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A B S T R A C T

Optimal control theory extending from the calculus of variations has not been used to study
the wind turbine power system (WTPS) control problem, which aims at achieving two targets:
(i) maximizing power generation in lower wind speed conditions; and (ii) maintaining the
output power at the rated level in high wind speed conditions. A lack of an optimal control
framework for the WTPS (i.e., no access to actual optimal control trajectories) reduces optimal
control design potential and prevents competing control methods of WTPSs to have a reference
control solution for comparison. In fact, the WTPS control literature often relies on reduced
and linearized models of WTPSs, and avoids the nonsmoothness present in the system during
transitions between different conditions of operation. In this paper, we introduce a novel
optimal control framework for the WTPS control problem. We use in our formulation a recent
accurate, nonlinear differential–algebraic equation (DAE) model of WTPSs, which we then
generalize over all wind speed ranges using nonsmooth functions. We also use developments in
nonsmooth optimal control theory to take into account nonsmoothness present in the system.
We implement this new WTPS optimal control approach to solve the problem numerically,
including (i) different wind speed profiles for testing the system response; (ii) real-world
wind data; and (iii) a comparison with smoothing and naive approaches. Results show the
effectiveness of the proposed approach.

1. Introduction

According to the U.S. Department of Energy, as can be seen in this report [1], wind energy is recognized as a prominent
ontributor to electric-power capacity growth in the U.S. Consequently, considerable efforts have been dedicated in the past two
ecades to enhancing the performance of wind turbine power systems (WTPSs) and integrating them with traditional power systems

and the power grid. However, given their distinct nature compared to traditional power systems, integrating WTPSs with the existing
power grid remains a significant challenge [2] that is being studied by national labs, industry and by academics [3–6]. Challenges
n WTPSs include inherent fluctuations, limited predictability, reduced grid stabilization inertia, and heightened sensitivity to

uncontrolled factors such as weather conditions. Consequently, research endeavors encompassing control systems, optimization,
and power generation/storage have significantly surged over the past two decades [5–19], where major efforts have been made to
have a better understanding of the response of the WTPS to sudden changes of uncontrolled parameters, such as the wind speed,
power grid loads and the bus frequency or voltage [4–6,9,11,20–22].
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1.1. Modeling and control of WTPSs

Traditionally, there are two control inputs/strategies for WTPSs [5,10]: (i) pitch angle control, and (ii) torque/tip-ratio control.
Using the first strategy (i.e., pitch control), we can control the power produced from wind by changing the pitch angle [4–6]. In
the second strategy, the torque/tip-ratio based control methods enable changing the rotor speed of the WTPS to maximize power
production; a common strategy/method for torque control is known as maximum power point tracking (MPPT) where the objective
is to maximize power production through changing the speed of the turbine [10,15,23,24]. In this paper, we focus mainly on pitch
ngle control. Pitch control allows one to change the pitch angle in order to control the aerodynamic loads on the rotor. This
ffects the power coefficient, known as 𝐶𝑝, of the wind turbine, which in turn changes the amount of power produced from the
TPS [4–6]. Active pitch control methods are used [4–6,10] to control the pitch angle typically in Region 3, where the generator

torque is usually kept constant and the pitch angle is varied to keep the generated electric power at the rated level. Pitch control has
been traditionally implemented and designed using proportional–integral–derivative (PID) controllers [4–6,10,11]. There are some
studies aimed at improving the efficiency of the PID controllers, such as using estimation and optimization techniques [12] and
enetic algorithm techniques [25]. Additionally, feedforward, Model predictive control (MPC), sliding mode and other controllers

have been also considered (e.g., [14,18,26,27]). It is worth noting that some works in literature have considered both pitch and
torque/tip-ratio controls simultaneously such as [28,29].

In WTPSs control literature, many studies use linearized/reduced and/or models in the frequency/s-domain (e.g., [3,4,30–34])
while testing and analyzing newly developed control methods. Recently, significant progress has been made in WTPS modeling [5,6].
In said recent works, WTPSs have been rigorously studied and converted into a full scale nonlinear time-domain differential–
algebraic-equation (DAE) model based on physical/industrial literature such as, but not limited to [3,4,11]. This nonlinear time
domain WTPS DAE model [5,6] will be used in the control study of this paper (in Section 3).

1.2. Developments in nonsmooth ODE/DAE Optimal Control

Traditional optimal control methods require differentiability of the system’s dynamics as well as the objective functional.
However, many applications, such as the one this paper is concerned about, i.e., WTPSs, exhibit nonsmoothness in the dynamics
and the objective functional due to transitions between different Regions of operation (see Fig. 3 in Section 3); in fact, a detailed
study on nonsmoothness appearing in the WTPS parameters can be found in [35]. Therefore, an extension of traditional optimal
control methods is desired to overcome this issue (i.e., study nonsmooth problems). Two popular methods in the literature used
o resolve the nonsmoothness issue include using slack variables and smoothing approximations [36–40]. Both the slack variables

and the smoothing approximation methods have limitations. Using the slack variables method increases the size of the problem
which results in a slower convergence and higher complexity especially for large systems, while using a smoothing approximation
fundamentally changes the optimization problem with the accuracy of approximation depending on the choice of the smoothing
parameters, which adds an element of arbitrariness; in fact, this has been observed directly with relevance to the WTPS [35].

Unlike slack variables or smoothing approaches, frameworks now exist that enable the direct treatment of nonsmoothness. For
example, there are methods that extend standard indirect methods (in which calculus of variations is used to furnish a boundary value
roblem that can be solved to obtain a trajectory that minimizes/maximizes a given objective functional [36,41]) for optimal control

to nonsmooth problems, including constrained nonsmooth dynamical systems (see Ch.5 in [42] and the work in [43]). However,
these results generally come with restrictive conditions, and so are practically implementable typically only in special cases, such
as linear complementarity systems [44]. As for nonsmooth direct optimal control methods, lexicographic directional derivative (LD-
derivative) [45] based nonsmooth optimal control methods for ODE systems and DAE systems were introduced recently in [46,47],
respectively. The advantage of such methods is that LD-derivatives satisfy sharp calculus rules, which makes them a practical tool
for calculating computationally relevant generalized gradient elements of the objective functional. LD-derivatives based nonsmooth
optimal control methods will be presented in Section 2 as we will use it in the optimal control study of this paper. Moreover,
nonsmooth optimization methods [48] can utilize LD-derivatives based methods. Some studies have applied LD-derivative based
methods to solve nonsmooth optimal control problems involving nonsmooth systems with constraints, including nonsmooth DAE
systems in [47], mixed nonlinear complementary systems [49], and DAEs with optimality criteria [50].

1.3. Motivation and contributions

Despite the significant progress made in WTPS control strategies (as discussed in Section 1.1), current research efforts often suffer
from three major issues. First, model linearization and reduction that can lead to inaccurate conclusions about the control method
or its performance (see relevant discussions on this in [5,16,51]). Second, it is quite common for WTPSs to experience nonsmooth
(non-differentiable) profiles in their dynamics, parameters and/or the objective functional (see for example [35]); however, to the
authors’ best knowledge, no work has been done that directly addresses the nonsmoothness present in the WTPS model for control
studies. Overcoming nonsmoothness by smoothing has been shown to be less effective in studying WTPSs as shown in [35]. Third,
there is a lack of optimal control methods extending from the calculus of variations in the sense of [36,41,52] (such as direct

ethods) that find the optimal feasible trajectory for use as a reference control solution/design tool, which can be used by different
ontrol methods for realization and/or comparison efforts. We are motivated to provide a new theory and framework to address these
ssues. To overcome the first issue, the recent nonlinear time domain WTPS DAE model introduced in [5,6] (see relevant discussion

in Section 1.1) will be used for the following reasons: (i) to the best of the authors’ knowledge, it is the only WTPS model that has
2 
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been shown to be mathematically well-posed (the existence and uniqueness properties have been proved in [51]); (ii) this model is
shown to be amenable to available, non-commercial, stiff numerical solvers of DAE systems [5]; (iii) it has been shown in [53] that
reductions based on linear/multiple-scale approximations can be made, however, the separation between fast and slow variables
s quite complicated and is not easy to construct, suggesting against reduction/linearization; and (iv) it is accurate when validated
gainst real-world measured data (see [5,6,53]) and outperformed some of the most cited models that existed in the literature as

asserted in [5,6,53]. The second and third issues can be addressed using the developments in nonsmooth optimal control theory for
ynamical systems with DAE dynamics [47] (as discussed in Section 2). These developments with relevance to the work of this paper
ill be re-introduced in Section 2. A simpler case study for a reduced version of the mentioned WTPS model [5,6] in a particular

wind speed range and smooth setting has been conducted successfully by the authors in [16], which further suggests that the work
of this paper is with significant potential and is highly needed.

In this paper, we make the following contributions:

1. We unify and generalize the modeling and control framework for WTPSs which includes/covers all wind speed ranges:
low, moderate and high (Regions 1–3, see Fig. 3). This generalized framework is achieved by making use of nonsmooth
functions which enable continuous transition between all different operational conditions (i.e., Regions 1–3) of the WTPS.
Our generalized framework is based on the recently developed time-domain, nonlinear, validated against real-world data, DAE
WTPS models in [5,6]. We did not perform any linearization/reduction or smoothing approximation to have the generalized
framework as accurate, and reflective to WTPS dynamics, as possible.

2. We provide a novel optimal control method that is suitable for (and specialized to) this nonsmooth WTPS generalized modeling
and framework using tools from generalized derivatives theory. We thus provide, for the first time, a mathematically rigorous
framework (extended from the calculus of variations) that aims to find the feasible optimal trajectory for the pitch angle
controller that achieves the WTPS objectives in all Regions of wind conditions simultaneously (i.e., in Regions 1–3, see Fig. 3):
(i) maximizing the power generation (in lower wind speed conditions in Regions 1 and 2); and (ii) keeping the output power
at the rated level (in high wind speed conditions in Region 3). For that, we use the established results in [47] to formulate
a nonsmooth sequential optimal control (i.e., a direct method) approach for the WTPS. Furthermore, we test our approach
and present the optimal control response of WTPSs when exposed to wind variations with different wind profiles (Gaussian
and ramp profiles). We also apply our approach to, and present results of, the highly turbulent, real-world wind data that
was used in modeling validation in [5,6,53].

3. We demonstrate the importance of this novel approach, which treats the nonsmoothness directly and is based on state-of-the-
art accurate models of WTPSs via: (i) comparison with a smoothing approach/approximation (which is shown to introduce
error); and (ii) comparison with commercial smooth optimal control solver, namely GPOPS-II [54], where the nonsmoothness
is ignored (which is shown to fail sometimes).

Given all the contributions listed above, we believe that the optimal control response our generalized framework produces should
provide a benchmark (reference for comparison) to assess the performance of any control strategy applied to WTPSs.

