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Abstract
We present analytical results of the fundamental properties of the one-dimensional (1D)
Hubbard model with a repulsive interaction. The new model results with arbitrary external 昀椀elds
include: (I) using the exact solutions of the Bethe ansatz equations of the Hubbard model, we
昀椀rst rigorously calculate the gapless spin and charge excitations, exhibiting exotic features of
fractionalized spinons and holons. We then investigate the gapped excitations in terms of the
spin string and the k−Λ string bound states at arbitrary driving 昀椀elds, showing subtle
differences in spin magnons and charge η-pair excitations. (II) For a high-density and high spin
magnetization region, i.e. near the quadruple critical point, we further analytically obtain the
thermodynamic properties, dimensionless ratios and scaling functions near quantum phase
transitions. (III) Importantly, we give the general scaling functions at quantum criticality for
arbitrary 昀椀lling and interaction strength. These can directly apply to other integrable models.
(IV) Based on the fractional excitations and the scaling laws, the spin-incoherent Luttinger
liquid (SILL) with only the charge propagation mode is elucidated by the asymptotic of the
two-point correlation functions with the help of conformal 昀椀eld theory. We also, for the 昀椀rst
time, obtain the analytical results of the thermodynamics for the SILL. (V) Finally, to capture
deeper insights into the Mott insulator and interaction-driven criticality, we further study the
double occupancy and propose its associated contact and contact susceptibilities, through which
an adiabatic cooling scheme based upon quantum criticality is proposed. In this scenario, we
build up general relations among arbitrary external- and internal-potential-driven quantum
phase transitions, providing a comprehensive understanding of quantum criticality. Our methods
offer rich perspectives of quantum integrability and offer promising guidance for future
experiments with interacting electrons and ultracold atoms, both with and without a lattice.
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1. Introduction

The strongly correlated electronic systems provide us with
a powerful platform to investigate novel and intriguing
many-body phenomena, such as high-Tc superconductors
[1–4], Mott metal–insulator transition [5–9], colossal
magnetoresistance [2, 10] and antiferromagnetic correlations
[11–19], which cannot be merely explained by compounding
of single particle motions. Among the continuum and lattice
models of interacting electrons and ultracold atoms, one of
the prototypical integrable models is the one-band Hubbard
model [20–22]. Recently, particular attention has been paid to
this model because of its operability and accessibility in trap-
ping ultracold atoms on lattices [8, 23–26]. There have been
numerous publications focusing on the 1D Hubbard model
with on-site interaction as well as its variants in one or higher
dimensions [27–33], involving the studies of spectral weights
and critical exponents for correlation functions [6, 7, 34–37],
dynamical transport [36, 38–41], interaction quench [42–44],
etc. In this scenario, the well-celebrated Landau theory of
Fermi liquid [45, 46] remarkably captures essential univer-
sal low-energy physics of interacting fermions and leads to
a wide range of applications in higher-dimensional quantum
many-body systems.

On the other hand, the low-energy excitations of 1D
many-body systems usually lack individual motions of qua-
siparticles. Instead, they form collective motions of bosons,
i.e. Tomonaga–Luttinger liquid (TLL) [47–49]. A hallmark
of interacting electrons in one dimension is the splitting of
low-lying spin and charge excitations into two separate col-
lective motions [26, 50–58], i.e. one solely carrying spin and
the other carrying charge. This is one of the most signi昀椀cant
features predicted by both the integrable theory and the TLL
theory, namely, the propagators generated by excitations sep-
arate into two massless wave packets with distinctive velocit-
ies, vc, vs, in charge and spin degrees of freedom, respectively
[51, 53, 59, 60]. The experimental evidence spin–charge separ-
ation phenomenon was reported in [54, 58, 61–63]. This phe-
nomenon was further evidenced by detecting spin and charge
propagating velocities [26, 54] by quenching an initial Mott
state into few-hole doped states in the 1D Hubbard model.
Meanwhile, some high-energy or gapped excitations may con-
tribute to the optical conductivity [64]. The spin–charge sep-
aration has recently been veri昀椀ed and con昀椀rmed by virtue of
spin and charge dynamical structure factors in 1D Fermi gas
of ultracold atoms [58]. In this research, the team used Bragg
beams to excite spin and charge density waves separately and
measured the corresponding spin and charge Bragg spectra at
different interacting strengths.

By taking into account the curvature correction to the lin-
ear charge excitation spectrum and the nonlinear effect of the
spin backward scattering in the spin sector, the theoretical
and experimental results are in good agreement. Nevertheless,
when the temperature T exceeds a characteristic energy scale
of spin, but is still less than the typical energy of charge
of Fermi energy, i.e. Es ≪ T≪ Ec, the spin degrees of free-
dom are fully disordered, while the charge degrees of free-
dom remain in propagating mode. Such a state is referred
to as spin-incoherent Luttinger liquid (SILL) [65–70]. The
correlation function of the SILL shows an exponential decay
of distance in the spin sector, while it remains a power-law
decay in the charge sector, giving a characteristic of the emer-
gent SILL [65–68], in contrast to the usual TLL where the
correlation functions in both spin and charge sectors exhibit
power-law decay in distance [6, 34, 71–73]. Evidence for
the SILL was recently reported by Hulet’s group at Rice
University [74]. Although there have been extensive studies
on this model, a comprehensive study of the spin-coherent and
incoherent Luttinger liquids, the universal thermodynamics,
fractional quasiparticles and Mott phase in the 1D Hubbard
model remain elusive.

Moreover, compared with continuum gas systems, one
has a consensus that the Mott insulator phase dominated by
antiferromagnetic ordering is of great importance due to its
uniqueness stemming from the Umklapp scattering in terms
of bosonization [75]. There have been ample thoughts and
debates on the mechanism for the onset of the Mott insu-
lator for a long time [7, 76–78]. However, it remains a ser-
ious theoretical challenge to capture the essential nature of
the insulating phase. This massive charge sector with a mass-
less spin degree belongs to the category of the Luther–Emery
model [79–81], whose dynamical spectral function for the
Mott phase displays one or two singularities without anom-
alous dimension [80, 81]. A quantity which is experiment-
ally accessible is the double occupancy, embodying charge
昀氀uctuations. It gives insights into the emergence of the Mott
phase [30, 31, 82] and conveys plentiful information apart
from the Mott phenomenon: for instance, the Pomeranchuk
effect [30, 31, 33], antiferromagnetic correlations [33, 83, 84],
and adiabatic cooling [31, 85, 86] over wide energy scales and
temperature regimes. One of the key aims in this paper is to
de昀椀ne the contact and contact susceptibilities, through which
we further study the adiabatic cooling scheme at quantum
criticality.

The Bethe ansatz provides us with a powerful method
to study the 1D Hubbard Hamiltonian [20, 87]. The frame-
work of building up the 昀椀nite-temperature thermodynamics
of 1D integrable systems can be traced to Yang and Yang’s
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Figure 1. The phase diagram of the 1D repulsive Hubbard model at
昀椀xed interaction u= 1, of which the details are given in section 3.1.
The orange, yellow and red symbols indicate the locations of
excitations plotted in the 昀椀gures in section 2. The white empty circle
in the upper right area containing the quadruple critical point
denotes the regions studied in section 3.1. The white dashed line
denoted by SILL depicts the quantum phase transition from phase
IV to II, which will be investigated in detail in section 3.2.

seminal paper [88]. Later, Takahashi took an important step
forward by treating the thermodynamics of some more com-
plicated integrable systems, and coined the name thermody-
namic Bethe ansatz (TBA) [21]. In this scenario, a quantum
transfer matrix was successfully developed for the study of
the thermodynamics of integrable models in terms of the path
integral [89, 90]. These two approaches endow us with the
possibility to acquire the excitation spectra [91, 92], univer-
sal free Luttinger liquids information [57] and correlation
functions [34, 36] for both the repulsive and the attractive
Hubbard model [92–103], despite signi昀椀cant challenges in
the actual calculations of physical properties due to the com-
plexity of the TBA equations at arbitrary temperature. For
higher dimensionality and various lattice symmetries [27–29,
32], there does not seem to be any completely applicable the-
oretical schemes, and commonly exploited numerical simu-
lation methods include quantum Monte Carlo methods [28,
33, 37, 86], matrix-decomposition algorithms [104], dynam-
ical mean-昀椀eld theory [27, 32, 33], exact diagonalization
[105, 106], perturbation theory [107, 108], density-Matrix
renormalization groups [44, 53] and other generalizations
[29, 108].

Using the TBA approach, the 1D repulsive Hubbard model
is shown to contain 昀椀ve phases in the parameter space spanned
by the chemical potential and the magnetic 昀椀eld, see 昀椀gure 1:
(I) vacuum; (II) partially 昀椀lled and spin fully polarized state;
(III) half-昀椀lled and spin fully polarized state; (IV) partially
昀椀lled and magnetized band; (V) half-昀椀lled magnetized band,
also referred to as the Mott insulator. In this paper we aim
to present general analytical results of the thermodynamics,
independent of microscopic details, of the model. To smoothly
carry out the subsequent discussions on the fundamental prop-
erties of different states, we mark the locations and the regions

in the phase diagram in 昀椀gure 1, which we will study in this
paper.

The elementary excitations in spin and charge sectors and
the universal thermodynamics of the 1D repulsive Hubbard
model are brie昀氀y discussed in [109]. In this paper, we develop
analytical methods to obtain fundamental properties of the 1D
Hubbard model with repulsive interaction and in the presence
of external 昀椀elds. In particular, using the exact solutions of
the Bethe ansatz equations of the Hubbard model, we rigor-
ously calculate fractional excitation spectra, universal ther-
modynamics, scaling functions, incoherent correlation func-
tions, contact, contact susceptibilities, quantum cooling and
interaction-driven quantum phase transitions in a pedagogical
way. The exact results of various excitation spectra reveal
exotic features of fractionalized spinons and holons, and show
subtle differences in spin magnons and charge η-pair excita-
tions. Universal thermodynamic properties of spin and charge
Luttinger liquids, and dimensionless ratios and scaling func-
tions near quantum phase transitions in terms of the chemical
potential, magnetic 昀椀eld and interaction are obtained explicitly
near the quadruple critical point. The asymptotic two-point
correlation functions for the SILL are derived with the help of
the conformal 昀椀eld theory. Finally, we study the double occu-
pancy, the contact, contact susceptibilities, interaction-driven
adiabatic cooling scheme, and the criticality andMott insulator
behaviour of the model as well.

The outline of this paper is as follows. In section 2, we
introduce the basic knowledge of the exact Bethe ansatz solu-
tion of the repulsive Hubbard model and calculate the excit-
ation spectra of fractional holons and spinons as well as the
gapped excitations above the ground state. In section 3.1, using
our newly developed methods, we initiate our study on the
thermal and magnetic properties of TLL, quantum criticality,
non-Fermi liquid behaviour and the universal laws in the 1D
Hubbard model. In section 3.2, we study the SILL from the
Bethe ansatz and quantum phase transition perspective. The
asymptotic single-particle Green’s function and pairing cor-
relation function are presented. A depiction of double occu-
pancy and analytical calculation of contact and its susceptibil-
ities with respect to the chemical potential, magnetic 昀椀eld and
interaction near the Mott phase are given in section 3.3. In this
section, we also carry out a detailed analysis on quantum cool-
ing and interaction-driven phase transitions. Section 4 presents
a summary and outlooks.

2. Fractional holons and spinons

Fundamental low-energy physics is intimately related to the
elementary excitations in 1D many-body systems. In par-
ticular, the low-lying excited states involve many-body cor-
relations and determine the unique dynamics of the 1D
Hubbard model, showing novel features of fractional holons
and spinons. In the Mott phase, the excitations show a charge
gapped phase with antiferromagnetic correlations in the spin
sector. Spin and charge particle–hole excitations reveal the
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origins of the spin-coherent TLL and spin-incoherent liquid in
a crossover temperature regime. The purpose of this section is
to calculate typical excitation spectra of the repulsive Hubbard
model, which complements the study in the literature: see a
review [22].

2.1. Bethe ansatz equations and root patterns

For self-containment, here we 昀椀rst introduce relevant nota-
tions and recall some fundamental equations with respect to
the Bethe ansatz solutions used in this paper. In the presence of
external potentials, the 1D Hamiltonian of the Hubbard model
is given by

H=−
L
∑

j=1

∑

a=↑↓

(

c+j,acj+1,a+ c+j+1,acj,a
)

+ u
L
∑

j=1

(1− 2nj↑)(1− 2nj↓)−µN̂− 2BŜz, (1)

where c†j,a and cj,a are the creation and annihilation operators
of fermions with spin a(a=↑, ↓) at site j in a periodic lattice
of length L, njσ is the particle density operator of spin σ at

site j, N̂=
∑L

j=1(nj↑ + nj↓) is the total number particle oper-

ator, and Ŝz = 1
2

∑L
j=1(nj↑ − nj↓) is the magnetization oper-

ator. The hopping amplitude is set to unity, which also sets the
units for energy. The chemical potential µ and magnetic 昀椀eld
B are rescaled with respect to the hopping term. Here, u repres-
ents the on-site interaction between particles of opposite spins:
u> 0 for repulsion, and u< 0 for attraction. The repulsive and
the attractive Hubbard model can be converted into each other
via the Shiba transformation. In addition to the hopping amp-
litude, we choose a unit system by setting kB, h̄ to 1 throughout
the paper.

In the absence of the external potential (µ= 0,B=
0) and even lattice sites, the Hamiltonian (1) possesses
SO(4)∼= SU(2)× SU(2)/Z2 full symmetry composed of spin
rotation and η-pairing invariance [92]:

[H,Sα] = 0, [H,ηα] = 0, (2)

where the spin and η-pair operators are given by

Sα =
1
2

L
∑

j=1

∑

a,b=↑,↓
c+j,a (σ

α)
a
b cj,b,

ηx =− 1
2

L
∑

j=1

(−1)j
(

c+j,↑c
+
j,↓ + cj,↑cj,↓

)

,

ηy =
i
2

L
∑

j=1

(−1)j
(

c+j,↑c
+
j,↓ − cj,↑cj,↓

)

,

ηz =
1
2
(N− L) ,

(3)

Figure 2. The string patterns of Λ strings (left con昀椀gurations) and
k−Λ strings (right con昀椀gurations). The left Λ strings show one
length-1, two length-2 and one length-3 Λ strings. The right k−Λ
strings involve one length-1 k−Λ string, two length-2 k−Λ strings
and one length-3 k−Λ string.

which are useful for the analysis of elementary excita-
tions at a zero magnetic 昀椀eld and half-昀椀lled band [92].
In the above equation, σα with ³= x,y,z denote the Pauli
matrices.

On a lattice model, the average particle number per site
denoted by nc can vary from 0 to 2. In this paper, we will
consider the case where the particle number per site is no lar-
ger than one with the magnetization denoted by m less than
nc/2 for repulsive interaction, i.e. it corresponds to a negative
chemical potential and positive magnetic 昀椀eld. The regions for
nc > 1, m> nc/2 are related to that studied here in terms of
discrete symmetries [22].

The eigenvalues of {k}, {Λ}, which are, respectively, the
solutions of charge quasi-momentum and spin rapidity of this
model, can be obtained by solving the Lieb–Wu equations
[20]. Meanwhile, Takahashi [21] assumed that the quasi-
momenta {k}, {Λ} exhibit different patterns, which determine
the full states of the model. The root patterns of the repulsive
Hubbard model can be categorized into three types: single real
k, length-n Λ strings composed of n spin-down electrons, and
length-m k−Λ string containing m spin-down and m spin-up
particles, see 昀椀gure 2 and also [92]. LetMe,Mn,M ′

n denote the
number of k, Λ strings and k−Λ strings of length n, respect-
ively. Therefore, the total particle number N and spin-down
electron number M read:

M=
∞
∑

n=1

n(Mn+M ′
n) ,

N=Me+
∞
∑

n=1

2nM ′
n.

(4)

For the ease of discussion, we choose to present the fol-
lowing Bethe ansatz equations and the TBA equations of the
1D repulsive Hubbard model, based on which, we will ana-
lytically derive the physical properties of the model. In terms
of the string solutions, the real centres of these roots sat-
isfy the so-called Takahashi’s forms of Bethe ansatz equations
[21]:
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kjL= 2π Ij−
∞
∑

n=1

Mn
∑

α=1

θ

(

sinkj−Λn
α

nu

)

−
∞
∑

n=1

M ′

n
∑

α=1

θ

(

sinkj−Λ ′n
α

nu

)

,

N−2M ′

∑

j=1

θ

(

Λn
α − sinkj
nu

)

= 2π Jnα +
∞
∑

m=1

Mm
∑

β=1

Θnm

(

Λn
α −Λm

β

u

)

,

2LRe [arcsin(Λ ′n
α + niu)]

= 2π J ′nα +
N−2M ′

∑

j=1

θ

(

Λ ′n
α − sinkj
nu

)

+
∞
∑

m=1

M ′

m
∑

β=1

Θnm

(

Λn
α −Λ ′m

β

u

)

, (5)

where θ(x) = 2arctan(x) and Θnm is de昀椀ned as

Θnm (x) =







θ
(

x
|n−m|

)

+ 2θ
(

x
|n−m|+2

)

+ · · ·+ 2θ
(

x
n+m−2

)

+ θ
(

x
n+m

)

, if n ̸= m

2θ
(

x
2

)

+ 2θ
(

x
4

)

+ · · ·+ 2θ
(

x
2n−2

)

+ θ
(

x
2n

)

, if n= m
. (6)

The counting numbers Ij,Jnα,J
′n
α are integer or half-odd

integers, which rely on the odevity of the string number,

Ij is

{

integer if
∑

m (Mm+M ′
m) is even

half-odd integer if
∑

m (Mm+M ′
m) is odd

, (7)

Jnα is

{

integer if N−Mn is odd

half-odd integer if N−Mn is even,
, (8)

J ′nα is

{

integer if L−N+M ′
n is odd

half-odd integer if L−N+M ′
n is even

. (9)

The classi昀椀cation of these quantum numbers will be needed to
characterize the excitations, which will be presented later.

