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Parameter ldentifiability and Reduction for
Smooth and Nonsmooth Differential-Algebraic

Equation

Hesham Abdelfattah

Abstract—We extend the sensitivity rank condition
(SERC), which tests for identifiability of smooth input-
output systems, to a broader class of systems. Particularly,
we build on our recently developed lexicographic SERC
(L-SERC) theory and methods to achieve an identifiability
test for differential-algebraic equation (DAE) systems for
the first time, including nonsmooth systems. Additionally,
we develop a method to determine the identifiable and
non-identifiable parameter sets. We show how this new
theory can be used to establish a (non-local) parameter
reduction procedure and we show how parameter estima-
tion problems can be solved. We apply the new methods
to problems in wind turbine power systems and glucose-
insulin kinetics.

Index Terms—Differential algebraic systems, nonlinear
systems identification, hybrid systems.

|. INTRODUCTION

MOOTH differential-algebraic equations (DAEs) are

important in modeling a wide range of physical phenom-
ena and applications [1]. Nonsmooth DAE systems appear in
many fields of applications such as, but not limited to, power
systems [2], process systems [3], and multibody mechanical
systems [4]. We are interested in identification of a DAE
system’s parameters from the measurement of outputs. In
particular, we are concerned with local structural identifiability
in the sense of [5]: A dynamical and control input-output
system is said to be locally structurally identifiable [5] at
reference parameters 8* if, for any admissible control input
u* and time 7 and parameters 6, 6, in a neighborhood of
6*, y(t;u*,01) = y(t;u*, 0) implies that 8; = 6, (ie.,
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the parameters are uniquely identifiable from the outputs).
Methods for studying local structural identifiability of ODEs
are typically computationally expensive (e.g., geometric-based
methods that require successive Lie derivative computa-
tions) [5]. To overcome such limitations, the “sensitivity rank
condition” (SERC) method [5], [6], [7] was introduced as a
sensitivity-based method for characterizing local identifiability
that is computationally effective. The authors of this letter
introduced a novel nonsmooth analog of the smooth SERC
test, called the lexicographic SERC (L-SERC) test in [8].
Howeyver, this new nonsmooth test, as well as the SERC test,
were derived for ODE systems, not DAE systems.

Contributions: First, we extend the SERC and L-SERC
methods to smooth and nonsmooth DAEs. Second, we provide
a novel algorithm for extracting the parameters judged to be
responsible for rank deficiency in the SERC and L-SERC
test (i.e., non-identifiable parameters). Third, we establish a
protocol for testing identifiability “non-locally” (which we
refer to as repeated-sampling). Fourth, we provide a parameter
reduction algorithm, based on the repeated-sampling SERC
and L-SERC test mentioned above, which is useful in system
design, control and optimization [9]. Lastly, we show how the
sensitivities used to build the SERC and L-SERC test can be
used to conduct parameter estimation.

[1. PRELIMINARIES

For use later, we briefly review the lexicographic directional
derivative (LD-derivative) [10] of a lexicographically smooth
(L-smooth) [11] function f : R” — R™ at xq in the directions
M [my m;] € R™F is denoted by f(xo; M).
We adopt the notation that a well-defined vertical block
matrix [¥] can be written as (X, Y). Examples of L-smooth
functions, which are locally Lipschitz continuous, include
piecewise continuously differentiable (PC') [12] (e.g., min,
max, abs-value) and convex functions (e.g., p-norms). The
lexicographic derivative (L-derivative) Jpf(xo; M) [11] is a
computationally relevant Jacobian-like object (e.g., it can be
supplied to nonsmooth optimization methods [13]), which can
be obtained using the LD-derivative when M has full row rank
(and is thus right invertible) using the following relation:

£/ (xo: M) = Jufxo; M) M. M

mxk mxn nxk
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In the case of a C! function, f'(xg: M) = Jf(x9)M, i.e., the
L-derivative equals the Jacobian. The main advantage of the
LD-derivative approach is that it satisfies sharp calculus rules,
and therefore possesses a strong theoretical and numerical
toolkit (see [14] for more details). For the absolute-value
function with M = [m1 ny mk] e RIxk,

abs’ (xo; M) = fsign(xo, my, ma, ..., m)M, 2

where fsign returns the sign of the first nonzero element, or

zero otherwise. For max with M = [M;’] € R2xk.

max’(xo, yo; M) = slmax([xo Mi.].[vo Ma.])
_ My, if fsign(xo — yo, Mj,e —Mp4) = 0,
| My, otherwise,

i.e., the left-shifted “lexicographic maximum” of the two
arguments.