1.4. Organization of the paper

In Section 2, we provide a background and mostly self-contained material on solving nonsmooth optimal control via lexicographic
ifferentiation. What is provided in Section 2 is customized to the class of DAE systems this paper is concerned with. Then, in
ection 3, we provide our first contribution (unification and generalization of WTPS DAE models using nonsmooth functions).
ollowing that, in Section 4, we provide our second contribution (novel nonsmooth optimal control approach). In Section 5, we

provide our third contribution, as we compare the novel nonsmooth approach derived and tested in Section 4 with a smoothing
approximation and a smooth optimal control solver, to demonstrate the effectiveness of our new approach. We conclude the paper
n Section 6.

2. Solving nonsmooth optimal control problems via LD-Derivatives

As discussed in [5,35], a WTPS can be formulated as a DAE system in the semi-explicit form. Therefore, we turn to the work
n [47], which provides the generalized gradient elements of the objective functional for nonsmooth optimal control problems with

(possibly nonsmooth) DAE systems embedded. In particular, the DAE optimal control problem of interest is as follows:

min
𝐮

𝜙(𝐮) = 𝜙(𝑡𝑓 ,𝐮(𝑡𝑓 ), 𝐱(𝑡𝑓 ), 𝐲(𝑡𝑓 )), (1a)

s.t. 𝐱̇(𝑡) = 𝐡(𝑡,𝐮(𝑡), 𝐱(𝑡), 𝐲(𝑡)), 𝐱(𝑡0) = 𝐱0, (1b)

𝟎𝑛𝑦 = 𝐠(𝑡, 𝐱(𝑡), 𝐲(𝑡)), (1c)

with differential state variables 𝐱(𝑡) ∈ 𝐷𝑥 ⊆ R𝑛𝑥 (with initial condition 𝐱0 ∈ 𝐷𝑥), algebraic state variables 𝐲(𝑡) ∈ 𝐷𝑦 ⊆ R𝑛𝑦 , control
𝐮(𝑡) ∈ 𝐷𝑢 ⊆ R𝑛𝑢 , and finite time interval [𝑡0, 𝑡𝑓 ] ⊂ 𝐷𝑡 ⊆ R, and RHS functions 𝐡 ∶ 𝐷𝑡×𝐷𝑢×𝐷𝑥×𝐷𝑦 → R𝑛𝑥 and 𝐠 ∶ 𝐷𝑡×𝐷𝑥×𝐷𝑦 → R𝑛𝑦 ,
where 𝐷𝑡, 𝐷𝑢, 𝐷𝑥, 𝐷𝑦 are open and connected sets. In this paper we use the sequential method (also known as direct single shooting)
o solve the optimal control problem in (1); in the sequential method, the continuous-time problem is converted into an nonlinear

programming (NLP) by discretizing the control input to produce a finite set of decision variables — the trajectory of the embedded
dynamical system (in this case, the DAE system) is approximated via numerical simulation, and so the decision variables in the NLP
3 
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come from the parameterization of the control [36,52]. Namely, the optimal control problem in (1) seeks to minimize the objective
functional over some function space, i.e., min𝐮∈ 𝜙(𝐮) (where, e.g.,  could be the space of Lebesgue integrable functions on some
finite time horizon). Instead, we convert this problem into a finite-dimensional problem by parametrically discretizing the control
into a finite truncation of basis functions, using the control parameters 𝐩 ∈ 𝐷𝑝 ⊆ R𝑛𝑝 , and then we instead solve min𝐩∈𝐷𝑝 𝜙(𝐩). In
this paper, we focus on a piecewise constant control discretization on 𝑛𝑠 ∈ N subintervals [𝜏0, 𝜏1],… , [𝜏𝑛𝑠−1, 𝜏𝑛𝑠 ]:

𝐮(𝑡) = 𝐮(𝑖) if 𝑡 ∈ (𝜏𝑖−1, 𝜏𝑖], (2)

with pre-fixed times 𝜏𝑖 satisfying 𝑡0 = 𝜏0 < 𝜏1 < ⋯ < 𝜏𝑛𝑠−1 < 𝜏𝑛𝑠 = 𝑡𝑓 , with 𝜏𝑖 − 𝜏𝑖−1 = (𝑡𝑓 − 𝑡0)∕𝑛𝑠, and with control parameters
𝐩 = (𝒖(1),… , 𝒖(𝑛𝑠)) ∈ 𝐷𝑝 = 𝐷𝑛𝑠

𝑢 ⊆ R𝑛𝑢𝑛𝑠 (i.e., 𝒖(𝑖) ∈ 𝐷𝑢 for each 𝑖, and 𝑛𝑝 = 𝑛𝑢𝑛𝑠 here). The sequential approach uses the gradient
nformation ∇𝜙(𝐩) to update the control parameters in the spirit of 𝐩𝑘+1 = 𝐩𝑘 − 𝛾∇𝜙(𝐩𝑘) for some step size 𝛾 and repeats the process
ntil a termination criteria is satisfied (so that ∇𝜙(𝐩𝑘) ≈ 𝟎). Moreover, the gradient information is obtained using the sensitivity

functions 𝜕𝐱
𝜕𝐩 and 𝜕𝐲

𝜕𝐩 associated with the embedded DAE system via

∇𝜙(𝐩) = 𝜕 𝜙
𝜕𝐩

+
𝜕 𝜙
𝜕𝐱

𝜕𝐱
𝜕𝐩

+
𝜕 𝜙
𝜕𝐲

𝜕𝐲
𝜕𝐩
. (3)

However, motivated by WTPSs, we are interested in the case where the maps 𝜙,𝐡, 𝐠 are assumed to be nonsmooth and thus not
necessarily differentiable. Consequently, the solutions 𝐱 and 𝐲 of the DAE system may be nonsmooth with respect to 𝐮, invalidating
(3). To overcome this issue, we turn our attention to generalized derivatives theory and lexicographic differentiation to compute
(generalized) derivative information of 𝜙 for use in a nonsmooth sequential direct method to solve (1).

2.1. Lexicographic directional derivatives

Let 𝑋 ⊆ R𝑛 be open and 𝐟 ∶ 𝑋 → R𝑚 be locally Lipschitz on 𝑋. Clarke’s generalized derivative [42] of 𝐟 at 𝐱0 ∈ 𝑋 is given by
the convex hull of the Bouligand subdifferential of 𝐟 , i.e.,

𝜕C𝐟 (𝐱0) ∶= conv 𝜕B𝐟 (𝐱0), (4)

where the Bouligand subdifferential is defined as:

𝜕B𝐟 (𝐱0) ∶=
{

𝐅 ∈ R𝑚×𝑛 ∶ ∃𝐱𝑖 → 𝐱0 s.t. 𝐱𝑖 ∈ 𝑋 ⧵𝑍𝐟 ∀𝑖 ∈ N and 𝐉𝐟 (𝐱𝑖) → 𝐅
}

,

where 𝑍𝐟 is the zero measure subset on which 𝐟 is not differentiable and 𝐉𝐟 (𝐱𝑖) is the Jacobian matrix of 𝐟 at 𝐱𝑖. Note that in case 𝐟
s 𝐶1 at 𝐱0, then 𝜕B𝐟 (𝐱0) = 𝜕C𝐟 (𝐱0) = {𝐉𝐟 (𝐱0)}.

Although elements of Clarke’s generalized derivative are useful for nonsmooth numerical methods, it does not satisfy sharp
calculus rules (e.g. sum rule — see [55]), which makes it difficult to calculate said elements of Clarke’s generalized derivative for
omplicated functions. The lexicographic directional derivative (LD-derivative) [45], which is based on lexicographic differentia-

tion [56], was proposed to overcome this limitation (and other limitations [55]), which is applicable to lexicographically smooth
(L-smooth) functions [56]. The class of L-smooth functions are locally Lipschitz and directionally differentiable to arbitrary order,
which includes all 𝐶1 functions, 𝑃 𝐶1 functions (hence abs-value, min, max), and convex functions (hence any 𝑝-norm), as well as
the compositions of these functions. Following from the definition of L-smooth functions, Nesterov [56] defined the lexicographic
derivative (L-derivative) for L-smooth functions which can be seen as a Jacobian-like object, as discussed in [45,56,57], and is just
as useful in nonsmooth numerical methods as Clarke generalized derivative elements.

An LD-derivative, denoted 𝐟 ′(𝐱0;𝐌), can be used to calculate an L-derivative of an L-smooth function 𝐟 if the so-called ‘‘directions
matrix’’ 𝐌 = [𝒎𝟏 𝒎𝟐 … 𝒎𝒌] ∈ R𝑛×𝑘 has full row rank. Roughly, the columns in 𝐌, which span the domain space if 𝐌 has full row
ank, act as probing directions. The main advantage of the LD-derivative formulation is that it satisfies sharp calculus rules and that
here are closed-form expressions available for nonsmooth elemental functions such as max, min, absolute-value, etc. (see [45,55]):

• smooth rule: 𝐟 ∈ 𝐶1 ⇒ 𝐟 ′(𝐱0;𝐌) = 𝐉𝐟 (𝐱0)𝐌, e.g. sin′(𝑥0;𝐌) = cos(𝑥0)𝐌.
• abs rule: abs′(𝑥0;𝐌) = f sign(𝑥0,𝐌)𝐌 where the first-sign function fsign(⋅) returns the sign of the first nonzero element, or zero

if its input is zero.
• min rule: for 𝐌1,𝐌2 ∈ R1×𝑘,

min ′(𝑥0, 𝑦0; (𝐌1,𝐌2)) = 𝐬𝐥𝐦𝐢𝐧([𝑥0 𝐌1], [𝑦0 𝐌2])

=

⎧

⎪

⎨

⎪

⎩

𝐌1 if f sign
([ 𝑥0

𝐌T
1

]

−
[ 𝑦0
𝐌T

2

]

)

≤ 0,

𝐌2 if f sign
([ 𝑥0

𝐌T
1

]

−
[ 𝑦0
𝐌T

2

])

> 0,

i.e., the shifted-lexicographic-minimum 𝐬𝐥𝐦𝐢𝐧 returns the lexicographic minimum of the two vector arguments, left-shifted by
one element.

• componentwise rule: 𝐟 ′(𝐱0;𝐌) = (𝑓 ′
1(𝐱0;𝐌), 𝑓 ′

2(𝐱0;𝐌),… , 𝑓 ′
𝑛(𝐱0;𝐌)).

• chain rule: [𝐠◦𝐟 ]′(𝐱0;𝐌) = 𝐠′(𝐟 (𝐱0); 𝐟 ′(𝐱0;𝐌)).
• sum rule: [𝐟 + 𝐠](𝐱0;𝐌) = 𝐟 ′(𝐱0;𝐌) + 𝐠′(𝐱0;𝐌).
• product rule: [𝑓 𝑔](𝐱0;𝐌) = 𝑓 ′(𝐱0;𝐌)𝑔(𝐱0) + 𝑓 (𝐱0)𝑔′(𝐱0;𝐌).
4 
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Because of these sharp calculus rules, the LD-derivative can be computed accurately, hence, making it a computationally-relevant
tool that can be effectively used to furnish an L-derivative from solving a system of linear equations. Namely,

𝐟 ′(𝐱0;𝐌) = 𝐉L𝐟 (𝐱0;𝐌)𝐌, (5)

where 𝐉L𝐟 (𝐱0;𝐌) is the L-derivative of 𝐟 at 𝐱0 in the directions 𝐌, a computationally relevant generalized derivative object. For
ore details on LD-derivative theory and some of its applications, the reader may refer to [45,55].