Every selected set of quantum numbers Ij,Jnα,J
′n
α uniquely

determine the value of quasi-momenta kj, Λn
α, Λ

′n
α , and thus

yield a speci昀椀c eigenstate of the model. These numbers are in
the ranges of

− L
2
< Ij ⩽

L
2
,

|Jnα|⩽
1
2

(

N− 2M ′ −
∞
∑

m=1

tnmMm− 1

)

,

|J ′nα |⩽ 1
2

(

L−N+ 2M ′ −
∞
∑

m=1

tnmM
′
m− 1

)

,

(10)

where M ′ =
∑∞

n=1 nM
′
n is the entire number of spin-down

particles included in k−Λ strings, and tmn = 2min(m,n)−
¶mn.

Denoting ρp,σpn ,σ
′p
n (ρh,σhn ,σ

′h
n ) as the densities of real

quasi-momenta k, the real part of the length-n spin strings and
the real part of length-n k−Λ strings for particles (holes), the

root distributions of these types of root patterns are given by
[21]

ρp (k)+ ρh (k) =
1
2π

+ cosk
∞
∑

n=1

ˆ ∞

−∞
dΛan (Λ− sink)

× (σ ′p
n (Λ)+σpn (Λ)) ,

σpn (Λ)+σhn (Λ) =−
∞
∑

m=1

Anm ∗σpm (Λ)

+

ˆ π

−π

dkan (sink−Λ)ρp (k) ,

σ ′p
n (Λ)+σ ′h

n (Λ) =
1
π
Re

1
√

1− (Λ− inu)2

−
∞
∑

m=1

Anm ∗σ ′p
m (Λ)

−
ˆ π

−π

dkan (sink−Λ)ρp (k) , (11)

respectively. In the above equations an(x) = 1
2π

2nu
(nu)2+x2 , and

the convolution term denoted by ∗ denotes a convolution

Anm ∗ f(x) =
ˆ ∞

−∞

dy
2π

d
dx

Θnm

(

x− y
u

)

f(y) . (12)

The function Anm denotes a derivative of the function Θnm,
namely,

5
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Anm

(

x− y
u

)

=
1
2π

d
dx

Θnm

(

x− y
u

)

=

{

a|n−m| (x− y)+ 2a|n−m|+2 (x− y)+ · · ·+ 2an+m−2 (x− y)+ an+m (x− y) , if n ̸= m
2a2 (x− y)+ 2a4 (x− y)+ · · ·+ 2a2n−2 (x− y)+ a2n (x− y) , if n= m

. (13)

Following the Yang–Yang method [88], the true phys-
ical equilibrium states at 昀椀nite temperature can be determ-
ined by the minimization of the free energy with respect
to the densities. The TBA equations for dressed energies
κ(k), εn(Λ), ε ′

n(Λ), associated with the product of the log-
arithm of the ratio of the hole density to the particle

density and temperature κ= T ln
(

ρh

ρp

)

, εn = T ln
(

σh
n

σp
n

)

, ε ′
n =

T ln
(

σ ′h
n

σ ′p
n

)

, are given by the following form [21]

κ(k) =−2cosk−µ− 2u−B

+
∞
∑

n=1

ˆ ∞

−∞
dΛan (sink−Λ)T ln

(

1+ e−
ε
′

n (Λ)

T

)

−
∞
∑

n=1

ˆ ∞

−∞
dΛan (sink−Λ)T ln

(

1+ e−
εn(Λ)

T

)

,

(14)

εn (Λ) = 2nB−
ˆ π

−π

dkcoskan (sink−Λ)T ln
(

1+ e−
κ(k)
T

)

+
∞
∑

m=1

Anm ∗T ln
(

1+ e−
εm(Λ)

T

)

, (15)

ε ′
n (Λ) = 4Re

√

1− (Λ− inu)2 − 2nµ− 4nu

−
ˆ π

−π

dkcoskan (sink−Λ)T ln
(

1+ e−
κ(k)
T

)

+
∞
∑

m=1

Anm ∗T ln
(

1+ e−
ε
′

m(Λ)

T

)

. (16)

It is observed that the above dressed energies are even func-
tions with respect to their variables and exhibit monotonic-
ally increasing behaviour in the positive argument space. The
Gibbs free energy per site is given by

f =−T
ˆ π

−π

dk
2π

ln
(

1+ e−
κ(k)
T

)

+ u

− T
∞
∑

n=1

ˆ ∞

−∞

dΛ
π

Re
1

√

1− (Λ− inu)2
ln

(

1+ e−
ε
′

n (Λ)

T

)

,

(17)

which serves as the equation of state, from which one can
directly obtain the pro昀椀les of the ground state and thermody-
namic properties of the Hubbard model at zero and 昀椀nite tem-
peratures by solving equations (14)–(16). However, 昀椀nding the
solution to the TBA equations (14)–(16) imposes a signi昀椀cant
theoretical challenge. As a result, a comprehensive study of

universal thermodynamics, Luttinger liquid properties, mag-
netic properties and scaling functions in the vicinities of the
critical points, as well as the behaviour of the Mott phase and
quantum cooling in the 1D Hubbard model is still incomplete
in the literature.

2.2. Ground state

In the limit of zero temperature, one can see that the dressed
energies of the length-n Λ strings with n> 1 and all k−Λ are
always positive in the parameter space. Consequently, they do
not contribute to zero-temperature thermal and magnetic prop-
erties. The real k and length-1 Λ string should be cut off at the
points where the dressed energies change sign. Thereby, in the
ground state, the coupled equations for the dressed energies,
densities and hole distribution functions [20] are greatly sim-
pli昀椀ed

κ(k) =−2cosk−µ− 2u−B

+

ˆ A

−A
dΛa1 (sink−Λ)ε1 (Λ) , (18)

ε1 (Λ) = 2B+
ˆ Q

−Q
dkcoska1 (sink−Λ)κ(k)

−
ˆ A

−A
dΛ ′a2 (Λ−Λ ′)ε1 (Λ

′) , (19)

ρp (k) = θH (Q− |k|)
[

1
2π

+ cosk
ˆ A

−A
dΛa1

× (sink−Λ)σp1 (Λ)

]

,

σp1 (Λ) = θH (A− |Λ|)
[

−
ˆ A

−A
dΛ ′a2 (Λ−Λ ′)σp1 (Λ

′)

+

ˆ Q

−Q
dka1 (sink−Λ)ρp (k)

]

,

ρh (k) = θH (|k| −Q)

[

1
2π

+ cosk
ˆ A

−A
dΛa1

× (sink−Λ)σp1 (Λ)

]

,

σh1 (Λ) = θH (|Λ| −A)

[

−
ˆ A

−A
dΛ ′a2 (Λ−Λ ′)σp1 (Λ

′)

+

ˆ Q

−Q
dka1 (sink−Λ)ρp (k)

]

,

6
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σhn (Λ) =−An1 ∗σp1 (Λ)+
ˆ Q

−Q
dkan (sink−Λ)ρp (k) , for,

n⩾ 2,

σ ′h
n (Λ) =

1
π
Re

1
√

1− (Λ− inu)2

−
ˆ Q

−Q
dkan (sink−Λ)ρp (k) ,

where Q, A are the Fermi points of charge and spin, respect-
ively, determined by κ(Q) = 0, ε1(A) = 0, and θH is the
Heaviside step function. We observe that particles only exist
within Fermi points, while holons locate outside in the ground
state. In the above equations, we also present the hole dens-
ity distribution functions for Λ strings and k−Λ strings for
our later calculation. By de昀椀ning the total quantities ρ= ρp+
ρk, σ1 = σp1 +σh1 , the density Bethe ansatz equations can thus
be recast in a more succinct form

ρ(k) =
1
2π

+ cosk
ˆ A

−A
dΛa1 (Λ− sink)σ1 (Λ) , (20)

σ1 (Λ) =−
ˆ A

−A
dΛ ′a2 (Λ−Λ ′)σ1 (Λ

′)

+

ˆ Q

−Q
dka1 (sink−Λ)ρ(k) . (21)

Thus, the average total particle number per size and the aver-
age spin-down particle number per size can be expressed in
terms of equations (20) and (21) as

nc =
ˆ Q

−Q
dkρ(k) , (22)

n↓ =
ˆ A

−A
dΛσ1 (Λ) . (23)

The momenta of the charge and spin quasiparticles for |k|⩽
Q, |Λ|⩽ A, and holons for |k|> Q, |Λ|> A in terms of the
quasi-momentum parameters kj,Λn

α, Λ
′n
α can be calculated via

the following expressions

p(k) =
2π Ik
L

= 2π
ˆ k

0
dk ′ρ(k ′) , (24)

p1 (Λ) =
2π J1
L

= 2π
ˆ Λ

0
dΛ ′σ1 (Λ

′) , (25)

pn (Λ) =
2π Jn
L

= 2π
ˆ Λ

0
dΛ ′σhn (Λ

′) , n⩾ 2, (26)

p ′
n (Λ) =

2π J ′n
L

=−2π
ˆ Λ

0
dΛ ′σ ′h

n (Λ ′)+π (n+ 1) , n⩾ 1.

(27)

Let us denote NGS as the total particle number, and MGS

as the spin-down number in the ground state. Consider the
ground-state structure in the presence of a magnetic 昀椀eld and
0< nc < 1 as follows (assume the lattice length L is even):

Me = NGS = 2 ∗MGS < L, M1 =MGS is an odd number and
less than NGS/2, Mn = 0 for n⩾ 2,M ′

n = 0 for n⩾ 1; that
is, both charge and spin sectors are partially 昀椀lled, and all
particles form charge and spin Fermi seas, the inside of which
are referred to as antiholon states for charge and spinon states
for spin degrees of freedom. At zero temperature, the system
lies in its lowest energy state and particles are symmetric-
ally distributed around zero momentum. Using equations (7),
(8) and (24)–(27), we can evaluate that {Ij} are half-odd
integers and 昀椀ll in the interval

[

−NGS−1
2 , NGS−1

2

]

, whereas
{

J1α
}

are integers within
[

−MGS−1
2 , MGS−1

2

]

. The momentum
distribution p(k), p1(Λ) respectively covers the intervals of
[−πnc,πnc] and [−πn↓,πn↓]. It is inferred from equation (10)
that the values for the quantum numbers

{

J1α
}

satisfy
∣

∣J1α
∣

∣⩽
1
2 (NGS −MGS − 1). This implies that there are NGS −MGS

vacancies for J1α and thus NGS − 2MGS holes are left. Building
on the quantum numbers of the ground state, elementary excit-
ations can be classi昀椀ed into two types: gapless and gapped
excitations. Particle–hole excitations, as well as their combin-
ations, belong to the gapless ones, which always occur in suf-
昀椀cient low-energy sectors. Whereas the length-n k−Λ and Λ
strings with n> 1 require additional energy to be excited. The
key points for the excitation spectrum calculation are stated
below:

• The dressed energy is an exact excitation energy of
the particle with the corresponding momentum, and
holon energy corresponds to the negative dressed energy.
Basically, the energies of particle excitations for different
types of quasiparticles are κ(k), εn(Λ) and ε ′

n(Λ), while
their corresponding holon excitations are −κ(k), −εn(Λ)
and −ε ′

n(Λ), respectively.
• By changing the quantum numbersMe,Mn andM ′

n, one can
analyze the excited structure with respect to the ground state
to capture the holon or particle excitations of each type of
string.

• If there is no extra hole or particle appearing over the ground
state, the particle–hole excitation can exist. This type of
excitation does not alter the total particle number or par-
ity. The particle–hole excitations not only result in universal
TLL in spin and charge sectors, but also essentially determ-
ine the dynamical correlation functions at low energy.

• Individual particle and holon excitations can be transformed
into each other, e.g. in 昀椀gure 3, a holon excitation can be
created by conducting two particle–hole excitations over a
particle excitation.

• When Ij changes from a half-odd (integer) to an integer
(half-odd), extra constant momentum ±πnc needs to be
added to the total momentum with a change in parity. (In
the later study, we only consider the case of πnc, which is
also relevant in the continuum model. The case for −πnc is
symmetric with the former.). See, for example, 昀椀gure 4.

• A multi-parametric excitation can be decomposed into few-
parametric elementary excitations. Once a few particle
excitations are determined, analytical expressions of mul-
tiple particle excitations are created by a few elementary

7
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Figure 3. Illustration of two equivalent excitations: a transformation between particle excitation and holon excitation.

Figure 4. Illustration of the variation of parity in excitation.

excitations.We elucidate this approach in the supplementary
material7, e.g.Me = NGS + 2 is composed of double excita-
tions with Me = NGS + 1.

The techniques outlined above enable us to classify the pro-
cesses of complicated excitations, based on which we can con-
ceive the unique collective nature of fractional excitations.
Next, we will present various spectrum patterns of elementary
excitations at different points of the phase diagram, as indic-
ated in 昀椀gure 1, which are helpful for later analysis.

2.3. Fractional charge and spin excitations

Elementary excitations of the Hubbard model were studied
in the literature: see [22]. Here we present a comprehens-
ive understanding of fractional excitations and various gapped
excitations, which provide deep insights into Luttinger liquid,
spin-incoherent liquid and low-energy physics.

2.3.1. Particle–hole and two-spinon excitations. We 昀椀rst
study the elementary excitation of one spin 昀氀ip, i.e. one spin-
down particle in the ground state 昀氀ips its spin, for which we
have a change Me = L,M1 =MGS − 1. Here, we take MGS to
be an odd number. From equations (7) and (8), we can determ-
ine that the quantum numbers {Ij} are integers and J1α are

7 See supplementary material in which we present some key derivations of
the results on the gapped excitations, universal thermodynamics, free energy
of phase III, magnetic properties, quantum criticality and general universal
scaling functions for the 1D repulsive Hubbard model.

half-odd integers within the ranges − L
2 < Ij ⩽ L

2 and
∣

∣J1α
∣

∣⩽
1
2 (NGS −MGS), respectively. Therefore the vacancies for spin
are NGS −MGS + 1. In contrast to the ground state, one more
vacancy arises with a diminished particle in the spin sector,
and thus two holes, Λh1, Λh2, carrying separate spin 1

2 are cre-
ated in the spinon band for Λ. For this spin 昀氀ipping excitation,
η pairing and spin magnetization (∆ηz,∆Sz) are determined
through∆ηz = ∆N

2 ,∆Sz = ∆N−2∆M
2 with N,M being the total

particle number and spin-down number in the excited state, i.e.
(∆ηz,∆Sz) = (0,1) in this sample. This excitation con昀椀gura-
tion is shown in 昀椀gure 5.

On the other hand, the particle–hole excitation can be con-
structed in the charge sector with a particle taken out from
|k|< Q to |k|> Q, leaving a holon kh inside the antiholon band
and a particle kp in the holon states. The energies andmomenta
of the particle–hole excitation in the charge sector and the two-
spinon excitation in the spin sector are given by

Eph = κ(kp)−κ(kh) , Pph = p(kp)− p(kh) , (28)

Ess =−ε1 (Λh1)− ε1 (Λh2) ,

Pss =−p1 (Λh1)− p1 (Λh2)+πnc. (29)

In 昀椀gure 6, we demonstrate the results of the particle–
hole and the two-spinon excitations for various parameters.
Obviously, one universal nature of low-energy excitation spec-
tra is the existence of spin–charge separation behaviour [51,
53, 60], visualizing the theory of the spin–charge-separated
TLL. In the absence of the magnetic 昀椀eld, the system has
spin rotation symmetry. Figure 6(a) shows the particle–hole
excitation in the charge sector away from the half-昀椀lled lattice

8
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Figure 5. Illustration of the particle–hole excitation in the charge sector and two-spinon excitation in the spin sector.

