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Artificial monopoles have been engineered in various systems, yet there has been no systematic study of the

singular vector potentials associated with the monopole field. We show that the Dirac string, the line singularity

of the vector potential, can be engineered, manipulated, and made manifest in a spinor atomic condensate. We

elucidate the connection among spin, orbital degrees of freedom, and the artificial gauge, and show that there

exists a mapping between the vortex filament and the Dirac string. We also devise a proposal where preparing

initial spin states with relevant symmetries can result in different vortex patterns, revealing an underlying

correspondence between the internal spin states and the spherical vortex structures. Such a mapping also leads to

a new way of constructing spherical Landau levels, and monopole harmonics. Our observation provides insights

into the behavior of quantum matter possessing internal symmetries in curved spaces.
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I. INTRODUCTION

Despite of the lack of unambiguous experimental evidence

for their existence, magnetic monopoles have a central place

in our understanding of quantum matter and modern cos-

mology [1–4]. Remarkably, recent theories and experiments

have provided ample evidence for the emergence of artifi-

cial monopoles in various physical systems [5–17]. It is well

known that the vector potential associated with the monopole

field contains line singularities (known as Dirac strings) that

terminate at the monopole, even though the monopole mag-

netic field itself is smooth everywhere (except at the position

of the monopole) [18]. This does not pose any problem as the

vector potential, unlike the field, is not real in the sense that it

cannot be directly measured. This is also reflected in the fact

that the positions of these Dirac strings are gauge dependent.

This conventional wisdom, however, is not necessarily true

in systems with artificial gauge fields. In such systems, one of-

ten directly realizes and controls the artificial gauge potential,
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rather than the associated magnetic field, rendering the former

directly measurable. Indeed, the physical effects of artificial

gauge potentials on time-of-flight images of cold atoms have

been reported in several experiments [19–23].

One widely used platform to realize artificial gauge field is

spinor Bose-Einstein condensates (BECs). When the atomic

spin1 adiabatically follows an external magnetic field, the

system accumulates a geometric phase [24], which induces

an artificial gauge potential governing the spatial wave func-

tion; a manifestation of the spin-orbit coupling. If the atoms

occupy a spatial region that contains a degenerate point with

vanishing magnetic field, the artificial gauge potential can

develop a line singularity, which can be regarded as an analog

of the Dirac string and a consequence of the local spin-gauge

symmetry [9,25]. The purpose of this work is to elucidate the

relationship among spin, orbit, and the artificial gauge field.

As conceptually represented in Fig. 1, through the spin-orbit

coupling and the spin-gauge symmetry, there exists a mapping

between the vortex filament and the Dirac string. This directly

leads to a novel adiabatic scheme for preparing vortex config-

urations on a sphere where some initial spin state is prepared

for the spinor condensate, and then the artificial magnetic field

strength is turned on adiabatically. As a result of conservation

of the total angular momentum (TAM), some of the initial

spin angular momentum is transferred to the orbital degrees

of freedom, resulting in the formation of vortices. Preparing

different initial spin states can therefore result in different

vortex patterns. From the point of view of the artificial gauge

1Throughout this work, we will refer to the hyperfine as spin.
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FIG. 1. Conceptual plot showing the connection among spin,

orbit degrees of freedom, and the artificial gauge field.

field, this amounts to different gauge choices that lead to

different Dirac strings.

II. SPIN, VORTEX, AND DIRAC STRINGS

Let us consider a spin-F atom of mass M confined in an

isotropic harmonic trapping potential with frequency ω, sub-

jected to a hedgehog magnetic field B(r) ∝ r. The realization

of the hedgehog field has been proposed in our earlier work

[26]. Working in units where h̄ = M = ω = 1, the single-

particle Hamiltonian of the system reads

H0(r) = −
∇2

2
+

r2

2
− αrr̂ · F. (1)

Here α characterizes the strength of the hedgehog field, which

we assume can be dialled from zero to large values. In the limit

of large field strength αr, the lowest spin state follows the

local magnetic field and satisfies (r̂ · F)|Fr̂〉 = F |Fr̂〉, where

|Fr̂〉 can be obtained from |Fẑ〉 (the spin state polarized along

the z axis) via rotations: |Fr̂〉 = e−iϕFẑ e−iθFŷ |Fẑ〉. Here θ and

ϕ are the polar and azimuthal angles, respectively. The total

wave function, �(r), can be written as �(r) = ψ (r)|Fr̂〉, with

the effective Hamiltonian governing the scalar wave function

ψ (r) being:

Heff +
α2F 2

2
=

1

2
(−i∇ + A)2 +

1

2
(r − αF )2 +

F

2r2
. (2)

Here the effective vector potential A = i〈Fr̂|∇Fr̂〉 = êϕ

F cos θ/(r sin θ ) reflects a magnetic monopole (of magnetic

charge F ) at the origin. Furthermore, the last term in Eq. (2)

dictates that this monopole is also electrically polarized, with

an electric dipole moment F/2. The vector potential A is

singular for θ = 0 and π , which corresponds to two antipodal

Dirac strings. It can be seen that the effective system realizes a

Haldane’s sphere [27]: atoms of unit electric charge, are con-

fined within a thin spherical shell (of order unity width in units

of ∼
√

h̄/Mω) centered at r0 ≈ αF (in units of ∼
√

h̄/Mω), in

the presence of an electrically polarized magnetic monopole

at the origin.

If we rewrite the scalar function above as ψ (r) =√
n(r)eiÇ(r), where n(r) represents the local atomic number

density, then the total wave function can be written as

�(r) =
√

n(r) |F̃r̂〉, (3)

where |F̃r̂〉 = eiÇ(r)|Fr̂〉. In other words, we have absorbed the

phase factor of the scalar function into a redefinition of the

radial spin state. The corresponding vector potential associ-

ated with |F̃r̂〉 is given by Ã = i〈F̃r̂|∇F̃r̂〉 = A + ∇Ç, which is

related to A by a gauge transformation. This is just a man-

ifestation of the spin-gauge symmetry in spinor gases [25].

