative/uncorrelated relations) with
no causal implications. For example, an increase in ice
cream sales could be correlated with an increase in violent
crime. But this is not because ice cream causes crime. It is
because both ice cream sales and violent crime are more
common in hot weather (i.e., a confounder).

This article sheds light on the computational applications
of causal (vs. statistical) reasoning in addressing various
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issues with Al systems. Following a discussion of related
work, I present some of the results of an educational research
project with the US National Science Foundation. I also
present example applications of causal learning in addressing
issues with intelligent tutoring systems and reinforcement
learning. Then, I offer two recommendations for the future
Al research on explainability and personalization, and
present conclusions.

2 Related work

“If the Al behavior cannot be explained, then it will be dif-
ficult to trust its conclusions, and if the training inputs do
not adequately represent the real environment, then we can-
not have confidence that it works correctly across all inputs
that may occur in practical use” (Laplante and Kuhn 2022).
But despite receiving increasing attention, and an in-depth
work on explainable Al e.g., (Chou et al. 2022; Buijsman
2022), the existing Al systems still struggle with tasks that
involve higher levels of reasoning. For example, when asked
“what considerations are involved when transporting Egypt
across the Golden Gate Bridge? ChatGPT failed to recognize
that Egypt is a country and could not be transported across
the Golden Gate Bridge, and produced a paragraph about
weight, width, speed, and environment” (Denning 2023).
Explaining concepts and observed phenomena in the
form of causal mental models is as old as human cognitive
systems. But to automate commonsense explanation, e.g.,
in ChatGPT, we need to express causal inference with
algorithms or formal rules that take representations as
input and produce representations as output. Pearl (2009)
made a fundamental contribution to causal inference by
developing do-calculus, a calculus for probabilistic and
causal reasoning, and do-operator, the operator that allows to
intervene—interventions of the form do(X = x), which forces
the variable X to take only the value x, and have no other
immediate effect. The do-operator is specifically helpful
when we cannot conduct randomized controlled trials, RCT.
For example, in the context of education, when conducting
an RCT requires changing classroom sizes and substantial

Table 1 Pearl’s causal hierarchy

resources. Pearl’s causal reasoning has three levels, as
summarized in Table 1, and briefly explained below.

e Level 1 (association). It invokes purely statistical
relationships, defined by the naked data. For example,
it uses eP(y|x) = p” that stands for: “The probability of
eventY =y, given that we observed event X = x is equal
to p.” Queries at this layer are placed at the bottom level
in the hierarchy because they only present associations
and not causal relations.

e Level 2 (intervention). This level ranks higher than
association because it involves not just observing “what
is” but changing what we observe. For example, it uses
“P(y|do(x), z)e that stands for: “The probability of event
Y =y, given that we intervene and set the value of X to
x and subsequently observe event Z = z.”

e Level 3 (counterfactuals). This is the highest level of the
hierarchy because it subsumes interventional and associ-
ational questions. For example, it uses “P(y,|x/, y/)e that
stands for: “The probability that event Y =y would be
observed had X been x, given that we actually observed
X to be x’ and Y to be yr.” (Pearl 2019)

I argue that such three-level hierarchy is beneficial to
Al research and education, as it corresponds to Turing pro-
posal to classify a cognitive system in terms of queries it can
answer. Specifically, do-operator, using graph theory, can
help explain crosscutting concepts in different computational
forms—Ilanguages familiar to the engineers and computer
scientists. This can significantly help engineering and com-
puter science research and education with answering ques-
tions and reasoning at different levels of abstractions, using
formal semantics and graphical representations.

Current methods of personalized decision-making are
mainly based on average treatment effect, ATE, and pro-
pensity score of a population. This could be problematic
because personalized models and individual (personalized)
treatments are expected to target the behavior of an indi-
vidual, not the population that may not necessarily resemble
that individual. That is, the propensity score of a population
may not be the same as an individual’s propensity.

Level Typical Activity

Typical Questions

1. Association: P(y|x)

2. Intervention:P(y|do(x), z)
state of affairs)

3. Counterfactuals:P(yx|x/, y/)
world could be)

Seeing (observing a certainphenomenon unfold)
Doing (acting in the world to bring about some

Imagining (thinking about alternative ways the

What is? How would seeing Xchange my belief
inY?