Figure 6. Elementary excitations in spin and charge sectors. The shaded area in orange represents a particle–hole excitation of charge,
where one particle inside the Fermi sea is excited to outside at different 昀椀llings. Meanwhile, the shaded area in green presents a two-holon
excitation in the spin sector. All the 昀椀gures are drawn in the 昀椀rst Brillouin zone. The interaction u is 昀椀xed to unity for all the 昀椀gures except
(b). (a) For the case away from the half-昀椀lled band at zero magnetic 昀椀eld with B= 0,µ=−1.5765 corresponding to the yellow circle in
昀椀gure 1, we have charge and spin sound velocities vc = 2.0907, vs = 1.2259 in the long wave length limit, respectively; (b) for strong
coupling at zero magnetic 昀椀eld with nc = 0.6496,u= 10, we have charge and spin sound velocities vc = 1.8533,vs = 0.1824 for the zero
momentum limit, respectively. (c) We present a general case with the presence of magnetization, B= 0.555,µ=−1.32, corresponding to
the red star in 昀椀gure 1; (d) we present charge and spin excitations near the half-昀椀lled phase with a 昀椀nite magnetization,
B= 0.555,µ=−0.722, corresponding to the orange diamond in 昀椀gure 1; (e) we demonstrate excitations near a spin-polarized band,
B= 0.555,µ=−1.77, corresponding to the orange square in 昀椀gure 1. At a low-energy scale, the holon excitation energy (empty-circles) is
higher than the particle excitation energy (昀椀lled-circles); (f) we show excitations at B= 0.3,µ=−2.5 for a comparison with 昀椀gure (e),
corresponding to the orange circle in 昀椀gure 1.
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and the two-spinon excitation in the spin sector, which fully
accounts for the 昀椀rst Brillouin zone.

In contrast, 昀椀gure 6(b) shows the particle–hole excita-
tion and the two-spinon excitation in the strong coupling
limit, reminiscent of the spin–charge-separated spectra in the
1D Yang-Gaudin model [57]. The slopes of the dispersion
are characterized by the velocities vc, vs, displaying vs ≪ vc,
which were recently measured experimentally in a quasi-1D
trapped repulsive Fermi gas [58]. This regime offers a remark-
able possibility to study the SILL, which occurs when the
temperature exceeds the spin characteristic energy, but is still
less than the charge energy. In the SILL, the spin degrees of
freedom is frozen. However, the charge degrees of freedom
propagates as a sound mode, behaving like spinless fermions
[65–67].

Figures 6(c) and (d) present the particle–hole excitation and
the two-spinon excitation for an arbitrary magnetic 昀椀eld, away
from the half-昀椀lled and near half-昀椀lled regions, respectively.
In these two cases, the spin degree is highly suppressed in
the presence of the magnetic 昀椀eld. The spin and charge velo-
cities are signi昀椀cantly different, and the spectra of spin and
charge display a large separation. In particular, in 昀椀gure 6(d),
the charge band is very narrow, behaving like a single particle,
which was experimentally studied in [26]. The spin velocity
exceeds the sound velocity of charge. Figures 6(e) and (f)
show that in the charge sector, the energy of holon excita-
tion at small momentum can exceed that of particle excita-
tion in the Hubbard model due to the cosine term presented
in the charge dispersion, which is prohibited in the continuum
model [57, 72]. Nevertheless, when the system approaches the
Mott phase, the charge excitation gradually shrinks to the cases
observed in 昀椀gure 6(d), indicating an emergence of single-
particle excitation in the charge sector [26]. In general, the
spin sector exhibits similar behaviour to that of the Heisenberg
chain [110, 111]. When a magnetic 昀椀eld is applied, the two-
spinon excitation is no longer the low-energy one in the sense
that it does not 昀椀ll the entire Brillouin area. The role played by
the low-energy excitation in the spin degrees of freedom is the
spin particle–hole spectrum, as depicted in 昀椀gure 7.

2.3.2. Antiholon– and holon–spinon excitations. Let us fur-
ther consider fractional holon and spinon excitations, induced
by adding or removing a particle with spin up or down over
the ground state in the Hubbard model. There are four con-
昀椀gurations with the following quantum numbers: (a)Me =
NGS + 1,M1 =MGS + 1, involving excitations of one antiho-
lon particle in the charge and one spinon particle in the spin
sector; (b) Me = NGS − 1,M1 =MGS, involving excitations of
one holon in the charge and one spinon particle in the spin sec-
tor; (c) Me = NGS + 1,M1 =MGS, involving excitations of an
antiholon particle in the charge and one spinon hole in the spin
sector. This con昀椀guration is shown in 昀椀gure 8; (d)Me = NGS −
1,M1 =MGS − 1, involving excitations of one holon in the
charge and one spinon hole in the spin sector. These four excit-
ations can be classi昀椀ed by the charge and spin magnetization

Figure 7. The shaded area in orange represents a particle–hole
excitation of charge. The blue shaded area denotes spin
particle–hole excitation. The green colour denotes the two-spinon
excitation, the same as 昀椀gure 6. This reveals subtle separation of
spin and charge excitations in the presence of a magnetic 昀椀eld. The
parameter corresponds to the red star in 昀椀gure 1.

Figure 8. The antiholon–spinon hole excitations.

values (∆ηz,∆Sz): correspondingly, (a) the antiholon–spinon
particle ( 12 ,− 1

2 ), (b) the holon–spinon particle (− 1
2 ,− 1

2 ), (c)
the antiholon–spinon hole ( 12 ,

1
2 ) and (d) the holon–spinon hole

(− 1
2 ,

1
2 ). Analogous to previous discussion, we obtain the fol-

lowing results of the excitation spectra

(a)

{

Ehs = κ(kp)+ ε1 (Λp)

Phs = p(kp)+ p1 (Λp)+πnc

(b)

{

Ehs =−κ(kh)+ ε1 (Λp)
Phs =−p(kh)+ p1 (Λp)

,

(c)

{

Ehs = κ(kp)− ε1 (Λh)
Phs = p(kp)− p1 (Λh)

,

(d)

{

Ehs =−κ(kh)− ε1 (Λh)
Phs =−p(kh)− p1 (Λh)+πnc

. (30)

As a result of the above discussion, these four excitation
patterns can be converted to each other through certain num-
bers of particle–hole excitations. Their continuum spectra are
depicted in 昀椀gure 9. Comparing the upper (low spin-down
density) and lower (near half-昀椀lled) panels of the 昀椀gure 9, we
observe that the cases in (a), (c) and (d), which are related to
the antiholon excitations in the charge sector or spinon hole
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Figure 9. Fractional holon and spinon excitations: from left to right (a) antiholon–spinon particle excitation ( 12 ,−
1
2 ), (b) holon–spinon

particle excitation (− 1
2 ,−

1
2 ), (c) antiholon–spinon hole excitation ( 12 ,

1
2 ) and (d) holon–spinon hole excitation (− 1

2 ,
1
2 ). Upper panel:

excitation spectra in the low spin-down density area with nc = 0.6859,n↓ = 0.1207, corresponding to the orange square in 昀椀gure 1; lower
panel: excitation spectra near half-昀椀lled states with density nc = 0.9775,n↓ = 0.298, corresponding to the orange diamond in 昀椀gure 1. In
each panel, the excitation bands in (a) and (d) are centred around the πnc, whereas the excitation bands in (b) and (c) are centred around π.

excitations in the spin part, are signi昀椀cantly affected by the
昀椀lling and magnetization. When the charge sector approaches
a gapped phase, see 昀椀gures 9(a) and (c), the energy range of
the antiholon becomes narrow, causing the excitations to dis-
play single-particle behaviour. This excitation mode is studied
in terms of a spin–charge scattering state, rather than a spin–
charge separation state in collective excitations in 昀椀gure 6.

In general, we observe that the gapless excitations occur
only at a suf昀椀ciently small energy scale. The charge and spin
excitations are well decoupled only in certain con昀椀gurations,
as demonstrated in 昀椀gures 6 and 7. This spin–charge separ-
ation phenomenon is unique in 1D strongly correlated elec-
tron systems and can be described by the spin-coherent and
spin-incoherent TLL theory. Based on the above illustrations
of excitations of spin and charge, we will further study the
spin-coherent and spin-incoherent TLLs in the 1D Hubbard
model below. In the supplementary material7, some gapped
excitations such as k−Λ strings and Λ strings, are presented
for completeness.

3. Universal thermodynamics and quantum
criticality

The 1D Hubbard model yields profound many-body phys-
ics at zero and 昀椀nite temperatures. It exhibits rich quantum
phases and universal thermodynamics when the temperature
is much lower than the Fermi energy. A comprehensive under-
standing of the universal low-temperature behaviour, however,
remains challenging due to the complexity of the Bethe ansatz
equations and itsN!-many terms of the wave function. Because
of the complexity and intricacy of spin and charge root string
patterns in the Bethe ansatz equations and the TBA equations
[22], most studies on the thermal and magnetic properties of
the 1D Hubbard model have been carried out only at zero tem-
perature with half-昀椀lled states [20, 22] or at a zero magnetic
昀椀eld [112, 113]. Even in the low-temperature regime, there

is no well-established understanding of universal behaviour,
such as TLL, SILL and quantum scaling functions. Likely,
this can be resorted to numerical simulation by iterative means
[5, 36, 38, 114, 115]. However, the analytical results of the
TLL and quantum criticality are still elusive. In this section,
昀椀rstly, we will present our analytical and numerical studies
of universal thermodynamics and quantum criticality of the
1D Hubbard model using the TBA equations near the quad-
ruple critical point, the region marked by the white empty
circle in 昀椀gure 1. In this regime, the model is rarely studied
due to the coupling of the two degrees of freedom. And this
regime involves four phases of states that manifest the trans-
itions of three important states: only spin degrees of freedom in
phase V, only charge degrees of freedom in phase III and spin–
charge coexisting in phase IV. More importantly, we will give
general scaling laws at an arbitrary magnetic 昀椀eld and chem-
ical potential. Then, from the perspective of quantum phase
transitions, we recognize the emergence of SILL, which is less
understood from the perspective of Bethe ansatz. Finally, we
will study interaction-driven quantum phase transition. This is
an aspect with little-known analytical results. We will estab-
lish relationships between the two phase transitions driven by
external potentials and internal degrees of freedom like inter-
action. Our work completes the analytical study of universality
of phase transitions with a generality.

Here, for clarity, we summarize our main results of
section 3 in table 1, and the calculation details are presented
in sections 3.1, 3.2 and 3.3 as well as the supplementary
material7.

3.1. Thermodynamic quantities in the ground state and
low-temperature regime

3.1.1. Dimensionless ratios and phase diagram. In this part,
we study the dimensionless ratios and their application in
the 1D Hubbard model. Before doing so, let us 昀椀rst give
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Table 1. Universal properties of the 1D Hubbard model.

Properties
Phases II IV V III

Wilson ratios Rχs
w

equation (32)
2 4(vcKs+ vsKsc)/(vs+ vc) 8Ks 0

Free energies f f0 − (πT2)/(6vc) f0 − (πT2)(1/vc+ 1/vs)/6 f0 − (πT2)/(6vs) −µ− u−B+ g 3
2
T

3
2 +

g2T
2 + g 5

2
T

5
2

equation (34) equations (33) and (40) equation (35) equation (36)

Magnetic properties χc,χs: equation (43) χc: equations (52) and (57) χc: equation (46) χc,χs: 0
χs: equations (53) and (58) χs: equation (47) χc,χs: 0

External-potential-driven
scaling laws

near quadruple point: equations (82), (86), (90)–(95) and (103)–(108)
general: equations (114)–(118)

SILL thermodynamics: equation (129)
∖ ∖

correlation functions: equations (133)–(137)

Contact and contact
susceptibilities

∖

IV-V: equations (144)–(147)
∖

Interaction-driven
scaling laws

IV–V: equations (168)–(170) and (179); II–IV: equations (174) and (178)
general: equations (175)–(177)

a brief view of the ground-state phase diagram determined
by equations (18) and (19). In the limit of zero temperature,
the dressed energies κ(k) and ε1(Λ) can be used to analyze
the phase transitions and thermodynamic quantities. In the
grand canonical ensemble, the magnetic 昀椀eld and chemical
potential determine the integration boundaries Q, A through
the conditions κ(Q) = 0, ε1(A) = 0. The particle density nc =
´ Q
−Q dkρ(k) is also called the 昀椀lling factor. Meanwhile, the

spin-down electrons per site n↓ =
´ A
−A dΛσ1(Λ) and the mag-

netization m= nc/2− n↓ can be obtained from the root dens-
ities equations (20) and (21). The magnetic 昀椀eld and chemical
potential drive the system from one phase to another at zero
temperature.

Phase transitions usually occur under the following scen-
arios: a) vanishing dressed energy, i.e. κ(0) = 0 or ε1(0) = 0,
with one dressed energy to be zero at each transition; b) open-
ing an energy gap. In the Hubbard model, the phase transition
occurs if one degree of freedom starts to make a difference or
disappears with another degree of freedom unchanged, leading
to coupling or decoupling in these degrees. In the presence of
an energy gap, i.e. the charge dressed energy κ(π)⩽ 0 in part,
the charge sector thus displays insulation behaviour, leading to
the phase transition from metal to insulator. Both these cases
induce signi昀椀cant quantum 昀氀uctuation in the system.

Using these conditions [22, 116], we may give 昀椀ve phases
of states displayed in 昀椀gure 1: (I) vacuum with Q= 0, A= 0
or nc = m= 0; (II) partially 昀椀lled and spin fully polarized
state with 0< Q< π, A= 0 or 0< nc < 1, m= nc/2 with the
boundary conditions given by Q= 0 and Q= π; (III) half-
昀椀lled and spin fully polarized state with Q= π, A= 0 or
nc = 1,m= 1/2; (IV) partially 昀椀lled and magnetized band
with 0< Q< π, 0< A⩽∞ or 0< nc < 1,0⩽ m< nc/2; the

phase boundary between phase (II) and (IV) is given by
κ(0)< 0< κ(π), ε1(0) = 0; (V) half-昀椀lled, magnetized band,
also referred to as the Mott insulator with Q= π, 0< A⩽

∞ or nc = 1,0⩽ m< nc/2, and the phase boundary between
(V) and (IV) is given by κ(π) = 0, ε1(0)< 0. By substitut-
ing each of the phase boundary conditions into the dressed
energy equations (18) and (19), we can analytically determine
all the critical 昀椀elds in the B−µ plane: also, see [22]. In
fact, thermal properties feature dramatic quantum 昀氀uctuations
around a quantum critical point (QCP), whereas the dimen-
sionless ratios, the ratios between the 昀氀uctuations of two
types of sources, can become comparable to temperature: for
instance, the susceptibilityWilson ratioRχs

w [117] and the com-
pressibility Wilson ratio Rχc

w [118, 119]

Rχs
w =

4
3

(

π kB
µBg

)2
χs
Cv/T

, Rχc
w =

π2k2B
3

χc
Cv/T

, (31)

describing the competition between magnetic 昀氀uctuation or
particle number 昀氀uctuation and thermal 昀氀uctuations, respect-
ively. In the above expressions, χs (χc) are the magnetic sus-
ceptibility (compressibility), respectively. In the TLL phase,
these ratios become constants, independently of temperature.
Therefore the ground state phase diagram can be characterized
by the dimensionless ratios.

A signi昀椀cant aspect of these ratios is their characterization
of the TLL and their scaling behaviour near critical points
[101, 118–120]. In 昀椀gure 10(a), we present the 3D plot of
the magnetic Wilson ratio in the B−µ−Rχs

w parameter space,
while in 昀椀gure 10(b), we show the Wilson ratio as a func-
tion of µ for a 昀椀xed B. It is remarkable that the magnetic
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Figure 10. (a) The 3D plot of the Wilson ratio Rχs
w maps out the phase diagram of the 1D Hubbard model at low temperatures, which

signi昀椀cantly marks different phases of states. The parameter setting reads: T = 0.005 and u= 1. (b) A plot of the Wilson ratio Rχs
w at 昀椀xed

B= 0.4,u= 1. As the chemical potential changes, four phases (I, II, IV and V) can be reached, indicated by sudden enhancements of the
Wilson ratio.

Wilson ratio is suddenly enhanced near the QCP, elegantly dis-
tinguishing different phases. Moreover, in terms of the trans-
port and thermodynamic results of the magnetic susceptibility,
speci昀椀c heat, Luttinger parameters and velocities, the Wilson
ratios are given by (detailed analysis will be given in our pre-
pared article [121])

II: Rχs
w ≈ 2,

IV: Rχs
w ≈ 4(vcKs+ vsKsc)/(vs+ vc) ,

V: Rχs
w ≈ 8Ks,

I and III: Rχs
w = 0, (32)

where Ks is the Luttinger parameter for spin, Ksc is the cross
Luttinger parameter [121] and vc,s are sound velocities for
charge and spin, respectively. These relations, equation (32),
are in excellent agreement with the numerical results shown
in 昀椀gure 10. Such dimensionless ratios also display universal
scaling behaviour near phase transitions.