2.2. Generalized gradients of control problems with nonsmooth DAEs embedded

Returning to the optimal control problem in (1), we recall some results from the literature that enable the use of LD-derivatives in
onsmooth optimal control settings: For nonsmooth optimal control with ODE systems, the framework presented in [46] provides the

generalized gradient elements of the objective functional with nonsmoothness present in the objective functional and/or the system
dynamics, where such description of generalized gradient elements of the objective functional is based on the sensitivity analysis
results in [57] concerning generalized derivatives of ODE solutions with respect to the parameters of the system. The authors in [58]
established a similar sensitivity analysis theory for semi-explicit DAEs with ‘‘generalized differentiation index one’’, which can be
exploited to furnish generalized gradient elements of the objective functional of an optimal control problem with an embedded
DAE [47], in the same spirit as [46]. In particular, a generalized gradient element of the objective function in (1) can be obtained
ia the following result, which specializes Theorem 3.2 in [47].

Theorem 1. Suppose that the following conditions hold:

(i) Assume that 𝜙,𝐡, 𝐠 are L-smooth functions.
(ii) Assume that 𝐮 is parameterized according to (2).
(iii) Assume that there exists a solution (𝐱̃, 𝐲̃) of (1b)–(1c) on

[

𝑡0, 𝑡𝑓
]

through the initial data {(𝑡0,𝐩0, 𝐱0, 𝐲0)}, for some 𝐩0 ∈ 𝐷𝑝 = 𝐷𝑛𝑠
𝑢 ,

such that

𝜋𝐲𝜕𝐠(𝑡, 𝐱̃(𝑡), 𝐲̃(𝑡)) = {𝐆𝐲 ∈ R𝑛𝑦×𝑛𝑦 ∶ ∃[𝐆𝑡 𝐆𝐱 𝐆𝐲] ∈ 𝜕𝐠(𝑡, 𝐱̃(𝑡), 𝐲̃(𝑡))} (6)

contains no singular matrices for any 𝑡 ∈ [𝑡0, 𝑡𝑓 ].
Then a generalized gradient of 𝜙 in (1) can be calculated according to

𝝁 = 𝜙′(𝑡𝑓 , 𝒖(𝑛𝑠), 𝐱̃(𝑡𝑓 ), 𝐲̃(𝑡𝑓 ); 𝟎1×𝑛𝑢𝑛𝑠 , 𝐞
T
(𝑛𝑠)

⊗ 𝐈𝑛𝑢 , 𝐗̃(𝑡𝑓 ), 𝐘̃(𝑡𝑓 ))
T ∈ 𝜕 𝜙(𝐩0), (7)

where the LD-derivative sensitivities (𝐗̃, 𝐘̃) solve the following for 𝑖 = 1,… , 𝑛𝑠:
𝐗̇(𝑡) = 𝐡′(𝑡, 𝒖(𝑖), 𝐱̃(𝑡), 𝐲̃(𝑡); (𝟎1×𝑛𝑠𝑛𝑢 , 𝐞T(𝑖) ⊗ 𝐈𝑛𝑢 ,𝐗(𝑡),𝐘(𝑡))), ∀𝑡 ∈ (𝜏𝑖−1, 𝜏𝑖],

𝟎𝑛𝑦×𝑛𝑠𝑛𝑢 = 𝐠′(𝑡, 𝐱̃(𝑡), 𝐲̃(𝑡); (𝟎1×𝑛𝑠𝑛𝑢 ,𝐗(𝑡),𝐘(𝑡))), 𝑡 ∈ [𝑡0, 𝑡𝑓 ],
𝐗(𝑡0) = 𝟎𝑛𝑥×𝑛𝑠𝑛𝑢 , (8)

𝟎𝑛𝑦×𝑛𝑠𝑛𝑢 = 𝐠′(𝑡0, 𝐱0, 𝐲0; (𝟎1×𝑛𝑠𝑛𝑢 , 𝟎𝑛𝑥×𝑛𝑠𝑛𝑢 ,𝐘(𝑡0))),
where ⊗ is the Kronecker product and 𝐞(𝑖) ∈ R𝑛𝑠 denotes the 𝑖th standard basis vector.

Proof. The DAE system in (1b)–(1c), with controls 𝐮 parameterized according to (2), is in the form of the embedded DAE system
n Eq. (6) in [47], with 𝐟 replaced by 𝐡, 𝐟0(𝐩) = 𝐱0 a constant, the control 𝐯 absent here, and extra problem parameters absent here.

Hence, the L-smoothness of 𝜙,𝐡, 𝐠 here guarantees conditions (i)-(ii) and (v) of Assumption 3.1 in [47] hold. Moreover, we can
rewrite 𝐮 in (2) as

𝐮(𝑡) = 𝐮(𝑡;𝐩) =
𝑛𝑠
∑

𝑖=1
𝐮(𝑖)(𝜏𝑖−1 ,𝜏𝑖](𝑡),

i.e., 𝛹𝑖(𝑡) = (𝜏𝑖−1 ,𝜏𝑖](𝑡) is the indicator function, so that condition (iii) of Assumption 3.1 in [47] holds. (Condition (iv) holds
acuously.) The assumptions on the RHS functions 𝐡, 𝐠 and the piecewise constant control 𝐮 imply that the solution (𝐱̃, 𝐲̃) on [𝑡0, 𝑡𝑓 ]
s unique, and the assumption that (6) contains no singular matrices guarantees that said solution is regular in the terminology
f [47]. Hence, Theorem 3.2 in [47] is applicable, and the conclusions in this theorem follow immediately from it, and Example

3.4 in [47], with directions matrix 𝐌 = 𝐈𝑛𝑠𝑛𝑢 , since in that case

𝜳 (𝑡) = [𝜓(1)(𝑡) ⋯ 𝜓(𝑛𝑠)]⊗ 𝐈𝑛𝑢 = 𝐞T(𝑖) ⊗ 𝐈𝑛𝑢 ∀𝑡 ∈ (𝜏𝑖−1, 𝜏𝑖]. □

Remark 2.1. The assumptions in Theorem 1, including existence and regularity of a solution of (1b)–(1c) on [𝑡0, 𝑡𝑓 ], are in line
ith direct optimal control methods for smooth systems, except of course for the allowance of 𝜙,𝐡, 𝐠 to be nonsmooth. In fact, the

function 𝐡 is permitted to be discontinuous with respect to 𝑡 in the theory in [47], and both 𝐡 and 𝐠 may depend on extra problem
5 
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Fig. 1. Simple flow chart clarifying the sequential optimal control process.

parameters, although we omit these generalizations (and use 𝐌 = 𝐈𝑛𝑠𝑛𝑢 ) to make the exposition clearer. Note also that if 𝜙,𝐡, 𝐠
are 𝐶1, 𝐗̃(𝑡) = 𝜕𝐱̃

𝜕𝐩 (𝑡;𝐩0), 𝐘̃(𝑡) =
𝜕𝐲̃
𝜕𝐩 (𝑡;𝐩0), 𝝁 = ∇𝜙(𝐩0) in Theorem 1 (hence classical results are recovered). Lastly, we note that the

objective functional 𝜙 in (1a) above is in Mayer form, but Bolza/Lagrange forms of the objective functional are also permitted with
he theory in Theorem 1 since Bolza/Lagrange can be transformed into Mayer form (see, e.g., [59]), as we demonstrate in the next
xample.

For an intuitive illustration of the sequential optimal control process, the reader can refer to the simple flow chart in Fig. 1. We
also give an illustration of how the sequential LD-derivatives based optimal control method can be applied through the following
xample from [36] (in this case, using the ODE theory in [46] for comparative purposes).

Example 2.2. Consider a block that moves between the two points 𝑥1 = 0 and 𝑥1 = 1, where 𝑥1 is the position of the block,
within the time interval [0, 1], with the block’s velocity, 𝑥2, being zero at both the initial time, 𝑡0 = 0, and the final time, 𝑡𝑓 = 1. The
control input 𝑢 to the system is the force applied to the left side of the block and no friction is assumed. We consider a nonsmooth
objective functional as used in [36] that minimizes the absolute work done. The optimal control problem can be then described
s:

min
𝑢
𝜙(𝑢) = ∫

1

0
|𝑢(𝜏)𝑥2(𝜏)|𝑑 𝜏 , (9a)

s.t. 𝑥̇1 = 𝑥2 =∶ ℎ1, 𝑥1(0) = 0, 𝑥1(1) = 1, (9b)

𝑥̇2 = 𝑢 =∶ ℎ2, 𝑥2(0) = 0, 𝑥2(1) = 0, (9c)

In using the sequential method, the continuous-time problem is transformed into an NLP by discretizing the control according to
Eq. (2) and having the system dynamics in Eqs. (9b)–(9c) converted to a set of constraints applied to the states and control at
discrete time points. A numerical ODE solver is used to compute the values of the states at these time points and, in the final step,
the NLP solver is provided with an initial guess in the form of reference control and states.

In order to apply the framework presented in [46], we need the objective functional (9a) to be in the Mayer form. This can
be done by introducing a new state variable 𝑥3(𝑡), and equating the time derivative of that new variable to the integrand of the
bjective functional, i.e.