What if?

What if [ do X?

Why? Was it X that caused Y ? What if I had acted
differently?
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The reality is that, to develop personalized decision-
making models, we need interventional expressions for an
individual, and this cannot be done by ATE and passive
observations from a dataset alone, regardless of how big
the dataset is. Formally speaking, the average treatment
is expressed as:ATE = E(Y|X = 1) — E(Y|X = 0). We can
advance this, using do-operator, and express treatment
effectiveness by the Individual Treatment Effect as:
ITE = E(Y|do(X = 1)) — E(Y|do(X = 0)). An advantage of
ITE over ATE is that inATE, we need to have RCT, and the
assumption of independence of other factors is implicit. But
in ITE, we do not necessarily need to have RCT, and we
explicitly denote, using do-operator, that treatment status is
independent of other factors.

We can extend this approach by including counterfactual
reasoning and bounds (point of estimate) on individual-level
causation to assess the probability of causation for personal-
ized decision-making. The counterfactual view of causation,
y would not have occurred if it was not for x, can help with
the assessment of probability of causation. This is like using
the legal concept of but for in settings such as the plaintiff
must prove that y would not have occurred but for x. Pearl
adapted this view to define the probability of necessity, PN,
as the: “probability that event y would not have occurred in
the absence of event x, given that x and y did in fact occur”
(Pearl 2009). He developed conditions for which PN can be
learned from data, and how data from both experimental and
nonexperimental studies can be combined to yield informa-
tion that neither study alone can provide. He also developed
bounds on individual-level causation. For example, assum-
ing identifiability (situations where interventional distribu-
tions can be obtained from the given data), we can define a
lower bound for PN as:

P(y) — P(y|do(x)) }
P(x,y)

PN > { max 0,

This following section briefly explains my experiments
where I used PN and the lower bound in a real-world cyber-
security scenario.

3 Experiments

Here, I present some of the results of an educational research
project with the US National Science Foundation, where
I created and implemented curriculum modules that are
focused on Al in cybersecurity and are infused with real-
world scenarios (Farahmand 2021). Following receiving
an institutional review board, IRB, approval to allow
data gathering from volunteer students, 117 engineering
undergraduate students, with no related background,

voluntarily completed their homework, following a 40 min
lecture. Our first module consisted of three parts.

Part 1 of the module included a quick review of the
basic statistical and probabilistic concepts that students
needed to understand the rest of the module. It also
included examples on how standard Bayesian inference
can be used in the assessment of suspects in a cybercrime
investigation.

Part 2 of the module introduced intervening (vs. condi-
tioning) and causal reasoning, i.e., reasoning for situations
where one intervenes in the world, thereby interfering in
the natural course of the events. Key to this part was the
fundamental distinction between regression coefficients
and structural parameters, and how students can use both
to predict causal effects in linear models, and work with
Pearl’s do-calculus, a general calculus for identifying causal
effects. For example, use do(X = x) to force the variable X
to take the value x, having no other immediate effect. Part 2
explained that a causal model can be interpreted as a Bayes-
ian network, which in addition to answering probability
queries, can also answer intervention queries; and that the
answer to an intervention query P(Y|do(z),X = x) is not
generally the same as its corresponding probability query
PY|Z=2X=x).

Part 3 of the module introduced the concept of counter-
factuals—what would have happened had we chosen differ-
ently at a point in the past. Discussions followed on how to
compute counterfactuals, estimate their probabilities (e.g.,
probability of necessity that captures the legal criterion of
“but for””), and how to use counterfactuals to answer practi-
cal questions in cybersecurity (e.g., cyber attribution).