From the above analysis, one can easily determine the
昀椀ve quantum phases of the ground state of the 1D repulsive
Hubbard model. Among these, phase IV shows the richest
physics, i.e. the charge and spin degrees of freedom coexist
and dramatically make up the phase of spin–charge-separated
TLLs [47–49], showing non-Fermi liquid behaviour in one
dimension. In the TLL phase, all quasiparticles form collective
motions and thus decouple into two propagating modes with
different velocities, vc, vs [51, 53, 60], which rely on the value
of the coupling and can be effectively estimated from TBA
equations. The spin–charge separation phenomenon can also
be observed from their excitation spectra, see the discussion in
section 2. In the supplementary material7, we show that phase
IV can be seen as two-component free 昀氀uids characterized by
the additivity rule of free energy at the low-energy level, while
phases II and V are representatives of the single TLL, namely,

f = f0 −
πT2

6

(

1
vc

+
1
vs

)

, for phase IV, (33)

f = f0 −
πT2

6
1
vc
, for phase II, (34)

f = f0 −
πT2

6
1
vs
, for phase V, (35)

where vc and vs are de昀椀ned through vc = κ ′(Q)/(2πρ(Q))
and vs = ε1

′(A)/(2πσ1(A)) with cut-off points Q,A, respect-
ively. The relation between the free energy and velocity
gives a universal nature shared by a large family of systems
[57, 101, 122]. Taking the second derivative of the free
energy with respect to temperature, speci昀椀c heat is dir-
ectly derived Cv = πT/3(1/vc+ 1/vs) ,Cv = πT/(3vc),Cv =
πT/(3vs) for IV, II and V, respectively. The above results
in equations (33)–(35) provide the universal leading order
correction of the temperature at low energy of interacting
many-body systems, i.e. characteristic of thermodynamics in
the TLLs.

3.1.2. Contributions from k−Λ string in phase III. In the
low-temperature limit µ,B> T, the low-energy behaviour of
the system is immune to the gapped string excitations when
the states are away from the QCPs in 昀椀gure 10. By analys-
ing the TBA equations (14)–(16), we observe that it is reas-
onable to ignore the gapped string states and retain only the
gapless string states in both Λ and k−Λ strings at low energy.
The driving terms in these equations signi昀椀cantly determine
the contributions to the low-energy states. The length-n Λ
strings and k−Λ string make less contribution to the low-
energy states when n is larger. Here, we just calculate the con-
tributions from the length-1 Λ and k−Λ strings in phase III
in which both are gapped. The TBA equations suggest that the
greater the value of the chemical potentialµ andmagnetic 昀椀eld
B relative to the temperature T, the smaller the contributions
of the k−Λ and Λ strings. In phase III, the absolute value of
the chemical potential is small, while the magnetic 昀椀eld B is
large. Therefore, without losing generality, here we consider
the length-1 k−Λ and Λ strings at low temperature |µ| ∼ T
and B> T in phase III. After tedious iterations on free energy,
see the supplementary material7, we obtain a close form of the
free energy
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Figure 11. The free energy for gapped length-1 Λ and k−Λ strings
in phase III. The black and purple solid curves denote the numerical
results and analytical results, equation (36), of the free energy,
respectively. The red empty-circle–solid line only denotes the
contribution from the charge k degrees of freedom, showing a large
discrepancy from the solid lines. The green 昀椀lled-circle–solid line
denotes the free energy without Λ strings, showing a little difference
from the solid lines. The blue triangular–solid line denotes the free
energy without k−Λ strings. Thus, the Λ string contribution is
negligible in phase III.

f =−µ− u−B+ g 3
2
T

3
2 + g2T

2 + g 5
2
T

5
2 +O

(

T3,e−
4B
T ,e

4µ
T

)

,

for phase III (36)

where the coef昀椀cients are explicitly given by

g 3
2
=−λ1π

1
2

η
1
2
1

e−
2B+η0

T +
f 1
2

2π
1
2

e
2µ
T +

f 3
2

2π
1
2

,

g2 =−
(

λ1f 3
2

η
1
2
1 u

+
f 1
2

2η
1
2
1 πu

)

e−
2B+η0

T +
f 1
2
f 3
2

4πu
e

2µ
T ,

g 5
2
=−

(

λ1f 2 3
2

2η
1
2
1 π

1
2 u2

+
λ2π

1
2

4η
3
2
1

+
f 1
2
f 3
2

2η
1
2
1 π

3
2 u2

)

e−
2B+η0

T

+

(

3f 1
2
f 2 3

2

32π
3
2 u2

+
f 3
2

32π
1
2

)

e
2µ
T +

f 5
2

32π
1
2

, (37)

where we denote the function fn = Lin(−e
2−µ−2u−B

T ), and
the parameters λ1 =

1
π
√
1+u2

, λ2 =
1−2u2

π(1+u2)5/2 , η0 = 4(u−√
1+ u2) and η1 =

2
(1+u2)3/2 . By analysing equation (37), we

observe that in the functions g 3
2 ,2,

5
2
, the terms involving the

exponents e−
2B+η0

T and e
2µ
T come from gapped length-1 Λ and

k−Λ strings, respectively; meanwhile, the terms that do not
contain any exponential terms stem from the contributions of
gapless charge k. In the above results, we have omitted the con-
tributions from the strings with lengths more than length-2.

In 昀椀gure 11, we observe that our analytic expression of the
free energy is consistent with the numerical results obtained
from the TBA equations (14)–(16). The contributions from the
k−Λ string are greater than those from theΛ strings due to the
choice of parameters B> T and |µ| ∼ T. Moreover, from the
absolute value of the free energy, we observe that the order of

the k−Λ string contributions is O(10−4) as the temperature
tends to T = 1. In general, it can be safely ignored in the low-
temperature behaviour. In phase III, the contributions from the
gapped Λ strings are very small and negligible too. But the
length-1 Λ string plays an important role in phases IV and V.
More detailed calculations of the free energy for phase III are
given in the supplementary material7.

3.1.3. Magnetic properties at zero temperature near the quad-
ruple critical point. The magnetic properties of the 1D
Hubbard model at zero temperature provide a benchmark for
understanding universal low-energy physics. However, most
studies in the literature have been carried out in a vanish-
ing magnetic 昀椀eld or half-昀椀lled band [20, 22, 112, 113]. To
obtain useful analytical results of the magnetic properties of
the model, here, we try to analytically calculate the magnetic
properties under the conditions of high density (the Fermi
point Q tends to π) and high magnetization limits (the Fermi
point A tends to 0), namely, the region marked by the white
empty circle in 昀椀gure 1, serving as a pivot which relates four
quantum phases. Around the quadruple point, we may con-
ceive the properties of charge only, spin only and spin–charge
coexistence. The physics in this region has not been well stud-
ied in the literature.

The main objective is to obtain thermodynamic quantit-
ies in terms of small parameters ¶ = π−Q≪ 1 and A≪
1. After some lengthy calculations, see the supplementary
material7, the expressions of charge and spin dressed energies
and density equations can be written in terms of the orders of ¶
and A

κ(k) = ¶̄McĀ
T, ε1 (Λ) = ¶̄MsĀ

T, (38)

ρ(k) = ¶̄MdcĀ
T,σ1 (Λ) = ¶̄MdsĀ

T, (39)

where ¶̄ =
(

¶0, ¶1, ¶2, ¶3
)

, Ā=
(

A0,A1,A2,A3
)

, the super-
script T denotes transpose and Mc,Ms,Mdc,Mds are four
matrices given in the supplementary material7. By analys-
ing the construction of these four matrices and using the free
energy, equation (17) with T = 0, we may obtain

f =−µ− u−B− 8λ1

3(1+ u2)
3
2

A3 − 2
3π

¶3 (40)

with λ1 given in the supplementary material7. On the other
hand, in terms of the discrete symmetries of the repulsive
Hubbard model [22], the free energy of the repulsive sys-
tem can be transformed to that of the attractive case via the
relation fr(µ,B,T,u) = fa(−B,−µ,T,−u)−µ−B, where the
subscript a(r) means attractive (repulsive) interaction. It turns
out that the results obtained in this part not only cover that
of the attractive model in the low-density and strong coup-
ling limits [101], but are also valid for the arbitrary interaction
strength away from the strong coupling limit.

In general, it is straightforward to show that there is a
one-to-one correspondence from the high-density area in the
repulsive case to the low-density regime in the attractive case
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[101]. Taking the derivative of free energy, one can obtain the
relationship between their thermodynamic quantities:

∂fr
∂µ

=−∂fa
∂B

− 1−→ nr,µ = 1− 2ma,B, (41)

∂fr
∂B

=−∂fa
∂µ

− 1−→ 2mr,B = 1− na,µ. (42)

Based on equations (38) and (39), we are able to obtain the
昀椀rst and second order of derivative thermodynamic quantities,
such as the particle number nc, spin-down number n↓, velocit-
ies vc,vs, speci昀椀c heat Cv, and the charge and spin susceptib-
ilities χc =

∂nc
∂µ |B(m),χs = ∂m

∂B |µ(nc) with m= nc
2 − n↓. The cal-

culation details are relegated to the supplementary material7.
We would also like to remark that the above results we

obtained can be applied to phase II and the Mott phase V;
see the region marked by the white empty circle in 昀椀gure 1.
Explicitly, we present our key results in the grand canonical
ensemble

phase II:

nc = 1− ¶

π
,n↓ = 0,χc =

1
2π¶

,χs =
1

4π¶
,vc = 2¶− 1

3
¶3,

Cv =
πT
3

1
vc
, (43)

phase V:

nc = 1, (44)

n↓ = 2

[

λ1A−
λ1

πu
A2 +A3

(

λ1

π2u2
+

λ2

6

)]

, (45)

χc = 0, (46)

χs =

[

2λ1

(

1− 2
πu

A+
3

π2u2
A2

)

+λ2A
2

]

1

η1A
(

1+ A
π u

) ,

(47)

vs =
η1A+

η2
12A

3

π
(

λ1 +
λ2
2 A

2 − λ1
π uA+

λ1
3π u3A

3 + λ1
π2u2A

2 − λ1
π3u3A

3

− λ2
6π uA

3
)

,

(48)

Cv =
πT
3

1
vs
, (49)

phase IV:

nc = 1− 2¶

(

1
2π

− 2λ1

πu
A+

2λ1

π2u2
A2

)

− 4
π3u2

¶2A, (50)

n↓ = 2

[

A

(

λ1 −
2
πu

¶

(

1
2π

− 2λ1

πu
A

))

−A2 1
πu

(

λ1 −
1

π2u
¶

)

+A3

(

λ1

π2u2
+

λ2

6

)]

, (51)

χc =
∂n
∂µ

|B =
(

− 1
π
+

4λ1

πu
A− 4λ1

π2u2
A2 − 8

π3u2
¶A

)

∂¶

∂µ

+

(

4λ1

πu
¶− 8λ1

π2u2
¶A− 4

π3u2
¶2
)

∂A
∂µ

= χ(1)
c +χ(2)

c ,

(52)

χs =
∂m
∂B

|µ =

[

− 1
2π

− 4
π3u2

¶A+
2

π2u
(1+πλ1)A

− 2
π3u2

(1+ 5πλ1)A
2

]

∂¶

∂B

+

[

−2λ1

(

1− 2
πu

A+
3

π2u2
A2

)

− 2
π3u2

¶2

+
2

π2u
(1+πλ1)¶−

4
π3u2

(1+ 5πλ1)¶A−λ2A
2

]

∂A
∂B

= χ(1)
s +χ(2)

s , (53)

vc =
2δ− 1

3δ
3

2π
(

1
2π − 2λ1

π u A+ 2λ1
π2u2 A

2 − 2λ1
π3u3 A

3 + 2λ1
π u3 δ

2A+ 2λ1
3π u3 A

3

− λ2
3π uA

3 + λ1
π uδ

2A+ 2
π3u2 δA− 2

π4u3 (1+ 4πλ1)δA
2)

,

(54)

vs =
2η1A+

η2
6 A

3

2π
(

λ1 +
λ2
2 A

2 − 1
π2u¶+

4λ1
π2u2 ¶A−

8λ1
π3u3 ¶A

2

+ 1
π2u3 ¶A

2 − 4
π4u3 ¶

2A+ 1
3π2u3 ¶

3 − λ1
π uA+

1
π3u2 ¶A

+ λ1
3π u3A

3 + λ1
π2u2A

2 − 1
π4u3 ¶A

2 − λ1
π3u3A

3 − λ2
6π uA

3
)

,

(55)

Cv =
πT
3

(

1
vc

+
1
vs

)

, (56)

where λ1,λ2,η1,η2, ∂δ∂µ ,
∂A
∂µ ,

∂δ
∂B and ∂A

∂B are given in the sup-

plementary material7.
In the grand canonical ensemble, we observe that the charge

susceptibilities χ
(1)
c , χ

(2)
c (the spin susceptibility χ

(1)
s , χ

(2)
s )

constitute two parts of the contributions from different
resources ¶ and A, respectively; see equations (52) and (53).
The susceptibilities can be split into two parts, which are
reminiscent of the additivity rules found in the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state of attractive situations
[101]. We also observe that the decomposition terms stem
from two sources, i.e. the changes in charge and spin with
respect to the chemical potential and magnetic 昀椀eld. We
further con昀椀rm our analytical result equations (43)–(56) in
昀椀gure 12 via numerical calculation. The analytical results and
numerical simulation of sound velocities and thermodynamic
properties from the solution of the TBA equations are shown
in 昀椀gure 12(a). We observe that vc approaches zero at the crit-
ical point for the phase transition from magnetized phase IV
to the Mott phase V. On the other hand, vs goes to zero, which
signi昀椀es an approach to the spin fully polarized phase II. Thus,
the velocities can serve as a signature of quantum phase trans-
itions. In 昀椀gure 12(b), we show the speci昀椀c heat in terms of
velocities at various temperatures, demonstrating good agree-
ment between our numerical calculation and analytical results.
The quantity Cv/T becomes temperature-independent for the
TLL states. We plot the magnetic susceptibility in 昀椀gure 12(c)
and observe that the susceptibility does not depend on temper-
ature in the TLL regime, but becomes divergent in the vicinit-
ies of the critical points.

In the canonical ensemble with 昀椀xed density and magnet-
ization, we obtain the charge and spin susceptibilities in terms
of nc, m
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Figure 12. (a) Spin and charge velocities as a function of the chemical potential in phases II, IV and V, in which the analytical results are
given by equations (54) and (55) for IV, equation (43) for II and equation (48) for V, respectively. (b) The analytical and numerical results of
the speci昀椀c heat in terms of the chemical potential. The curves of Cv/T at different temperatures collapse to a single curve of the analytical
results in each phase. (c) The magnetic susceptibility: agreement between the numerical and analytical results, which are given by
equations (43), (47) and (53). In the TLL phases, the susceptibility does not depend on temperature. The whole numerical setting reads
B= 0.825, u= 1, situated within the white empty circle in 昀椀gure 1.

1
χc

=
∂µ

∂nc

∣

∣

∣
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πu
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1
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=
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∂m

∣

∣

∣
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where ∂δ
∂n̂c

, ∂A
∂n̂c

, ∂δ
∂m and ∂A

∂m are given in the supplement-
ary material7. In contrast to the the case for 昀椀xed external
potentials, these formulas expose a reciprocal additivity rela-
tion at a 昀椀xed magnetization and density, see equations (57)
and (58). The two ensembles are related to each other by
the Jacobian determinant evaluated by the total differential of
µ, B with respect to n, m. Apart from the numerical arithmetic
and approximation method, as we have conducted above, we
would like to discuss the dressed-charge matrix Z [22, 34, 35]

Z=

(

ξcc (Q) ξcs (A)
ξsc (Q) ξss (A)

)

, (59)

whose elements are determined by

ξab (xb) = ¶ab+
∑

d

ˆ Xd

−Xd

dxdξad (xd)Kdb (xd,xb) . (60)

Here, the kernels are given by

Kcc (xc,yc) = 0,

Ksc (xc,xs) = a1 (sin(xc)− xs) ,

Kcs (xc,xs) = cos(xc)a1 (sin(xc)− xs) ,

Kss (xs,ys) =−a2 (xs− ys) . (61)

These dressed charges can be used to calculate rigorous solu-
tions for susceptibilities and conformal dimensions in asymp-
totics of correlation functions [34, 35], as well as spin and
charge Drude weights [121]. We will discuss these studies fur-
ther later.

One advantage of this method is that the iteration process
is greatly simpli昀椀ed, both analytically and numerically. In the
grand canonical ensemble, some exact relations are relevant to
the dressed-charge matrix (59), for example [22],

χc

∣

∣

∣

∣

B =
∂nc
∂µ

∣

∣

∣

∣

B

=
Z2
cc

π vc
+

Z2
cs

π vs
= χ(1)

c +χ(2)
c , (62)

χs

∣

∣

∣

∣

µ =
∂m
∂B

∣

∣

∣

∣

µ

=
(Zcc− 2Zsc)

2

2π vc
+

(Zcs− 2Zss)
2

2π vs
= χ

(1)
s +χ

(2)
s .

(63)

Regarding the circumstances of variable changes, we can work
out the Jacobian determinant from equations (62) and (63),
namely, J= 2(detZ)2/(π2vcvs). As a result, we obtain8 for the
canonical ensemble

1
χc

∣

∣

∣

∣

m =
∂µ

∂nc

∣

∣
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m

=
π

4
vc (Zcs− 2Zss)

2
+ vs (Zcc− 2Zsc)

2
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=
1

χ
(1)
c

+
1

χ
(2)
c

, (64)

1
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∣

∣
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∣
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=
π

2
vcZ2

cs+ vsZ2
cc

(detZ)2
=

1

χ
(1)
s

+
1

χ
(2)
s

. (65)

Comparing our analytical results, equations (52) and (53)
(or equations (57) and (58)), with the dressed-charge for-
mula, equations (62) and (63) (or equations (64) and (65)),
we observe that the derivative term with respect to ¶ in
equation (52) is equivalent to the 昀椀rst term associated with
the charge velocity vc in equation (62), whereas the deriv-
ative term with respect to A in equation (52) is equivalent
to the second term associated with the spin velocity vs in
equation (62), respectively. Similar correspondences can be
found from equations (53) and (63) in the grand canonical
ensemble, as well as in equations (57) and (58), and (64)
and (65), respectively.

