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Floquet geometric squeezing in fast-rotating condensates
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Constructing and manipulating quantum states in fast-rotating Bose-Einstein condensates (BECs) has long
stood as a significant challenge as the rotating speed approached a critical velocity. Although a recent exper-
iment [R. J. Fletcher et al., Science 372, 1318 (2021)] has realized the geometrically squeezed state of the
guiding-center mode, the remaining degree of freedom, the cyclotron mode, remains unsqueezed due to the
large energy gap of the Landau levels. To overcome this limitation, in this Letter, we propose a Floquet-based
state-preparation protocol by periodically driving an anisotropic potential. This protocol not only facilitates
single-cyclotron-mode squeezing, but also enables two-mode squeezing. Such two-mode squeezing offers a
richer set of dynamics compared to single-mode squeezing and can achieve a wave-packet width well below
the lowest-Landau-level limit. Our work provides a highly controllable knob for realizing diverse geometrically

squeezed states in ultracold quantum gases within the quantum Hall regime.

DOI: 10.1103/PhysRevA.111.L.011303

Introduction. The quantum simulation of Landau levels
using cold atoms holds significance for exploring topological
states and discovering novel quantum phases of matter that
have no counterpart in electronic materials [1-5]. Rotating
Bose-Einstein condensates (BECs) provide a viable pathway
for such simulations as they can mimic the motion of elec-
trons in a gauge field [6-20]. The corresponding dynamics
encompasses two degrees of freedom—the cyclotron mode
and the guiding-center mode. Particularly, when the BEC
is in the quantum Hall regime, i.e., the rotating frequency
Q approaching the external trapping frequency w, the ef-
fective energy of the guiding-center mode vanishes, leading
to extensive level degeneracy. This degeneracy, combined
with the nondegenerate cyclotron mode, gives rise to the
characteristic Landau levels typically observed in charged par-
ticles in two dimensions (2D) subjected to a strong magnetic
field [21,22].

Despite various advantages of rotating BECs, the precise
manipulation of quantum states within the quantum Hall
regime is hindered by instabilities [6,17]. In this case, the
centrifugal force exactly counterbalances the confining har-
monic potential, rendering the atoms in a flat-land scenario
(i.e., the Landau levels) to lack effective confinement. Re-
cently, an experiment on geometric squeezing provides an
effective approach for the quantum control of BECs within
the quantum Hall regime [11]. The experiment employed a
quasi-2D harmonic potential with weak anisotropy, which
effectively provided a transverse Hall drift [23-25]. Under its
influence, the quantum fluctuation in the guiding-center phase
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space was suppressed, akin to degenerate parametric oscil-
lation in quantum optics [26-29], leading to a single-mode
(i.e., the guiding-center mode) squeezed state. The real-
space density distribution of the BEC becomes an anisotropy
Gaussian with a minimal width oppp [11], the characteristic
length of the lowest Landau level. The width oy arises
from the unsqueezed cyclotron mode, with the associated
wave function remaining in the ground state of a harmonic
oscillator.

In fact, similar to the guiding-center mode, the Hamilto-
nian realized in the experiment also provides the necessary
terms for squeezing the cyclotron mode [11]. However, due to
the dominant energy gap of the Landau levels, an effective
geometric squeezing of the cyclotron mode is unattain-
able. In other words, to achieve significant squeezing in
the cyclotron mode, we need to find a way to overcome
this energy gap. Motivated by this question, in this Letter,
we propose a Floquet-based state-preparation protocol, in
which the anisotropy of the trap is periodically modulated.
We find that, when the modulation frequency v coincides
with twice the energy gap of Landau levels, the Floquet
effective Hamiltonian can circumvent the aforementioned
limitation and efficiently generate the squeezing of the cy-
clotron mode. More importantly, a protocol comprising both
direct (dc) and alternating (ac) components allows for the
simultaneous squeezing of both the cyclotron and the guiding-
center modes, resulting in a two-mode geometrically squeezed
state. In real space, the wave-packet width of the two-mode
squeezed state decays exponentially and can surpass the
limitation of oy .