[1l. MAIN RESULTS
A. Sensitivity Theory for Input-Outout DAE Systems

In this subsection, we extend the L-SERC method to
nonsmooth DAEs (and thus SERC to smooth DAESs). Consider
an input-output DAE system in semi-explicit form:

X(n) =fx@), w®),u(),0), x(t)="1@®), (Ga)
0 =gx(@), w),v(),0), (3b)
y(® =hx(), w), u(), v(), 0), (30

where x(f) € R™ are the differential variables, w(r) € R™
are the algebraic variables, u(r) € R™ and v(f) € R™ are
the admissible control inputs in the differential and algebraic
equations, respectively, # € R™ are the parameters, y(f) € R™
are the outputs, and ¢ is the independent variable. The right-
hand side (RHS) functions f : Dy x D,, x D, x ® — R™,
g:D:xDyxD,x® — R™ and h : Dy xD,,xD,;xD,x©® —
R™ are defined on the open and connected sets D, € R™,
D, CR%, D, CR" ©® C R"%, and fy : ® — D, is the
initial state function (for example, fo(@) = xo for a typical
initial value problem). In this letter, we are concerned with the
structural identifiability of the DAE system in (3).

Definition 1 [8]: The system in (3) is locally partially
identifiable at 6* € @ if there exist a neighborhood N C © of
6* and a connected set V € © containing * such that for any
01,0, € NNV, we have that y(¢; u*, v¥, 01) = y(t; u*, v*, 6,),
where u*, v* are the reference control inputs, for all ¢ € [z, #]
if and only if 61 = 6,.

In this work, we study identifiability using a sensitivity-
based tool. More precisely, we calculate the so-called
lexicographic sensitivity (L-sensitivity) function using the
LD-derivative of the output function. Accordingly, we need
a sensitivity theory for nonsmooth DAE input-output systems
that have generalized differentiation index one, which is
implied by the solution of the DAE system being regular,
where a solution of a nonsmooth DAE system is called
regular if, roughly speaking, certain partial Clarke general-
ized derivative elements [15] are all nonsingular (see [16,
Definitions 4.1 and 4.2]), which is analogous to the notion of
classical differentiation of index one (i.e., det(g—vgv) #0) [1].

Proposition 1: Suppose that the RHS functions f, fy, g
and h in (3) are L-smooth on their respective domains.

Assume that the system in (3) admits a regular solution
z5(t) = z(t; u*, v*,0%) = (x*(), w*(?)) on [19, #7] through
{(fo(0%), wo, u*, v*, 0%)}, for the given reference parameters
0* € ® C R™ and reference control inputs u* € U =
Ll([to,tf],Du), which is the class of Lebesgue-integrable
functions mapping [fo, #] into D, and v* € V, which is the
class of L-smooth functions mapping [f, #¢] into D,. Given a
directions matrix M € R"*" the following system

X = f/(x*, W, u*, 8% (X, W, 0,, M), (4)
On)-xnk = g/(X*v W*v V*v 0*; (Xa Wa 0\/7 M))a (4b)
Y = h'(x*, w*, u*, v¥, 0% (X, W, 0,,0,, M), (4c)

X (1) = £, (6*: M), (4d)
where the (f) arguments are omitted and 0, = 0,,x, and
0, := 0, %, is the nonsmooth forward sensitivity system

associated with (3) on [fo, #r], and is uniquely solved by the
LD-derivative mappings

X*(1) = [x*(r; u*, v, -)]/(0*; M) € R™>", ®)
W) = [w*(r; u*, v¥, ~)]/(0*; M) € R™ ", (6)
Y*(0) = [y(s; 0, v%, )] (6% M) € R, (7)

where X*(¢) is an absolutely continuous function, and W*(¢)
and Y*(¢) are Lebesgue integrable functions.