𝑥̇3(𝑡) = |𝑢(𝑡)𝑥2(𝑡)| =∶ ℎ3, (10)

with 𝑥3(0) = 0. So 𝑛𝑥 = 3 and 𝑛𝑢 = 1 and now the objective functional becomes

min
𝑢

𝜙(𝑢) = min
𝑢

𝑥3(𝑡𝑓 ), (11)

which is in Mayer form. Parameterizing 𝑢 as a piecewise constant according to (2), i.e., 𝑢(𝑡) = 𝑢(𝑖) on (𝜏𝑖−1, 𝜏𝑖], 𝑖 = 1,… , 𝑛𝑠, with
𝑛𝑠 = 100, the LD-derivative sensitivity function 𝐗̃(𝑡) = (𝐗̃1(𝑡), 𝐗̃2(𝑡), 𝐗̃3(𝑡)) ∈ R𝑛𝑥×𝑛𝑠𝑛𝑢 = R3×100 solves

𝐗̇1(𝑡) = 𝐗2(𝑡), ∀𝑡 ∈ [0, 1],
𝐗̇2(𝑡) = 𝐞T(𝑖), ∀𝑡 ∈ (𝜏𝑖−1, 𝜏𝑖],
𝐗̇3(𝑡) = f sign(𝑢(𝑖)𝐗̃2(𝑡), ̃𝑥2(𝑡)𝐞T(𝑖) + 𝑢(𝑖)𝐗2(𝑡)

)

×
(

𝑥̃2(𝑡)𝐞T(𝑖) + 𝑢(𝑖)𝐗2(𝑡)
)

, ∀𝑡 ∈ (𝜏𝑖−1, 𝜏𝑖],

𝐗1(0) = 𝟎1×𝑛𝑠 , 𝐗2(0) = 𝟎1×𝑛𝑠 , 𝐗3(0) = 𝟎1×𝑛𝑠 ,

6 
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Fig. 2. This figure shows the results of Example 2.2 using the objective functional in (11) (with piecewise constant control on 𝑛𝑠 = 100 subintervals of [0, 1])
via slack variables, smoothing approximation and LD-derivatives based sequential method. In the left panel, we see the optimal trajectory for the position 𝑥1(𝑡)
(upper panel) and the velocity 𝑥2(𝑡) (lower panel). In the right panel, we show the control input signal 𝑢(𝑡) (upper panel) similar to the states in the left panel.
In addition, we compare the 2-norm difference between the smoothed objective functional, 𝜙(𝛼), evaluated at different values of the smoothing parameter 𝛼, and
the nonsmooth objective functional 𝜙.

where the LD-derivative rule

[abs◦𝑓 ]′(𝑧;𝐌) = abs′(𝑓 (𝑧); 𝑓 ′(𝑧;𝐌)) = fsign(𝑓 (𝑧), 𝑓 ′(𝑧;𝐌)) × 𝑓 ′(𝑧;𝐌)

has been used with 𝑧 = (𝑢, 𝑥2) and 𝑓 (𝑧) = 𝑢𝑥2 here. Then, according to Theorem 1 (with algebraic equations absent, i.e., using [46,
Theorem 6 and Corollary 7]) for some reference control parameters 𝐩0 = (𝑢(1),… , 𝑢(𝑛𝑠)),

𝝁 =
(

𝐗̃3(𝑡𝑓 )
)T ∈ 𝜕 𝜙(𝐩0). (12)

In Fig. 2, the results of the LD-derivatives based sequential method (above) is compared to/validated against the slack variables
approach used in [36] for this same problem, and a smoothing approach using the following approximation of the absolute-value
unction (as provided in [36]):

|𝑥| ≈ 𝑥 t anh
(𝑥
𝛼

)

, (13)

for small 𝛼 > 0.
It can be seen from the results in the upper right panel of Fig. 2 that the LD-derivatives based method produces an accurate

solution when compared with the solutions from the slack variables and the smoothing approximation method (with a proper
choice of the smoothing parameter 𝛼), while avoiding the limitations of both of these methods (computational complexity of the
slack variables and arbitrariness of smoothing approximation). We also used different values of the smoothing parameter 𝛼 to show
the dependency of this method’s accuracy on the smoothing parameter, e.g., choosing 𝛼 = 1 provides a much more accurate solution
than choosing 𝛼 = 5. In the bottom of the right panel of Fig. 2, we see the 2-norm of difference between the objective functional, 𝜙(𝛼),
evaluated at different values of the smoothing parameter 𝛼, and the nonsmooth objective functional 𝜙. As can be seen, a decrease in
he value of 𝛼 results in a better accuracy for the smoothing approximation. However, it remains unclear how to choose 𝛼 to achieve
 desired error, and it remains unclear in general whether such a smoothing approximation converges to the ‘‘true’’ solution. This,
n part, motivates us to treat the nonsmooth problem directly (i.e., an LD-derivatives based approach).

3. Unifying and generalizing WTPS modeling and control in Regions 1–3 using nonsmooth functions

Nonsmoothness in the WTPS arises in three ways: (i) nonsmoothness in the parameters can be present due to extreme variations
or situations, which can be modeled as nonsmooth profiles [35]; (ii) nonsmoothness in the control input; and (iii) nonsmoothness
from unifying and generalizing the WTPS modeling framework. In this part, we provide a unified and generalized WTPS control
problem and modeling framework that is operable for all Regions 1–3 (as illustrated in Fig. 3), by introducing nonsmooth RHS
functions and objective functional to the model. Afterward, in Section 4, we treat the introduced nonsmoothness directly using the
LD-derivatives based sequential optimal control method outlined in Section 2.
7 
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3.1. WTPS DAE framework

First we provide the WTPS DAE model we use in this study (from [5,6]) for the reasons (i)-(iv) we stated in Section 1.3. The
reader is directed to the book chapter [6] for very detailed steps on the model derivations based on accurate physical/industrial
considerations. Additionally, in said book chapter [6], it is mentioned how different control conditions and design considerations
an amend the model for the user’s need.

For example, one can take different settings for the reactive power control design, among many other options. However, with
the generalization and unification in mind, and the steps provided in this section, one should be able to build on the results here
to construct other particular frameworks customized to their problem of interest. For our control problem, we consider the control
input 𝐮 to be the pitch angle 𝜃, i.e. 𝑢 = 𝜃. Additionally, we consider the two mass model representation of electric and mechanical
torques, (14a)–(14c), as this is known, physically, to provide more accurate representation [5,6] of the conversion of mechanical
torque (due to turbine blades rotation via wind) into electrical torque (provided to the generator). Moreover, we consider the power
control (14d)–(14e) to operate without optional/extra [5,6] inertia controls, frequency-bus control, or power storage. Also, the
reactive power control is represented by the power factor mode (14f)–(14g) [5,6]. Furthermore, the electric variables representing
the active and reactive voltage/current delivered to the grid are represented by (14h)–(14j) [5,6]. Lastly, the terminal voltage (at
the connection between the wind turbine and the grid) is represented by the infinite-bus model [5,6], commonly used in literature
for general testing of power sources interaction with the grid; this can be written algebraically based on Kirchhoff’s laws as in (14k).
Hence, the WTPS DAE system is given as follows:

𝑤̇𝑔 =
1

2𝐻𝑔

[

−
𝑃𝑒𝑙 𝑒𝑐

𝑤𝑔 +𝑤0
−𝐷𝑡𝑔(𝑤𝑔 −𝑤𝑡) −𝐾𝑡𝑔𝛥𝜃𝑚

]

=∶ ℎ1, (14a)

𝑤̇𝑡 =
1
2𝐻

[

𝑃𝑚𝑒𝑐 ℎ
𝑤𝑡 +𝑤0

+𝐷𝑡𝑔(𝑤𝑔 −𝑤𝑡) +𝐾𝑡𝑔𝛥𝜃𝑚
]

=∶ ℎ2, (14b)

𝛥𝜃̇𝑚 = 𝑤𝑏𝑎𝑠𝑒(𝑤𝑔 −𝑤𝑡) =∶ ℎ3, (14c)
̇𝑓1 = 𝑤𝑔 +𝑤0 −𝑤𝑟𝑒𝑓 =∶ ℎ4, (14d)

𝑃̇𝑖𝑛𝑝 =
1
𝑇𝑝𝑐

[

(𝑤𝑔 +𝑤0)(𝐾𝑝𝑡𝑟𝑞(𝑤𝑔 +𝑤0 −𝑤𝑟𝑒𝑓 ) +𝐾𝑖𝑡𝑟𝑞𝑓1) − 𝑃𝑖𝑛𝑝
]

=∶ ℎ5, (14e)

𝑃̇1𝑒𝑙 𝑒𝑐 = [𝑃𝑒𝑙 𝑒𝑐 − 𝑃1𝑒𝑙 𝑒𝑐 ]∕𝑇𝑝𝑤𝑟 =∶ ℎ6, (14f)

𝑉̇𝑟𝑒𝑓 = 𝐾𝑄𝑖[𝑄𝑐 𝑚𝑑 −𝑄𝑔 𝑒𝑛] =∶ ℎ7, (14g)

𝐸̇𝑞 𝑐 𝑚𝑑 = 𝐾𝑣𝑖[𝑉𝑟𝑒𝑓 − 𝑉 ] =∶ ℎ8, (14h)

𝐸̇𝑞 = [𝐸𝑞 𝑐 𝑚𝑑 − 𝐸𝑞]∕0.02 =∶ ℎ9, (14i)

𝐼̇𝑝𝑙 𝑣 =
[

𝑃𝑖𝑛𝑝∕𝑉 − 𝐼𝑝𝑙 𝑣
]

∕0.02 =∶ ℎ10, (14j)

0 = (

𝑉 2)2 −
[

2(𝑃𝑒𝑙 𝑒𝑐𝑅 +𝑄𝑔 𝑒𝑛𝑋) + 𝐸2]𝑉 2 +
(

𝑅2 +𝑋2)
(

𝑃 2
𝑒𝑙 𝑒𝑐 +𝑄2

𝑔 𝑒𝑛
)

=∶ 𝑔 , (14k)

where 𝑄𝑔 𝑒𝑛 = 𝑉 (𝐸𝑞 − 𝑉 )∕𝑋𝑒𝑞 , 𝑄𝑐 𝑚𝑑 = t an(𝑃 𝐹 𝐸)𝑃1𝑒𝑙 𝑒𝑐 , PFE is small angle, 𝑤𝑟𝑒𝑓 is given by (18), 𝑃𝑒𝑙 𝑒𝑐 = 𝐼𝑝𝑙 𝑣𝑉 ,

𝑃𝑚𝑒𝑐 ℎ = 1
2
𝐶𝑝(𝜆, 𝜃)𝜌𝐴𝑟𝑣3𝑤𝑖𝑛𝑑 = 1

2

( 4
∑

𝑖=0

4
∑

𝑗=0
𝛼𝑖,𝑗𝜃

𝑖𝜆𝑗
)

𝜌𝐴𝑟𝑣
3
𝑤𝑖𝑛𝑑 , (15)

where 𝑣𝑤𝑖𝑛𝑑 is the wind speed and 𝜆 = (𝑤𝑡+𝑤0)
𝑣𝑤𝑖𝑛𝑑

is the tip ratio. The system in (14) has differential state variables 𝐱 =
(𝑤𝑔 , 𝑤𝑡, 𝛥𝜃𝑚, 𝑓1, 𝑃𝑖𝑛𝑝, 𝑃1𝑒𝑙 𝑒𝑐 , 𝑉𝑟𝑒𝑓 , 𝐸𝑞 𝑐 𝑚𝑑 , 𝐸𝑞 , 𝐼𝑝𝑙 𝑣) (i.e., 𝑛𝑥 = 10) and algebraic state variable 𝑦 = 𝑉 (i.e., 𝑛𝑦 = 1) representing the terminal
voltage, where 𝑤𝑔 , 𝑤𝑡, 𝛥𝜃𝑚, 𝑓1, 𝑃𝑖𝑛𝑝, 𝑃1𝑒𝑙 𝑒𝑐 , 𝑉𝑟𝑒𝑓 , 𝐸𝑞 𝑐 𝑚𝑑 , 𝐸𝑞 , and 𝐼𝑝𝑙 𝑣 are the generator speed, the dynamic turbine speed, the integral
of difference between 𝑤𝑡 and 𝑤𝑔 , the integral of differences of speeds, the power order, the filtered electrical power, the reference
voltage, the reactive voltage command, and the generator reactive variable, respectively. Denotation of all of the state variables and
the parameters, as well as the values of the parameters are discussed and taken from [5,6], see Appendix.