In part 3, I also introduced the three rules of do-Calculus
rules. First, in simple terms, I explained do-calculus, a calcu-
lus for probabilistic and causal reasoning (in Pearl’s words,
“machinery of causal calculus™ ) is an axiomatic system for
replacing probability formulas containing the do-operator
with ordinary conditional probabilities that uses three rules:

e Rule 1 helps us to ignore observations. It says when we
observe a variable W that is irrelevant to Y (possibly
conditional on other variables Z), then the probability
distribution of Y will not change.

e Rule 2 helps us to exchange actions with observations. It
says if a set Z of variables blocks all backdoors from X
to Y, i.e., any path from X to Y that starts with an arrow
pointing into X, then conditional on Z, do(X) is equiva-
lent to observe (X).

e Rule 3 helps us to ignore actions. It says we can remove
do(X) from P(Y|do(X)) in any case when there are no
causal paths from X to Y. That is, if we do something that
does not affect Y, then the probability distribution of Y
will not change.
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U(Unobserved)
X VA Y X Z Y
G Gz = Gy
Q Q Q
. s & % — =
X VA y X Z y X VA
Gxz Gg Gx GZ
a)

* Rule 1 (Insertion/deletion of observations):
P(yldo(x),z,w) = P(y|do(x),w)
if(YLZ|X,W)Gx

* Rule 2 (Action/observation exchange):
P(yldo(x),do(z),w) = P(y|do(x), z,w)
if (YL Z|X,W)GzGy

* Rule 3 (Insertion/deletion of actions):
P(yldo(x),do(2),w) = P(y|do(x),w)
if (YL Z|X, W)Ggm
where Z(W) 1s the set of Z-nodes that are

not ancestors of any W-node in Gg.

b)

Fig. 1 a Subgraphs of G used in the derivation of causal effects, b Rules of do- calculus

Then I provided a graphical explanation (see Fig. 1 next
page) of do-calculus rules to show how to apply the rules
of do-calculus and do-operator to untangle causation in a
cybersecurity investment decision, to answer a “what if”
question (level 2 of causal hierarchy, see Table 1).

InFig. 1, X, Y, Z and W are arbitrary disjoint sets of nodes
in a causal directed acyclic graphG, as depicted in Fig. 1a.
Here, an arrow from one variable to another indicates that
the first variable causes the second—that is, the value of the
first variable is part of the function that determines the value
of the second. Therefore, the second variable depends on the
first for its value. Gy denotes the graph obtained by deleting
from G all arrows pointing to nodes inX, and Gy denotes the
graph obtained by deleting from G all arrows emerging from
nodes inX.G,, represents the deletion of both incoming and
outgoing arrows. Figure 1b explains the three rules of do-
calculus to help with eliminating the do-operators from the
query expression and working with the observational data.
For example, Rule 3 provides conditions for introducing (or
deleting) an external intervention do(Z = z) without affect-
ing the probability ofY = y.

All three parts of the first module included computational
examples of the applications of causal inference in either
tangible, real-life situations, or in real-world cybersecurity
situations. Following completing part 3, students voluntarily
completed the following example homework.

@ Springer

4 Example homework problem: applying to
do-operator to a cybersecurity investment
decision

In this problem, students learned how to use PN and the
lower bound in a real-world cybersecurity scenario. Assume
board members of a company, Board, need to choose
between two treatments to protect the company from certain
malicious attacks. Treatment 1, offered by the chief secu-
rity officer, CSO, who recommends firewall plus antivirus
software, and Treatment 2, offered by the chief financial
officer, CFO, who argues that purchasing antivirus software
is unnecessary and additional cost, and recommends a dif-
ferent treatment: The firewall alone.

The following is a summary of the experimental and
observational data that is available to the Board:

e X: Treatment (x/ representing CFO’s treatment, i.e., fire-
wall alone, x representing CSO’s treatment: i.e., firewall
plus antivirus),

e Y: Protecting the company (y/ representing company

unprotected,y representing company protected),

Py =0.3,

P(xt|yn) = 0.7,

P(y|do(x)) = 0.39, and

P@y|do(xt)) = 0.14.