On the other hand the velocity field associated with the to-

tal wave function �(r) is given by v
mass = −∇Ç − A = −Ã,

which allows us to clearly see the connection between vortices

(line singularities of v
mass) and line singularities of Ã. As we

will show in the following, by preparing different initial spin

configurations in the absence of the monopole field followed

by its adiabatic turn on, we may result in final states with

different phase structure Ç(r), and hence different vortex or

Dirac string orientations. In a sense, changing the initial spin

configuration amounts to choosing a different gauge for the

vector potential Ã.

We want to emphasize that the vector potential Ã is a

physical quantity associated with the wave function (3) re-

alized in the experiment, depending on the initial state and

the governing Hamiltonian. The most we can do is to add a

global (i.e., position-independent) phase factor to the wave

function (3), which, however, would not change Ã. It is due

to this fact that Ã, and hence the line singularities associated

with it, becomes physical and measurable. As such, we may

call the gauge associated with Ã the experimental gauge.2 For

the adiabatic protocol that will be discussed in detail below,

this experimental gauge is determined by the initial state of

the spinor condensate.

III. ENGINEERING DIRAC STRINGS

To substantiate the argument we laid out above, here we

provide a more quantitative description.

A. Single-particle spectrum

Let us first consider the single-particle spectrum for the

Hamiltonian (1). It can be seen that while for α = 0 both L

and F are conserved, for α 
= 0 only the TAM J = L + F is

conserved. This means that the energy eigenstates are also

eigenstates of {J2, Jz}. These are the well-known spinor har-

monics |È �F
jm 〉 =

∑F
mF =−F c

�mF

jm Y �
m−mF

(r̂)|mF ẑ〉 [29], where c′s

are the Clebsch-Gordan coefficients, Y ′s are the usual spher-

ical harmonics, and |mF ẑ〉 are the spin multiplicity states (in

the z basis). Furthermore, while F2 is conserved, L2 is not.

Summing over the � quantum number then (and with ñ as the

radial quantum number), the eigenstates take the form

�ñ jmF (r) =
j+F
∑

�=| j−F |

f �
ñ jF (r)

∣

∣È �F
jm (r̂)

〉

. (4)

With ( j, m) being good quantum numbers, and since α = 0

corresponds to a simple three-dimensional (3D) harmonic

oscillator (with an intrinsic hyperfine spin), we can find the

energy spectrum for any α by projecting the Hamiltonian H0

onto the (n, �) subspace. Here, n and � = j + mF are the radial

2Note that this is analogous to the so-called unitary gauge, in which

the angular field is absorbed into the gauge potential. See Ref. [28]

for its introduction in the context of electroweak theory.
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FIG. 2. The single-particle energy spectrum Eñ jF (shifted by

α2F 2/2) as a function of α, for the F = 1 case. Upon increasing

α, different oscillator levels approach each other, and a crossover

from the 3D isotropic oscillator levels to Landau levels is seen. The

inset shows the lowest energy E011 in the adiabatic regime, which

is obtained from GP equations (circle), numerical diagonalization

(star), and the analysis in Eq. (6) (solid).

and orbital quantum numbers for the oscillator. This gives

a tridiagonal matrix, which can be numerically diagonalized

by incorporating enough 3D oscillator levels [30] (see Ap-

pendix A for details). In Fig. 2 we provide different energy

curves as a function of α, for different n and j values.

More importantly, from the point of view of the adia-

batic flow of local spin, at large α the radial part of the

scalar function ψ approaches the one-dimensional (1D) har-

monic oscillator centered at radius r0 [cf. Eq. (2)], while

the angular structure is dictated by the Hamiltonian H� =
{[r × (p + A)]2 + F }/(2α2F 2). That is, ψ (r) → r−1hñ(r −
r0) gm

F, j (θ, ϕ), where hñ are the 1D harmonic oscillator states

and gm
F, j are the eigenstates of the angular Hamiltonian H�

(known as the monopole harmonics [31]). Then with the

ansatz f �
ñ jF (r) ≡ r−1hñ(r − r0) β�

F, j in Eq. (4), the β coeffi-

cients must be such that the following holds:

j+F
∑

�=| j−F |

β�
F, j

∣

∣È �F
jm

〉

= gm
F, j (θ, ϕ)|Fr̂〉. (5)

This is the radial spin flow correspondence (which holds for

any j � F ). Using this, the energy spectrum comes out to be

(see Appendix B for details):

Eñ jF +
α2F 2

2
≈ ñ +

1

2
+

j( j + 1) − F (F − 1)

2α2F 2
, (6)

where the last term is just the spherical Landau levels (LLs)

[27], plus a shift F/(2α2F 2) owing to the electric dipole

moment. We note that the radial spin flow correspondence

(5), without any reference to H�, fetches both the g functions

and the β coefficients, giving us all the LLs on the sphere.

Our construction therefore reveals an alternative approach

of constructing spherical LLs. It is clear from the energy

spectrum that all the different j levels approach one another

as α increases, because the energies of different states get

increasingly dominated by the Zeeman term. As an explicit

example, consider the spin-1 case. For the j = 1 level, we get

β�
1,1 = {

√
2,

√
3, 1}/

√
6 for � = {0, 1, 2}, and the following

three degenerate states:

{�ñ1−11, �ñ101, �ñ111}

≈
√

3

4π

1

r
hñ(r − α)

×

{

sin2

(

θ

2

)

e−iϕ,
sin θ
√

2
, cos2

(

θ

2

)

eiϕ

}

|Fr̂〉. (7)

The inset in Fig. 2 compares the energy with the Gross-

Pitaevskii (GP) equation, and numerical diagonalization. It is

evident that the radial spin flow correspondence holds well

within ∼0.1% for α � 4.