Proof: Following a similar proof as in [8], note that
(3a)-(3b) can be rewritten as

(1) = (1, x(1), (1), 0),  x(to) = £o(0), ®)
Ol'ly = g(t’ X(t)s W(t), 0)’ (9)

with f : (t,x,w,0) — f(x, w,u*(r),0) and g : (¢,x,w,0) —
g(x, w, v¥(1), 0). There exists an open set V, satisfying X =
{(x*(), w"(®),0%) : t € [to,t]} C V € Dy x Dy, x O, on
which: (1) f'(t, -,+,-) and g(t,-,-,-) are L-smooth for each
t € [to, ty] (from L-smoothness of f and g); (ii) (-, x, w,0)
and g(-,x,w,0) are measurable for each (x,w,0) € V
(from Lebesgue integrability, and hence measurability, of
u*, and from the continuity of v*); and (iii) f and g are
bounded on [f9,#] x N (since X is compact and V can
be as small as needed). Hence, [16, Assumptions 4.1 and
4.2] are satisfied, and thus [16, Th. 4.1] may be applied to
(8)-(9), which gives that z} = z(¢; u*, v*, -) is L-smooth on
a neighborhood of 8* with x; and y; being also L-smooth,
with z = (x, w). Additionally, given any directions matrix
M € R"*"_ the LD-derivative mappings (5)-(7) exist, with
X*(¢) being absolutely continuous, W*(¢) Lebesgue integrable
(from [16, Th. 4.1]), and Y*(¢) Lebesgue integrable (from [17,
Lemma 1] noting that the Lebesgue integrable functions, X*(¢)
and W*(r), are measurable). Additionally, noting that

(10)
(1)

for any directions matrix M, with z = (x,w), Z = (X, W),
then we have from [16, Th. 4.1] that the LD-derivative
mapping ¢ — [z]'(0*; M) uniquely solves (4a) and (4b) on
[t0, 7], with initial condition given by (4d). Lastly, since h
is L-smooth on its domain and y* satisfies (3¢c), it follows
that y; = y(#; u*, v*, -) is L-smooth on a neighborhood of 8*

[f¢r, )] @ 6; (2, M) = (1,2,6; (0, Z, M))
(g, -)]/(Z, 6: (Z,M)) = g'(,2,0; (0,Z, M))
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as a composition of L-smooth functions and, by applying the
LD-derivative chain rule as in (10), (4c) follows. [ |
We define the L-SERC matrix Tq(@*) € R®+Dmxm
corresponding to the direction d € R by stacking output
L-sensitivities at different time samples as in [8]:

Ta(6") = (Sk). Sy, ... Skaw),  (12)
where the output L-sensitivity functions are given by
L o -1 0] )
Sy =Y'®[d 1] _Wmhj} (13)

where Y* solves (4¢) with M = [d L, 1.

Definition 2 [8]: The system (3) is L-SERC identifiable
at 0* € O in the direction d € R if rank(Yq) = n,, and
L-SERC non-identifiable if rank(Yq) < n,.

Hence, if (3) is L-SERC identifiable at 8* in the direction d,
then it is locally partially identifiable with V = {ad : o > 0}
and some neighborhood N of 6*.

Theorem 1: Assume the setting of Proposition 1. If the
system in (3) is L-SERC identifiable at 8* in the direction
d € R, then it is locally partially identifiable at 6*.

Proof: This follows immediately from the second part of
the proof of [8, Th. 4.5], using the sensitivities obtained via
Proposition 1 with M = [d L,,]. ]

Note that a system that is L-SERC non-identifiable may
actually be structurally identifiable (i.e., a false negative).
This type of false negative can also occur in the smooth
case (see [18]). On the other hand, a system that is L-SERC
identifiable is not necessarily structurally identifiable (i.e., a
false positive). This type of false positive is unique to the
nonsmooth case.

B. Determining Identifiable and Non-Identifiable
Parameters

In order to determine which of the system’s parameters
are locally partially non-identifiable (i.e., those for which it
is impossible to determine the parameters’ values from the
system’s output), we introduce the following definition.

Definition 3: The parameters in ©, < {0,...,06,,} are
locally partially non-identifiable at 0* € ©® if there exists
a neighborhood N € ©® of 6* and a connected set V C ©
containing 8* such that the parameters in ®, are locally non-
identifiable in NN V.