Finally, we make a direct comparison between our analyt-
ical results and numerical results from the TBA equations. In

8 The second equality in the equation (6.79) of the book [22] misses a factor
of 2.
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Figure 13. The charge density (a) and (d) magnetization vs the chemical potential in phases II, IV and V: agreement between the analytical
results given by equation (43) for phase II, equations (50) and (51) for phase IV, equations (44) and (45) for phase V and the numerical
calculations from the TBA equations. The compressibility (b) and susceptibility (e) in the grand canonical ensemble show agreement
between the analytical results given by equations (52) and (53) and numerical simulations based on equations (62) and (63). Meanwhile, the
compressibility (c) and susceptibility (f) in the canonical ensemble show agreement between the analytical results given by equations (57)
and (58) and numerical simulations based on equations (64) and (65). The parameters of all the 昀椀gures are situated within the white empty
circle in 昀椀gure 1.

昀椀gure 13, the 昀椀rst row shows density (a) and compressibility
(b) in the grand canonical ensemble and (c) in the canonical
ensemble. Whereas the second row shows the magnetization
(d) and susceptibility (e) in the grand canonical ensemble and
(f) in the canonical ensemble. The density and magnetization
in 昀椀gures 13(a) and (d) cross quantum phases from II, to IV and
V as the chemical potential varies. In 昀椀gures 13(b), (c), (e) and
(f), we observe additivity rules in both the grand canonical and
the canonical ensemble. All the analytical results agree well
with the corresponding numerical results in this 昀椀gure.

3.1.4. Quantum criticality near the quadruple critical point.
The results obtained in the previous sections present an ele-
mentary understanding of the ground-state properties and the
behaviour of the TLLs. Although the criticality induced by the
variation of external potentials, such as the magnetic 昀椀eld and
chemical potential, has been extensively studied, most of the
previous works only discuss a few examples, without system-
atically extracting universal laws. More importantly, the case
for the interaction-driven quantum critical behaviour is still
missing despite the fact that the interaction plays a central role
in quantum many-body systems. This could be explained by
the fact that the interaction strength is a parameter that cannot
be tuned in typical solid-state materials. However, the tunab-
ility of the interaction strength through Feshbach resonance is
one of the salient features of cold atoms. This motivates us to
provide a detailed study of the interaction-driven criticality.
Moreover, the quantum criticality of the Hubbard model near
the quadruple critical point is elegantly accessible via analyt-
ical calculation.

In this section, we study quantum phase transitions and uni-
versal scaling functions of the properties of the 1D Hubbard
model in terms of external 昀椀elds. And in the last section, we

focus on the interaction-driven quantum transitions. These two
together complete the study of the universality of phase trans-
itions in the model. From the phase diagram in 昀椀gure 10, it
can be observed that a phase transition occurs in the repuls-
ive Hubbard model when certain degrees of freedom appear,
disappear or become gapped. These changes induce signi昀椀c-
ant quantum 昀氀uctuations. Although quantum phase transition
occurs at zero temperature, thermal and quantum 昀氀uctuations
can reach comparable levels in energy scales in the V-shaped
critical regions at 昀椀nite temperatures. A natural question is
whether the quantum critical region has its own set of univer-
sal laws similar to the TLL. The obvious answer, of course, is
that the quantum criticality for the same universality class of
models is insensitive to the microscopic details of the systems
and shares general and universal critical phenomena char-
acterized by the critical exponents [123, 124]. For example,
the universal scaling laws of magnetization and susceptibility
satisfy [123, 124]

m= m0 + Td/z+1−1/(vz)O1

[

µ−µc
T1/vz

,
B−Bc
T1/vz

,
u− uc
T1/vz

]

, (66)

χs = χs0 + Td/z+1−2/(vz)O2

[

µ−µc
T1/vz

,
B−Bc
T1/vz

,
u− uc
T1/vz

]

, (67)

respectively. Here, m, χs represent the 昀椀rst and second orders
of thermodynamic quantities, respectively, µc, Bc, uc denote
the critical 昀椀elds at the critical point, and z, v stand for the
dynamical and the correlation critical exponent, respectively.
The scaling functions, equations (66) and (67), consist of
two parts: the 昀椀rst term denotes the background contributions
stemming from the unchanged degrees of freedom, and the
second term accounts for the singular part stemming from the
sudden change in the density of states for the other degrees
of freedom. One characteristic of quantum phase transition
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is that it displays universal scaling laws. Another salient fea-
ture of the critical region is that the characteristic length scale
diverges, providing us with a feasible opportunity to cap-
ture system information by fractional exclusive statistics [123,
125–127].

Next, we embark on the analytical derivation of the sin-
gular behaviour of thermodynamic properties involving solely
charge quasi-momenta k and length-1 Λ strings. There are 昀椀ve
phase transitions in total—I–II, II–III, III–V, II–IV and IV–
V—amongwhich the latter four cases can be treated uniformly
around the quadruple point.

I-II phase transition: Here, we 昀椀rst study the phase trans-
ition from an empty lattice phase I to partially 昀椀lled phase II
with the absence of down-spin. In this transition, the phase
transition boundary is simply expressed as 2+ 2u+Bc+µc =
0 with the subscripts Bc and µc standing for the critical
昀椀elds. Thus, the charge dressed energy is given by κ(k) =
−2cosk−µ− 2u−B, showing free fermions on a 1D lattice.
This gives the free energy f = u+ T3/2

2π1/2Li 3
2
(−e

∆B+∆µ
T ). Using

fundamental thermodynamic relations, we directly obtain the
昀椀rst- and second-order thermodynamic quantities

m=
n
2
=− T

1
2

4π
1
2

f 1
2
, (68)

χs =
χc
2

=−T−
1
2

4π
1
2

f− 1
2
, (69)

cv
T

=−3T−
1
2

8π
1
2

f 3
2
+
T−

3
2 (∆B+∆µ)

2π
1
2

f 1
2

− T−
5
2 (∆B+∆µ)

2

2π
1
2

f− 1
2

(70)

with fn = Lin(−e
∆B+∆µ

T ).
For the remaining four phase transitions, what we need

to prepare before obtaining the scaling forms is to express
the dressed energy equations and the free energy in terms of
polylog functions. Under the assumption n→ 1, n↓ → 0, we
expand the kernel function an around k= π and Λ = 0, and
the coupled equations become

κ(k) =−2cosk+ 2

(

1
πu3

I1 −
6

πu5
I2

)

sin2 k

+

(

−µ− 2u−B− 2
πu

I1 +
2

πu3
I2

)

=−2cosk+ 2C1 sin
2 k+C2, (71)

ε1 (Λ) = Λ2

(

η1 +
2J1
πu3

− 12J2
πu5

− I1
4πu3

+
3I2
8πu5

)

+

(

2B+ 4
(

u−
√

1+ u2
)

− 2J1
πu

+
2J2
πu3

+
I1
πu

− I2
4πu3

)

= D1Λ
2 +D2, (72)

where the functions C1, C2, D1, D2 denote the corresponding
coef昀椀cients

C1 =
1

πu3
I1 −

6
πu5

I2, (73)

C2 =−µ− 2u−B− 2
πu

I1 +
2

πu3
I2, (74)

D1 = η1 +
2J1
πu3

− 12J2
πu5

− I1
4πu3

+
3I2
8πu5

, (75)

D2 = 2B+ 4
(

u−
√

1+ u2
)

− 2J1
πu

+
2J2
πu3

+
I1
πu

− I2
4πu3

.

(76)

Meanwhile, the integrals (I1, I2) and (J1,J2) are related to spin
and charge degrees of freedom and make contributions only
near the zero point. Integrating by parts, the formal solutions
in terms of polylog functions read

I1 =
ˆ ∞

0
dΛT ln

(

1+ e−
ε1(Λ)

T

)

=−T
3
2π

1
2

2D
1
2
1

Li 3
2

(

−e
−D2
T

)

,

(77)

I2 =
ˆ ∞

0
dΛΛ2T ln

(

1+ e−
ε1(Λ)

T

)

=−T
5
2π

1
2

4D
3
2
1

Li 5
2

(

−e
−D2
T

)

,

(78)

J1 = T
ˆ π

0
dkcosk ln

(

1+ e
κ(k)
T

)

=
T

3
2

√
1− 2C1

Γ

(

3
2

)

Li 3
2

(

−e
2+C2
T

)

− T
5
2

8(1− 2C1)
5
2

Γ

(

5
2

)

Li 5
2

(

−e
2+C2
T

)

, (79)

J2 = T
ˆ π

0
dkcosksin2 k ln

(

1+ e
κ(k)
T

)

=
T

5
2

3(1− 2C1)
3
2

Γ

(

5
2

)

Li 5
2

(

−e
2+C2
T

)

. (80)

With the help of the presentations of these four integrals, the
Gibbs free energy is given by

f =−µ− u−B− 2λ1I1 −λ2I2 +
1
π
J1 +

1
2π

J2. (81)

Although we have greatly simpli昀椀ed the dressed equations,
the four integrals (I1, I2) and (J1,J2) are still coupled to each
other. These four quantities are intertwined and are needed
to carefully distinguish the primary and secondary contribu-
tions according to the critical 昀椀eld conditions. Based on the
above equations (71)–(80), we proceed to evaluate the critical
behaviour from three aspects: critical 昀椀elds, polylog functions
and free energy. The polylog functions contain the sources of
criticality, from which we can derive the scaling function of
the free energy for the quantum critical region. For the part
that causes criticality, we take expansions under the limit of
T≫∆B or T≫∆µ. Here, we list ourmain results with details
given in the supplementary material7.
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II–III phase transition: for the phase transition II-III, the
critical 昀椀eld is determined by 2− 2u−Bc−µc = 0 and ε1(Λ)
is gapped. The free energy is given by

f =−µ− u−B+
T

3
2

2π
1
2

Li 3
2

(

−e
−∆B−∆µ

T

)

, (82)

leading to the scattering forms of thermodynamics

m=
n
2
=

1
2
+

T
1
2

4π
1
2

f 1
2
, (83)

χs =
χc
2

=−T−
1
2

4π
1
2

f− 1
2
, (84)

Cv
T

=−3T−
1
2

8π
1
2

f 3
2
− T−

3
2 (∆B+∆µ)

2π
1
2

f 1
2

− T−
5
2 (∆B+∆µ)

2

2π
1
2

f− 1
2

(85)

with fn = Lin(−e
−∆B−∆µ

T ). These present universal scaling
behaviour for the charge gapped phase transition in a lattice.
The situation is very similar to the I–II transition, where only
the charge sector exists.

III–V phase transition: for the phase transition III–V, the
emergence of spin degrees of freedom on a half-昀椀lled lattice
generates the criticality with respect to the critical 昀椀eld Bc =
2
√
1+ u2 − 2u, independent of the chemical potential. Around

the quadruple critical point, for charge, J1,J2, equations (79)
and (80) can be safely neglected, equivalent to the case of an
XXX spin chain. Whereas for spin degrees of freedom, the
term I1 in equation (77) is relevant to the low-temperature crit-
icality; by contrast, the integral I2 has a higher order of power
in temperature than that of I1. Under such circumstances, we
determine the free energy near the phase transition III–V as

f =−µ− u−B+
T

3
2π

1
2λ1

η
1
2
1

Li 3
2

(

−e−
2∆B
T

)

. (86)

Using the standard thermodynamic relation, we give the fol-
lowing forms of scaling functions for density, magnetization,
compressibility, susceptibility and speci昀椀c heat

n= 1, m=
1
2
+
T

1
2π

1
2λ1

η
1
2
1

f 1
2
, (87)

χc = 0, χs =−2T−
1
2π

1
2λ1

η
1
2
1

f− 1
2
, (88)

Cv
T

=−3T−
1
2π

1
2λ1

4η
1
2
1

f 3
2
− 2T−

3
2π

1
2λ1∆B

η
1
2
1

f 1
2

− 4T−
5
2π

1
2λ1∆B2

η
1
2
1

f− 1
2

(89)

with fn = Lin(−e−
2∆B
T ).

II–IV phase transition: for quantum phase transition II–
IV, the phase transition occurs at ε1(0) = 0 with charge dis-
persion κ(k) =−2cosk−µ− 2u−B. LetQ denote the Fermi

point of κ(k), which satis昀椀es 2cosQ=−µ− 2u−B. For this
case, J1,J2, equations (79) and (80), provide a regular part,
while I1 in equation (77) serves as a sudden change of equation
of the spin state, i.e. criticality. The explicit expressions of
J1,J2, I1 are given in the supplementary material7. Substituting
the results of J1, J2, I1 into the free energy, equation (81), we
have

f ≈−µ− u−B− 2
3π

´
3
2
1 − 1

60π
´

5
2
1 − πT2

12´
1
2
1

− πT2´
1
2
1

96

+
T

3
2π

1
2 a0

η
1
2
1

Li 3
2

(

−e−
∆t
T

)

, (90)

where a0 = λ1 − β
1
2
1

π2u +´
3
2
1

(

2λ1
3π u3η1

− 1
24π2u +

1
3π2u3

)

and∆t=

2(1− β
1
2
1c

π u )∆B−
2β

1
2
1c

π u ∆µ. Taking the derivatives of the free
energy with respect to B, µ and T, we obtain the following
scaling forms of the thermal and magnetic properties

n= 1− ´
1
2
1

π
− ´

3
2
1

24π
− 2T

1
2´

1
2
1ca0

π
1
2 uη

1
2
1

f 1
2
, (91)

m=
1
2
− ´

1
2
1

2π
− ´

3
2
1

48π
+

T
1
2

(

1− β
1
2
1c

π u

)

π
1
2 a0

η
1
2
1

f 1
2
, (92)

χc =
1

2π´
1
2
1

+
´

1
2
1

16π
− 4T−

1
2´1ca0

π
3
2 u2η

1
2
1

f− 1
2
, (93)

χs =
1

4π´
1
2
1

+
´

1
2
1

32π
−

2T−
1
2

(

1− β
1
2
1c

π u

)2

π
1
2 a0

η
1
2
1

f− 1
2
, (94)

Cv
T

=
π

6´
1
2
1

+
π´

1
2
1

48
− 3T−

1
2π

1
2 a0

4η
1
2
1

f 3
2

− 2T−
3
2π

1
2 a0

η
1
2
1

[(

1− ´
1
2
1c

πu

)

∆B− ´
1
2
1c

πu
∆µ

]

f 1
2

− 4T−
5
2π

1
2 a0

η
1
2
1

[(

1− ´
1
2
1c

πu

)

∆B− ´
1
2
1c

πu
∆µ

]2

f− 1
2

(95)

with fn = Lin(−e−
∆t
T ).

It is further noticed from equation (90) that the background
of the free energy involves two types of terms; the temperature-

dependent term − πT2

12β
1
2
1

− πT2β
1
2
1

96 comes from the contribution

of TLL, whereas the remaining term, −µ− u−B− 2
3π´

3
2
1 −

1
60π´

5
2
1 , is equivalent to the energy of noninteracting electrons

on a lattice. For simplicity, and without losing generality, we

only keep the order of ´
3
2
1 in the free energy. For the 1D repuls-

ive Hubbard model, the zero-temperature background is given
by
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fH ≈−µ− u−B− 2
3π

´
3
2
1 ≈ ´1 − 2− 2

3π
´

3
2
1 . (96)

Meanwhile, the ground-state free energy of a noninteracting
lattice system is given by

fNI =− 1
π





∑

σ=↑,↓
2sin(kF,σ)+µσ sin(kF,σ)



 , (97)

in which kF,σ = arccos(−µσ/2) = πnσ,µ↑ = µ+B,µ↓ =
µ−B. In the limit of high density in the spin-polarized
phase, these two free energies, equations (96) and (97), are
equivalent

fNI ≈− 2
π

(

´
1
2
1 − 1

6
´

3
2
1

)

− (µ+B)n

≈− 2
π

(

´
1
2
1 − 1

6
´

3
2
1

)

− (2−´1)

(

1− ´
1
2
1

π

)

= fH. (98)

In light of quantum criticality, we refer to phase II as the back-
ground. Thus, the terms that do not contribute to the singular
part in thermodynamic quantities can be readily recognized,
namely,

χII
c =

1

2π´
1
2
1

+
´

1
2
1

16π
, (99)

χII
s =

1

4π´
1
2
1

+
´

1
2
1

32π
, (100)

CII
v

T
=

π

6´
1
2
1

+
π´

1
2
1

48
. (101)

These background results are in agreement with equation (43)

with ¶ = ´
1
2
1

(

1+ 1
24´1

)

; here, ´1 = 2−µ− 2u−B≈ (π−
Q)2 − 1

12 (π−Q)4 = ¶2 − 1
12¶

4. Furthermore, the Wilson
ratios for phase II are given by

Rχs
w =

4π2

3
χs
Cv/T

≈ 2, Rχc
w =

π2

3
χc
Cv/T

≈ 1. (102)

IV–V phase transition: the phase transition from IV
to V displays a novel subtlety of quantum criticality with
charge. At this phase transition, the charge degrees of free-
dom become gapped and the dressed energy κ(π) approaches
zero. We can directly use the dressed-energy equations with
the help of (48) in the supplementary material7 and κ(π) = 0
under the condition ¶= 0, giving the critical 昀椀elds µc,Bc.
The integrals I1 and I2 in equations (77) and (78) serve as
the background contributions resulting from the spin degrees
of freedom of the TLL, and the scaling is re昀氀ected by
J1 (see explicit derivations in the supplementary material7).
Using the leading-order contribution in J1 and I1, I2, we

昀椀nally obtain the following scaling form of the Gibbs free
energy

f≈−µ− u−B− 4
3
λ1η1A

3 − π2T2λ1

6η1A
− 2

15
λ2η1A

5

− π2T2λ2

12η1
A+

T
3
2 b0

2π
1
2

Li 3
2

(

−e
∆t
T

)

(103)

with b0 = 1− 4λ1
u A+

(

η1
π + 2λ1 − u2λ2

)

2A3

3u3 . Using the ther-
modynamic relations, the scaling forms of thermal and mag-
netic properties are explicitly given by

n= 1+
T

1
2 b0
2π

1
2

f 1
2
, (104)

m=
1
2
− 2λ1A

1+ A
π u

− 1
3
λ2A

3 +
T

1
2

(

1− 4Ac
π u+Ac

)

b0

4π
1
2

f 1
2
, (105)

χc =−T−
1
2 b0

2π
1
2

f− 1
2
, (106)

χs =
2λ1

η1A
(

1+ A
π u

)3 +
λ2

η1

A

1+ A
π u

−
T−

1
2

(

1− 4Ac
π u+Ac

)2
b0

4π
1
2

f− 1
2
, (107)

Cv
T

=
π2λ1

3η1A
+

π2λ2A
6η1

− 3T−
1
2 b0

8π
1
2

f 3
2

− T−
3
2 b0

2π
1
2

[

∆µ+

(

1− 4Ac
πu+Ac

)

∆B

]

f 1
2

− T−
5
2 b0

2π
1
2

[

∆µ+

(

1− 4Ac
πu+Ac

)

∆B

]2

f− 1
2
, (108)

where we denoted fn = Lin(−e
∆t
T ).