B. Creating vortices from different spin states

Conservation of J can be exploited to create vortex

patterns/Dirac strings, as follows. Starting at α = 0, we can

prepare the system in its ground state, carrying zero orbital

angular momentum (OAM) 〈L〉ini = 0 and any desired spin

configuration |· x〉 carrying spin angular momentum (SAM)

〈F〉ini. Then α is increased adiabatically, and in the process

some of the SAM gets transferred to the OAM while keeping

the total 〈J〉 fixed. At sufficiently large α owing to adiabatic

spin flow, we converge to a vortex pattern in the final state car-

rying final OAM 〈L〉fin = 〈F〉ini/(1 + F ), and SAM 〈F〉fin =
F 〈F〉ini/(1 + F ) (see Appendix B). Note that earlier works

have explored possibilities of creating vortex states in spinor

condensates using magnetic fields with nontrivial topologies

[32–35]. However, these works do not employ the monopole

field and hence the vortices realized are not associated with

Dirac strings.

We can also predict the orientation of these Dirac

strings (which are lines of singularities) by considering the

geometric/Bloch sphere representation for spin F . We note

that at points where the strings/vortices intersect the sphere,

the wave function must vanish. Then, owing to the transfer of

initial SAM to final TAM during the adiabatic spin flow, these

intersection points should be where the initial spin configura-

tion |· x〉 was orthogonal to the final spin configuration |Fr̂〉.
With |· x〉 =

∑F
mF =−F · x

mF
|mF ẑ〉 and |Fr̂〉 = e−iϕFz e−iθFy |Fẑ〉,

this means those points (θ, ϕ) on the sphere where

〈· x|Fr̂〉 = 0:

2F
∑

k=0

e−ikϕ · x
F−k

√

(

2F

k

)

cos2F

(

θ

2

)

tank

(

θ

2

)

= 0. (8)

Note that these points are nothing but the so-called Majorana

stars, and our engineering of the Dirac strings reveals the

connection between spin and real space. This connection is

embodied in the SO(3) symmetry in both the spinor Boson

gas and the simulated monopole system. More explicitly, the

symmetries of |· x〉 correspond to the operations under which

the set of vortex locations {(θi, ϕi )} on the Haldane sphere are

invariants.
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FIG. 3. Top: Majorana representations of spin-1 (a) ferromagnetic state · F = (1, 0, 0)T , (b) polar state · P = (0, 1, 0)T , and (c) mixed state

· ¸ = (
√

¸, 0,
√

1 − ¸)T with ¸ = 1/4 on the Bloch sphere. Bottom: Corresponding density profiles on the sphere of radius r0 = α = 8. Black

lines represent the vortex lines, with the intersection points with atomic cloud at r0 being Majorana stars.

As explicit examples, consider the following ferromag-

netic, polar, and mixed states to begin with: |· F 〉 = (1, 0, 0)T ,

|· P〉 = (0, 1, 0)T , and |· ¸〉 = (
√

¸, 0,
√

1 − ¸)T . Based on

our discussion above and Eq. (8), each would correspond to

two Dirac strings/vortices at large α, originating from the

origin. Their locations are calculated to be θ = π, π for ferro-

magnetic, θ = 0, π for polar, and (θ, ϕ) = (2 arctan[¸/(1 −
¸)]1/4, π ± π/2) for the mixed state. The full final states,

written in terms of the lowest LL (LLL) wave function

in (7) are: �F = �0111, �P = �0101, and �¸ = √
¸ �0111 +√

1 − ¸ �01−11. In the bottom panel of Fig. 3, we show these

states obtained using the normalized gradient flow method of

Ref. [36]. The top panel displays the Majorana representations

of · F , · P, and · ¸, respectively, where the highlighted points

on the sphere correspond to (8).

Using the integrator i-SPin 2 [37], in Fig. 4 we show the

real-time implementation of our idea, for the mixed state

|· ¸=1/4〉. Starting with the 3D harmonic oscillator ground

state dressed with the spin texture |· ¸=1/4〉, we adiabatically

increase α from 0–6 (see Appendix C for numerical details).

As α increases, the initial mass density at the origin is pushed

outwards, with the spin density aligning radially outwards. At

large enough α, two vortices intersecting the atomic cloud at

(θ, ϕ) = (2 arctan[1/3]1/4, π ± π/2), become apparent. One

can also get these locations by means of the vortex Dirac

string connection: Rewriting the state as �¸ = |ψ¸||F̃r̂〉 where

|F̃r̂〉 = exp(i arg ψ¸ )|Fr̂〉, it can be shown that the effective

gauge potential Ã = i〈F̃r̂|∇F̃r̂〉 contains two singularities lo-

cated at (2 arctan−1[1/3]1/4, π ± π/2) when ¸ = 1/4. To

summarize, we have established a one-to-one mapping be-

tween the spinor state and the vortex state on a sphere.