Hamiltonian. We consider the experimental setup [11]: a
quasi-2D BEC being loaded into a magnetic harmonic trap.
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The trap is rotating along the z direction in angular frequency
Q. In the rotating reference, the system is described by the
single-particle Hamiltonian (setting 2z = 1)
2

p
-t Vexl(r) -

2m
where r = (x,y) and p = (py, p,), m is the atomic mass, L, =
xpy — ypy the axial angular momentum operator, and £2 the
rotation frequency. The external potential V., is given by

hy = QL,, (D

2 2
Vel = ML o A28 2 )
2 2
with ¢ < 1 being a small dimensionless parameter character-
izing the anisotropy of the trap. Notably, when & # 0, the axial
rotational symmetry is broken.
To separate the cyclotron and the guiding-center modes, we
perform a unitary transformation G = exp(—ikmwxy) with
k = ew/2%2. The transformed Hamiltonian reads

)
— GhyG' = s|:p— + m—(~2 +5 )}
2m
+ kw(Xpy + IPx) — QUIPy — IPx), €))
where s = /1 + «2 and
P=&N=s"r, p=Gnp)=s"p. &

Then, one can define two sets of independent bosonic modes:
the cyclotron mode characterized by the ladder operator @ and
quadratures (£, 77), and the guiding-center mode characterized
by the operator b and quadratures (X, ). The specific defini-
tions of the mode operators are given by

Zl:é-’-iﬁ éz)_?_ Py 77]=X+ Px
V2 2 2mow’ 2 2mw
[,ZH X=)z+ Py yzi_ Px (5)
V2 2 2mow’ 2 2mow’

with Iy = 1/+/2mow being the magnetic length of the Landau
levels (see below). Notably, operators belonging to each of the
two modes satisfy bosonic commutation relations, i.e.,

a,a'1=1[bb1=1, [E0=-X.Y1=il}, (6

whereas operators between the two modes mutually commute.
In terms of these operators, the Hamiltonian 710 takes a simple
form of

ho=a,a'a+a_b'b— %(az —b* +Hc), (7
where @1 = sw £ Q and ¢ = ko = ew? /2. The separation
of the cyclotron and the guiding-center modes becomes man-
ifest. Now, |nz, n;) provides a complete set of basis, where
the non-negative integers na and nj are the quantum numbers
associated with &' and b'b, respectively.

One immediately notices that the terms &> and 5? in Hamil-
tonian (7), which resemble the parametric conversions in
quantum optics [26,27], serve as the basis for the geometric
squeezing. The squeezing parameter ¢ is proportional to the
trap anisotropy parameter £. At the critical rotation velocity

Q = w, the three key parameters characterizing fy—a, ~
2w, £ = ew/2, and &O_ = sza)/S—are of zeroth, first, and
second order in &, respectively. For a small ¢, @_ becomes
negligible such that the first two terms of /g yield the Landau
levels: For a given ng, different n;; provide massive degener-
acy; in contrast, states in adjacent n; exhibit an energy gap @ .
Particularly, states |n; = 0, n) are called the lowest Landau
levels (LLLs).

Guiding-center mode squeezing. Consider the following
protocol: (1) Prepare the BEC in the ground state of the system
with the isotropic irrotational trap (i.e., ¢ =0 and Q = 0).
(2) Ramp up the rotation frequency €2, in which the BEC
remains in the isotropic steady state [30]. (3) At¢ = 0, when
the critical condition 2 = w is reached, the trap anisotropy &
is suddenly turned on and the system starts to evolve under
Hamiltonian (7). Note that the initial nonrotating state is the
same as |nz; = 0, n; = 0) up to a correction of 0(&?). In the
ensuing time evolution, the cyclotron mode is dominated by
the first term &)JF&TZI, which thus, to a good approximation,
remains in the initial state |n; = 0). In contrast, the time-
evolution operator for the guiding-center mode takes the form
of the squeezing operator Uj(t) = exp(—i¢th?/2 — H.c.) with
squeezing angle —m /4, which transforms the BEC into a
single-mode squeezed state, i.e., U;(¢)|0, 0) = |0, S(¢)). Dur-
ing the squeezing, quantum fluctuations behave as

AX_n/a = Asque™,  AYnu = Asqre®, (8)
where AX_, /4 and AY, /4 denote the quadrature fluctuations
in the X-Y phase space, respectively, along the squeezing and
antisqueezing directions, and Agqr, = I/ V2 is the standard
quantum limit (SQL). In the coordinate x-y space, the BEC’s
density distribution can be obtained as [11,31]

N 2
p(r, 1) = |{r|0, S())I
—[1—tanh(¢t)] “;gz —[1+tanh(¢0)] ‘*4*1;2:2

e
- 271} cosh(¢r) ’ ©)

which is a 2D Gaussian independently along directions (x =+
y)/+/2 and of widths /(1 + e*2¢7)/21p, respectively. In the
asymptotic limit # — oo, the width along the — /4 direction
converges to oL = Ilg/ \/E, while that along the 7 /4 direc-
tion diverges.

