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Constructing and manipulating quantum states in fast-rotating Bose-Einstein condensates (BECs) has long

stood as a significant challenge as the rotating speed approached a critical velocity. Although a recent exper-

iment [R. J. Fletcher et al., Science 372, 1318 (2021)] has realized the geometrically squeezed state of the

guiding-center mode, the remaining degree of freedom, the cyclotron mode, remains unsqueezed due to the

large energy gap of the Landau levels. To overcome this limitation, in this Letter, we propose a Floquet-based

state-preparation protocol by periodically driving an anisotropic potential. This protocol not only facilitates

single-cyclotron-mode squeezing, but also enables two-mode squeezing. Such two-mode squeezing offers a

richer set of dynamics compared to single-mode squeezing and can achieve a wave-packet width well below

the lowest-Landau-level limit. Our work provides a highly controllable knob for realizing diverse geometrically

squeezed states in ultracold quantum gases within the quantum Hall regime.

DOI: 10.1103/PhysRevA.111.L011303

Introduction. The quantum simulation of Landau levels

using cold atoms holds significance for exploring topological

states and discovering novel quantum phases of matter that

have no counterpart in electronic materials [1–5]. Rotating

Bose-Einstein condensates (BECs) provide a viable pathway

for such simulations as they can mimic the motion of elec-

trons in a gauge field [6–20]. The corresponding dynamics

encompasses two degrees of freedom—the cyclotron mode

and the guiding-center mode. Particularly, when the BEC

is in the quantum Hall regime, i.e., the rotating frequency

� approaching the external trapping frequency ω, the ef-

fective energy of the guiding-center mode vanishes, leading

to extensive level degeneracy. This degeneracy, combined

with the nondegenerate cyclotron mode, gives rise to the

characteristic Landau levels typically observed in charged par-

ticles in two dimensions (2D) subjected to a strong magnetic

field [21,22].

Despite various advantages of rotating BECs, the precise

manipulation of quantum states within the quantum Hall

regime is hindered by instabilities [6,17]. In this case, the

centrifugal force exactly counterbalances the confining har-

monic potential, rendering the atoms in a flat-land scenario

(i.e., the Landau levels) to lack effective confinement. Re-

cently, an experiment on geometric squeezing provides an

effective approach for the quantum control of BECs within

the quantum Hall regime [11]. The experiment employed a

quasi-2D harmonic potential with weak anisotropy, which

effectively provided a transverse Hall drift [23–25]. Under its

influence, the quantum fluctuation in the guiding-center phase

*Contact author: lchen@sxu.edu.cn

space was suppressed, akin to degenerate parametric oscil-

lation in quantum optics [26–29], leading to a single-mode

(i.e., the guiding-center mode) squeezed state. The real-

space density distribution of the BEC becomes an anisotropy

Gaussian with a minimal width σLLL [11], the characteristic

length of the lowest Landau level. The width σLLL arises

from the unsqueezed cyclotron mode, with the associated

wave function remaining in the ground state of a harmonic

oscillator.

In fact, similar to the guiding-center mode, the Hamilto-

nian realized in the experiment also provides the necessary

terms for squeezing the cyclotron mode [11]. However, due to

the dominant energy gap of the Landau levels, an effective

geometric squeezing of the cyclotron mode is unattain-

able. In other words, to achieve significant squeezing in

the cyclotron mode, we need to find a way to overcome

this energy gap. Motivated by this question, in this Letter,

we propose a Floquet-based state-preparation protocol, in

which the anisotropy of the trap is periodically modulated.

We find that, when the modulation frequency ν coincides

with twice the energy gap of Landau levels, the Floquet

effective Hamiltonian can circumvent the aforementioned

limitation and efficiently generate the squeezing of the cy-

clotron mode. More importantly, a protocol comprising both

direct (dc) and alternating (ac) components allows for the

simultaneous squeezing of both the cyclotron and the guiding-

center modes, resulting in a two-mode geometrically squeezed

state. In real space, the wave-packet width of the two-mode

squeezed state decays exponentially and can surpass the

limitation of σLLL.