The Board needs to determine if the CSQO’s treatment
is likely necessary to protect the company from certain
malicious attacks. That is, Board needs to see if PN is
more probable than not, using the lower bounds on PN,



Al & SOCIETY

and assess if PN > W holds. Using standard

probability axioms, the right-hand side of the inequal-
ity can be written as:

_ PO) = POldo(xn))
PGP

P(y) — P(y|do(x/))

- _ PGlynPGY)
(1= P )

_ P(y) — P(y|do(xr)
"~ P(x) — P(x|yn)P(yr)

Using the available data, the Board finds the following:

0.7-0.14
PN > or=062> 0.5
“1-(-07x03"

Since PN is greater than 0.5, the Board can conclude
that the CSO’s recommendation is necessary for compa-
ny’s protection from certain malicious attacks.

To assess students’ learning, using do-operator, I used
Bloom taxonomy (Anderson et al. 2001), as in computer
science education, like many other disciplines, Bloom tax-
onomy is widely used for students’ learning assessment
(Fuller et all 2007; Gluga et al. 2012; Moore et al. 2023;
Ng et al. 2021; Sulmont 2019). The learning assessment of
the Joint Task Force on Computing Curricula, a collabora-
tive effort by the Association for Computing Machinery
(ACM), IEEE-Computer Society (IEEE-CS), and Associa-
tion for Advancement of Artificial Intelligence (AAAI)
is also aligned with the Bloom taxonomy (Kumar et al.
2023).

The Bloom’s six levels of learning that I used in our
assessment were 1-Remember, 2-Understand, 3-Apply,
4-Analyze, 5-Evaluate, and 6-Create. All participants
reached level 4. That is, they were able to remember, under-
stand, apply, and analyze the lecture materials in answering
the homework questions. Fifty-three percent of participants
reached levels 5 and 6. That is, in answering their homework
questions, they were able to work with the do-operator to
evaluate and justify a decision and put elements together
in a creative new way. The average and the highest score
for the male students were 85 and 100, and for the female
students were 81 and 97, respectively. Gender did not make
a significant difference in the students’ performance, accord-
ing to the Mann—Whitney U Test; p-value was found as 0.25,
and the result was not significant at p < 0.05. These results
are significant, as the 117 students who participated in this
study and voluntarily completed their homework, using do-
operator, had no related background.

5 Example applications

The following two examples shed light on the applications of
do-operator and causal learning in addressing issues with intel-
ligent tutoring systems and reinforcement learning.

5.1 Applying do-operator to assess
the effectiveness of intelligent tutoring systems

This example sheds light on using do-operator and the three
levels of causal reasoning in assessing the effectiveness of
intelligent tutoring systems, ITS, in receiving higher grades.

Assuming to succeed in a new program, Teacher 1,
who strongly believes in the power of encouragement, has
encouraged students to work harder by doing more homework,
using an intelligent tutoring system, ITS, that provides worked
examples. However, Teacher 2 presents a counterargument:
Program’s success is substantive, achieved mainly due to the
unique features of the curriculum covered, and the increase
in homework efforts cannot alone account for the success
observed. But Teacher 2 does not provide any data to support
his counterargument. To respond, Teacher 1, using graph
theory and do-operator, can explain his argument at three
levels, as shown in Fig. 2.

Atlevel 1, Teacher 1, using conditional probability, assesses
the degree of association between students receiving higher
grades, and worked examples, using ITS. At this level, Teacher
1 explains his argument as: The probability of receiving higher
grade, given the observation of students using ITS. This is
the common method of reasoning, used by machine learning
research, that invokes purely statistical relationships, defined
by the naked data.

At level 2, Teacher 1, using do-operator, does interven-
tion (vs. conditioning) to simulate an RCT. Intervention ranks
higher than association because it involves not just seeing
“what is” but changing what we see. At this level, Teacher 1
explains his argument as: The probability of receiving higher
grade, given the students were made to use ITS.

Atlevel 3, Teacher 1 uses counterfactual reasoning. This is
the highest level of causal reasoning because it subsumes inter-
ventional and associational questions. At this level, Teacher
1 explains his argument as: The probability of not receiving
higher grades, given the students received higher grades and
did not use ITS.