If system (3) is L-SERC non-identifiable, then using the
L-SERC matrix T4, we can hypothesize with confidence
which are locally partially non-identifiable at 8* € @. Let
ng = (N + D)ny, and let the SVD of Tq be

Tq=UxV? (14)

with orthogonal U € R™*" V € R"»*" containing the left
(ug;y) and right (v(;) singular vectors, respectively, and X €
R™s*" containing the singular values oy > op > --- > On, -
Suppose there are n, nonzero singular values and n, —n, zero
singular values, i.e., op41 = -+ = On, = 0. The n, — n,
columns in V associated with zero singular values in £ form
a basis of the right null space of Tq4, Null(Ygq). Let V, be the
submatrix of V with these columns:

V, = [Va+1) Vin) |- (15)

If the system in (3) is L-SERC non-identifiable at 8* in the
direction d € R, then the rank of V, in (15) is equal to
the number of locally partially non-identifiable parameters at
6*. This can be seen from the construction of V,; since the
columns of V, form a basis of Null(Yq), then the rank of
V, determines the dimension of Null(Tg). We can categorize
locally partially non-identifiable parameters into two cate-
gories. The first category of locally partially non-identifiable
parameters, which we call “isolated non-identifiable” param-
eters are those that are non-identifiable in an isolated way
independent of other parameters. The second category, which
we call “pairwise non-identifiable” parameters, are for two
(or more) parameters that cannot be determined from output
measurements in a unique way because of how they are
coupled together (e.g., if 81 and 6, always appear in the form
01602).

We claim that a parameter 6; € {6, ...,9,,],} is locally
partially non-identifiable at 8* if column i of the row echelon
form of VI, rref(Vf), is a pivot column. In addition, looking
at the rows of rref(V;r), if row j contains the pivot from pivot
column i but no other nonzero elements, then parameter 6; is an
isolated non-identifiable. If row j contains the pivot from pivot
column i and also contains other nonzero elements, e.g., in
columns indexed by Z C {n,+1,...,np,}, then 6; and {6; : j €
T} are pairwise non-identifiable parameters. See Example 1
for an illustration.

The DAE L-SERC test is implemented in Algorithm 1
(with MATLAB code implementation in [19]), which builds
on [8, Algorithm 1] by specifying which parameters are
identifiable/non-identifiable. The algorithm has three stages
(marked by S1, S2, S3): The first stage, S1, is the primary
probing stage in which we probe along the so-called primary
directions that, to a high degree of certainty, determine the
identifiability of the system. The second stage, S2, is the
“twin probing” which aims to decrease the number of false
positive L-SERC tests. The third stage, S3, is the singularity
probing stage which aims to decrease the number of false
negative L-SERC tests. In Algorithm 1, we provide as inputs
the reference parameters vector, 8%, the reference controls
u*, v*, the set of directions, D = {d;}, scalars €uin, €sing
corresponding to the twin and singularity probing stages,
respectively, and a natural number g corresponding to the
required number of iterations for the singularity probing stage.
As for the output of Algorithm 1, we return the set ®y,; of
parameters that are locally partially non-identifiable within
some neighborhood of 8*, as well as the set of locally partially
identifiable parameters ©; = {60y, ..., an} \ Opi.

Remark 1: For the smooth case, i.e., if the RHS functions
in (3) are C!, the forward sensitivity system in (4) becomes
the classical forward sensitivity system:

Sx(n) = A8y (1) + L8y (1) + I,
0= 28Sy(1) + 228y (1) + 2%,
Sy(1) = WS (1) + Sy (1) + I,

Sx(10) = Jfo(6%),
(16)

with omitted partial derivative arguments, which is uniquely
on [fy, tr] by the classical forward sensitivity functions
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Algorithm 1 L-SERC Algorithm

Input: 8%, u*, v*, D = {d;}, €uwin, €sing = 0, g € N
1: Set Dging < 9, Oging < 0, Oy < ¥
2. fori=1,2,...,|D| do

3 Compute SVD Yg, = USVT, n; = rank(X) o Sl

4: if n; < n, then

5: Ve = [V : g=0], mref(V]) = [V1 -+ ¥, ]

6: Set Oy <= Oy U {6} : ¥; is pivot column

7: if €5ine > O then

8: Set Dying <= Dsing U {d;}

9: if €iwin > 0 then > S2

10: Setd; < d; + €twin®€;

11: Compute SVD T3 = UZ VT, 7; = rank(X%)

12: if 7; < n, then

13: Ve = [V : g=0, tref(V]) = [V1 -+ ¥, ]

14: Set Oy < Oy U {6} : ¥; is pivot column

15: if €sing > 0 then .