Hamiltonian. We consider the experimental setup [11]: a

quasi-2D BEC being loaded into a magnetic harmonic trap.
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The trap is rotating along the z direction in angular frequency

�. In the rotating reference, the system is described by the

single-particle Hamiltonian (setting h̄ = 1)

h0 =
p2

2m
+ Vext(r) − �Lz, (1)

where r = (x, y) and p = (px, py), m is the atomic mass, Lz =
xpy − ypx the axial angular momentum operator, and � the

rotation frequency. The external potential Vext is given by

Vext(r) =
m(1 + ε)ω2

2
x2 +

m(1 − ε)ω2

2
y2, (2)

with ε � 1 being a small dimensionless parameter character-

izing the anisotropy of the trap. Notably, when ε �= 0, the axial

rotational symmetry is broken.

To separate the cyclotron and the guiding-center modes, we

perform a unitary transformation G = exp(−iκmωxy) with

κ ≡ εω/2�. The transformed Hamiltonian reads

h̃0 = Gh0G† = s

[

p̃2

2m
+

mω2

2
(x̃2 + ỹ2)

]

+ κω(x̃ p̃y + ỹ p̃x ) − �(x̃ p̃y − ỹ p̃x ), (3)

where s ≡
√

1 + κ2 and

r̃ = (x̃, ỹ) = s1/2r, p̃ = ( p̃x, p̃y) = s−1/2p. (4)

Then, one can define two sets of independent bosonic modes:

the cyclotron mode characterized by the ladder operator ã and

quadratures (ξ̃ , η̃), and the guiding-center mode characterized

by the operator b̃ and quadratures (X̃ , Ỹ ). The specific defini-

tions of the mode operators are given by

ã =
ξ̃ + iη̃
√

2lB
, ξ̃ =

x̃

2
−

p̃y

2mω
, η̃ =

ỹ

2
+

p̃x

2mω
,

b̃ =
X̃ − iỸ
√

2lB
, X̃ =

x̃

2
+

p̃y

2mω
, Ỹ =

ỹ

2
−

p̃x

2mω
, (5)

with lB ≡ 1/
√

2mω being the magnetic length of the Landau

levels (see below). Notably, operators belonging to each of the

two modes satisfy bosonic commutation relations, i.e.,

[ã, ã†] = [b̃, b̃†] = 1, [ξ̃ , η̃] = −[X̃ , Ỹ ] = il2
B, (6)

whereas operators between the two modes mutually commute.

In terms of these operators, the Hamiltonian h̃0 takes a simple

form of

h̃0 = ω̃+ã†ã + ω̃−b̃†b̃ −
ζ

2
(ã2 − b̃2 + H.c.), (7)

where ω̃± ≡ sω ± � and ζ ≡ κω = εω2/2�. The separation

of the cyclotron and the guiding-center modes becomes man-

ifest. Now, |nã, nb̃〉 provides a complete set of basis, where

the non-negative integers nã and nb̃ are the quantum numbers

associated with ã†ã and b̃†b̃, respectively.

One immediately notices that the terms ã2 and b̃2 in Hamil-

tonian (7), which resemble the parametric conversions in

quantum optics [26,27], serve as the basis for the geometric

squeezing. The squeezing parameter ζ is proportional to the

trap anisotropy parameter ε. At the critical rotation velocity

� = ω, the three key parameters characterizing h̃0—ω̃+ ≈
2ω, ζ = εω/2, and ω̃− ≈ ε2ω/8—are of zeroth, first, and

second order in ε, respectively. For a small ε, ω̃− becomes

negligible such that the first two terms of h̃0 yield the Landau

levels: For a given nã, different nb̃ provide massive degener-

acy; in contrast, states in adjacent nã exhibit an energy gap ω̃+.

Particularly, states |nã = 0, nb̃〉 are called the lowest Landau

levels (LLLs).

Guiding-center mode squeezing. Consider the following

protocol: (1) Prepare the BEC in the ground state of the system

with the isotropic irrotational trap (i.e., ε = 0 and � = 0).