3.2. Unifying regions: Nonsmooth wind profiles and shaft speed

We now introduce the wind profiles, representing wind speed variations, that we use to test/analyze the optimal control response
n studying WTPSs. For that, we first consider a nonsmooth ramp wind profile which represents changes in the wind speed level

(low slope for slow transitions and high slope, near discontinuity, for extreme and fast changes). This nonsmooth generalized ramp
wind speed profile was also introduced in [35] as:

𝑣𝑤𝑖𝑛𝑑 ,1(𝑡) = 𝑣0 + 𝑚(max(0, 𝑡 − 𝑡𝑜𝑛) − max(0, 𝑡 − 𝑡𝑜𝑓 𝑓 )), (16)

where 𝑣0, 𝑚, 𝑡𝑜𝑛, 𝑡𝑜𝑓 𝑓 are the initial wind speed before the start of the ramp, the slope of the ramp, the time at which the ramp starts,
and the time at which the ramp ends, respectively. For wind gusts or disturbances, Gaussian wind speed profiles can be used (with
8 
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Fig. 3. How 𝑤𝑟𝑒𝑓 and 𝑃𝑚𝑒𝑐 ℎ change as 𝑣𝑤𝑖𝑛𝑑 changes. There are three Regions of operation corresponding to different wind speed ranges. 𝑤𝑟𝑒𝑓 transitions through
onsmoothness between Regions 1 and 2 at 𝑣𝑤𝑖𝑛𝑑 = 8.2 m/s [5,6] and 𝑃𝑚𝑒𝑐 ℎ transitions through nonsmoothness between Regions 2 and 3 at about 𝑣𝑤𝑖𝑛𝑑 = 11.4
m/s [5,6], respectively.

large variance for calm gusts and very small variance, such that the wind profile will be close to a delta function, for extreme gusts),
nd can be expressed as:

𝑣𝑤𝑖𝑛𝑑 ,2(𝑡) = 𝑣0 +
1

𝜎
√

2𝜋
𝑒
−1
2 ( 𝑡−𝜇𝜎 )2 , (17)

where 𝑣0 is the initial wind speed, 𝜇 and 𝜎 are the mean value and the standard deviation of the normal distribution, respectively.
Next, we note that having the system (1b)–(1c) applicable to all Regions of operations (with Regions 1–2 representing low and

moderate wind speeds that are below the rated wind speed, and Region 3 representing high wind speeds above the rated wind
speed [60], as illustrated in Fig. 3) will require some unification and generalization of conditions relevant to Regions 1–3. This
unification and generalization necessarily introduces nonsmoothness in the dynamics and the objective functional of the control
problem. We start with the reference shaft speed, 𝑤𝑟𝑒𝑓 , which controls the rotor. It can be modeled as a quadratic polynomial
function of the generated electric power, 𝑤𝑟𝑒𝑓 = −0.75𝑃 2

𝑒𝑙 𝑒𝑐 + 1.59𝑃𝑒𝑙 𝑒𝑐 + 0.63, in Region 1 of operations (low wind speeds) due to
physical considerations [5,6]. However, once the wind speeds are high enough (Regions 2–3), 𝑤𝑟𝑒𝑓 should be kept at its rated value
(constant) 𝑤𝑟𝑒𝑓 = 𝑤∗

𝑟𝑒𝑓 , e.g. 𝑤∗
𝑟𝑒𝑓 = 1.2 for 𝑣𝑤𝑖𝑛𝑑 ≥ 8.2 m/s [5,6]. Thus, unifying 𝑤𝑟𝑒𝑓 in Regions 1–3 can be done by introducing the

nonsmooth min function:

𝑤𝑟𝑒𝑓 = min(−0.75𝑃 2
𝑒𝑙 𝑒𝑐 + 1.59𝑃𝑒𝑙 𝑒𝑐 + 0.63, 𝑤∗

𝑟𝑒𝑓 ). (18)

We can see from Eq. (18) that for lower wind speeds (𝑣𝑤𝑖𝑛𝑑 < 8.2 m/s), the quadratic expression in the left argument of the min
unction is less than 𝑤∗

𝑟𝑒𝑓 , i.e., −0.75𝑃 2
𝑒𝑙 𝑒𝑐 + 1.59𝑃𝑒𝑙 𝑒𝑐 + 0.63 < 𝑤∗

𝑟𝑒𝑓 , so the output of the min function will be 𝑤𝑟𝑒𝑓 = −0.75𝑃 2
𝑒𝑙 𝑒𝑐 +

.59𝑃𝑒𝑙 𝑒𝑐 + 0.63. At 𝑣𝑤𝑖𝑛𝑑 = 8.2 m/s, we have the quadratic expression exactly equal to 𝑤∗
𝑟𝑒𝑓 , i.e., −0.75𝑃 2

𝑒𝑙 𝑒𝑐 + 1.59𝑃𝑒𝑙 𝑒𝑐 + 0.63 = 𝑤∗
𝑟𝑒𝑓 ,

ence, we have 𝑤𝑟𝑒𝑓 = −0.75𝑃 2
𝑒𝑙 𝑒𝑐 + 1.59𝑃𝑒𝑙 𝑒𝑐 + 0.63 = 𝑤∗

𝑟𝑒𝑓 . Finally, at 𝑣𝑤𝑖𝑛𝑑 > 8.2 m/s, the quadratic expression gives a value higher
han 𝑤∗

𝑟𝑒𝑓 , hence the output of the min function becomes 𝑤𝑟𝑒𝑓 = 𝑤∗
𝑟𝑒𝑓 . It is common to take 𝑤∗

𝑟𝑒𝑓 = 1.2 [5,6].

3.3. Unifying the control objectives over all regions: A nonsmooth objective functional

As for generalizing an expression for 𝑃𝑚𝑒𝑐 ℎ for all wind speeds (Regions 1–3 in Fig. 3), it is not as straightforward as what we did
ith 𝑤𝑟𝑒𝑓 ; 𝑃𝑚𝑒𝑐 ℎ is the objective itself that the WTPS should be designed to achieve [5,6]: (i) maximization of 𝑃𝑚𝑒𝑐 ℎ when physically

it is not possible to produce the rated level, 𝑃𝑠𝑡𝑙, which is usually normalized to be 1 Per Unit [5,6], due to lower wind speeds
(Regions 1–2); and (ii) maintaining 𝑃𝑚𝑒𝑐 ℎ at the rated level, i.e., 𝑃𝑚𝑒𝑐 ℎ = 𝑃𝑠𝑡𝑙 when physically 𝑃𝑚𝑒𝑐 ℎ can exceed 𝑃𝑠𝑡𝑙 (Region 3).
Hence, unification of Regions 1–3 can be achieved by generalizing the control objective itself, i.e., the objective functional. In fact,
the authors in [61] introduced an objective function that achieves the above-mentioned control objective. Within the context of an
optimal control problem, their expression of the objective functional can be expressed as:

max
𝑢 ∫

𝑡𝑓

𝑡0
min(𝑃𝑚𝑒𝑐 ℎ(𝐱(𝑡), 𝑢(𝑡)), 𝑃𝑠𝑡𝑙)𝑑 𝑡. (19)

In (19) whenever 𝑃𝑚𝑒𝑐 ℎ is less than the rated power, 𝑃𝑠𝑡𝑙, the min function will return the 𝑃𝑚𝑒𝑐 ℎ argument which leads to maximization
of power production; if 𝑃 is more than the rated power 𝑃 , then the min function will return the constant 𝑃 argument. One
𝑚𝑒𝑐 ℎ 𝑠𝑡𝑙 𝑠𝑡𝑙
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major problem with (19) is that it does not have an isolated maximum when the min function returns the constant 𝑃𝑠𝑡𝑙 argument
(one side of the function is constant). To resolve this issue, we introduce a well-defined new objective functional which achieves
the same objective of (19) but with an isolated maximum. This generalized objective functional that will unify the control objective
ver Regions 1–3 is expressed as:

max
𝑢 ∫

𝑡𝑓

𝑡0
𝜔(𝐱(𝑡), 𝑢(𝑡))𝑑 𝑡 = 𝜙(𝑢), (20)

where

𝜔(𝐱(𝑡), 𝑢(𝑡)) = min(𝑃𝑠𝑡𝑙 , 𝑃𝑚𝑒𝑐 ℎ(𝐱(𝑡), 𝑢(𝑡))) − min(0, 𝑃𝑠𝑡𝑙 − 𝑃𝑚𝑒𝑐 ℎ(𝐱(𝑡), 𝑢(𝑡))) × (𝑃𝑠𝑡𝑙 − 𝑃𝑚𝑒𝑐 ℎ(𝐱(𝑡), 𝑢(𝑡))) =∶ ℎ11. (21)

In relevance to our results in the next subsection where we introduce our optimal control formulation, one needs to have the
objective functional in the Mayer form. To convert (20) from Lagrange to Mayer form, we introduce an auxiliary variable 𝑥𝑎𝑢𝑥 as:

𝑥̇𝑎𝑢𝑥(𝑡) = ℎ11, 𝑥𝑎𝑢𝑥(𝑡0) = 0. (22)

With this definition, we get 𝜙(𝑢) = ∫ 𝑡𝑓𝑡0 𝜔(𝐱(𝑡), 𝑢(𝑡))𝑑 𝑡 = 𝑥𝑎𝑢𝑥(𝑡𝑓 ), and hence (20) is replaced by
max
𝑢

𝜙(𝑢) = max
𝑢

𝑥𝑎𝑢𝑥(𝑡𝑓 ). (23)

This objective functional, again, is generalized over Regions 1–3 and unifies both the control objectives (maximizing power
production at lower wind speeds and maintaining the power production at the rated level for higher wind speeds). To elaborate
further, observe that in (21) whenever 𝑃𝑚𝑒𝑐 ℎ is less than the rated power (which happens at low wind speeds, where we need to
maximize power production), then what we get from Eq. (21) is 𝑃𝑚𝑒𝑐 ℎ − 0, which leads to the maximization (minimization with
negative sign) of power production. However, if 𝑃𝑚𝑒𝑐 ℎ is greater than the rated power 𝑃𝑠𝑡𝑙, then Eq. (21) returns 𝑃𝑠𝑡𝑙 − (𝑃𝑠𝑡𝑙 −𝑃𝑚𝑒𝑐 ℎ)2,
where the function is not constant anymore (hence, we resolve the issue of (20)) and then the difference (𝑃𝑠𝑡𝑙−𝑃𝑚𝑒𝑐 ℎ)2 is minimized,
keeping 𝑃𝑚𝑒𝑐 ℎ at the rated level 𝑃𝑠𝑡𝑙. This generalization of the objective functional over all wind speeds is achieved thanks to the
presence of nonsmooth functions in the objective functional.