C. Effects of interaction and experimental feasibility

Now we briefly discuss the effects of the mean-field

interaction. The associated energy functional is Eint =
(c0/2)

∫
d

3
r n

2(r) + (c2/2)
∫

d
3
r F(r) · F(r), where F(r) is

the local spin density, and the first and the second terms

correspond to the spin-independent and -dependent inter-

action, respectively. Typically the two interaction strengths

satisfy |c0| � |c2|. Figure 5 illustrates the final density

profiles for the mixed state (with ¸ = 1/4), for attractive,

noninteracting, and repulsive interaction cases, when start-

ing from the respective ground states in the absence of the

spin-dependent interaction we ramp up α from 0–6. While

some of the qualitative physics remains the same, there are

some important distinctions worth pointing out: (i) Without

interactions, it can be seen that all single-particle states Ym

F,F

FIG. 4. Evolution of the mixed state · ¸=1/4 when the field
strength α is increased adiabatically from 0–6. The density profile
(background color) and local spin expectation vector 〈F(r)〉 (arrows)
in the x = 0 plane are plotted at four different times with the instan-
taneous values of α indicated in the plots. For each plot, the length of
the box along each direction is 25, and the calculation is done with a
grid size N3 = 713. A simulation animation is available online [38].
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FIG. 5. Snapshots of the mixed state atomic cloud for ¸ = 1/4 at α = 6, for the three cases of attractive interaction (c0 = −6 and c2 =
−0.1, left column), no interaction (c0 = c2 = 0, middle column), and repulsive interaction (c0 = 6 and c2 = 0.1, right column), respectively.
Other parameters are the same as in Fig. 4. The top panel shows a 3D view, whereas the bottom panel shows the slice in the plane where the
vortices intersect the atomic cloud [at polar angle θ = 2 tan−1(1/3)1/4 ≈ 74.46 degrees]. Our results also confirmed that for the values of c2

used here, the effect of the spin-dependent interaction is negligible.

(or linear combinations thereof, see Appendix B), are left
invariant under SO(2)Lz+Ç (here Ç corresponds to gauge trans-
formations). Including the interaction breaks this invariance
and the states get rotated along the z axis, as reflected by
the rotation of vortex pairs. (ii) In the final state, the angu-
lar momenta are not evenly distributed in the spin and the
orbital sector. This is because the spin texture becomes more
(an)isotropic under the (attractive) repulsive interaction.3

To estimate the energy and the observability of vor-
tices, we take 87Rb atoms as an example. For a har-
monic trapping potential with typical frequency of ω,
87Rb atoms have typical length scales ls =

√
h̄/Mω �

1.1 (2π × 100 Hz/ω)1/2µm. With ωB = 2gF μBB1ls/h̄ � 2 ×
103gF (B1/G cm−1)(2π × 100 Hz/ω)1/2Hz as the Larmor fre-
quency, strength of the Zeeman coupling is

α = 2ωB/ω � 3 gF

(

B1

G cm−1

)(

2π × 100 Hz

ω

)3/2

. (9)

The two-body interaction scattering lengths are a2 ≈ 100 aB

and a0 ≈ 102 aB, where aB ≈ 5.3 × 10−2 nm is the Bohr ra-
dius. This gives c̄0 ≈ 6.7 × 10−2 µm/87u and c̄2 ≈ −4.4 ×
10−4 µm/87u for the interaction parameters (spin interactions
are suppressed by � 6.5 × 10−3 as compared to density inter-
actions). Their rescaled versions are

c0 � 6.3 × 102

(

N

104

)(

ω

2π × 100 Hz

)1/2

, (10)

c2 � −4.1

(

N

104

)(

ω

2π × 100 Hz

)1/2

, (11)

3For the cases in Fig. 5, we have 〈Fz〉 ≈ 0.22 and 〈Lz〉 ≈
0.28 for the repulsive case, while 〈Fz〉 ≈ 0.28 and 〈Lz〉 ≈ 0.22
for the attractive case. In comparison, 〈Fz〉 = 〈Lz〉 = 0.25 for the
noninteracting/single-particle case.

where N is the total number of atoms in the condensate.
The energy scale of the contact interaction per particle on
the sphere (of radius r0 = lsαF and width ls), is Ec0 �
0.5 c̄0(4πr2

0 )ls[N/(4πr2
0 ls)]2/N :

Ec0 �
25

α2F 2

(

N

104

)(

ω

2π × 100 Hz

)1/2

h̄ω. (12)

On the other hand, the energy gap per particle, between the
lowest (ñ = 0) and next (ñ = 1) Landau levels is �ELL � h̄ω.
We see that for the chosen parameters N = 104 and ω =
2π × 10 Hz for 87Rb atoms (F = 1), having α > 5 renders
Ec0 < �ELL. In this case, the effect of interactions is not
significant, and the simpler analytical single-particle analysis
becomes valid.

IV. CONCLUSION AND OUTLOOK

In conclusion, we have shown how Dirac strings can mani-
fest and be manipulated in a spinor condensate subjected to an
effective monopole magnetic field. The simulation of singu-
lar monopole potentials and the concomitant correspondence
between the spin and the real space is a new feature of the
spinor system under the hedgehog magnetic field. The key in-
gredient is the rotational invariance of the Zeeman term r · F.
These will persist even when the S2 manifold is deformed, as
long as Jz remains conserved. Due to this rationale, we can
investigate such features in other SO(3) systems, such as the
isotropic spin-orbital-coupling term p · F, where bent vortex
lines in solitons have been discovered [39]. Remarkably, the
correspondence presented in this paper allows us to reveal
symmetries within the internal degrees of freedom, as man-
ifesting in coordinate space.

In this work, we have found the spin real correspondence in
the LLLs. Since stronger interactions may make the atoms oc-
cupy higher LLLs [40], correspondence in these states may be
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found. The investigation in Haldane’s spherical geometry was
originally proposed for the study of the fractional quantum
Hall effect. Thus, fertile vortex configurations may enrich the
exploration of many-body quantum matter in curved spatial
geometry [41–48].
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APPENDIX A: SINGLE-PARTICLE ENERGY SPECTRUM

USING THE su(1, 1) × SO(3) GROUP ALGEBRA

Following the steps of Ref. [30], we can numerically di-
agonalize the Hamiltonian. To begin with, using creation and
annihilation operators a

†
i and ai where i = {x, y, z}, we note

that it is possible to get generators of both su(1, 1)S and
SO(3)L. Rewriting a± = ∓(ax̂ ∓ iaŷ)/

√
2 and aẑ = a0, we

have the following

S+ = 1
2 (a†

0)2 − a
†
+a

†
−, L+ =

√
2(a†

+a0 + a−a
†
0) (A1)

S− = 1
2 (a0)2 − a+a−, L− =

√
2(a+a

†
0 + a

†
−a0) (A2)

S0 = 1
2

(

a
†
+a+ + a

†
−a− + a†

z a0 + 3
2

)

, L0 = a
†
+a+ − a

†
−a−.