(2) Ramp up the rotation frequency �, in which the BEC

remains in the isotropic steady state [30]. (3) At t = 0, when

the critical condition � = ω is reached, the trap anisotropy ε

is suddenly turned on and the system starts to evolve under

Hamiltonian (7). Note that the initial nonrotating state is the

same as |nã = 0, nb̃ = 0〉 up to a correction of O(ε2). In the

ensuing time evolution, the cyclotron mode is dominated by

the first term ω̃+ã†ã, which thus, to a good approximation,

remains in the initial state |nã = 0〉. In contrast, the time-

evolution operator for the guiding-center mode takes the form

of the squeezing operator Ub̃(t ) = exp(−iζ t b̃2/2 − H.c.) with

squeezing angle −π/4, which transforms the BEC into a

single-mode squeezed state, i.e., Ub̃(t )|0, 0〉 = |0, S(t )〉. Dur-

ing the squeezing, quantum fluctuations behave as

�X̃−π/4 = �SQLe−ζ t , �Ỹπ/4 = �SQLeζ t , (8)

where �X̃−π/4 and �Ỹπ/4 denote the quadrature fluctuations

in the X̃ -Ỹ phase space, respectively, along the squeezing and

antisqueezing directions, and �SQL = lB/
√

2 is the standard

quantum limit (SQL). In the coordinate x-y space, the BEC’s

density distribution can be obtained as [11,31]

ρ(r, t ) ≈ |〈r|0, S(t )〉|2

=
e
−[1−tanh(ζ t )]

(x+y)2

4l2
B

−[1+tanh(ζ t )]
(x−y)2

4l2
B

2π l2
B cosh(ζ t )

, (9)

which is a 2D Gaussian independently along directions (x ±
y)/

√
2 and of widths

√

(1 + e±2ζ t )/2lB, respectively. In the

asymptotic limit t → ∞, the width along the −π/4 direction

converges to σLLL = lB/
√

2, while that along the π/4 direc-

tion diverges.

We confirm these results by numerically solving the time-

dependent Schrödinger equation based on Eqs. (1) and (2),

with the outcome displayed in Fig. 1. Specifically, quadrature

fluctuations in the ξ̃ -η̃ and X̃ -Ỹ phase spaces are presented

in Figs. 1(a1) and 1(a2), respectively; the density profiles at

selected moments are displayed in Figs. 1(b1)–1(b3).

Floquet protocol. Now we introduce our Floquet protocol

to squeeze the cyclotron mode. The full protocol is similar

to what is described above except that the trap anisotropy is

periodically modulated as

ε(t ) = ε − 2ε′ cos(νt ), (10)

where ε and ε′ are respectively the amplitude of the dc and

ac components, and ν denotes the modulation frequency.

The factor 2 is introduced for convenience. Under the same
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FIG. 1. Guiding-center mode squeezing. (a1) and (a2) show the

quadrature fluctuations in the ξ̃ -η̃ and X̃ -Ỹ phase spaces, respec-

tively. (b1)–(b3) display the real-space density distribution ρ(r, t ) [in

arbitrary units (a.u.)] at selected moments, with white dashed lines

indicating ±σLLL = ±lB/
√

2. In our calculation, we take ε = 0.2.

transformation G, the Hamiltonian now reads [31]

h̃0(t ) = ω̃+ã†ã + ω̃−b̃†b̃ − hab(t )

−
{[

ζ

2
+ ζ ′ cos(νt )

]

ã2

−
[

ζ

2
− ζ ′ cos(νt )

]

b̃2 + H.c.

}

. (11)

Comparing with Eq. (7), the ac driving provides an

alternating squeezing parameter with ζ ′ = ε′ω/2s, and

hab(t ) = 2ζ ′ cos(νt )(ã†b̃ + b̃†ã) denoting the coupling

between the two modes.

Taking another unitary transformation W (t ) = eiω̃+t ã†ã, the

Hamiltonian is expressed as

h̃W
0 (t ) = ω̃−b̃†b̃ − [2ζ ′eiω̃+t cos(νt )ã†b̃ + H.c.]

−
{[

ζ

2
+ ζ ′ cos(νt )

]

e2iω̃+t ã2

−
[

ζ

2
− ζ ′ cos(νt )

]

b̃2 + H.c.