DoWhy (2023), a Python library, and DAGitty (Textor
2023), an R package, are examples of the tools that are pub-
licly available and used by researchers and practitioners with
interest in do-operator.
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Level 1-Observation Level 2- Intervention

orked Examples
&ITS

Probability of Receiving Observing Students Using

Encouragement

'orked Examples
&ITS

Higher Grade

Higher Grade Worked Examples & ITS Higher Grade
< z/ <

Probability of Receiving Making Students to Use

Level 3-Counterfactuals

Encouragement

orked Examples
&ITS

Students Received

Higher Grade
Probability of Not Receiving Students Were Not Made
Worked Examples & IT$ Higher Grade to Use Worked Examples & ITS
/

Ll ¥

P(HG=T |WE&ITS=T)

P(HG =T |do (WE& ITS =T))

P(HG = F| HG = T,do (WE ITS = F))

Fig.2 Three levels of causal reasoning, using conditional probability (level 1) and do- operator (levels 2 and 3)

5.2 Applying do-operator to combine online
and offline learning

This example sheds light on combining online learning and
offline learning, in reinforcement learning, RL, to find the
optimal policy that maximizes reward.

RL methods that learn behaviors based on feedback from
the environment are closer to causality research than the
machine learning mainstream. RL methods can be catego-
rized into two groups: 1) Online learning, where agents per-
form experiments themselves, and 2) Offline or off-policy
learning, where agents learn from other agents’ actions.
Offline learning is specifically helpful when conducting RCT
is not feasible.

RL ““uses the formal framework of Markov decision pro-
cesses to define the interaction between a learning agent
and its environment in terms of states, actions, and rewards.
This framework is intended to be a simple way of represent-
ing essential features of the artificial intelligence problem.
These features include a sense of cause and effect, a sense
of uncertainty and nondeterminism, and the existence of
explicit goals.” (Sutton and Barto 2018) For example, in
assessing ITS performance, we can consider problems in
the framework of Markov decision process, where an agent
collects rewards over time by performing actions in an envi-
ronment, as briefly described below.

Assume we plan to choose the optimal policy for an ITS.
We can define a Markov decision process as follows:

e States: States that can be defined based on student’s per-
formance, and level of knowledge of the subject

e Actions: Actions that the agent can take to change the
student’s state, e.g., presenting worked examples

¢ Rewards: Rewards that student receive based on perfor-
mance, e.g., “Excellent”, “+1”

e Training: Observing actions

¢ Goal: Finding the optimal policy that maximizes reward

@ Springer

However, there are some challenges with interpretabil-
ity of reinforcement models. For example, offline learning
methods “have a long history of using importance sampling
and yet still are not well understood”. (Sutton and Barto
2018).

I argue that like deep learning methods that have ben-
efited from large datasets and methods that could scale to
large amounts of data, RL methods can benefit from do-
operator and graph theory. Such a combination enables us to
draw conclusions about new policies, by combining observa-
tions and knowledge about the data-generating mechanisms.
Such combination also enables us to benefit from both online
and offline learning in a formal setting and systematically
combine the results of our limited interventional studies
with our diverse prior experiences, and observational data
(logged data).

Consider our goal of finding the optimal policy that max-
imizes reward. It can formally be expressed as: Learning
a policy z s.t. sequence of actions z(.) = (Xl,Xz, ,Xn)
maximizes rewardEz(Y|do(X)). To achieve this goal,
we can do a combination of online learning by an agent,
who performs experiments itself with input: experiments
{ (do (Xi) R Yi) } and learnP(Y|do(X)), and offline learning by
an agent, who learns from other agents’ actions with input:
samples { (do(X;),Y;) } and learnP(¥|do(X)). Such combi-
nations allow agents to systematically combine the observa-
tions and interventions it’s already collecting to construct an
equivalence class of causal models (Zhang and Bareinboim
2020). Such combinations are also the roots of the concept
of transfer learning in reinforcement learning — the use of
observational (or offline) data to aid in the performance of
an agent in an experimental (or online) setting.