We confirm these results by numerically solving the time-
dependent Schrodinger equation based on Egs. (1) and (2),
with the outcome displayed in Fig. 1. Specifically, quadrature
fluctuations in the £-7) and X-¥ phase spaces are presented
in Figs. 1(al) and 1(a2), respectively; the density profiles at
selected moments are displayed in Figs. 1(b1)-1(b3).

Floquet protocol. Now we introduce our Floquet protocol
to squeeze the cyclotron mode. The full protocol is similar
to what is described above except that the trap anisotropy is
periodically modulated as

e(t) = & — 2¢' cos(vt), (10)

where ¢ and ¢’ are respectively the amplitude of the dc and
ac components, and v denotes the modulation frequency.
The factor 2 is introduced for convenience. Under the same
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FIG. 1. Guiding-center mode squeezmg (al) and (a2) show the
quadrature fluctuations in the £-7 and X-¥ phase spaces, respec-
tively. (b1)—(b3) display the real-space density distribution p(r, ¢) [in
arbitrary units (a.u.)] at selected moments, with white dashed lines
indicating £o1; 1 = ﬂ:lg/ﬁ. In our calculation, we take ¢ = 0.2.

transformation G, the Hamiltonian now reads [31]

a+a_b'b— hy(t)

—»—Ql
| v~

+ ¢ cos(vt):|

_ [% — g“’cos(vt)}l;2 + Hc} (11

Comparing with Eq. (7), the ac driving provides an
alternating squeezmg _parameter with ¢’ = ¢&'w/2s, and
hao(t) = 22" cos(vt) (@’ b+ b'a) denoting the coupling
between the two modes. i
Taking another unitary transformation W (t) = £/®+/4'4_ the
Hamiltonian is expressed as

RY (1) =@_b'b — [2¢' e+ cos(vt)a'b+ H.c.]

{|:§ +;_ COS(UI):| 21a)+z ~2

- [% — C’cos(vt)i|l;2 + Hc} (12)
Now, the term @2, as well as the coupling @'b, depends on both
@4 and v. We ﬁnd that, when the modulation frequency is set
to v =204 = 2(sw + ), the Floquet effective Hamiltonian
takes the form of

= L g —e i (S-SR an
o =7 M =d_ 5a =3 <.,

13)

where T = 27 /&, = 4w /v is the stroboscopic period. The
time integral in Eq. (13) kept all the zero-frequency terms in
fzg’ but erased all nonzero-frequency terms.

Equation (13) is a key result of this Letter: Compared to
Eq. (7), the term @,a'a is absent in the effective Hamilto-
nian fzgff, i.e., the Landau-level gap that previously prevented
squeezing in the cyclotron mode is now eliminated by the

Floquet driving. As a consequence, the term ~a* + (a')?
now can dominate the dynamics and generate squeezing
in the cyclotron mode. Furthermore, at the critical rotation
with Q = @ and hence &_ ~ 0, ngf still allows squeezing
of the guiding-center mode. As a consequence, both modes
can be squeezed simultaneously, resulting in two-mode ge-
ometric squeezing. Below, we will discuss these two cases
in detail.

Cyclotron-mode squeezing. By turning off the dc com-
ponent, i.e., setting & = 0, the 5 term in /ST vanishes and
the guiding-center mode is not squeezed. In the critical case
Q =w, we simply have s =1, v =4w, and ¢’ = ¢'w/2.
The stroboscopic dynamics at moments ¢t = nT (n being
a non-negative integer) is governed by the Floquet evolu-
tion operator U} = exp(i¢'nTa*/2 — H.c.), which is also a
squeezing operator and drives the cyclotron mode into a
squeezed state, i.e., U}|0, 0) = |S, 0). The properties of |S, 0)
are quite similar to the guiding-center squeezed state |0, S)
discussed previously, except that the squeezing now exists in
the £-7 phase space. The corresponding quadrature fluctua-
tions behave as

Ay = Asqe ™™, Af_nja = AsqLet ™. (14)

The real-space density distribution can be worked as [31]

~[1—tanh(¢'N)] 52 —[14tanh(¢'1)] £
4/E 415

p(r.t =nT) ="

2712 cosh(¢'t) (15

which is also a 2D Gaussian with minimal width along the
—m /4 direction and converging to o = Ip/ V2asn — oo.