}

. (12)

Now, the term ã2, as well as the coupling ã†b̃, depends on both

ω̃+ and ν. We find that, when the modulation frequency is set

to ν = 2ω̃+ = 2(sω + �), the Floquet effective Hamiltonian

takes the form of

h̃eff
0 ≡

1

T

∫ T

0

h̃W
0 (t ) dt = ω̃−b̃†b̃ −

(

ζ ′

2
ã2 −

ζ

2
b̃2 + H.c.

)

,

(13)

where T ≡ 2π/ω̃+ = 4π/ν is the stroboscopic period. The

time integral in Eq. (13) kept all the zero-frequency terms in

h̃W
0 but erased all nonzero-frequency terms.

Equation (13) is a key result of this Letter: Compared to

Eq. (7), the term ω̃+ã†ã is absent in the effective Hamilto-

nian h̃eff
0 , i.e., the Landau-level gap that previously prevented

squeezing in the cyclotron mode is now eliminated by the

Floquet driving. As a consequence, the term ∼ã2 + (ã†)2

now can dominate the dynamics and generate squeezing

in the cyclotron mode. Furthermore, at the critical rotation

with � = ω and hence ω̃− ≈ 0, h̃eff
0 still allows squeezing

of the guiding-center mode. As a consequence, both modes

can be squeezed simultaneously, resulting in two-mode ge-

ometric squeezing. Below, we will discuss these two cases

in detail.

Cyclotron-mode squeezing. By turning off the dc com-

ponent, i.e., setting ε = 0, the b̃2 term in h̃eff
0 vanishes and

the guiding-center mode is not squeezed. In the critical case

� = ω, we simply have s = 1, ν = 4ω, and ζ ′ = ε′ω/2.

The stroboscopic dynamics at moments t = nT (n being

a non-negative integer) is governed by the Floquet evolu-

tion operator U n
ã = exp(iζ ′nT ã2/2 − H.c.), which is also a

squeezing operator and drives the cyclotron mode into a

squeezed state, i.e., U n
ã |0, 0〉 = |S, 0〉. The properties of |S, 0〉

are quite similar to the guiding-center squeezed state |0, S〉
discussed previously, except that the squeezing now exists in

the ξ̃ -η̃ phase space. The corresponding quadrature fluctua-

tions behave as

�ξ̃π/4 = �SQLe−ζ ′nT , �η̃−π/4 = �SQLeζ ′nT . (14)

The real-space density distribution can be worked as [31]

ρ(r, t = nT ) =
e
−[1−tanh(ζ ′t )]

(x+y)2

4l2
B

−[1+tanh(ζ ′t )]
(x−y)2

4l2
B

2π l2
B cosh(ζ ′t )

. (15)

which is also a 2D Gaussian with minimal width along the

−π/4 direction and converging to σLLL = lB/
√

2 as n → ∞.

The complete dynamics can be obtained by numerically

solving the time-dependent Schrödinger equation, with results

presented in Fig. 2(a), where Figs. 2(a1) and 2(a2) show the

fluctuations in the ξ̃ -η̃ and X̃ -Ỹ phase spaces, and Figs. 2(a3)–

2(a8) illustrate ρ(r, t ) at selected moments. It is shown that

the quadrature variance of the ã mode has been considerably

squeezed, whereas that in the b̃ mode remains unsqueezed, as

anticipated. At stroboscopic moments t = nT (indicated by

thick vertical lines), �ξ̃π/4 and �η̃−π/4 respectively exhibit

exponential squeezing and antisqueezing, confirming the ana-

lytical results in Eq. (14).

Within a stroboscopic period T , quantum fluctuations os-

cillate, accompanied by the clockwise rotation of the density

profile, which can be understood as follows. For any initial

time t0, the Floquet Hamiltonian h̃
t0
0 characterizes the physics

at moments t = t0 + nT , and the effective Hamiltonian h̃eff
0

shown in Eq. (13) represents the specific case for t0 = 0. It is

straightforward to show that [31]

h̃
t0
0 = ω̃−b̃†b̃ −

[

ζ ′

2
(e−iϕ/2ã)2 −

ζ

2
b̃2 + H.c.