One of the first works on using causality to combine
observational and experimental data came in Forney et al.
2017, which proposed a counterfactual approach to the
fusion of the two types of data within a multi-armed bandit
setting. In this work, the authors approached the problem of
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unobserved confounders when relating the two data sources
by using a counterfactual quantity called the effect of the
treatment on the treated (ETT) to estimate the causal effect
of the action upon the reward, which they combined with
empirically observed results from experimentation. Moving
beyond the setting of multi-armed bandits, Gasse et al. 2021
followed a similar approach to Zhang and Bareinboim 2020,
by creating causal bounds from a combination of observa-
tional and interventional data. Wang et al. 2021 introduced
a value iteration approach to improve sample efficiency
by combining online and offline data in settings with con-
founded observational data. They proposed a method called
de-confounded optimistic value iteration (DOVI), which
uses causal inference to adjust for confounded behavior
observed in offline data. Like Zhang and Bareinboim 2017,
Kamath et al. 2023 showed that informative observational
data provably improves efficiency in the online setting.

6 Recommendations for future research

Here, I offer two recommendations for future research on
explainability and preference analysis in Al systems.

6.1 Learn like system 2, the conscious learner.

One aspect of preference in Al research has been stud-
ied under (inductive) biases, factors that lead a learner to
favor one hypothesis over another that are independent of
the observed data. “A remaining important question for Al
research aiming at human-level performance then is to iden-
tify inductive biases that are most relevant to the human per-
spective on the world around us” (Goyal and Bengio 2022).

* Implicit knowledge

e Current DL

a)

KAHNEMAN

To address this need, Bengio based on Kahneman’s Sys-
tem 1 and 2 thinking (Kahneman 2011), has proposed to
move from current deep learning, DL, to DL 2.0, where
System 1 is unconscious, fast, intuitive, and emotional, and
System 2 is conscious, slower, more deliberative, and more
logical. Bengio argues that the origin of explainability issues
in machine learning is in taking a System 1 approach to learn
from data.

Figure 3a shows a situation where we are driving in a
familiar neighborhood, e.g., from work to home, where we
don’t need any map, and don’t need to think about turning to
left or to right. It is off the top of our head! This is System
1—how the current machine learning answers queries.
Here, there is knowledge about how to solve problems, but
it is implicit. That is why we have explainability issues in
machine learning.

In contrast, Fig. 3b shows driving in an unfamiliar neigh-
borhood, where we need to become slower, perhaps con-
sult with Google Map, and need to deal with what could
go wrong. With System 2, we are not only conscious, but
also are able to express our thinking verbally, something
that we are unable to do with current machine learning. As
illustrated in Fig. 3b, you ask the other person not to talk
to you because you must focus your thoughts on your driv-
ing. This conscious processing is slower, like you need to
think carefully before you act. It is logical. You can explain
to people why you are making such choices. This is like a
situation when we are designing an algorithm. Our mind
processes information sequentially and the knowledge that
we manipulate is explicit. Therefore, we can explain to oth-
ers why we did, or did not, do something. This is the kind
of capability that machine learning needs to have, so it can
help Al systems to manipulate the semantic concepts that we
may even know already.

Manipulates high level/semantic
concepts, which can be recombined
combinatorically

System 1 System 2
THANKING,
* Intuitive, fast, UNCONSCIOUS, 1-step FAST=SLO4 * Slow, logical, sequential, CONSCIOUS,
parallel, non-linguistic, habitual a Y linguistic, algorithmic, planning, reasoning
o -

* Explicit knowledge

DANIEL

* DL2.O

Fig.3 a System 1 versus b System 2 thinking (Source: Bengio 2020, used with permission)
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Fig.4 Depicting density graphs that give the percentage of registrants choosing a TLD as a function of behavioral economic distance when

[keyword].com is a) available, and b unavailable

The kind of explainability that Bengio and the AI com-
munity desire for DL 2.0 needs relaxing assumptions such
as the identically and independently distributed, iid, data. It
requires the learner to discover models that capture the effect
of interventions and distribution changes that can be realized
by performing level 2 and 3 actions, in Pearl’s hierarchy,
using do-operator.

6.2 Preference, a process, not an object.

Human preferences are not objects that can be identified.
They are often constructed in the process of elicitation,
and the Al community needs to investigate the constructive
nature of human preferences—opposed to stable preferences.
As Kahneman (2011) explained: “preferences are frame-
bound rather than reality-bound”, and “preferences between
the same objective outcomes reverse with different formula-
tions”. Kahneman’s argument sharply contradicts the axioms
of expected utility theory, the dominant decision theory in
Al and machine learning.