The complete dynamics can be obtained by numerically
solving the time-dependent Schrodinger equation, with results
presented in Fig. 2(a) where Flgs 2(al) and 2(a2) show the
fluctuations in the £-7 and X-Y phase spaces, and Figs. 2(a3)-
2(a8) illustrate p(r,t) at selected moments. It is shown that
the quadrature variance of the & mode has been considerably
squeezed, whereas that in the b mode remains unsqueezed, as
anticipated. At stroboscopic moments ¢t = nT (indicated by
thick vertical lines), A&, /4 and Afi_, /4 tespectively exhibit
exponential squeezing and antisqueezing, confirming the ana-
Iytical results in Eq. (14).

Within a stroboscopic period 7', quantum fluctuations os-
cillate, accompanied by the clockwise rotation of the density
profile, which can be understood as follows. For any initial
time fy, the Floquet Hamiltonian 713) characterizes the physics
at moments ¢ = to + n7T, and the effective Hamiltonian ﬁgff
shown in Eq. (13) represents the specific case for zp = 0. It is
straightforward to show that [31]

/
hy = &_b'h— [%(e—iwzaf - %152 + Hc} (16)

implying that the squeezing angle in the £-7 phase space
is altered by ¢/2 = —v#y/2. Particularly for ¢y being odd
multiples of T7'/4, ¢ = £ [mod 27] (equivalently ¢’ — —¢’
for /¢™), which leads to a swap between squeezing and anti-
squeezing directions compared to the case of #p = ¢ = 0. This
also explains the alternating long and short axis of the density
distribution p(r) [see Eq. (15) and Fig. 2(a6)].
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FIG. 2. Floquet geometric squeezing. The upper row (a) illustrates the cyclotron-mode squeezing with ¢ = 0 and & = 0.2; the lower
row (b) shows the two-mode squeezing with ¢ = ¢’ = 0.2. In each row, the first two panels show the quadrature fluctuations in the £-7 and
X-Y phase spaces; vertical lines mark the stroboscopic moments t = nT, with T = 2@, = 4w; the remaining six panels display the density
distribution p(r,?) at selected moments. In the Supplemental Material (SM) [31], we provide animations of p(r,t) for various types of

geometric squeezing.

Two-mode squeezing. We are now ready to discuss the
two-mode squeezing protocol where &(#) includes both the dc
and ac components. Here, we specifically examine the case
of ¢’ = ¢, which can be satisfied by setting ¢’ = ¢ and Q =
(1/2+ V1 +e2/2)20 ~ (1 + £2/8)w. A more general dis-
cussion for ¢’ # ¢ can be found in the SM [31]. In the current
situation, the stroboscopic evolution U" = exp[i¢nT (a*/2 —
b?/2) — H.c.] at moments t = nT is a squeezing operator for
both the @ and b modes, leading to the two-mode squeezed
state U"]0, 0) = |5, S).

The stroboscopic dynamics manifests that quantum fluc-
tuations in both phase spaces scale exponentially, following
Egs. (8) and (14), as numerically confirmed by Figs. 2(b1)
and 2(b2). The density distribution of |S, §) is given by [31]

_@+yf_(x—yf} (17

1
p(r,t =nT)= —exp |: 4[13 o2 411% -2t

2rl}

with minimal width along the —7 /4 direction being e=¢"7 I.
Notably, in contrast to the single-mode squeezing cases
presented in Eqgs. (9) and (15) where the minimal width
asymptotically saturates to oy, here the minimal width ex-
ponentially decreases as n increases and can fall below o .
Note that although Eq. (17) indicates that the minimal width
tends to zero for large n, this result is obtained under the
effective Floquet Hamiltonian fzgff where high-order correc-
tions are neglected. A calculation based on high-frequency
expansion shows that the next-order corrections are @'a and
b'b with strength oz?/@, [31]. Consequently, the squeez-
ing behaviors will be limited to a timescale ~w/¢? which
prevents the width going all the way to zero. Neverthe-
less, the statement that the minimal width can fall below
orLL 1s robust as confirmed by our numerical simulation us-
ing the original time-dependent Hamiltonian and illustrated
in Fig. 2(b8).