(A3)

It can be checked that the set of S and L obey the desired Lie
algebra of the su(1, 1)S and SO(3)L respectively:

[S+, S−] = −2S0, and [S0, S±] = ±S±

[L+, L−] = 2L0, and [L0, L±] = ±L±, (A4)

with [Sμ, Lν] = 0. Using the fact that r · L = 0 and J = F +
L, the full Hamiltonian can then be written as H = S0 − α r ·

F = S0 − α r · J, where we further decompose the Zeeman
term as

r · J =
1

√
2

[

J+ a
†
− − J− a

†
+√

2
+ J0 a

†
0 + H.c.

]

≡
A† + H.c.

√
2

.

(A5)

Here, r = (a + a†)/
√

2, J± = Jx̂ ± iJŷ, and J0 = Jẑ. With α =
0, we simply have a 3D oscillator with an intrinsic (hyperfine)
spin, the Hamiltonian for which is just H = S0. The energy
eigenstates are common eigenstates of the operators S0, the
Casimir S2 ≡ S2

0 − (S+S− + S−S+)/2, L2, and Lz. These can
be labeled by the quantum numbers (n, �, m�), with eigenval-
ues 2n + � + 3/2. We will denote them by |n, �, m�〉, which
can be obtained by repeated actions of Sn

+ and L�−m�

− , and

(a†
+)� [30].
Including the α-dependent Zeeman term, couples the dif-

ferent 3D oscillator states. The quantum numbers associated
with the full Hamiltonian are (ñ, j, m, F ), and the eigenstates
are some n and � superpositions (with | j − F | � � � j + F

as required by the triangle inequality) of the basis set

|n, j, m, F, �〉 ≡
F

∑

mF =−F

c
�mF

jm |n, �, m − mF 〉 ⊗ |mFẑ
〉. (A6)

Here |n, �, m − mF 〉 are the 3D oscillator states as stated
above. With this, and noting that J is conserved in the system,
we wish to find the matrix elements of r · J for a fixed ( j, m).
These should be independent of m since J is conserved. To
find these matrix elements, we first recapitulate the action of
a†

μ on a state |n, �, m�〉 [30]:

a†
μ|n, �, m�〉 = b+(n, �) d+

μ (�, m�)|n, � + 1, m� + μ〉

+ b−(n, �) d−
μ (�, m�)|n + 1, � − 1, m� + μ〉,

(A7)

where

b+(n, �) =

√

n + � + 3/2

(� + 3/2)(� + 1/2)
,

b−(n, �) =

√

n + 1

(� + 1/2)(� − 1/2)
,

d+
μ (�, m�) =

(

1
√

2

)1+|μ|
§

¨

©

√
(l + m� + 2)(l + m� + 1) μ = +1√
(l + m� + 1)(l − m� + 1) μ = 0√
(l − m� + 2)(l − m� + 1) μ = −1

,

d−
μ (�, m�) = (−1)μ

(

1
√

2

)1+|μ|
§

ª

¨

ª

©

√
(l + m�)(l + m� − 1) μ = −1

√
(l + m�)(l − m�) μ = 0√
(l − m�)(l − m� − 1) μ = +1

.

For our purposes, m� = m − mF in the above. The
above can be obtained using the various commutation

relations between aμ and Sμ, and aμ and Lμ [which
can be obtained straightforwardly using the commutation
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relations (A4)]. The action of aμ on |n, �, m�〉 can be
obtained in a similar fashion. Also for convenience and
better illustration, μ = ± → ±1 in the expressions for
d±

μ . Next, the action of J on a state |n, j, m, F, �〉 is

J±|n, j, m, F, �〉 =
√

j( j + 1) − m(m ± 1) |n, j, m ± 1, F, �〉
and J0|n, j, m, F, �〉 = m|n, j, m, F, �〉.

With the above, we can work out the matrix elements of A
and A†, in the subspace of fixed ( j, m):

[A†( j, F )]n′,n;�,�′ ≡ 〈n′, j, m, F, �′|A†|n, j, m, F, �〉

= b+(n, �)
F

∑

mF =−F

c
�+1,mF ∗
jm C+( j, m, �, mF ) δn′,n δ�′,�+1

+ b−(n, �)
F

∑

mF =−F

c
�−1,mF ∗
jm C−( j, m, �, mF ) δn′,n+1 δ�′,�−1, (A8)

where

C+( j, m, �, mF ) ≡
1

2
√

2

[
√

j( j + 1) − m(m + 1)
√

(� − m + mF + 1)(� − m + mF ) c
�mF

j,m+1

−
√

j( j + 1) − m(m − 1)
√

(� + m − mF + 1)(� + m − mF ) c
�mF

j,m−1

+ 2m
√

(� + m − mF + 1)(� − m + mF + 1) c
�mF

j,m

]

C−( j, m, �, mF ) ≡
1

2
√

2

[

−
√

j( j + 1) − m(m + 1)
√

(� + m − mF + 1)(� + m − mF ) c
�mF

j,m+1

+
√

j( j + 1) − m(m − 1)
√

(� − m + mF + 1)(� − m + mF ) c
�mF

j,m−1

+ 2m
√

(� + m − mF )(� − m + mF ) c
�mF

j,m

]

. (A9)

Summing over mF results in the following explicit form:

[A†( j, F )]n′,n;�′,� =

[√
( j − � + F )(F − j + � + 1)( j − F + � + 1)( j + F + � + 2)

2
√

2

√

n + � + 3/2

(� + 3/2)(� + 1/2)

]

δn′,nδ�′,�+1

+

[√
( j + � − F )(F + j − � + 1)(F − j + �)(F + j + � + 1)

2
√

2

√

n + 1

(� + 1/2)(� − 1/2)

]

δn′,n+1δ�′,�−1,

(A10)

and is indeed independent of m. The matrix elements of A are simply obtained through conjugation. Along with the triangle
inequality | j − F | � � � j + F , the obtained matrix elements of A† and A fetch the following matrix elements for the
Hamiltonian in (n, �) subspace:

[H ( j, F )]n′,n;�′,� =
(

2n + � +
3

2

)

δn′,n δ�′,� −
α

√
2

([A†( j, F )]n′,n;�′,� + H.c.). (A11)

This is a tridiagonal matrix, and can be numerically diago-
nalized by including a lot of 3D oscillator states. Using the
triangle inequality to write � = j + mF , we do this rather
in the (n, mF ) subspace, for N = 2n + j + mF � 100. The
spectrum for F = 1, as a function of α, is shown in Fig. 2
of the main text.

APPENDIX B: CALCULATIONS IN THE ADIABATIC

REGIME

In this section, we provide details of our calculations of the
single-particle energy spectrum, and ratio of orbital to spin
angular momentum, in the adiabatic regime, in which the total

wave function can be written as �(r) = ψ (r)|Fr̂〉, with the
effective Hamiltonian Heff governing the scalar wave function
ψ (r) given in Eq. (2) in the main text.

1. Constructing Landau levels and monopole harmonics

As discussed in the main text, adiabatic spin flow gives the
following correspondence

j+F
∑

�=| j−F |

β�
F, j

∣

∣È �F
jm

〉

= gm
F, j (θ, ϕ)|Fr̂〉, (B1)

where j � F [cf. Eq. (5) in the main text]. Since the sum
over � runs from | j − F | to j + F , for any j � F we have
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2F + 1 β�
F, j coefficients to determine (which are independent

of m). Also since − j � m � j, we have 2 j + 1 gm
F, j functions

to determine. So we have (2F + 1)(2 j + 1) unknowns. Now
since the above equation is a set of 2F + 1 equations (as
mF ∈ [−F, F ]) for any m ∈ [− j, j], we have (2F + 1)(2 j +
1) equations in total as well. So, we have a deterministic
system and both the β coefficients and the g functions (which
will turn out to be monopole harmonics) can be determined.
This, for any j � F , will thus fetch the spherical Landau
levels (LLs). While there are multiple ways to construct LLs,
here we present an explicit approach to first see that gm

F, j are
nothing but monopole harmonics Ym

q=F, j (i.e., with monopole
charge q = F and total angular momentum j), which then can
be used to obtain the β coefficients.

From the left-hand side of the above radial spin correspon-
dence, which is an eigenstate of J2, we note that the right-hand
side must be too. Using J = L + F to operate on the right-
hand side, where |Fr̂〉 = e−iϕFẑ e−iθFŷ , we get the following
PDE after some algebraic manipulations:

[

−
1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

−
1

sin2 θ

∂2

∂ϕ2
+ 2iF

cos θ

sin2 θ

∂

∂ϕ

+ F 2 1

sin2 θ

]

gm
F, j = j( j + 1)gm

F, j . (B2)

This is exactly the PDE for monopole harmonics, with
monopole charge F and total angular momentum j [31].
That is

gm
F, j (r̂) = Ym

F, j (r̂). (B3)

To get to (B2) using J2 = (L + F)2, we used spherical
forms for both L and F. That is, L = i[(θ̂/ sin θ ) ∂ϕ −
ϕ̂ ∂θ ] and F = r̂ Fr̂ + θ̂ Fθ̂ + ϕ̂ Fϕ̂, where Fr̂ = sin θ

cos ϕ Fx̂ + sin θ sin ϕ Fŷ + cos θ Fẑ, Fθ̂ = cos θ cos ϕ Fx̂ +
cos θ sin ϕ Fŷ − sin θ Fẑ, and Fϕ̂ = − sin ϕ Fx̂ + cos ϕ Fŷ.
We also used rotation relationships for spin matrices such
as e−iϕFẑ Fŷ eiϕFẑ = − sin ϕ Fx̂ + cos ϕ Fŷ = Fϕ̂, and also
eigenequations Fr̂|Fr̂〉 = F |Fr̂〉, and F2|Fr̂〉 = F (F + 1)|Fr̂〉.

With the above correspondence with the monopole har-
monics established, we can obtain the β coefficients by simply
taking the inner product of the right-hand side of Eq. (B1) with
spinor harmonics |È �F

jm 〉:

β�
F, j =

∫

d� gm
F, j〈È

�F
jm |Fr̂〉 =

∫

d�Ym
F, j〈È

�F
jm |Fr̂〉. (B4)

As explicit examples, for F = 1 we get β
�={0,1,2}
1,1 =

{
√

2,
√

3, 1}/
√

6 with

g−1
11 =

√

3

4π
sin2(θ/2) e−iϕ,

g0
11 =

√

3

8π
sin θ,

g1
11 =

√

3

4π
cos2(θ/2) eiϕ (B5)

for the lowest LLs ( j = F = 1). For the next LLs ( j = F +
1 = 2), we get β

�={1,2,3}
1,2 = {

√
3,

√
5,

√
2}/

√
10 with

g−2
12 =

√

5

4π
sin2(θ/2) sin θ e−2iϕ,

g0
12 =

√

15

32π
sin 2θ,

g2
12 = −

√

5

4π
cos2(θ/2) sin θ e2iϕ

g−1
12 =

√

5

16π
(cos θ − cos 2θ ) e−iϕ,

g1
12 =

√

5

16π
(cos θ + cos 2θ ) eiϕ . (B6)