Moreover, we observe that phase V represents the source
of the background for the spin degrees of freedom. Thus, we
may easily identify the contributions from the Mott phase V
in the above scaling functions, namely,

χV
c = 0, (109)

χV
s =

2λ1

η1A
(

1+ A
π u

)3 +
λ2

η1

A

1+ A
π u

, (110)

CV
v

T
=

π2λ1

3η1A
+

π2λ2A
6η1

. (111)

Comparing the above results with equations (44)–(49), we 昀椀nd
these results are consistent with each other. Consequently, the
Wilson ratios are given by

Rχs
w =

4π2

3
χs
Cv/T

≈ 8
(

1+ A
π u

)3 +
8λ2A3

πuλ1
,

Rχc
w =

π2

3
χc
Cv/T

= 0, (112)

showing the nature of the TLL at low temperature.
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Figure 14. Rows (a) and (b) show the universal scaling behaviour of electron density and spin susceptibility, as well as speci昀椀c heat vs the
magnetic 昀椀eld B (the argument (B−Bc)/T) for phase transitions II–IV. The analytical results (solid lines), equations (91)–(95), agree well
with the numerical solutions of the TBA equations. Rows (c) and (d) show the universal scaling behaviour of magnetization and charge
susceptibility, as well as speci昀椀c heat vs the magnetic 昀椀eld B (the argument (B−Bc)/T) for phase transitions IV–V. The analytical results
(solid lines), equations (104)–(108), agree well with the numerical solution of the TBA equations. All the parameters are situated within the
white empty circle in 昀椀gure 1.

In 昀椀gures 14(a) and (b) and 14(c) and (d), we plot the
universal scaling behaviour of electron density and magnet-
ization, and spin and charge susceptibilities, as well as spe-
ci昀椀c heat for phase transitions II–IV and IV–V, respectively.
They show that analytic expressions of their scaling functions,
equations (91)–(95) and equations (104)–(108), are in good
agreement with the numerical results obtained from the TBA
equations. We note that in 昀椀gures 14(a) and (c), all lines at dif-
ferent temperatures intersect at the QCP, while 昀椀gures 14(b)
and (d) show the scaling function invariant in terms of ∆B

T .
It is essential to note that all these scaling functions read off
the dynamical exponent z= 2 and the correlation critical expo-
nent ν = 1/2, for example, the susceptibility, equation (67):
also, see [123]. In the critical region, the polylog function
represents the free fermion type of generating function asso-
ciated with the dynamic critical exponent z= 2 and the cor-
relation critical exponent ν = 1

2 [123, 128]. In the zero tem-
perature limit, the singular part of the susceptibility can be
expressed as χss ∝ T−

1
2 (∆B/T)−

1
2 = (∆B)−

1
2 . Regarding the

de昀椀nition of the critical exponent µ with respect to the gen-
eral form χ∝ (g− gc)−γ , here g is the driving parameter; we
昀椀nd µ = 1

2 for the second-order derivatives of the free energy.
On the other hand, the correlation length can be expressed as

ξ ∝ T−
1
z . In summary, at the critical point ∆B= 0, we also

昀椀nd that thermodynamic properties Cv
T , χs, ξ satisfy the fol-

lowing scaling laws

Cv
T

∝ T
d−z
z , χs ∝ T−

γ
vz , ξ ∝ T−

1
z , (113)

which signify the non-Fermi liquid behaviour at the QCP
[128–130].

3.1.5. General scaling functions at quantum criticality. In
the previous subsection, we presented some analytical res-
ults for each phase transition. We observe that the coef昀椀cients
a0 in equation (90) and b0 in equation (103) of free energies
solely rely on the root densities (60) and (62) in the supple-
mentary material7 with a0 ≈ σ(0),b0 ≈ 2πρ(π). Signi昀椀cantly,
it is found that the free energies are related to densities
and dressed energies in compact forms for different phase
transitions

I-II: f = u+ T
3
2π

1
2 ρ(0)

(

κ ′ ′ (0)
2

)− 1
2

Li 3
2

(

−e−
κ(0)
T

)

,

(114)
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II-III: f = f0 + T
3
2π

1
2 ρ(π)

(−κ ′ ′ (π)

2

)− 1
2

Li 3
2

(

−e
κ(π)
T

)

,

(115)

V-III: f = f0 + T
3
2π

1
2σ1 (0)

(

ε ′ ′
1 (0)
2

)− 1
2

Li 3
2

(

−e−
ε1(0)
T

)

,

(116)

II-IV: f = f0 −
πT2

6vc
+ T

3
2π

1
2σ1 (0)

(

ε ′ ′
1 (0)
2

)− 1
2

Li 3
2

(

−e−
ε1(0)
T

)

, (117)

V-IV: f = f0 −
πT2

6vs
+ T

3
2π

1
2 ρ(π)

(−κ ′ ′ (π)

2

)− 1
2

Li 3
2

(

−e
κ(π)
T

)

, (118)

where f 0 comes from the ground state; the terms with T2

re昀氀ect the contributions from the background parts; σ1(0)
denotes the density of length-1 spin strings at Λ = 0; the

second derivative ε ′ ′
1 (0)≡ d2ε1

dΛ2

∣

∣

∣

Λ=0
; and ρ(0), ρ(π) denotes

the charge density at k= 0, π, respectively. Similarly, for the

charge dressed energy, κ ′ ′(0)≡ d2κ
dk2

∣

∣

∣

k=0
,κ ′ ′(π)≡ d2κ

dk2

∣

∣

∣

k=π
.

The polylog function Li 3
2
represents the generating function

of free fermion criticality. The above scaling functions of
the free energy for different quantum phase transitions are
valid for arbitrary interaction strengths and 昀椀llings, revealing a
microscopic origin of the quantum phase transitions associated
with the dressed energies. The functions−ε1(0),−κ(0), κ(π)
serve as criticality and depend on the energy gaps away from
the QCPs, i.e.

−ε1 (0) ,−κ(0) , κ(π)≈ ³B∆B+³µ∆µ+³u∆u. (119)

The factors ³(B,µ,u) represent the different transition paths in
the vicinities of QCPs driven by external 昀椀elds. These expres-
sions, equations (114)–(118), display concise and elegant con-
昀椀gurations that are independent of speci昀椀c details for arbit-
rary 昀椀lling and interaction strength, and can apply to other
models with second-order phase transitions associated with
the dynamical critical experiment z= 2 and correlation length
exponent ν = 1/2. The detailed derivations for these formulas
are given in the supplementary material7.

3.2. Spin-incoherent Luttinger liquid

Although SILL has been studied in the literature [65–69],
almost all those works are based on the framework of boson-
ization. There are still no studies of such novel phenomenon
from the Bethe ansatz perspective and quantum phase trans-
ition. It is very insightful to conceive the SILL from both cor-
relation functions and thermodynamics. In section 2, we used
the variations of η-pair and spin magnetizations (∆ηz,∆Sz)
to characterize the fractional charge and spinon excitations.
Such fractionalized quasi-particles reveal the fermionic nature

of quasiparticles, forming the Luttinger liquid. Meanwhile, we
found the only possible fractional spin excitations, which can
lead to the spin-incoherent liquid at low temperatures. In this
section, we focus on rigorous results of the SILL in terms of
speci昀椀c heat, criticality and correlation functions.

3.2.1. Thermodynamics in SILL. In the previous analysis
given in section 2, we observe that a crossover region fan-
ning out from the critical point does show the existence of
the SILL above the phase boundary of the TLL and up to a
critical temperature, see 昀椀gure 15. This phenomenon can be
revealed through thermodynamic quantities of the model, such
as speci昀椀c heat. We now identify different energy scaling of
the SILL from the TLL and quantum criticality. We 昀椀rst ana-
lyze the variables ε1(0) emerged in the polylog functions of
II–IV transition in equation (117),

ε1 (0) = 2B−

ˆ π

−π

dkcoska1 (sink−Λ)T ln
(

1+ e−
κ(k)
T

)

|Λ=0,

(120)

where ε1(0) = 0, <0, >0 at the exact critical point, in phase
IV and phase II, respectively, measuring the distance away
from the phase boundary of II–IV. In this case, the Fermi point
of the charge κ(Q) = 0 gives 2cosQ=−µ− 2u−B, leading
to κ(k) =−2cosk+ 2cosQ; here, Q is the Fermi point in the
charge sector. Thus, ε1(0) at zero temperature can be simpli-
昀椀ed by

ε1 (0) = 2B− 4u
π

ˆ Q

0
dk

cosk

u2 + sin2 k
(cosk− cosQ)+O

(

T2
)

(121)

with the temperature term omitted. By further performing
Taylor expansion around the critical point Bc for 昀椀xed µ and
u, we have

Q≈ Qc+
1

2sinQc
∆B (122)

with Qc = arccos
(

− 1
2 (µc+ 2uc+Bc)

)

. After some algebra,
the quantity ε1(0) in the vicinity of the critical point of the
phase transition II–IV can be found to be given by

ε1 (0)≈ 2B− 4u
π

ˆ Qc

0
dk

cosk

u2 + sin2 k
(cosk− cosQc

+sinQc (Q−Qc))

≈ 2∆B− 2u
π

ˆ Qc

0
dk

cosk

u2 + sin2 k
∆B

≈ 2∆B

[

1− 1
π
arctan

(

sinQc

u

)]

, (123)

where the second line brings in the condition ε1(0)|B,Qc =
2∆B with the limit ε1(0)|Bc,Qc = 0. Therefore, ³B =
−2 [1− arctan(sinQc/u)/π] can be obtained from the de昀椀ni-
tion −ε1(0)≡: ³B∆B.
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Figure 15. (a) A 3D plot of speci昀椀c heat in the T−B−Cv coordinate at µ=−2,u= 1 for the IV-II phase transition, which is marked with
a dashed line in 昀椀gure 1. The blue circled symbols present the critical temperatures determined by the maximum values of the speci昀椀c heat
(equation (124)), consistent with numerical simulation. The red lines mark the TLL phase boundaries, below which the speci昀椀c heat shows
a linear temperature dependency. Crossover regimes between the blue circled symbols and the red lines denote the SILL phase (on the left)
and the spin-gapped phase (on the right). (b) and (c) The speci昀椀c heat vs temperature near the phase transition IV-II for the magnetic 昀椀eld is
less than (greater than) the critical magnetic 昀椀eld Bc, respectively. The temperature-independent region and the temperature-square-
dependent region in the ratio Cv/T can be visible, characterizng the thermodynamics of the TLL and SILL, respectively.

On the other hand, in the quantum critical region, the heat
capacity satis昀椀es the universal scaling form

Cv/T= c0 + c1T
−1/2

[

3
4
Li 3

2
(−ex)− xLi 1

2
(−ex)

+x2Li− 1
2
(−ex)

]

+O
(

(∆B/T)5/2
)

, (124)

where c0 is the zero temperature background, c1 is a coef昀椀cient
depending on the transition point, explicitly see equation (95),
and x=−ε1(0)/T= ³B∆B/T. A brief discussion about an
interaction-driven case is given in [109]. One characteristic of
the heat capacity is that it displays bimodal structures around
the QCP. Thus, the peaks of the heat capacity conveniently
mark out the quantum critical (QC) boundaries. These peaks
can be determined from ∂Cv/∂B= 0, i.e.

1
4
Li 1

2
(−ex)− xLi− 1

2
(−ex)− x2Li− 3

2
(−ex) = 0, (125)

which gives two solutions x1 =−1.5629, x2 = 3.6205.
Figure 15(a) shows the overall behaviour of the quantum
criticality in the vicinity of the IV-II phase transition in the
T−B−Cv coordinate. The blue circled symbols denote
the maxima of speci昀椀c heat from the analytical results,
equation (124), showing good agreement with the numer-
ical calculations based on the TBA equations. In this crit-
ical region, T≫∆B= B−Bc, and the other thermodynamic
properties also show universal scaling behaviour given by
equations (91)–(95).

As the temperature gradually decreases from the QC part
to a certain extent, TLL regions appear; see the areas below
the red lines in 昀椀gure 15(a). Around the critical point Bc =
0.55, two TLLs emerge. In the region with B< Bc, denoted
as TLLSC, the system lies in phase IV with spin and charge
degrees of freedom coexisting. For B> Bc, the system lies
in phase II with only charge degrees of freedom, denoted
as TLLC. In the TLL region, the speci昀椀c heat Cv is linearly
dependent on T; also, see the discussion in section 3. In the
crossover region between QC and the TLLC phase, the spin
sector is gapped. By utilizing the asymptotic behaviour of the

polylog function [131] and expanding equation (95), the spe-
ci昀椀c heat in this gapped region is given by

Cv ≈
πT
3vc

+
3π

1
2 a0
4

(η1)
− 1

2 T
1
2 eαB∆B/T+O

(

∆BeαB∆B/T
)

.

(126)

In comparison, in the crossover region between QC and
the TLLSC phase, i.e. in the temperature range Es ∼ kFvs ≪
kBT≪ Ec ∼ kFvc, lies the SILL [65–69]. In this region, the
speci昀椀c heat is given by

Cv ≈
πT
3vc

+
π2a0 (η1)

− 1
2 (−ε1 (0))

− 1
2 T

3

×
[

1+
21π2

40
(−ε1 (0))

−2T2
]

+O
(

T4
)

, (127)

which manifests a gas–liquid coexistence. We note that the
coef昀椀cient before the square bracket should be πT/(3vs). The
proof is given in the following. The spin dressed energy around
the QCP is written as ε1(Λ) = D1Λ

2 +D2. Thus, for the SILL
region, the spin Fermi point A is related to ε1(A) = D1A2 +
D2 = 0, resulting in A= (−D2/D1)

1/2. On the other hand, by
the de昀椀nition ofD1,2 given in equations (75) and (76), we have
D1 = ε ′ ′

1 (0)/2= η1,D2 = ε1(0). Therefore, the Fermi point
A is expressed as A= (−ε1(0)/η1)1/2. Using the de昀椀nition
of a0, see equation (90), we have a0 = σ1(0)≈ σ1(A) and
ε
′

1(A) = 2η1A, which renders

π2a0 (η1)
− 1

2 (−ε1 (0))
− 1

2 T
3

=
π2σ1 (A)T(η1)

1
2

3
1

η1 (−ε1 (0))
1
2

=
π2σ1 (A)T

3η1A
=

π · 2πσ1 (A)T

3ε′

1 (A)

=
πT
3vs

. (128)
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This immediately gives a universal thermodynamic relation of
the SILL

Cv ≈
πT
3

(

1
vc

+
1
vs

)

+
7π3T3

40vs (−ε1 (0))
2 +O

(

T4
)

. (129)

The result in equation(129) is complementary to the correla-
tion function in SILL, which will be studied below.

Furthermore, in 昀椀gures 15(b) and (c), we plot the spe-
ci昀椀c heat below and above the QCP for different values of
magnetic 昀椀elds. It is obvious to see the region of the linear
temperature-dependent speci昀椀c heat, a crossover region of the
SILL with both the linear and cubic temperature-dependent
speci昀椀c heat. The latter marks the crossover region Es ∼
kFvs ≪ kBT≪ Ec ∼ kFvc, showing the thermodynamic beha-
viour of the SILL.