]

, (16)

implying that the squeezing angle in the ξ̃ -η̃ phase space

is altered by ϕ/2 = −νt0/2. Particularly for t0 being odd

multiples of T/4, ϕ = ±π [mod 2π ] (equivalently ζ ′ → −ζ ′

for h̃eff
0 ), which leads to a swap between squeezing and anti-

squeezing directions compared to the case of t0 = ϕ = 0. This

also explains the alternating long and short axis of the density

distribution ρ(r) [see Eq. (15) and Fig. 2(a6)].
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FIG. 2. Floquet geometric squeezing. The upper row (a) illustrates the cyclotron-mode squeezing with ε = 0 and ε′ = 0.2; the lower

row (b) shows the two-mode squeezing with ε = ε′ = 0.2. In each row, the first two panels show the quadrature fluctuations in the ξ̃ -η̃ and

X̃ -Ỹ phase spaces; vertical lines mark the stroboscopic moments t = nT , with T = 2ω̃+ ≈ 4ω; the remaining six panels display the density

distribution ρ(r, t ) at selected moments. In the Supplemental Material (SM) [31], we provide animations of ρ(r, t ) for various types of

geometric squeezing.

Two-mode squeezing. We are now ready to discuss the

two-mode squeezing protocol where ε(t ) includes both the dc

and ac components. Here, we specifically examine the case

of ζ ′ = ζ , which can be satisfied by setting ε′ = ε and � =
(1/2 +

√
1 + ε2/2)1/2ω ≈ (1 + ε2/8)ω. A more general dis-

cussion for ζ ′ �= ζ can be found in the SM [31]. In the current

situation, the stroboscopic evolution U n = exp[iζnT (ã2/2 −
b̃2/2) − H.c.] at moments t = nT is a squeezing operator for

both the ã and b̃ modes, leading to the two-mode squeezed

state U n|0, 0〉 = |S, S〉.
The stroboscopic dynamics manifests that quantum fluc-

tuations in both phase spaces scale exponentially, following

Eqs. (8) and (14), as numerically confirmed by Figs. 2(b1)

and 2(b2). The density distribution of |S, S〉 is given by [31]

ρ(r, t = nT ) =
1

2π l2
B

exp

[

−
(x + y)2

4l2
B e2ζ t

−
(x − y)2

4l2
B e−2ζ t

]

, (17)

with minimal width along the −π/4 direction being e−ζnT lB.

Notably, in contrast to the single-mode squeezing cases

presented in Eqs. (9) and (15) where the minimal width

asymptotically saturates to σLLL, here the minimal width ex-

ponentially decreases as n increases and can fall below σLLL.

Note that although Eq. (17) indicates that the minimal width

tends to zero for large n, this result is obtained under the

effective Floquet Hamiltonian h̃eff
0 where high-order correc-

tions are neglected. A calculation based on high-frequency

expansion shows that the next-order corrections are ã†ã and

b̃†b̃ with strength ∝ζ 2/ω̃+ [31]. Consequently, the squeez-

ing behaviors will be limited to a timescale ∼ω/ζ 2 which

prevents the width going all the way to zero. Neverthe-

less, the statement that the minimal width can fall below

σLLL is robust as confirmed by our numerical simulation us-

ing the original time-dependent Hamiltonian and illustrated

in Fig. 2(b8).

Furthermore, the dynamics at quarter periods t = nT/4

(n being odd) manifest isotropic density profiles, as shown

in Fig. 2(b6). Again, the Floquet Hamiltonian h̃
t0
0 is now

equivalent to h̃eff
0 subject to ζ ′ → −ζ ′, based on which we

can obtain [31]

ρ(r, t = nT/4) =
1

2π l2
B cosh(2ζ t )

exp

[

−
x2 + y2

2l2
B cosh(2ζ t )

]

,

(18)

which is a 2D isotropic Gaussian, with width
√

cosh(2ζ t )lB
monotonically increasing in t and scaling exponentially eζ t lB
for t � 1/2ζ .

We additionally remark that, although our discussion above

has assumed a small anisotropy (ε � 1), numerical calcu-

lation [31] shows that the results remain valid for a sizable

anisotropy.