4. LD-derivatives based method: A novel optimal control approach for WTPSs

Note that the ODE associated with ℎ2 contains 𝑃𝑚𝑒𝑐 ℎ, and thus the piecewise control 𝑢 = 𝜃 (i.e., 𝑛𝑢 = 1). We also note that for
𝑟𝑒𝑓 and the objective functional, we use the nonsmooth expressions in (18) and (23), respectively, that were introduced in the

previous section. Recall from (22) that to have the objective functional in Mayer form we need to introduce an extra differential
state variable, 𝑥𝑎𝑢𝑥, to the system of Eqs. in (14). Hence, we get a total of eleven differential state variables and one algebraic state
variable (i.e., 𝑛𝑥 = 11 and 𝑛𝑦 = 1) and the time derivative of this extra state variable will appear coupled with the system (14) as
given in Eq. (22). With the control parameters 𝐩 = (𝒖(1),… , 𝒖(𝑛𝑠)) in the discretization

𝐮(𝑡) = 𝐮(𝑖) if 𝑡 ∈ (𝜏𝑖−1, 𝜏𝑖], (24)

as the decision variables, we used the MATLAB® built-in NLP solver, fmincon, to solve the NLP problem arising from this problem.
We note that 𝜏𝑖 can also be taken as decision variables for more accuracy but in our case we only consider controlling 𝑢(𝑖).) Because

participating functions are nonsmooth, conventional methods (such as fmincon) may fail. To overcome this, the LD-derivative
sensitivity functions as well as the generalized gradient elements of the objective functional obtained via Theorem 1 are supplied
to the solver fmincon (which does not require such inputs in the smooth setting, as this method can generate these objects itself
given a smooth ODE/DAE control problem).

Assuming that (14) admits a regular solution on [𝑡0, 𝑡𝑓 ], i.e. (6) is satisfied along the solution, it must hold that 𝜕 𝑔
𝜕 𝑉 ≠ 0 along the

solution since in this case 𝑔 is smooth and we have that 𝜋𝑦𝜕 𝑔 = { 𝜕 𝑔𝜕 𝑉 } (see Eq. (8) in [35]). In this case, Theorem 1 yields a generalized
radient of (7) by building the auxiliary system whose solutions are LD-derivative sensitivity functions. This can be accomplished
y applying LD-derivative rules, as outlined in Section 2.2. The sensitivity equations associated with 𝑔 and ℎ𝑗 , 𝑗 ∉ {4, 5, 11}, are the

classical sensitivity equations:

𝐗̇𝑥𝑗 (𝑡) =
𝜕 ℎ𝑗
𝜕 𝑢 𝐞T(𝑖) +

𝜕 ℎ𝑗
𝜕𝐱

𝐗(𝑡) + 𝜕 ℎ𝑗
𝜕 𝑉 𝐕(𝑡), 𝑡 ∈ (𝜏𝑖−1, 𝜏𝑖], (25)

with partial derivatives evaluated at (𝑡, 𝑢(𝑖), 𝐱̃(𝑡), 𝑉 (𝑡)), e.g.,

𝐗̇𝐸𝑞 (𝑡) =
1

0.02

[

𝐗𝐸𝑞 𝑐 𝑚𝑑 (𝑡) − 𝐗𝐸𝑞 (𝑡)
]

.

Similarly, the algebraic equation Eq. (14k) gives the following sensitivity equation:

𝟎1×𝑛𝑠 =
𝜕 𝑔
𝜕 𝐸𝑞

𝐗𝐸𝑞 (𝑡) +
𝜕 𝑔
𝜕 𝐼𝑝𝑙 𝑣

𝐗𝐼𝑝𝑙 𝑣 (𝑡) +
𝜕 𝑔
𝜕 𝑉 𝐘(𝑡). (26)

For the nonsmooth functions ℎ4, ℎ5, and ℎ11 ∶= 𝑥̇𝑎𝑢𝑥, we apply the theory of LD-derivatives to get the corresponding sensitivity
equations, i.e., for ℎ4 we get:

𝐗̇𝑓1 (𝑡) = ℎ′4(𝑡, 𝑢(𝑡), 𝐱̃(𝑡), 𝑉 (𝑡); (𝟎1×𝑛𝑠 , 𝐞T(𝑖),𝐗(𝑡),𝐘(𝑡)))
= 𝐗𝑤𝑔 (𝑡) −

[

𝑤𝑟𝑒𝑓
]′

= 𝐗𝑤𝑔 (𝑡) −
[

min(−0.75𝑃 2
𝑒𝑙 𝑒𝑐 + 1.59𝑃𝑒𝑙 𝑒𝑐 + 0.63, 𝑤∗

𝑟𝑒𝑓 )
]′

′ ∗

(27)
= 𝐗𝑤𝑔 (𝑡) − 𝐬𝐥𝐦𝐢𝐧([𝑞(𝑃𝑒𝑙 𝑒𝑐 ) (−1.5𝑃𝑒𝑙 𝑒𝑐 + 1.59)𝑃𝑒𝑙 𝑒𝑐 ], [𝑤𝑟𝑒𝑓 𝟎1×𝑛𝑠 ]), ∀𝑡 ∈ (𝜏𝑖−1, 𝜏𝑖],
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Fig. 4. The upper panel shows the ramp profile of 𝑣𝑤𝑖𝑛𝑑 with an initial wind speed 𝑣0 = 10 m/s, and a final wind speed 𝑣𝑓 = 12 m/s. The lower left panel
shows the optimal control response, 𝑢(𝑡), to the change in 𝑣𝑤𝑖𝑛𝑑 . The lower right panel shows the effect of the control response on 𝑃𝑚𝑒𝑐 ℎ.

where 𝑞(𝑃𝑒𝑙 𝑒𝑐 ) = −0.75𝑃 2
𝑒𝑙 𝑒𝑐 + 1.59𝑃𝑒𝑙 𝑒𝑐 + 0.63 and 𝑃 ′

𝑒𝑙 𝑒𝑐 =
𝜕 𝑃𝑒𝑙 𝑒𝑐
𝜕 𝑢 𝐞T(𝑖) +

𝜕 𝑃𝑒𝑙 𝑒𝑐
𝜕𝐱 𝐗(𝑡) + 𝜕 𝑃𝑒𝑙 𝑒𝑐

𝜕 𝑉 𝐘(𝑡). Similarly, for ℎ5 we have:

𝐗̇𝑃𝑖𝑛𝑝 (𝑡) =
1
𝑇𝑝𝑐

[

𝐾𝑖𝑡𝑟𝑞(𝑤𝑔 +𝑤0)
]

𝐗𝑓1 (𝑡) −
𝐗𝑃𝑖𝑛𝑝 (𝑡)

𝑇𝑝𝑐
+
[

𝐾𝑝𝑡𝑟𝑞(𝑤𝑔 +𝑤0 −𝑤𝑟𝑒𝑓 ) +𝐾𝑖𝑡𝑟𝑞𝑓1 + 𝐾𝑝𝑡𝑟𝑞(𝑤𝑔 +𝑤0)
]

𝐗𝑤𝑔 (𝑡)

𝑇𝑝𝑐

−
𝐾𝑝𝑡𝑟𝑞(𝑤𝑔 +𝑤0)

𝑇𝑝𝑐

[

𝑤𝑟𝑒𝑓
]′ .

(28)

For ℎ11 we get:

𝐗̇𝑥𝑎𝑢𝑥 (𝑡) =
[

min(𝑃𝑠𝑡𝑙 , 𝑃𝑚𝑒𝑐 ℎ) − min(0, 𝑃𝑠𝑡𝑙 − 𝑃𝑚𝑒𝑐 ℎ)(𝑃𝑠𝑡𝑙 − 𝑃𝑚𝑒𝑐 ℎ)
]′

= 𝐬𝐥𝐦𝐢𝐧
(

[

𝑃𝑠𝑡𝑙 𝟎1×𝑛𝑠
]

,
[

𝑃𝑚𝑒𝑐 ℎ
𝜕 𝑃𝑚𝑒𝑐 ℎ
𝜕 𝑢 𝐞T(𝑖) +

𝜕 𝑃𝑚𝑒𝑐 ℎ
𝜕𝐱

𝐗(𝑡)
])

− 𝐬𝐥𝐦𝐢𝐧
(

[

0 𝟎1×𝑛𝑠
]

,
[

𝑃𝑠𝑡𝑙 − 𝑃𝑚𝑒𝑐 ℎ −
𝜕 𝑃𝑚𝑒𝑐 ℎ
𝜕 𝑢 𝐞T(𝑖) −

𝜕 𝑃𝑚𝑒𝑐 ℎ
𝜕𝐱

𝐗(𝑡)
])

× (𝑃𝑠𝑡𝑙 − 𝑃𝑚𝑒𝑐 ℎ)

+ min(0, 𝑃𝑠𝑡𝑙 − 𝑃𝑚𝑒𝑐 ℎ)
(

𝜕 𝑃𝑚𝑒𝑐 ℎ
𝜕 𝑢 𝐞T(𝑖) +

𝜕 𝑃𝑚𝑒𝑐 ℎ
𝜕𝐱

𝐗(𝑡)
)

. (29)

Recall that the initial conditions for 𝐗(𝑡0) are zero, and it follows from Eq. that 𝐘(𝑡0) must satisfy

𝟎1×𝑛𝑠𝑛𝑢 = 𝑔′(𝑡0, 𝐱0, 𝐲0; (𝟎1×𝑛𝑠𝑛𝑢 , 𝟎𝑛𝑥×𝑛𝑠𝑛𝑢 ,𝐘(𝑡0))) =
𝜕 𝑔
𝜕 𝑉 𝐘(𝑡0)

with 𝜕 𝑔
𝜕 𝑉 ≠ 0 by regularity, so that 𝐘(𝑡0) = 𝟎1×𝑛𝑠𝑛𝑢 must hold. Finally, the generalized gradient 𝝁 of the objective functional in (23)

can be calculated as: 𝝁 = (𝐗𝑥𝑎𝑢𝑥 (𝑡𝑓 ))T ∈ 𝜕 𝜙(𝐩0).