3.2.2. Correlation functions in SILL. The SILL regime with
kFvs < kBT≪ kFvc lies between the boundaries of TLL and
QC. In this region, the spin degrees of freedom behave like hot
spins, whereas the charge still behaves as a collective motion
of bosons. As a result, the SILL largely behaves like a spin
and charge decoherence liquid, i.e. possessing only a propagat-
ing charge mode but not a spin mode, see [65–69]. In the
spin sector, the magnetic exchange energy is lower than the
Fermi energy, resulting in the spin being thermally excited
with equal probability [69]. In the strong coupling regime, the
spin degrees of freedom show spin dynamics of a Heisenberg
chain with a nondispersive spinon band due to small effect-
ive exchange coupling J= 4t2/U, whereas the charge acts as
noninteracting fermions with a dispersive spectrum κ(k) =
−2tcos(k). This SILL theory can also be captured in the excit-
ation spectrum in the low-density regime in 昀椀gure 6(b). The
concept of SILL is helpful for explaining the appearance of a
conductance plateau in a quantum wire [70]. When interaction
increases, or in the vicinity of the QCP, the spin velocity pro-
gressively dwindles to zero. This means that the spin sector
loses dynamics, indicating the emergence of the SILL.

In this regime Es ≪ T≪ Ec, the spin sector is totally
thermally averaged and equally excited, whereas the charge
remains at a relevant low-energy performance, rendering the
correlation functions independent of temperature [67]. We
note that the TLL theory has its own applicable condition
T≪ Ec, Es, whereas for the region Es ≪ T≪ Ec, the energy
scales of charge and spin degrees of freedom can be dealt
with separately [65]. Under such a circumstance, the 昀椀nite-
temperature correlation functions in terms of conformal 昀椀eld
theory [6, 34, 35] still remain valid for the charge and spin
degrees of freedom operating with different limits, i.e.

|x± ivct| ≪ vc/T, |x± ivst| ≫ vs/T. (130)

This is essential to capture the asymptotic behaviour of the
SILL. Here, we would like to mention that the remaining tem-
perature term in the spin sector can be replaced by the typical
energy scale of spin

T∼ Es ∼ J∼ (kF↑ + kF↓)/2 · vs ≡ kFvs.

With the help of the 昀椀nite-temperature asymptotics of correla-
tion functions under the condition in equation (130), the two-
point correlation functions of prime 昀椀elds can be obtained as

⟨ϕ(x, t)ϕ(0,0)⟩=
∑

A
(

Dc,Ds,N
±
c ,N

±
s

)

exp(−2iDckF,↑x)

× exp(−2i(Dc+Ds)kF,↓x)

× 1

(x− ivct)
2∆+

c (x+ ivct)
2∆−

c

× (2π³kF)
2∆+

s +2∆−

s e−πα(2∆+
s +2∆−

s )kFx,
(131)

where the conformal dimensions in gapless phases read

2∆±
c (∆N,D) =

(

ZccDc+ZscDs±
Zss∆Nc−Zcs∆Ns

2detZ

)2

+ 2N±
c ,

2∆±
s (∆N,D) =

(

ZcsDc+ZssDs±
Zcc∆Ns−Zsc∆Nc

2detZ

)2

+ 2N±
s . (132)

Here, Z is the dressed-charge matrix given in equation (59),
while N±

α ,∆N⃗, D⃗ are related to the three types of excitations:
adding particles from left and right Fermi points, changing the
total particle number, and moving a number of particles from
the left Fermi point to the right Fermi point (also, see [22]).
From equation (131), the spin-spin correlation in the spin
sector displays exponential decay as a function of distance,
while the correlation in the charge sector shows a power-law
decay. Explicitly, based on the correlation functions obtained
from the 昀椀nite-temperature conformal 昀椀eld theory (CFT), we
may calculate various two-point correlations of 昀椀eld operators
close to the critical 昀椀eld Bc in the SILL regime, including the
single-particle Green’s function

(1) G↑

G↑
B→Bc ∼

exp(−ikF,↑x)

(x− ivct)
1− 2

π

√

1− B
Bc

× (2π³kF)
1
2− 1

π

√

1− B
Bc e

−πα
(

1
2− 1

π

√

1− B
Bc

)

kFx

+ h.c. (133)

This result was derived for the region close to the crit-
ical 昀椀eld Bc, corresponding to the phase transition II–IV.
Similarly, for other correlations

(2) G↓

G↓
B→Bc ∼

exp(−ikF,↓x)

(x− ivct)
1
4+

1
π

√

1− B
Bc (x+ ivct)

1
4− 1

π

√

1− B
Bc

× (2π³kF)
1− 2

π

√

1− B
Bc e

−πα
(

1− 2
π

√

1− B
Bc

)

kFx

+ h.c. (134)
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(3) Gn

Gn
B→Bc ∼ n2 +(exp(2ikF,↑x)

+exp(−2ikF,↑x))
1

|x− ivct|2−
8
π

√

1− B
Bc

× (2π³kF)
2− 4

π

√

1− B
Bc

e
−πα

(

2− 4
π

√

1− B
Bc

)

kFx+(exp(2ikF,↓x)

+exp(−2ikF,↓x))

× (2π³kF)
2− 4

π

√

1− B
Bc e

−πα
(

2− 4
π

√

1− B
Bc

)

kFx

+(exp(2i(kF,↑ + kF,↓)x)

+exp(−2i(kF,↑ + kF,↓)x))
1

|x− ivct|2
. (135)

(4) G⊥

G⊥
B→Bc ∼ (exp(i(kF,↑ + kF,↓)x)

+exp(−i(kF,↑ + kF,↓)x))
1

|x− ivct|
1
2

× (2π³kF)
1
2+

1
π

√

1− B
Bc e

−πα
(

1
2+

1
π

√

1− B
Bc

)

kFx.
(136)

(5) Gp

Gp
B→Bc ∼ exp(−i(kF,↑ + kF,↓)x)

1

(x− ivct)
9
4 (x+ ivct)

1
4

× (2π³kF)
1
2− 3

π

√

1− B
Bc e

−πα
(

1
2− 3

π

√

1− B
Bc

)

kFx

+ h.c. (137)

It should be noted that although these results are obtained
in a very rough approximation, they capture the essential fea-
tures of the SILL [67], i.e. spin-spin correlation decays expo-
nentially while the correlations in the charge degrees of free-
dom behave like spinless noninteracting fermions. The 昀椀eld
theory approach was given in [65–67]. The reason why the
crossover in the vicinity of the phase transition between IV and
V cannot develop such a similar concept as charge-incoherent
Luttinger liquid is that near a half-昀椀lled lattice, the charge
velocity monotonically and exponentially tends to zero [72].
This means subtlety occurs near the Mott phase transition due
to the rapidly vanishing charge collective mode. This limit-
ation is called the holon con昀椀nement. In the next section, we
will develop a new concept, contact susceptibility, to study the
Mott phase transition.

3.3. Contact and contact susceptibility

In this section, we focus on an experimentally measurable
quantity double occupancy [132, 133], as well as the asso-
ciated contact, revealing the competition between thermal
昀氀uctuations and quantum 昀氀uctuations from different sources,
i.e. external 昀椀elds and interaction. The double occupancy
serves as an ef昀椀cient instrument to demarcate phase trans-
itions, especially the Mott phase transition in the extended

Hubbard model with long-range interaction [30, 31]. On the
other hand, the partial wave contact, which was 昀椀rst proposed
in ultracold Fermi gas [134, 135], has become an important
theme in the study of ultracold atoms [136–141]. Here, we will
introduce the concept of contact susceptibilities with respect
to the temperature, magnetic 昀椀eld and chemical potential, and
investigate applications of these contact susceptibilities. We
will show that the susceptibilities build up a general connec-
tion between interaction-driven quantum criticality and the
phase transitions induced by external 昀椀elds. Using these rela-
tions, we will also obtain caloric effects in interaction-driven
quantum refrigeration and scaling laws at quantum criticality,
which will pave a way for future studies of interaction-driven
quantum cooling.

3.3.1. Double occupancy and Mott phase. In the Hubbard
model, the lattice 昀椀lling parameter, interaction strength and
external 昀椀elds can drive different phase transitions [75, 142].
In contrast to the dilute limit case, the Mott insulator phase
induced by interaction is much less understood. When the
interaction strength increases up to a critical value uc [30,
31, 72] in the canonical ensemble, the system reaches a Mott
insulator state in the extended Hubbard model. The half-昀椀lled
phase can be delineated by the Luther–Emery liquid with a
charge gapless mode and a spin-gapped mode [79], in which
the excitations comply with bosonic and fermionic statistics,
respectively. To explore the magnetic order and detect the
Mott phase transition, one can introduce the double occupancy
d= 1

N

∑

i ⟨ni,↑ni,↓⟩, which depicts the probability of two elec-
trons with opposite spin occupying a single lattice site with
potential energy Epot = ud. The double occupancy has been
invested extensively in theoretical and experimental research
on the Hubbard model in the half 昀椀lled state. It appears to
show discontinuity as the interaction approaches critical coup-
ling in interaction-induced Mott transition (note that uc = 0
for this model in the canonical ensemble, in which this phe-
nomenon is inconspicuous) and exhibits nonmonotonic beha-
viour in the half-昀椀lled state as the temperature varies, similar to
the Pomeranchuk effect (themelting pressure of liquid helium-
3 shows a trend of 昀椀rst decreasing and then increasing with
temperature) [30, 31, 33]. It also reveals the competing phys-
ics from the charge and spin 昀氀uctuations. For doping-induced
Mott transition, d is signi昀椀cantly suppressed in the area of
µ < u and generates a pronounced signal when the density
exceeds unity [31]. It is useful to locate the Mott transition
point through the detection of double occupancy.

In the canonical ensemble, the double occupancy can be
obtained from the free energy f by

d=
1
N

∑

i

⟨ni,↑ni,↓⟩=
1
4
∂f
∂u

− 1
4
+
nc
2
, (138)

in which the last two terms −1/4+ nc/2 stem from the extra
terms −2uN+ uL in the Hamiltonian. We can de昀椀ne C=
∂f/∂u to be the lattice version of contact C,

C= ∂f/∂u= 4d− 2nc+ 1, (139)
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Figure 16. (a) Double occupancy maps out the phase diagram of the 1D Hubbard model plotted. The white dot–dashed lines show the
zero-temperature phase boundaries, while the thick dashed lines show the contour lines of d= 0.04 and d= 0.07, respectively. At the critical
points, the double occupancy suddenly changes. The parameter setting for the numerics is the same as 昀椀gure 10(a), i.e. T = 0.005 and u= 1.
(b) Double occupancy versus magnetization in the Mott phase for various coupling strengths. The numerics from the TBA equations
con昀椀rm the accuracy of the analytical result, equation (138), with the contact given by equation (140).

which is analogous to Tan’s contact [134, 141] in the con-
tinuous systems of ultracold atoms. Regarding the role that
the double occupancy can re昀氀ect the phase information, we
expect that d distinguishes different phases with and without
internal degrees of freedom, see 昀椀gure 16(a). The d always
vanishes for phases I, II and III and has no demarcation lines
between these phases. The boundaries of II and IV or III and
V are obvious, while for IV and V the in昀氀ection point of the
contour line marks the phase transition. Due to the fact that
the double occupancy essentially re昀氀ects charge 昀氀uctuations
at the Mott insulator accompanied by the existence of the anti-
ferromagnetic order, we demonstrate the roles of the magnetic
昀椀eld B and the interaction strength u on d in 昀椀gure 16(b). It
is clear that repulsive interaction always lowers the possibil-
ity of double occupancy, which is quite intuitive. When the
interaction increases, the electrons with different spins repel
each othermore strongly and the system becomesmore incom-
pressible. The in昀椀nity coupling u→∞ makes the particles
fully localized. The decrease caused by magnetization origin-
ates from the tendency that the magnetic 昀椀eld tends to align
the spins of electrons in the 昀椀eld direction. Through the deriv-
ative of the background term in equation (103) with respect to
u, the exact analytic expression of the contact C0 in the Mott
phase V of the ground state can be obtained as

C0 =−1− 4
3
∂

∂u
(λ1η1)A

3 − 4λ1η1A
2 ∂A
∂u

− 2
15

∂

∂u
(λ2η1)A

5 − 2
3
λ2η1A

4 ∂A
∂u

, (140)

where ∂A/∂u is given in equation (151).We plotted the double
occupancy through equation (140) (solid lines) in 昀椀gure 16(b),
showing good agreement between this analytical result and the
numerical calculation from the TBA equations. Based on the
relation from equation (139), it is more essential to investigate
the variations of the contact with respect to the changes in the
external 昀椀elds and temperature.

3.3.2. Contact susceptibilities and Mott phase transition. In
comparison to the double occupancy d, the contact C is more
essential to capture many-body effects induced by the vari-
ation of the interaction strength. Using the thermal potential

f = e−µnc− 2Bm− Ts− uC and the Maxwell relations in its
derivatives with respect to the temperature, chemical poten-
tial and magnetic 昀椀elds, we may build up general relations
between contact susceptibilities and interaction-driven vari-
ations of density, magnetization and entropy:

∂nc
∂u

=−∂C
∂µ

, (141)

∂m
∂u

=− ∂C
∂ (2B)

, (142)

∂s
∂u

=−∂C
∂T

. (143)

We prove that these contact susceptibilities will provide strik-
ing features of interaction effects in the thermodynamics of the
model. In particular, the relations (141) and (142) respectively
provide important input on the interaction-driven quantum
mechanism and equation (143) for quantum cooling, to be dis-
cussed in more detail later.

Building on the contact susceptibilities’ relations,
equations (141)–(143), we further show that the contact
susceptibilities exhibit universal scaling behaviour in the
quantum critical region [141]. The Mott insulator phase with
an average of one electron occupying one site is of particular
interest in many-body physics. Here, using the free energy,
equation (103), for the transition from IV to V, we obtain the
contact susceptibilities

C=−1− 4
3
f11A

3 − 4λ1η1A
2 ∂A
∂u

− 2
15
f21A

5

− 2
3
λ2η1A

4 ∂A
∂u

+
T

1
2 b0b1
2π

1
2

f 1
2
, (144)

∂C
∂µ

=− b0b1
2π

1
2 T

1
2

f− 1
2
, (145)

∂C
∂ (2B)

=
∂C0

∂2B
− b0b1

4π
1
2 T

1
2

(

1− 4Ac
πu+Ac

)

f− 1
2
, (146)

∂C
∂T

=
b0b1
4π

1
2 T

1
2

f 1
2
+

b0b1
2π

1
2 T

3
2

[

∆µ+

(

1− 4Ac
πu+Ac

)

∆B

]

f− 1
2
,

(147)
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Figure 17. The universal scaling behaviour of susceptibilities: (a) contact susceptibilities with respect to the chemical potential, magnetic
昀椀eld and temperature vs the magnetic 昀椀eld at the quantum criticality of phase transition IV–V. (b) Contact susceptibilities vs the argument
(B−Bc)/T show universal scaling forms at quantum criticality. The parameters are set within the white empty circle in 昀椀gure 1. The
numerical results obtained from the TBA equations (symbols) con昀椀rm the scaling functions of the contact susceptibilities,
equations (144)–(147) (solid lines).

where C0 denotes the background terms of the ground state,
that is equation (140). We have denoted the background of the
magnetic susceptibility and other functions as

∂C0

∂2B
=−4A2

(

f11 +
1
6
f21A

2

)

∂A
∂ (2B)

− 8η1A

(

λ1 +
1
3
λ2A

2

)

∂A
∂ (2B)

∂A
∂u

,

− 4η1A
2

(

λ1 +
1
6
λ2A

2

)

∂2A
∂ (2B)∂u

, (148)

f11 =
∂

∂u
(λ1η1) , f21 =

∂

∂u
(λ2η1) ,

∂A
∂B

=− 1

η1A
(

1+ A
π u

) ,

(149)

b1 =
∂ (2+C2)

∂u
=−2− 8

πu(1+ u2)
3
2

A2 ∂A
∂u

. (150)

Solving (84) in the supplementary material7, we have the fol-
lowing explicit forms of the quantities

∂A
∂u

=
(

1+ u2
) u−

(

1+ u2
)

1
2

A
(

1+ A
π u

)

+
3u

2(1+ u2)

A
[

1+ 2
9π u

(

4+ 1
u2
)

A
]

1+ A
π u

, (151)

∂2A
∂B∂u

=
1+ 2A

π u

η1A2
(

1+ A
π u

)2

∂A
∂u

− 1

η1πu2
(

1+ A
π u

)2 . (152)

In 昀椀gure 17, we demonstrate the scaling behaviour of contact
susceptibilities, con昀椀rming the analytic expressions (144)–
(147) (solid lines) with the numerical data from TBA
(symbols).