16: Set Dying < Dsing U {d;}

17: if €5ing > 0 and g > 0 and Dyjng # & then > S3

18: for all d; € Dging do

19: Compute SVD Tq, = UZVT

20: Set 0% < 0* £ €sing Zk - oy =0 V(b

21: Set Osing < Osing U {07} U {07}

22: Set ¢ <~ g — 1 and go to 1 for some 6* € Ogjng

23: return O, O : = {61, ..., 97,],} \ ©y,; for each 6*.
Sx=2& §,=% g =0 (17)

And the smooth version of the L-SERC matrix in (12) is the
SERC matrix Y (0*) € RV*+Dm>Xm which is given by

T(G*) = (Sy(to), Sy(t), ..., Sy(tN)). (18)
Hence, the system (3) with smooth RHS functions is SERC
identifiable at 6* if rank(Y) = n, and SERC non-
identifiable if rank(Y) < n,. Note that the algorithms
presented in this work can also be applied to the smooth case
(i.e., it simplifies to a SERC test for smooth DAEs).

Example 1: Consider the following nonsmooth DAE
system (MATLAB code implementation in [19]):

() = max(0, 61)w(), x(0) = 6364,
0= [x(D] + w(®)]| — 02,

(1) = x(0). (19)

Consider ® = {0 € R*: 0, >0, -6, < 304 < 0}. Suppose
that wg = w(fg) > 0 is chosen as the consistent initialization
(i.e., wo such that |6364] + wo = 62) and # > 0 is chosen so

that the solution w*(¢) satisfies w*(¢) > 0 for all 7 € [to, /] =
[0, #]. It follows that the solution of (19) is

y @), 1€ [0,r],61 >0,
a(t—1), te (", 1],61 >0
0364,  1€[0,1].61 <0,

x"(1) = (20)

from which w*(f) = 6, — |x*(¢)|] and y*(¥) = x*(t) can be
easily obtained, with t* = In(6,/(6 + 6364))/61 and

Y () = (6304 + 02)e™" — 02, (1) = (63604 — 62)e™ " + 6.

(See the figure below (19) for a typical trajectory with 6; >
0. Note there is a loss of regularity, and thus index one, if
w*(f) = 0.) Given a direction d € R*, the sensitivity system
in (4) with M = [d 14] takes the following form

X = slmax ([0 0y4s], [6] di elT])w* +O0FW,
0 = fsign(x*, X)X + fsign(w*, W)W — [d2 €3],
Y =X,
X(to) = 0f[ds €}]+065[ds ], 1)
with ¢; € R* the standard /™" basis vector. The solutions of 21
can be found, with Y*(¢) = X*(#) on [to, t¢] given as

Y*() = 10307 +03) T 1 — 1,030, Q;ee;ﬂz} 6% > 0,
0 0 6 65], 6,1 <0.

(Note that W*(¢) experiences a jump at 1*, because the sign
of x*(r) switches from —1 to +1, but Y*(©) = X*(r) are
continuous.)

Let 0% = (0,3,1,—2). Let d = ey, then the rank of the
L-SERC matrix rank(YTgq) = 2 (with zero singular values o3
and oy4). Let V, = [V3 V4], then

0O 1 0 O
rref(VD:[O 0 1 2].

We see in (22) that column 1 is a non-pivot column, hence,
0 is locally partially identifiable. Column 2 is a pivot column
with pivot in row 1, and since row 1 has no other nonzero
elements, then 6, is an isolated non-identifiable parameter.
Column 3 is a pivot column, with pivot in row 2. Since
row 2 has another nonzero element (in column 4), then 03
and 64 are pairwise non-identifiable parameters (matching
expectations in (20) as 61 and 6, are multiplied by each other).
Repeating the process with the same 8* and d = —ej, we
get rank(Yq) = 1 (with zero singular values o, 03, 04). Then
V.={[v2 v3 V4] such that

(22)

10
rref(V)) =0 1
0 0

- o o

0
0]. (23)
2

In (23), we see that columns 1 and 2 are pivot columns, with
no other nonzero elements in the rows where the pivots exist.
Hence, 0; and 6, are isolated non-identifiable parameters. We
can also see (using the same reasoning as above) that 63 and
64 are pairwise non-identifiable parameters.
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Algorithm 2 Parameter Reduction Algorithm
Input: (¥}, u*, v*
1: Set N ={Ng,, ..., Ny, } < {0,....0}
2: for s=1,..., ngy do
3. Perform L-SERC Algorithm 1 with 8¢, u*, v*,
D = {£e;}, €iwin = €sing = 0.01,g =1 to get ©
if ®;,; = () then
Set Oy < ¥ and go to 13
for all 6; € ©") do
Ngj = Ngj +1
9: Set Opi < 0
10: for all Ny, € N do
11: if Ny, = |®| then
12: Set Onini <= Onini U {6}

B an} \ Onini

(s)

Ini

® N 0k

13: return ©,,;, ©,;: = {61, ..