4.1. Simulation results of LD-derivatives based method

In order to test the optimal control formulation presented in the previous subsections, we expose the WTPS to variations in
the wind speed, 𝑣𝑤𝑖𝑛𝑑 . We consider three simulation cases for 𝑣𝑤𝑖𝑛𝑑 : the ramp profile in Eq. (16), the Gaussian profile in Eq. (17),
and a wind profile produced from actual wind speed data (real-world measurements) that was used to validate the DAE model
14) as illustrated in [5,6,53]. We note that we have carefully chosen our profiles such that it guarantees the WTPS will transition
etween Regions 1–3 in Fig. 3. Hence, we test directly the effectiveness of our approach when the system passes through unavoidable
onsmoothness. We note that the reader can refer to this GitHub repository [62] for the MATLAB files used to produce the results

discussed in this subsection.
In the upper panel of Fig. 4, we show the first case of a ramp wind profile with an initial wind speed 𝑣0 = 10 m/s and a final

ind speed 𝑣𝑓 = 12 m/s. We run the simulation from 𝑡0 = 18 s to 𝑡𝑓 = 22 s, with the number of time steps 𝑛𝑠 = 20, and with the
tart and end times of the ramp at 𝑡𝑜𝑛 = 19 s and 𝑡𝑜𝑓 𝑓 = 21 s, respectively. The corresponding optimal control response, 𝑢(𝑡), to the
hange in 𝑣𝑤𝑖𝑛𝑑 is depicted in the lower left panel, and the effect of the control response on 𝑃𝑚𝑒𝑐 ℎ is depicted in the lower right

panel. We notice that there is no change in 𝑢(𝑡) until about 𝑣𝑤𝑖𝑛𝑑 = 11.4 m/s, which is the critical value of 𝑣𝑤𝑖𝑛𝑑 at which there is
nonsmoothness in the objective functional (23) (i.e. 𝑃𝑚𝑒𝑐 ℎ = 𝑃𝑠𝑡𝑙). After reaching that point, 𝑢(𝑡) increases to keep 𝑃𝑚𝑒𝑐 ℎ at the rated
ower 𝑃𝑠𝑡𝑙 = 1.

In the upper panel of Fig. 5 we show the second case with a Gaussian wind profile. We run the simulation from 𝑡0 = 18 s to
𝑡 = 22 s, with the number of time steps 𝑛 = 20, 𝑣 = 10 m/s, mean 𝜇 = 20, and standard deviation 𝜎 = 0.5. The corresponding
𝑓 𝑠 0
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Fig. 5. The upper panel shows the Gaussian profile of 𝑣𝑤𝑖𝑛𝑑 with an initial wind speed 𝑣0 = 10 m/s, and standard deviation 𝜎 = 0.5. The lower left panel shows
he optimal control response, 𝑢(𝑡), to the change in 𝑣𝑤𝑖𝑛𝑑 . The lower right panel shows the effect of the control response on 𝑃𝑚𝑒𝑐 ℎ.

Fig. 6. Our approach handling a real-world, high-turbulent wind data. The wind speed profile is shown as well as the corresponding control response and the
esulting 𝑃𝑚𝑒𝑐 ℎ. The zoomed-in portion illustrates more clearly how the optimal control solution and the resulting 𝑃𝑚𝑒𝑐 ℎ.

optimal control to the change in 𝑣𝑤𝑖𝑛𝑑 is depicted in the lower left panel, and the effect of the control response on 𝑃𝑚𝑒𝑐 ℎ is depicted
n the lower right panel. This change of 𝑢(𝑡) keeps the value of 𝑃𝑚𝑒𝑐 ℎ close to the value of the rated power 𝑃𝑠𝑡𝑙 = 1.

Finally, Fig. 6 shows actual real-world wind speed data used for data validation in [5,6,53]. Here, we take the number of time
steps to be 𝑛𝑠 = 425. In Fig. 6, the wind speed profile, 𝑣𝑤𝑖𝑛𝑑 , is shown as well as the corresponding control response and the resulting
𝑚𝑒𝑐 ℎ. We provide a close-up look of one Region of interest with very abrupt changes in wind speed. It is clear that the mechanical
ower is maximized for low 𝑣𝑤𝑖𝑛𝑑 when 𝑃𝑚𝑒𝑐 ℎ is less than the rated value 𝑃𝑠𝑡𝑙. However, for higher wind speeds, the power is
aintained at the rated value 𝑃𝑠𝑡𝑙 = 1. This shows that the solution obtained using the sequential LD-derivative optimal control
ethod maximizes the nonsmooth objective functional in a highly-turbulent wind profile where the system passes through points of
onsmoothness transitioning between Regions 1–3. Moreover, it can be seen that in this scenario the optimal control implementation
as on a large time horizon of varying wind speeds, which demonstrates the effectiveness of the proposed framework and its general
pplicability to WTPSs.

Having verified the LD-derivatives based sequential nonsmooth optimal control method for the WTPS control problem via
simulations, we provide the following observations, including the application potential of our optimal control method:

1. It is noticeable that in general the optimal control trajectory seems to be close/matching in its shape to the wind profile
which is useful information in control design.

2. The current framework can adopt more control inputs (e.g., torque/tip-ratio based control inputs).
3. Bounds and limiters as desired by the user, or similar to what is implemented in industry (e.g., [6]), can be easily added as

extra constraints to this nonsmooth optimal control formulation.
4. The current work can be extended to involve reactive-power-control using the Q Droop function (see [5]) as a control input

in fault cases.
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5. For practical purposes, the proposed framework is useful in the design and analysis phase of control designs of WTPSs as it
provides the optimal control trajectory (without linearization of the system or approximations of the nonsmooth functions
present in the system and/or the objective functional). This can be then used to judge the effectiveness of other control
methods (including real-time control methods). That is, the optimal control solution can serve as a reference of performance
assessment to developing/proposed control designs.

6. The provided method can be implemented in near-real-time setting with the aid of high processing power and/or parallel
processing handling the NLP.

We also provide the following limitations:

1. We are not able to use second-order derivatives information within the optimal control problem due to the current absence
of second order LD-derivatives theory in the literature.

2. As is the case with other popular optimal control methods in the same vein, a suitable choice of initial conditions for the
states and controls remains a challenge in our formulation.

In the next section, we make the case clearer for why the proposed nonsmooth LD-derivatives based sequential optimal control
approach is needed as opposed to other alternatives.

5. Comparison between our proposed LD-derivatives based method and alternative approaches for the WTPS control
problem

In this section, we consider alternative approaches to solving the WTPS optimal control problem. In particular, instead of
treating the nonsmoothness directly, like the proposed LD-derivative based method above, we consider methods that avoid the
nonsmoothness altogether. We broadly group possible alternatives into two approaches: (i) smoothing approaches (where nonsmooth
functions are approximated by smooth functions and standard methods are then employed) and (ii) ‘‘naive’’ approaches (where
standard methods are immediately employed and any theoretical/computational issues stemming from the nonsmoothness are simply
ignored).

Before proceeding, we note that in our comparative results we consider the nonsmoothness present in the objective functional
y limiting the wind speed range over Regions 2–3. We also interpolated the piecewise constant control solution for improved
isualizations in all figures in this section. We note that for all simulations in this section, we have used the fmincon package in
ATLAB®, where we specify the following options:

• We use the sequential quadratic programming (SQP) algorithm to solve the NLP problems in all of the approaches presented
below.

• For the LD-derivatives based solutions, we provide LD-derivative information as the gradient information to be used in its
corresponding NLP problem.

• We use the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm in all of the approaches presented below, which provides
an approximation to the Hessian matrix in the NLP problems. In the case of the LD-derivatives based approach, the BFGS uses
the first-order LD-derivative information.

5.1. Comparison with a smoothing approach

We approximate the nonsmooth objective functional in (23) (by replacing the nonsmooth expression 𝜔 in (21)) using a known
logarithmic approximation for the min function [63]. Thus, the smoothed version is:

𝜔 ≈ 𝜔̂ =
ln(𝑒−𝑁 𝑃𝑠𝑡𝑙 + 𝑒−𝑁 𝑃𝑚𝑒𝑐 ℎ )

−𝑁
−

ln(𝑒0 + 𝑒−𝑁(𝑃𝑠𝑡𝑙−𝑃𝑚𝑒𝑐 ℎ))
−𝑁

(𝑃𝑠𝑡𝑙 − 𝑃𝑚𝑒𝑐 ℎ), (30)

where 𝑁 is the smoothing parameter, with 𝜔̂→ 𝜔 as 𝑁 → ∞. Now, we solve the WTPS optimal control problem in a similar manner
to the previous section (our LD-derivatives based approach) but with a smooth optimal control solver after using the smoothed
bjective functional above. Two results are presented in Figs. 7–8. Fig. 7 shows the applied ramp wind profile and how different

choices of 𝑁 affect the accuracy of the solution. The upper panel shows the profile of 𝑣𝑤𝑖𝑛𝑑 with an initial wind speed 𝑣0 = 10 m/s,
a final wind speed 𝑣𝑓 = 12 m/s, start time and end time of the ramp at 𝑡 = 19 s, 𝑡 = 21 s, respectively. The lower left panel shows
the optimal control response, 𝑢(𝑡), to the change in 𝑣𝑤𝑖𝑛𝑑 using the introduced LD-derivatives based sequential nonsmooth optimal
control approach with Eq. (23) as the objective functional, compared with the smoothed objective functional in Eq. (30) with
different values of the smoothing parameters 𝑁 . The lower right panel shows the effect of each of the control response trajectories
on 𝑃𝑚𝑒𝑐 ℎ. The trajectory of 𝑃𝑚𝑒𝑐 ℎ corresponding to the (optimal) trajectory of 𝑢 obtained using the LD-derivatives based approach
effectively drives the dynamics as we expect, based on the nonsmooth objective functional in Eq. (23) (i.e. maximizing 𝑃𝑚𝑒𝑐 ℎ when
𝑃𝑚𝑒𝑐 ℎ < 𝑃𝑠𝑡𝑙, and maintaining 𝑃𝑚𝑒𝑐 ℎ at the rated level, i.e., 𝑃𝑚𝑒𝑐 ℎ = 𝑃𝑠𝑡𝑙, when it is physically possible to produce 𝑃𝑚𝑒𝑐 ℎ > 𝑃𝑠𝑡𝑙). As for
the smoothing approximation approach, it seems that the smoothed trajectories converge to the optimal trajectory as the value of 𝑁
gets larger. Similarly, in Fig. 8, we show the applied Gaussian wind profile with 𝑣0 = 11 m/s, mean 𝜇 = 20, and standard deviation
𝜎 = 0.5. Similar to the ramp wind profile case, the optimal trajectory given by the LD-derivatives based approach is effective in
steering the system’s dynamics as desired, according to objective functional in Eq. (23) and the criteria described above in the ramp
wind profile case. In this case also, the effectiveness of the smoothed approach depends on how large 𝑁 is. We emphasize that, here
13 
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Fig. 7. Smoothing approximation with different values of the smoothing parameters 𝑁 vs. LD-derivatives based sequential approach with a ramp wind profile.

Fig. 8. Smoothing approximation with different values of the smoothing parameters 𝑁 vs. LD-derivatives based sequential approach with a Gaussian wind
rofile.

and in general, there are typically no theoretical guarantees that a smoothing approximation approach solution will converge to
the true solution as the approximation converges to the nonsmooth function. The LD-derivative based solution, on the other hand,
irectly treats the nonsmoothness without approximations, and hence only faces other unavoidable numerical errors (e.g., rounding

error), which is a clear advantage (see Fig. 9).

A smoothing approach can cause numerical errors that are not traceable. In addition, approximations based on smoothing usually
equire user-defined parameters that may alter the original problem in an arbitrary manner; in fact, this point was demonstrated in
 detailed study by the authors in [35] with relevance to WTPSs.
14 
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Fig. 9. The 2-norm of error between the nonsmooth function, 𝜔, in (21), and the smoothed function 𝜔̂(𝑁) in (30), evaluated at different values of the smoothing
parameters 𝑁 for a ramp wind profile (left panel) and a Gaussian wind profile (right panel).