3.3.3. Interaction-driven quantum cooling. It is remark-
able to observe that equation (143) essentially relates the

entropy, temperature and interaction strength. This relation
is of great importance for interaction-driven quantum cooling
since the interaction can be tuned in cold atom experiments via
Feshbach resonance, and temperature plays a vital role in con-
trolling the entropy. Therefore, an adiabatic cycle process can
be used in realization of quantum refrigeration in real physical
systems. Inspired by this, here we consider an isentropic pro-
cess by ramping the interaction strength up or down. Focusing
on the (T, u) coordinates for a 昀椀xed magnetic 昀椀eld, we perform
total derivatives on the entropy s, i.e.

ds=
∂s
∂u

du+
∂s
∂T

dT= 0. (153)

Using equation (143) and the relation ∂s/∂T= Cv/T, the
points on the isentropic line in the (u,T) coordinates satisfy
the relation:

Cv
T

∂T
∂u

=
∂C
∂T

. (154)

Thus, the interaction-driven Grüneisen ratio Γint is related
to ∂C/∂T via the relation Γint = ∂C/∂T · u/Cv. Note that
∂C/∂T dramatically changes near quantum phase transition
(see equation (147) and 昀椀gure 17), where Cv has a minimum
(see 昀椀gure 14) and the entropy has a maximum (see 昀椀gure 18).
A good cooling effect is observed when the interaction drives
the system approaching a critical point. The lowest temperat-
ure point can be estimated by ∂C/∂T= 0. To characterize the
refrigeration ef昀椀ciency, we give a brief description of the low-
est reachable temperature during an adiabatic cooling cycle.
From the results, equation (147), of ∂C/∂T, the condition for
determining the lowest temperature reads

1
2
Li 1

2
(−ex)− xLi− 1

2
(−ex) = 0, (155)
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Figure 18. Plots of isentropic lines in the T − u plane for the interaction-driven phase transitions II–IV (a) and IV–V (b) at B= 0.15 and
µ=−2.5, which is initially located in phase II, then enters phase IV, 昀椀nally reaching phase V as the interaction increases. The temperature
on the vertical axis is logarithmic. The purple dotted lines in (b) denote the interaction-driven Otto cycle, where stages A and B (or stages C
and D) lie on the isentropic lines; see the main text.

where x= ³u∆u/T. It is found that, to a good approxim-
ation, x≈ 1.3117. Thus, the extreme point can be determ-
ined. In 昀椀gure 18, we plot the isentropic lines near the phase
boundaries of II–IV (a) and IV–V (b), respectively. It is
obvious that entropy shows a minimum in the quantum critical
regions. Away from the QCP with temperature T≪ |u− uc|,
the entropy linearly depends on temperature; see the left part of
昀椀gure 18(a) and the right part of 昀椀gure 18(b). In 昀椀gure 18(b),
we draw an Otto cycle for the interaction-driven refrigeration
process. Stages A and D lie around the QCP, whereas stages B
and C are located in the TLL area. There are four steps to cool
the target material. For A→ B, the working substance is adia-
batically ramped up from the target temperature Ttarget to the
nonthermal higher temperature stage B. Then, through a hot
isochore process B → C, the working substance comes into
contact with the ambient conditions, transferring heat to the
high-temperature source. Meanwhile, the temperature of the
working substance reduces to the one at the thermal state C.
Next, for the isentrope process C→ D, the working substance
is adiabatically ramped down to the low-temperature stage D.
This is an opposite process in contrast to the A → B process.
Finally, for the isochore process D → A, the working sub-
stance contacts with the target object, absorbing heat from the
target material and reaching the thermal state A. Consequently,
the target object is cooled down by this cycle.

Now let us determine the lowest temperature which can be
reached through an isentropic process indicated in 昀椀gure 18.
From equations (114)–(118), phase II (V) contains one charge
(spin) degrees of freedom. Consequently, their entropies sL1
and sL2 are given by equations (34) and (35), respectively,
namely,

sL1 ≈
πTL1
3vc

, (156)

sL2 ≈
πTL2
3vs

. (157)

Comparing isentropic lines with the same entropy for phases
II, IV and V, for example, s= 0.00008 in 昀椀gure 18, the tem-
perature of TLLC (phase II) is higher than that of TLLS (phase

V) since the charge velocity vc changes faster than the spin
velocity vs when the interaction is changed around the critical
point, i.e.

TL1 > TL2. (158)

On the other hand, when it approaches the QCP, i.e. at the
extreme low temperature for each isentropic line, the entropy
has explicit expressions for the transitions II–IV and IV–V

ss1 ≈ λ3π
1/2σ1 (0)(ε

′ ′
1 (0)/2)−1/2

T1/2c1 , (159)

ss2 ≈ λ3π
1/2ρ(π)(−κ ′ ′ (π)/2)−1/2

T1/2c2 , (160)

respectively, where λ3 = xLi1/2 (−ex)− 3/2Li3/2 (−ex)≈
1.3467.

With the above analysis, we observe that the entropy shows
a square root dependence on the temperature at an extreme
point; it is proportional to the temperature in the Luttinger
liquid. Therefore, by considering an isentropic cooling process
through the ramping up or down in the T − u plane around
critical phase transitions from II to IV or from V to IV, see
昀椀gure 18, the minimum temperatures can be reached

II–IV:
T1/2c1

TL1
=

π1/2 (ε ′ ′
1 (0)/2)1/2

3λ3vcσ1 (0)
, (161)

V–IV:
T1/2c2

TL2
=

π1/2 (−κ ′ ′ (π)/2)1/2

3λ3vsρ(π)
, (162)

respectively. A brief discussion about interaction-driven
quantum cooling is given in [109]. Based on previous res-
ults, equations (43) and (48), the leading contributions to
the minimum temperature near the quadruple critical point
are

II–IV:
T1/2c1

TL1
≈ π1/2η

1/2
1

6λ1λ3¶
, (163)

V–IV:
T1/2c2

TL2
≈ 2λ1π

5/2

3λ3η1A
. (164)
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Figure 19. (a) A 3D plot of the density nc in the u−µ− nc coordinate with 昀椀xed B= 0.82714, showing quantum phases I, IV (or II) and V
(or III). The green arrow on the 3D coordinate denotes the phase transition from IV to V around uc = 1. And the green arrow in the u−µ
plane represents a 3D projection onto the u−µ plane when the density 昀椀rstly reaches unity from phase IV to V. (b) Quantum scaling
behaviour of density near phase transition from IV to V driven by interaction. The numerical results from the TBA equations and analytical
results are in good agreement.

These suggest that the lowest temperature can be reached
around the QCPs, which can also be reachable through adia-
batic demagnetization cooling, see the study of the Grüneisen
parameters in [120]. Moreover, we further note that the loca-
tion of the minimum temperature for each contour entropy line
in the T-u plane is governed by the relation ³u∆u/T≈ 1.3117
in equation (155), where ³u needs to be determined.

3.3.4. Calculation of αu for phase transition IV–V. One
remaining problem from the discussion in the previous sub-
section is that the underlying coef昀椀cient ³u is not given. It not
only determines the scaling factor of the critical temperature at
quantum criticality driven by the interaction, but also determ-
ines the extreme point associated with the lowest temperature
in an isotropic process in the refrigeration cycle. We know that
³u emerging in a polylog function is related to the phase trans-
ition line via the formula κ(π) = ³B∆B+³µ∆µ+³u∆u. For
transition IV–V, the phase boundary between phase IV and V
is marked by κ(π) = 0, where κ(π) is expressed via ε1(Λ) by

κ(π) = 2−µ− 2u−B+
ˆ A

−A
dΛa1 (Λ)ε1 (Λ) , (165)

ε1 (Λ) = 2B− 4Re
√

1− (Λ− iu)2 + 4u

−
ˆ A

−A
dΛ ′a2 (Λ−Λ ′)ε1 (Λ

′) . (166)

However, for transition IV–V, the corresponding
equations (165) and (166) are not in polynomial forms in
terms of the interaction u. In this section, we present a numer-
ical scheme with equation (141) based on the fact that phase
transition from IV to V occurs due to the emergence of the
Mott insulator with constant density. In addition to the mag-
netic 昀椀eld B and chemical potential µ that can drive the phase
transition, the interaction drives the system from one phase
to others. In 昀椀gure 19(a), we plot the phase diagram in the
(u−µ− nc) coordinate at a 昀椀xed magnetic 昀椀eld B= 0.82714.
The vacuum phase I has nc = 0. The density is 0< nc < 1 for
phases II or IV, and nc = 1 for phases III or V. The boundary

line for IV and V (or II and III) is marked with a constant dens-
ity nc = 1. On this transition line, we perform total derivatives
of nc, yielding

dnc =
∂nc
∂u

du+
∂nc
∂µ

dµ= 0. (167)

Substituting equation (141) for ∂nc/∂u=−∂C/∂µ
with equation (145) and substituting∂nc/∂µ= χc with
equation (106) into (167), near the boundary line nc = 1 in
the u−µ plane, we have

³u =−³µ
∂µ

∂u
(168)

where we note that ³u =
∂(2+C2)

∂u ;−1= ³µ; see
equation (150). Near the phase transition IV to V, we see
³µ =−1 since the chemical potential µ only appears in the
charge leading term, with no contribution to the driving terms
in spin string; see equations (165) and (166). At this point, we
relate the value of ³u to the slope at the QCP in the uc−µc
plane. Therefore, equation (168) provides us with a way to
obtain the unknown coef昀椀cient ³u. Moreover, ∂µ/∂u can also
be obtained directly from equations (165) and (166)

2
∂µ

∂u
=−2+

ˆ A

−A
dΛ

[

∂a1 (Λ)
∂u

ε1 (Λ)+ a1 (Λ)
∂ε1 (Λ)

∂u

]

,

(169)

∂ε1 (Λ)

∂u
=−4

∂

∂u

[

Re
√

1− (Λ− iu)2 − u

]

−
ˆ A

−A
dΛ ′ ∂

∂u
[a2 (Λ−Λ ′)ε1 (Λ

′)] . (170)

Then, ∂µ/∂u can be obtained by iteratively solving the above
two equations. Here, we use a colour map to get ³u instead,
which can apply to arbitrary systems without knowing explicit
analytic formulas. In 昀椀gure 19(a), we plot the density in terms
of (uc,µc), showing quantum phase transitions. To evaluate
³u(uc,µc) numerically for the interaction-driven phase trans-
itions, compared to 昀椀gures 14(c) and (d) driven by external
昀椀elds, we choose two adjacent points (u1,µ1),(u2,µ2) near the
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QCP uc = 1. It is evaluated from equation (168) that ³u(uc =
1)≈ (µ1 −µ2)/(u1 − u2)≈−1.9627. Using this value as the
argument factor of the scaling function for the phase transition
IV–V with the help of the scaling functions, equations (103)
and (118), we plot the density scaling law in 昀椀gure 19(b)
in terms of the variation of interaction strength. This shows
an excellent agreement between the numerical calculation
and these analytical scaling functions, equations (103), (118)
and (168). One can see that the obtained ³u captures the ther-
modynamic scaling law well.

3.3.5. Calculation of αu for phase transition II–IV. Similar to
the analysis of the parameter ³u for the transition of IV to V,
the relevant coef昀椀cients ³B,³µ,³u for transition II to IV are
related to each other. In contrast to the Mott-insulator trans-
ition, this transition arises from the introduction of spin-down
electrons, i.e. the phase transition points are determined by
zero spin-down particle density n↓ = 0. Considering a mag-
netic 昀椀eld B and coupling strength u-driven phase transition,
we perform the total derivative of n↓, i.e.

dn↓ =
∂n↓
∂u

du+
∂n↓

∂ (2B)
d(2B) = 0. (171)

Substituting ∂m/∂B= χs with equation (94) and inserting
equation (142) into equation (171), with the help of n↓ =
nc/2−m we obtain

³u =−³B
∂B
∂u

. (172)

Recall that equation (123) gives us the value of ³B =
−2 [1− arctan(sinQc/u)/π]. We also note that the quantity
∂B/∂u can be obtained from equation (121), namely, near the
critical line, we have the following relation

B=
2u
π

ˆ Q

0
dk

cosk

u2 + sin2 k
(cosk− cosQ) . (173)

Therefore, ∂B/∂u is easily obtained through the deriv-
ative on both sides of this equation with respect to u.
From equation (172), we 昀椀nally get the following analytic
expression

³u =
4
π

[

ˆ Qc

0
dk

cos2 k

u2c + sin2 k
− 2u2c

ˆ Qc

0
dk

cos2 k
(

u2c + sin2 k
)2

+arctan

(

sinQc

uc

)

+
sin(2Qc)

2(u2c + sinQ2
c)

]

. (174)

In summary, simple relations exist between any pair of
these scaling factors ³B, ³µ and ³u. In the previous two
subsections, via the contact susceptibility expressions (141)
and (142), we build up relationships between ³u and ³µ as
well as between ³u and ³B; see equations (168) and (172).
In fact, in terms of thermodynamic potential, Maxwell rela-
tions can also build a connection between the charge suscept-
ibility ∂nc/∂(2B) and magnetization susceptibility ∂m/∂µ.
Moreover, equations (168) and (172) remain valid for other

transitions, like I–II, II–III and III–V. Based on this feature,
we can conclude that the following relations

³u
³µ

=−∂µ

∂u
, (175)

³u
³B

=−∂B
∂u

, (176)

³B
³µ

=−∂µ

∂B
(177)

hold true in general, i.e. for arbitrary interaction strength and
density. In the above, we have discussed the exact values of
³B for the phase transition II–IV and ³µ for the phase trans-
ition IV–V. The remaining coef昀椀cients can be derived through
equations (175), (176) and (177) in a straightforward way.
Here, we give the values of ³µ for II–IV and ³B for IV–V

II–IV: ³µ =
2
π
arctan

(

sinQc

u

)

, (178)

IV–V: ³B =−1
2
+

ˆ A

0
dΛa1 (Λ)

∂ε1 (Λ)

∂B
. (179)

Together with equations (114)–(118), the results obtained here
offer a more general description of quantum criticality in terms
of full internal and external potentials in the 1D Hubbard
model in arbitrary experimentally controllable parameters.
These hold true for the second-order phase transition in higher-
dimensional quantum systems too.

4. Conclusion and remarks

We have presented analytical results of the thermal and mag-
netic properties of the 1D Hubbard model, ranging from ele-
mentary spin and charge excitations, to the SILL, universal
thermodynamics, quantum criticality and interaction-driven
refrigeration. A summary of our new results is as follows:

(1) We have presented exact results of various excitations and
multiple particle excitations, which are created by few ele-
mentary excitations involving fractional spin and charge
excitations, showing the origin of the spin and charge sep-
aration and spin-incoherent liquid. Meanwhile, the gapped
charge k−Λ strings and spinon bound-state excitations, as
well as some combinations of them, have been given in the
supplementary material7. These are complementary to that
studied in [22].

(2) Based on the study of such excitations, together with the
dimensionless Wilson ratio, and universal scaling of the
thermodynamics of the model, we have a rigorous invest-
igation of the SILL, which was previously studied only
within the framework of effective theory via bosoniza-
tion. From the conformal 昀椀eld theory point of view, we
have rigorously given the characteristics of various correl-
ation functions near the phase transition from phase II to
phase IV, showing the existence of a collective mode in
charge degrees of freedom rather than the spin degrees of
freedom. The crossover regime between the TLL and the
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quantum critical region belongs to the SILL and indicates
a coexistence of liquid and gas, see equation (129), giving
the behaviour beyond TLL theory.

(3) We have presented general analytical results of thermo-
dynamics, independent of the microscopic details of the
model. Explicitly, we have determined the additivity rules
of charge and spin susceptibilities in the grand canonical
ensemble equations (52) and (53) and canonical ensemble
equations (57) and (58). Away from the critical point and
in the low-energy regime, in general, coherent spin and
charge degrees of freedom give rise to thewell-known phe-
nomenon of spin–charge separation, indicating the nature
of the TLL. Besides the thermodynamics, the quantum
criticality and universal scaling laws induced by the vari-
ation of the magnetic 昀椀eld and chemical potential have
been obtained analytically and con昀椀rmed numerically; see
the general results of the criticality equations (114)–(118).
These general results are obtained for the 昀椀rst time and are
applicable to any other integrable models. In addition, we
have studied the interaction-driven quantum critical beha-
viour, which provides a promising opportunity to study
interaction-driven quantum phase transitions in ultracold
atoms.

(4) We have introduced the lattice version of the contact
and contact susceptibilities with respect to the external
昀椀elds and temperature. In particular, we have investig-
ated applications of contact susceptibilities that build up
a general connection between interaction-driven quantum
criticality and the phase transitions induced by external
昀椀elds. These results, equations (175)–(177) together with
equations (114)–(118), present general relations among
arbitrary external- and internal-potential-driven quantum
phase transitions, which allow us to address very general
cases in phase transition. By virtue of the contact sus-
ceptibilities, we have discussed Mott transition, quantum
refrigeration and interaction-induced quantum transitions,
showing promising application in quantum cooling with
ultracold atoms; see section 3.3.

In view of the rapid advances in trapping and controlling
ultracold atoms in experiments, the results obtained here will
provide direct guidance to experimentally explore various
many-body phenomena in the 1D Hubbard model, such as
quantum criticality, spin-coherent and incoherent Luttinger
liquids, generalized hydrodynamics and transport properties.
These relations reveal deep insights into the quantum critic-
ality of the Hubbard model. Furthermore, applications of our
method to quantum metrology and other quantum technolo-
gies are also highly desirable.
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