Similarly for F = 2, we get β
�={0,1,2,3,4}
2,2 = {

√
14,

√
28,

√
20,

√
7, 1}/

√
70 with

g−2
22 =

√

5

4π
sin4(θ/2) e−2iϕ,

g0
22 =

√

15

32π
sin2 θ,

g2
22 =

√

5

4π
cos4(θ/2) e2iϕ

g−1
22 =

√

5

π
sin3(θ/2) cos(θ/2) e−iϕ,

g1
22 =

√

5

π
cos3(θ/2) sin(θ/2) eiϕ (B7)

for the lowest LLs ( j = F = 2). For the next LLs ( j = F +
1 = 3), we get β

�={1,2,3,4,5}
2,3 = {

√
6,

√
15,

√
14,

√
6, 1}/

√
42

with

g−3
23 =

√

21

8π
sin4(θ/2) sin θ e−3iϕ,

g0
23 =

√

105

32π
cos θ sin2 θ,

g3
23 = −

√

21

8π
cos4(θ/2) sin θ e3iϕ

g−2
23 =

√

7

4π
sin4(θ/2)(3 cos θ + 2) e−2iϕ,

g2
23 =

√

7

4π
cos4(θ/2)(3 cos θ − 2) e2iϕ

g−1
23 =

√

35

8π
sin3(θ/2) cos(θ/2) (3 cos θ + 1) e−iϕ,

g1
23 =

√

35

8π
cos3(θ/2) sin(θ/2) (3 cos θ − 1) eiϕ, (B8)

and so on. It can also be noted that in general, g−m
F, j (θ, ϕ) =

(−1) j−m gm
F, j (θ → θ + π, ϕ → −ϕ).
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2. Energy spectrum

In order to get the energy spectrum, we can take the expec-
tation value of the Hamiltonian (1) with respect to the energy
levels �ñ jmF . Rewriting the Hamiltonian in spherical coordi-
nates together with a shift by α2F 2/2 (in order to complete
the square on the right-hand side), we get

H0 +
α2F 2

2
= −

1

2r2
∂r (r2∂r ) +

1

2
(r − αF )2

− αr(r̂ · F − F ) +
1

2r2
L2. (B9)

Then taking its expectation with respect to the state

�ñ jmF (r) =
1

r
hñ(r − αF )gm

F, j (θ, ϕ)|Fr̂〉, (B10)

where hñ(r − αF ) are the 1D oscillator (centered at r = αF )
levels, gm

F, j are the monopole harmonics Ym
F, j , and |Fr̂〉 is the

radially outward pointing spin state, gives

Eñ jF +
α2F 2

2
= n +

1

2
+

〈L2〉
2α2F 2

. (B11)

To get to the above, we have also used 〈r̂ · F〉 = F . Now since
the energy eigenstates are also eigenstates of both J2 and
F2 with eigenvalues j( j + 1) and F (F + 1), respectively, we
have

〈J2〉 = j( j + 1) = 〈L2〉 + F (F + 1) + 2〈F · L〉. (B12)

To evaluate 〈F · L〉, note that it is given by

〈F · L〉 =
∫

d� gm∗
F, j

(

〈Fr̂|F|Fr̂〉 ·
(

Lgm
F, j

)

+ gm
F, j〈Fr̂|F · (L|Fr̂〉)

)

. (B13)

In the above, the first term is trivially zero since average
spin points in the radial direction, while angular momen-
tum lies along the sphere. For the second term, let us write
|Fr̂〉 = M|Fẑ〉 (where M = e−iϕFẑ e−iθFŷ is the rotation opera-
tor), and now we are interested in the operator M†(F · L)M.

Using L = i( θ̂
sin θ

∂
∂ϕ

− ϕ̂ ∂
∂θ

), writing everything in terms of
Cartesian variables, and using rotation identities such as
e−iαFŷ Fẑ eiαFŷ = Fẑ cos α + Fx̂ sin α (and similarly for rota-
tions along other axes), we get M†(F · L)M = F2

ẑ − F2 +
Fx̂Fẑ cot θ after some algebra. Only the first two terms con-
tribute towards the expectation with respect to the state |Fẑ〉,
giving F 2 − F (F + 1) = −F . Since gm

F, j were normalized by
definition, we get 〈F · L〉 = −F . Using this together with
(B12) in (B11), fetches the desired energy levels, Eq. (6).

3. Ratio of orbital to spin angular momentum

In our adiabatic evolution, we are confined within the
lowest-energy states, i.e., the j = F lowest Landau levels.
With arbitrary initial spin dressing, the final state takes the
general form

�ñFF (r) =
1

r
hñ(r − αF )

F
∑

m=−F

cm Ym
q=F, j=F (θ, ϕ)|Fr̂〉

with
F

∑

m=−F

|cm|2 = 1, (B14)

which is the same as (B10) with gm
F, j=F (θ, ϕ) replaced by a

sum over monopole harmonics with different magnetic quan-
tum number m. With this and 〈Fr̂|F|Fr̂〉 = F r̂, we have for the
full expectation

〈J〉 = 〈L〉 + F 〈r̂〉, (B15)

where

〈r̂〉 =
∑

m,m′

c∗
mcm′

∫

d�Ym∗
F,F r̂Ym′

F,F . (B16)

With the general form

Ym
F,F (θ, ϕ) =

√

2F + 1

4π

(

2F

F + m

)

cosF+m(θ/2)

× sinF−m(θ/2) eimϕ, (B17)

we have for r̂± ≡ r̂ · x̂ ± i r̂ · ŷ = sin θ e±iϕ and r̂z = r̂ · ẑ =
cos θ , the following:

〈r̂±〉 =
1

F + 1

F
∑

m=−F

c∗
m±1cm

√

F (F + 1) − m(m ± 1)

=
1

F + 1
〈J±〉,

〈cos θ〉 =
1

F + 1

F
∑

m=−F

m|cm|2 =
1

F + 1
〈Jz〉. (B18)

The second equalities in each of the two expressions above is
simply due to Ym

F,F (r) being eigenstates of {J2, Jz}, and can be
obtained straightforwardly using angular momentum operator
algebra. Therefore, from (B15), we have that

〈L〉 =
1

F
〈F〉 =

1

F + 1
〈J〉. (B19)

In our adiabatic evolution, the total angular momentum J is
conserved throughout, with all of it initially being in the spin
sector, 〈J〉 = 〈F〉ini. Equation (B19) then dictates that F/(F +
1) of the total initial spin remains in the spin sector, with the
remaining 1/(F + 1) is transferred to the orbital sector.

APPENDIX C: NUMERICAL ANALYSIS

1. Obtaining ground states by minimizing the energy functional

With all the physical parameters intact, the Gross-
Pitaevskii equation characterizing our 3D system is

ih̄
∂

∂t
� =

[

−
h̄2

2M
∇2 +

1

2
Mω2r2 − μBgF B · F +

1

2
c̄0n(r)

+
1

2
c̄2〈F〉 · F

]

�. (C1)

Here, M is the mass of the particle/atom; ω is the external
trap frequency; μB is the Bohr magneton; gF is the hyperfine
g factor of the atom; B = 2B1 r is the effective magnetic field
in the rotating frame, with B1 being the amplitude parame-
ter of the quadruple magnetic field in the laboratory frame
[26]; c̄0 = 4π h̄2(a2 + 2a0)/3M and c̄2 = 4π h̄2(a2 − a0)/M

are effective two-body interaction parameters where a0 and
a2 are the s-wave scattering lengths for the total spin equal
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to 0 and 2 channels; and the wave function is normalized
as

∫

d3x �†� = N where N is the total number of particles.

With the rescalings t → t/ω, r → rls, and � → �
√

Nl−3/2
s ,

where ls =
√

h̄/(Mω), we get the dimensionless GPE equa-
tion

i
∂

∂t
� =

[

−
∇2

2
+

r2

2
− α r · F +

1

2
c0n(r) +

1

2
c2〈F〉 · F

]

�,

(C2)

where α = 2μBgF B1ls/(h̄ω) = ωB/ω with ωB being the
Larmor frequency ωB = 2gF μBB1ls/h̄, and the interaction
parameters are c0 = 4πN (a2 + 2a0)/3ls and c1 = 4πN (a2 −
a0)/3ls. Two main conserved quantities, associated with
Eq. (C2) include the total particle number N , and the total
angular momentum

〈J〉 = 〈L〉 + 〈F〉

=
∫

d3r

[

∑

mF

�∗
mF

L�mF
+

∑

mF

∑

m′
F

�∗
mF

(F)mF m′
F
�m′

F

]

.

(C3)

The ground state �g of the system can then be obtained by
minimizing the energy functional

E[�(·, t )] =
∫

d3r

{

∑

mF

(

1

2
|∇�mF

|2 + V (r)nmF

)

− αr · 〈F〉 +
1

2
c0n2(r) +

1

2
c2〈F〉2

}

, (C4)

subjected to the two constraints of number and angular mo-
mentum conservation. This can be simply done by introducing
Lagrange multipliers μ and λ for the four conserved numbers,
meaning one minimizes the following:

EL[�(·, t )] = E[�(·, t )] − μN − λ · 〈J〉, (C5)

using the continuous normalized gradient flow method (imag-
inary time evolution), as described in Ref. [36]. Setting
both c0 = c1 = 0, in Fig. 3 of the main text, we show the

single-particle ground states (for F = 1) for the three different
spin configurations considered there.

2. Full, real-time simulations

We have performed real-time adiabatic flow simulations
of our rescaled system (C2), to confirm and validate our
results in this paper. We used the integrator i-SPin 2 [37]
developed by some of us, in order to perform these real-time
simulations. In general, the pseudospectral algorithm in i-SPin
2 is time reversible, along with norm and spin preserving
to machine precision. It can also handle self-interactions as
well as couplings to time-dependent external fields. For the
interested reader, the details of the algorithm and numerical
implementation can be found in that paper.

For our present purpose, we begin by constructing the
ground state of the initial system (with α = 0 and c2 = 0).
For c0 = 0 this is simply a 3D oscillator ground state (with an
overall desired spin structure), whereas for c0 
= 0 it is not. In
general, we get to this state by using imaginary time evolution
of the system (keeping the total particle number fixed, say
N = 1). Taking this initial state, we then perform real-time
evolution of the system wherein α is increased from 0 to some
large number adiabatically. For this, we used a hyperbolic
tangent function:

α(t ) = p1 tanh[(t − t0)/τ ] + p2, (C6)

where the parameters pi, t0, and τ are chosen such that α(0) =
0 and the final value approaches some desired number. For the
simulations presented in the paper, we set α(t f ) = 6. The time
step used was �t ≈ 0.04 with t f ≈ 107. This meant t0 ≈ 53.5
and τ ≈ 23 in the above parametrization. Finally, the total box
was a 713 grid, with the length of the box in each direction
being 25.

Starting with different ground states (with c0 and different
spin textures) with c2 = 0, we have performed real-time sim-
ulations for both the cases when c2 was kept to zero, and was
turned on to some small but finite value. In the main text, we
show simulation results for the mixed state. Figure 4 shows the
time evolution for the single-particle case (c0 = 0). Figure 5
shows the same for c0 
= 0, with c1 turned on during real-time
evolution.
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