C. Parameter Reduction Method

In this subsection, we introduce a parameter reduction
algorithm (Algorithm 2) for the nonsmooth DAEs in (3)
(and hence smooth DAEs as well). The intuition behind the
parameter reduction algorithm proposed is that we use the
L-SERC test introduced in Section III-A, which is a local
test, to judge the identifiability of system (3) non-locally.
This is done by a “repeated-sampling” test: we perform the
L-SERC test at ngy,, € N different reference parameters 00 =
(«91@, ...,9,5;)),5“ = 1,...,ngy sampled from a parameter
space 2 to get the set of locally partially non-identifiable
parameters, @;2, at every sample tested. A parameter 0;,j =
1,...,np that is judged to be locally partially non-identifiable
from the L-SERC test performed at every sample, i.e., 0; €

@;2, Vs =1,..., ngup, will be added to the set of non-locally
non-identifiable parameters, denoted by ®,;,;. Non-locally
non-identifiable parameters are “removed” from the model by
fixing them to some nominal values, leading to the reduced
system. Here we use a Latin hypercube scheme (LHS) to
generate the set {0(‘):s = 1,...,ngy} of reference param-
eters from a user-chosen region of parameter space Q2 =
]_[;ZI [Qi(L), Hi(U)], where Qi(L) and Qi(U) are some predefined
lower and upper bounds for the reference parameters that are
selected based on domain knowledge of the problem, and
where the reference values are chosen uniformly from these
intervals [Oi(L), Qi(U)] (using an LHS approach).

Example 2: Recall the DAE system (19) in Example 1 and
consider 25 different reference parameters 0® selected from
the region of parameter space (MATLAB code implementation
in [19])

Q =1[0.1,0.2] x [30,60] x [1,2] x [ -4, -2] C ®,

to get the set of reference parameters samples, {8} using
the LHS scheme outlined above. Consider the time horizon
[t0, tr] = [0, 1] with 17 time samples ¢;. Applying Algorithm 2
using {8} (no input for u* and v*), we get ®,,; = {63} and
O = {01, 62, 64}. Hence, the reduced version of system (3) is
the DAE system with parameters 61, 6, and 64, with parameter
63 fixed to some nominal value (which we choose to equal the
average of all values of 63 in {0 ®).

D. Parameter Estimation Procedure

After performing the parameter reduction in Algorithm 2
and obtaining the set of non-identifiable parameters ®,;,;, one
may proceed in building the reduced DAE system in (3) by
fixing the parameters in ®,,; to some nominal values (e.g.,
midpoint between Hj(L) and Hj(U)). With the above reduction
scheme in place, it is natural to next consider how to perform
a parameter estimation of the reduced model, using the sensi-
tivity information already obtained. In particular, we provide
a parameter estimation scheme for the non-locally identifiable
parameters ®,; = {01, ..., 6, p} \ ®Opnini, which form a reduced
vector of parameters 0, composed of the parameters in ®,;:

N
ing@,) = 1,0,) — yill?
min ¢(6,) ;ny(r ) — il

subject to the reduced DAE system in (3), 24)

where y(t,0,) is the output function of the DAE system
in (3), and y;,i = 0,...,N is a data set of measurements
obtained at the sample times #; < £, < --- < fy, which
match the L-SERC matrix sample times in (12). Multiple
nonsmooth optimization methods exist [13] which require
generalized derivative information in order to successfully
solve a nonsmooth dynamic optimization problem such as
(24). We use the optimal control theory of [20, Th. 3.2] to
obtain a Clarke generalized gradient [15].

Proposition 2: Assume the setting of Proposition 1. Then
a Clarke generalized gradient u of ¢ at 8} is given by

N
=2 Z(S§(ti))T(y(ti, 07) — i)
i=0

Proof: The proof follows immediately from [20, Th. 3.2]
by setting po =0}, ny, =nm,=1,a=b=0,v¢,=§ =1,
u(t,a) = v(t,b) =0,, and ad}ilusting for the sampling times to
getJLp©@F:[d L, 1) =21 (Sy ()T (¥(1i,87)—yi), which
is a Clarke generalized gradient because ¢ is scalar [11]. W

Example 3: Recall the DAE system (19) in Example 1 and
consider now estimating the “true” (but unknown) reduced
parameters 6;,, = (0.150,45.0,1.33, —3.00) using the
generalized derivative information from (25). Using a gradient-
descent like method (MATLAB code implementation in [19]),
we obtained 6.y, which matches 0., to eight significant
digits using an initial guess 0, = (0.1, 30, 1, —2) (which
averages the values {8} from the LHS scheme to get 0.4g).