I studied Kahneman’s argument in the context of domain
name registration where.com is always assumed to be the
most preferred top-level domain, TLD, name (Farahmand
2017). I studied how online users choose domain names,
looking at decisions from 25,646 registrants (the entities
and individuals purchasing domain names) from a set that
included the.com,.net,.cc, and.tv TLDs. I developed a behav-
ioral-economic distance metric, using behavioral economics
and decision science research, and evaluated how the simi-
larity effect—a type of contextual effect—influences domain
name choice. My results indicate that preference depends not
only on being or not being a.com, but also on what choices
the registrant was given and the presentation context. This
goes against independence of irrelevant alternatives (IIA)
principle of expected utility theory: people have a stable,
well defined, and discernible order of preferences and always
choose the course of action that maximizes their preferences
(utilities). That is, in contrast to expected utility theory, we
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cannot assume that people have a stable, well defined, and
discernible order of preferences and always choose the
course of action that maximizes their preferences.

The registration records contained three main parts:
1) Keyword, the original query by the registrant that
specified the domain name without a TLD extension, 2)
Registered domain, the domain name and the TLD selected
for registration, and 3) Similarity score, a measure of the
suggestion’s similarity to the keyword. Figure 4 shows
registrant preference as a function of behavioral-economic
distance metric. Figure 4a depicts density when [keyword].
com is available; Fig. 4b depicts density when it is not,
showing the move from.com to.net as the preferred TLD
when keyword.com. became unavailable.

7 Conclusions

This article sheds light on how we can advance personaliza-
tion in Al systems to causal (vs. purely statistical) learning
and presents computational examples and recommendations
to illustrate how causal learning can lead to a human-like
explainability. It formulates how to use casual reasoning, at
different levels of abstraction, to address Al research issues,
e.g., use commonsense explanation in conversational Al It
proposes to advance RL research by systematically comb-
ing observations and interventions, using do-operator, and
goes beyond ATE, by bounding the entire distribution of
individual causal effects.

This article contributes to engineering and computer sci-
ence education by advancing design thinking—formulating
solution-based and user-centric rather than problem-based
approaches. It presents measurable outcomes of introducing,
for the first time to the best of our knowledge, a Turing-
Award winning research (Pearl’s do-calculus) to engineering
education. This article also contributes to research on Al
systems by integrating causal reasoning into personalization,
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commonsense explanation, and achieving the goal of
human—AI: Machines that think that learn and that create.

Author contributions The author confirms sole responsibility for the
following: study conception and design, data collection, analysis and
interpretation of results, and manuscript preparation.

Funding This material is based upon work supported by the National
Science Foundation under award number 2041788.

Data availability The author confirms that all data generated or ana-
lyzed during this study are included in this article.

Declarations

Conflict of interest The author declares no conflict of interests.

References

Anderson L et al (2001) A Taxonomy for Learning, Teaching, and
Assessing, A Revision of Bloom’s Taxonomy of Educational
Objectives. Longman, White Plains

Bengio Y (2020) Deep Learning for System 2 Processing, Presentation
at the AAAI-20 Turing Award winners 2018, Feb. 9

Buijsman S (2022) Defining explanation and explanatory depth in XAl
Mind Mach 32:563-584

Denning P (2023) The Profession of IT Can Generative Al Bots Be
Trusted? Commun ACM 66(6):24-27

DoWhy (2023) https://www.pywhy.org/dowhy/v0.10/. Accessed 10
July 2024

Farahmand F (2017) The importance of human information processing:
a behavioral economics model for predicting domain name choice.
Computer 50(9):67-74

Farahmand F (2021) Integrating Cybersecurity and Artificial
Intelligence Research in Engineering and Computer Science
Education. IEEE Secur Priv 19(6):104-110

Forney A, Pearl J, Bareinboim, E (2017) Counterfactual Data-Fusion
for Online Reinforcement Learners. Proceedings of the 34th
International Conference on Machine Learning, edited by Doina
Precup and Yee Whye Teh, 70:1156—64. Proceedings of Machine
Learning Research. PMLR.