Interacting BECs. So far we have ignored interatomic in-

teractions. The case would become more complicated when

atomic collisions are included, with the system now being

described by the Gross-Pitaevskii equation (GPE)

iψ̇ = (h0 + g|ψ |2)ψ, (19)

where ψ (r, t ) is the mean-field wave function, and g =√
8πωz/mas denotes the two-body interaction strength in two

dimension, with as the s-wave scattering length and ωz the

longitudinal trapping frequency.

For sufficiently small g, the single-particle physics pre-

sented above remains qualitatively unchanged. However,

when the BEC operates within the Thomas-Fermi (TF)

regime, i.e., the interaction energy significantly exceeds the

kinetic energy, the g term begins to markedly influence the

squeezing dynamics. To illustrate the TF case, we implement

our protocol by numerically propagating the GPE, with the

results for the cyclotron-mode and the two-mode squeez-

ing being respectively shown in Figs. 3(a) and 3(b). The

parameters used are close to those in the experiment [11],

i.e., considering N = 5 × 104 Na atoms with as ≈ 63a0 (a0

being the Bohr radius); the trapping frequencies are ω =
88.6 × (2π ) Hz and ωz =

√
8ω. In this case, the BEC enters

the deep Thomas-Fermi regime, with the wave-packet width

being much larger than the harmonic oscillator length (see the

animations in Supplemental Material [31]). The initial state is

the irrotational ground state of the interacting BEC at � = 0

L011303-4
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FIG. 3. Dynamics of �ξ̃min (solid lines) and �X̃min (dashed lines)

for interacting BECs. (a1) and (b1) correspond to the cases of the

cyclotron-mode and the two-mode squeezings, respectively, with

(ε, ε′) ∼ 0.1. (a2) and (b2) present the results for (ε, ε′) ∼ 0.4. See

the SM [31] for animations of ρ(r, t ).

and ε(t ) = 0, which remains stable as � is linearly ramped

up to the critical value ω [14,30]. Then, the system begins to

evolve under ε(t ) �= 0.

For the interacting BEC, the squeezing/antisqueezing

direction may not be exactly along ±π/4. Hence, we char-

acterize the squeezing by �ξ̃min and �X̃min, respectively

denoting the minimum quantum fluctuations in the ξ̃ -η̃ and

X̃ -Ỹ phase spaces. Figures 3(a1) and 3(b1) present the mini-

mum fluctuations for the cases of small anisotropy (ε, ε′) ∼
0.1. The results indicate that neither the single cyclotron

mode nor the two-mode state can be squeezed effectively,

manifested by the periodic oscillations of �ξ̃min and �X̃min.

The oscillation period T ≈ 0.56ω−1 is insensitive to g when

the BEC enters the TF regime. These phenomena imply that

the interacting BEC is in a near-equilibrium state, exhibiting

certain collective oscillations.

We further find that increasing the anisotropy helps

disrupt the periodicity and yields considerable squeezing.

Figures 2(a2) and 2(b2) display the squeezing dynam-

ics for (ε, ε′) ∼ 0.4, with all other parameters remain-

ing unchanged. Both scenarios can yield squeezings �−
10 log10(0.15/�SQL) � 6.7 dB. In real space, ρ(r, t ) exhibits

behaviors qualitatively similar to those of the noninteract-

ing cases shown in Fig. 2: For ã-mode squeezing, ρ(r, t )

is elongated during the rotation process, whereas for two-

mode squeezing, ρ(r, t ) alternates between isotropic and

anisotropic, accompanied by an increase in amplitude.

Conclusion. We have introduced a Floquet protocol by

periodically modulating the anisotropy of the trapping po-

tential, resulting in squeezing of both the guiding-center and

the cyclotron modes in a rotating BEC. Such two-mode

squeezing exhibits a richer set of dynamics in compari-

son to the one-mode squeezing previously shown and can

achieve a wave-packet width below the lowest Landau level

limit. We also demonstrated the protocol’s effectiveness in

interacting BECs for relatively large anisotropy. Our work

provides a versatile tool for realizing diverse geometrically

squeezed states in rotating quantum gases, offering prospects

for experimental realization within current experimental

capabilities.
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