(25)

V. APPLICATIONS

Example 4 (Wind Turbine Power System): In this example,
we consider a wind turbine power system under a constant
wind speed (hence, the active power is constant and only the
reactive power changes with time). Consider the following
input-output DAE system [21, Sec. 3.2]:

Vref = KQ,-(Qcmd - Q)y
EY = Ky, (Vegr = V). (26)

0=V*— [2(PR +0X) + EQ]VZ + (R2 + XZ) (P2 + Q2)

with differential variables x = (Vref,E;’), algebraic variable
w = V, output y = V, and system parameters § =
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(Kg;, Kv;, R, X, E), where V is the terminal voltage, Ve is
the reference terminal voltage, Eg is an equivalent voltage that
controls the reactive current injection, V is the terminal voltage

(at the connection between the wind turbine and the grid), Ko,,
/)

. . EI-V . -
Ky, are integral control gains, Q = V—— is the injected
eq

reactive power, P = 1 is the constant/rated active power,
Qcma = 0.6484 is the constant reactive power command, and
Xeq = 0.8 is the equivalent Norton reactance. The power grid
is represented by the known infinite bus model [21, Fig. §]
with one net resistance R, net reactance X, and with E as the
infinite bus voltage. The DAE system in (26) is smooth, so we
use (6) to calculate its classical sensitivity system. Applying
Algorithm 1 to system (26) for reference parameters 6* =
(0.1, 40, 0.02, 0.02987, 1.0164), we obtain that system (6) is
locally identifiable at 8*. Applying Algorithm 2 to system (6),
we get Oy = (Ko, Ky;, R, X, E}, ie., all parameters are
identifiable. Now, we estimate the loads R and X that represent
best the infinite bus (grid) model based on V measurements
taken at the connection between the wind turbine and the
grid. We solved the parameter estimation problem in (24) to
estimate the “true” (but unknown) parameter values 0., =
(Rirue» Xtrue) and the results, 6., matched the values reported
in [21], (R, X) = (0.02,0.02987), up to four significant digits
when using an initial guess 0,y = (0.0202, 0.302). The
reader is referred to [19] for the MATLAB code for this
example.

Example 5 (Glucose-Insulin Kinetics): In this example, we
consider a nonsmooth ODE glucose-insulin kinetics model
called the Intravenous Glucose Tolerance Test IVGTT), which
measures a subject’s insulin response to glucose over time for
characterizing diabetes [22]:

G = p2(G — p9) — GX + prie P12 G(0) = py,
X = p3X + pa(l — p10), X(0) = 0
I =u—p7(I —p1o),1(0) = pg + pio,

27)

where G is the glucose concentration in the bloodstream,
I is the insulin concentration in the bloodstream, X is the
net effect of insulin on glucose disappearance, and the input
u = mid(0, %, y) (which returns the median of its three
inputs) models an external device (artificial pancreas) that
infuses insulin for diabetic patients. Hence the parameters are
6 = (p1,...,p12,y), with values and physical interpretations
given in [22, Table I]. We implemented Algorithm 2 by
selecting 25 reference parameters from the region of param-
eter space according to the LHS scheme (MATLAB code
implementation in [19]) to get the set of reference parameters
samples, {#)}. We considered the time horizon [to, tr] =
[0, 180] and applied Algorithm 2 using {0(5)} to get O =
{P1,p2,P3, P4, P9, p11, p12} and Ou; = {ps,pe, p7.ps, ¥},
which is what we expected given the sensitivities of the system
(see [22, Fig. 3(b)]).

V. CONCLUSION

For the first time in the literature, we provided a sensitivity-
based identifiability test (L-SERC) for DAE systems, including

smooth and nonsmooth ones. We offered an algorithm which
extends the local nature of the L-SERC test to judge iden-
tifiability in a non-local sense. Additionally, we provided a
protocol that capitalizes on identifiability to enable parameter
reduction in smooth and nonsmooth DAE systems (and ODE
systems, as shown in Example 5).
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