Fuller U et al (2007) Developing a computer science specific learning
taxonomy. ACM SIGCSE Bull 39(4):152-170

Gluga R, Kay J, Lister R, Kleitman S, Lever T (2012) Coming to
terms with Bloom: an online tutorial for teachers of programming
fundamentals. In Proceedings of the Fourteenth Australasian
Computing Education Conference. 123-147-156.

Goyal A, Bengio Y (2022) Inductive biases for deep learning of higher-
level cognition”. Proceed Royal Soc. https://doi.org/10.1098/rspa.
2021.0068

Kahneman D (2011) Thinking, Fast and Slow. Farrar Straus Giroux

Kamath U, Graham K, Naylor M (2023) Applied Causal Inference

Kumar AN et al (2023) Computer Science Curricula 2023. ACM Press,
IEEE Computer Society Press and AAAI Press

Laplante P, Kuhn R (2022) Al Assurance for the Public — Trust but
Verify, Continuously, IEEE 29th Annual Software Technology
Conference (STC), 174-180

Moore S, Fang E, Nguyen H A, Stamper J (2023) Crowdsourcing the
Evaluation of Multiple-Choice Questions Using Item-Writing
Flaws and Bloom's Taxonomy. In Proceedings of the Tenth ACM
Conference on Learning @ Scale (L@S '23). Association for
Computing Machinery, New York, USA, pp. 25-34

Ng DTK et al (2021) Conceptualizing Al literacy: An exploratory
review, Computers and Education: Artificial Intelligence.
Artificial Intell, Comput Educat. https://doi.org/10.1016/j.caeai.
2021.100041

Pearl J (2009) Causality. Cambridge University Press

Pearl J (2019) The seven tools of causal inference, with reflections on
machine learning. CACM 62(3):54-60

Scholkopf B et al (2021) Toward causal representation learning,”. Proc
IEEE 109(5):612-634

Sulmont E, Patitsas E, Cooperstock JR (2019) What is hard about
teaching machine learning to non-majors? insights from
classifying instructors’ learning goals. ACM Trans Comput Educ.
https://doi.org/10.1145/3336124

Sutton RS, Barto AG (2018) Reinforcement Learning. Second edition,
The MIT Press, An Introduction

Textor J (2023) https://www.dagitty.net/. Accessed 10 July 2024

Wang L, Zhuoran Y, Wang Z (2021) Provably Efficient Causal
Reinforcement Learning with Confounded Observational Data”.
In Advances in Neural Information Processing Systems, edited
by M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and. J.
Wortman Vaughan. 34:21164-21175

Y-L. Chou Y-L, et al (2022) Counterfactuals and causability in
explainable artificial intelligence: Theory, algorithms, and
applications. Information Fusion 81:59-83

Zhang J, Bareinboim E (2017) Transfer Learning in Multi-Armed
Bandits: A Causal Approach. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence,
ICAIL.17:1340-46

Zhang J, Bareinboim E (2020) Designing Optimal Dynamic Treatment
Regimes: A Causal Reinforcement Learning Approach.
Proceedings of the 7th International Conference on Machine
Learning. 119:11012-11022

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

@ Springer


https://www.pywhy.org/dowhy/v0.10/
https://doi.org/10.1098/rspa.2021.0068
https://doi.org/10.1098/rspa.2021.0068
https://doi.org/10.1016/j.caeai.2021.100041
https://doi.org/10.1016/j.caeai.2021.100041
https://doi.org/10.1145/3336124
https://www.dagitty.net/

	Commonsense for AI: an interventional approach to explainability and personalization
	Abstract
	1 Introduction
	2 Related work
	3 Experiments
	4 Example homework problem: applying to do-operator to a cybersecurity investment decision
	5 Example applications
	5.1 Applying do-operator to assess the effectiveness of intelligent tutoring systems
	5.2 Applying do-operator to combine online and offline learning

	6 Recommendations for future research
	6.1 Learn like system 2, the conscious learner.
	6.2 Preference, a process, not an object.

	7 Conclusions
	References