5.2. Comparison with a naive approach

The second approach is the direct application of an off-the-shelf smooth optimal control solver to the system exhibiting the
nonsmoothness without any modifications (i.e., the nonsmoothness is ignored). In particular, we compare our approach vs. solving
he nonsmooth WTPS optimal control problem using a popular smooth optimal control solver, GPOPS-II [64], without providing any

(generalized) derivative information. That is, we ignore the presence of nonsmoothness completely (hence, ‘‘naive approach’’) and
pass the problem to a solver without a smoothing approximation or any other alterations. GPOPS-II [64] is a powerful optimal control
solver that is compatible with MATLAB®. In GPOPS-II, hp-adaptive Legendre–Gauss–Radau quadrature orthogonal collocation
method is used so that the optimal control problem is transcribed to a large sparse NLP. GPOPS-II uses the simultaneous collocation
method, which is another direct optimal control method that also solves a trajectory optimization problem by transforming it into
n NLP problem. Both the simultaneous collocation method and the sequential method used in this paper are considered as direct
ethods as opposed to indirect methods which typically yield an auxiliary set of optimality conditions that can be difficult to solve,

specially in a nonsmooth setting. The key difference between the simultaneous collocation method and the sequential method
sed in this paper is the discretized parameters. In the sequential method, we only discretize the controls, but in the simultaneous
ollocation method, we discretize both the controls and the states. The reader can refer to [36,52,64,65] for more details. In order

to achieve a specified accuracy, GPOPS-II implements an adaptive mesh refinement method for determining the number of mesh
intervals and the degree of the approximating polynomial within each mesh interval. Sparse finite-differencing of the optimal control
roblem functions is used to furnish all derivatives required by the NLP solver. In this subsection, we compare the results of our
roposed LD-derivatives based sequential optimal control solver with the results of GPOPS-II. We note that the reader can refer to
his GitHub repository [62] for the GPOPS-II implementation used to produce the following results.

Moving forward to the comparison of results, we use the nonsmooth objective functional (23) with a Gaussian wind profile in two
ifferent cases: (i) wind speed range that is strictly in Region 2 (medium wind speeds) to avoid any nonsmoothness; and (ii) wind
peed range that causes transitions through the nonsmoothness in the objective functional (Regions 2–3). In the first case, when
here is no nonsmoothness present, the solutions from our approach and the GPOPS-II are nearly identical; this is expected, but it
ighlights that our approach does not need a priori knowledge of nonsmoothness and recovers smooth solutions automatically. We
how the results of the second case in Fig. 10, where the upper panel shows the Gaussian wind profile with mean 𝜇 = 20, standard

deviation 𝜎 = 0.5, with different initial wind speeds. The lower left panel shows the optimal control response, 𝑢(𝑡), and the lower
right panel shows the effect of the optimal control response on 𝑃𝑚𝑒𝑐 ℎ. Unlike the first case, we can see from the results of the second
ase (when nonsmoothness is present) that the solution from GPOPS-II software (which is designed for smooth dynamics/objective
unctional) gives inaccurate results (breaks) as can be seen in the left panels (with red curves), while the solution from the nonsmooth
equential LD-derivatives based method provides the expected trajectory as seen in the right panels (with black curves). This shows
he robustness and generalized nature of the proposed method in all Regions of operation of WTPSs.

The ‘‘naive’’ approach ignores the nonsmoothness completely and hence comes with no guarantees whatsoever of convergence,
accuracy, etc. Unsurprisingly then, a method designed for smooth functions, where conventional numerical differentiation tools
(such as finite differencing) are used to provide the derivative information required by the solver, may fail. This is what is observed
above in Fig. 10, as the solver breaks in some cases. On the other hand, the main advantage of our proposed method is that it
directly treats nonsmooth functions in the system’s dynamics and/or the objective functional by providing derivative information
ia LD-derivatives. And hence, while this approach can face other typical numerical issues (e.g., rounding error), we do not face

this same potential for failure as the naive approach. Lastly, we note that a performance comparison in terms of computational
efficiency between our LD-derivatives based solver and the smooth optimal control solver, GPOPS-II, is not appropriate at this
15 
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Fig. 10. The collocation optimal control solution using GPOPS-II vs. the LD-derivatives based sequential approach. The upper panel shows a Gaussian wind
profile with an initial wind speed 𝑣0 = 11.0 m/s, and a standard deviation 𝜎 = 0.5. The left panels (red curves) show the optimal control response 𝑢(𝑡) and the
effect of the control response on 𝑃𝑚𝑒𝑐 ℎ for the smooth solver GPOPS-II. The right panels (in black curves) show the optimal control response and the resulting
𝑃𝑚𝑒𝑐 ℎ for the LD-derivatives based sequential nonsmooth optimal control method.

stage; the numerical implementation based on our LD-derivatives based approach is a prototype, and its implementation was not
ocused on optimizing computational efficiencies, while GPOPS-II is a commercial powerful smooth optimal control solver that uses
tate-of-the-art techniques for solving a wide range of smooth optimal control problems.

6. Conclusions

In this paper, we provided a framework for a nonsmooth sequential optimal control approach to solve the WTPS control problem.
Before summarizing, we note that the MATLAB files used to produce the simulations in Sections 4.1 and 5.2 are uploaded to GitHub
as an open-source code [62]. We note that the GPOPS-II software is a commercial software, so, although our implementation is
open, the user will require GPOPS-II prior to running the m-file that uses GPOPS-II. The key advantages of the proposed approach
are summarized as follows:

• The proposed approach incorporates recent significant developments in WTPS modeling and computationally relevant
nonsmooth optimal control theory for DAEs.

• The proposed approach is applicable to WTPSs in all wind speed ranges (Regions 1–3) and achieves two targets simultaneously:
(i) maximization of power during lower wind speeds; and (ii) maintaining the power at the rated level during higher wind
speeds.

• We demonstrated the effectiveness of the proposed approach via simulations, including real-world data, and a comparison
with alternative approaches, such as smoothing (which is lacking) and a naive approach (which fails).

• Having access to the feasible optimal control solution of the WTPS problem extends many possibilities in control developments
and, more importantly, provides researchers/industry with a reference solution for comparisons between competing control
methods; after all, all control methods should try to realize and be compared with the optimal control.

• The current work can inspire similar approaches in other power systems in the form of (1b)–(1c), especially renewable energy
power systems which can experience nonsmooth conditions and need substantial control developments.
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Appendix

Denotations of state and parameters in the WTPS model (14):
𝜌, 𝐴𝑟, 𝑣𝑤𝑖𝑛𝑑 - air density, rotor area (m2), wind speed (m/s).
𝐶𝑝, 𝑤𝑟𝑒𝑓 : aerodynamic power coefficient, reference speed.
𝛼𝑖,𝑗 , 𝑃𝑚𝑒𝑐 ℎ: empirical constants, mechanical power.
𝑤0 , 𝑤𝑏𝑎𝑠𝑒: initialized speed constant, base angular frequency.
𝑃𝑒𝑙 𝑒𝑐 , 𝑉 : electrical (active) power, terminal voltage.
𝑅, 𝑋, 𝐸: infinite bus resistance, reactance, voltage.
𝑄𝑔 𝑒𝑛, 𝐼𝑝𝑙 𝑣: reactive power, active current.
𝜆, 𝜃: tip ratio, pitch angle in degrees.
𝑤𝑡 , 𝑤𝑔 : dynamic turbine and generator speeds.
𝛥𝜃𝑚: integral of difference between 𝑤𝑡 and 𝑤𝑔 .
𝑓1: integral of differences of speeds.
𝑃𝑠𝑡𝑙: rated power.
𝑃𝑖𝑛𝑝, 𝑃1𝑒𝑙 𝑒𝑐 : power order, filtered electrical power.
𝑇𝑝𝑐 , 𝐾𝑝𝑡𝑟𝑞 : time constant, torque control proportional.
𝑉𝑟𝑒𝑓 , 𝐸𝑞 𝑐 𝑚𝑑 : reference voltage, reactive voltage command.
𝐻 , 𝐻𝑔 : turbine inertia constant, generator inertia constant.
𝐷𝑡𝑔 , 𝐾𝑡𝑔 - shaft damping constant, shaft stiffness constant.
𝐾𝑖𝑡𝑟𝑞 : torque control constant.
𝐾𝑄𝑖: reference voltage gain.
𝑇𝑝𝑤𝑟, 𝐾𝑣𝑖, 𝐸𝑞 : filtered electric power time constant, reactive voltage command time constant, generator reactive variable.

The values of the parameters involved, and the 𝐶𝑝 coefficients are given in Tables A.1, and A.2, respectively [5,6,51].

Table A.1
Representative values for parameters in the model.

Parameter Value

𝑤0 1 (any choice bigger than 0)
𝑋𝑒𝑞 , 𝐷𝑡𝑔 0.8, 1.5
𝐾𝑡𝑔 , 𝑤𝑏𝑎𝑠𝑒 1.11, 125.66 respectively
1
2
𝜌𝐴𝑟 , 𝐾𝑏 0.00159 and 56.6 respectively

𝐻 4.94
𝐻𝑔 , 𝐾𝑖𝑡𝑟𝑞 0.62, 0.6 respectively
𝑇𝑝𝑐 , 𝐾𝑝𝑡𝑟𝑞 0.05, 3 respectively
𝑇𝑝𝑤𝑟 , 𝐾𝑄𝑖 0.05, 0.1 respectively
𝑃𝑠𝑡𝑙 , 𝑤𝑟𝑒𝑓 1, 1.2 respectively
𝐾𝑣𝑖 , 𝑅, 𝐸 40, 0.02, 1.0164 respectively
𝑋 = 𝑋𝑙 +𝑋𝑡𝑟 𝑋𝑙 = 0.0243, 𝑋𝑡𝑟 = 0.00557

Table A.2
𝑐𝑝 coefficients 𝛼𝑖,𝑗 .

i j 𝛼𝑖,𝑗 i j 𝛼𝑖,𝑗
4 4 4.9686e−10 4 3 −7.1535e−8
4 2 1.6167e−6 4 1 −9.4839e−6
4 0 1.4787e−5 3 4 −8.9194e−8
3 3 5.9924e−6 3 2 −1.0479e−4
3 1 5.7051e−4 3 0 −8.6018e−4
2 4 2.7937e−6 2 3 −1.4855e−4
2 2 2.1495e−3 2 1 −1.0996e−2
2 0 1.5727e−2 – – –
1 4 −2.3895e−5 1 3 1.0683e−3
1 2 −1.3934e−2 1 1 6.0405e−2
1 0 −6.7606e−2 0 4 1.1524e−5
0 3 −1.3365e−4 0 2 −1.2406e−2
0 1 2.1808e−1 0 0 −4.1909e−1
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