Furthermore, the dynamics at quarter periods ¢t = nT /4
(n being odd) manifest isotropic density profiles, as shown
in Fig. 2(b6). Again, the Floquet Hamiltonian fng is now
equivalent to ﬁgff subject to ¢’ — —¢’, based on which we

can obtain [31]

2, .2
p(r,t =nT/4) = ¥+ ],

1
A 2 P | T o
2ml; cosh(2¢t) 21z cosh(2¢t)
(13)

which is a 2D isotropic Gaussian, with width \/cosh(2¢1)lp
monotonically increasing in ¢ and scaling exponentially e*'lp
fort > 1/2¢.

We additionally remark that, although our discussion above
has assumed a small anisotropy (¢ < 1), numerical calcu-
lation [31] shows that the results remain valid for a sizable
anisotropy.

Interacting BECs. So far we have ignored interatomic in-
teractions. The case would become more complicated when
atomic collisions are included, with the system now being
described by the Gross-Pitaevskii equation (GPE)

i = (ho + gy ))v, (19)

where ¥ (r,t) is the mean-field wave function, and g =
/8mw,/mag denotes the two-body interaction strength in two
dimension, with a; the s-wave scattering length and w, the
longitudinal trapping frequency.

For sufficiently small g, the single-particle physics pre-
sented above remains qualitatively unchanged. However,
when the BEC operates within the Thomas-Fermi (TF)
regime, i.e., the interaction energy significantly exceeds the
kinetic energy, the g term begins to markedly influence the
squeezing dynamics. To illustrate the TF case, we implement
our protocol by numerically propagating the GPE, with the
results for the cyclotron-mode and the two-mode squeez-
ing being respectively shown in Figs. 3(a) and 3(b). The
parameters used are close to those in the experiment [11],
i.e., considering N = 5 x 10* Na atoms with a; ~ 63ay (ao
being the Bohr radius); the trapping frequencies are w =
88.6 x (27) Hz and w, = \/ga). In this case, the BEC enters
the deep Thomas-Fermi regime, with the wave-packet width
being much larger than the harmonic oscillator length (see the
animations in Supplemental Material [31]). The initial state is
the irrotational ground state of the interacting BEC at 2 = 0
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FIG. 3. Dynamics of A&, (solid lines) and AX,i, (dashed lines)
for interacting BECs. (al) and (b1) correspond to the cases of the
cyclotron-mode and the two-mode squeezings, respectively, with
(e,&’) ~ 0.1. (a2) and (b2) present the results for (g, &’) ~ 0.4. See
the SM [31] for animations of p(r, ).

and &(¢) = 0, which remains stable as 2 is linearly ramped
up to the critical value w [14,30]. Then, the system begins to
evolve under &(¢) # 0.

For the interacting BEC, the squeezing/antisqueezing
direction may not be exactly along £ /4. Hence, we char-
acterize the squeezing by Aémm and AXyn, respectively
denoting the minimum quantum fluctuations in the -7 and
X-Y phase spaces. Figures 3(al) and 3(b1) present the mini-
mum fluctuations for the cases of small anisotropy (e, &') ~
0.1. The results indicate that neither the single cyclotron
mode nor the two-mode state can be squeezed effectively,
manifested by the periodic oscillations of Aémin and AXi,.
The oscillation period T ~ 0.56w~! is insensitive to g when

the BEC enters the TF regime. These phenomena imply that
the interacting BEC is in a near-equilibrium state, exhibiting
certain collective oscillations.

We further find that increasing the anisotropy helps
disrupt the periodicity and yields considerable squeezing.
Figures 2(a2) and 2(b2) display the squeezing dynam-
ics for (e,&’) ~ 0.4, with all other parameters remain-
ing unchanged. Both scenarios can yield squeezings >—
101og;(0.15/Agqr) 2 6.7 dB. In real space, p(r, t) exhibits
behaviors qualitatively similar to those of the noninteract-
ing cases shown in Fig. 2: For a-mode squeezing, p(r,t)
is elongated during the rotation process, whereas for two-
mode squeezing, p(r,t) alternates between isotropic and
anisotropic, accompanied by an increase in amplitude.

Conclusion. We have introduced a Floquet protocol by
periodically modulating the anisotropy of the trapping po-
tential, resulting in squeezing of both the guiding-center and
the cyclotron modes in a rotating BEC. Such two-mode
squeezing exhibits a richer set of dynamics in compari-
son to the one-mode squeezing previously shown and can
achieve a wave-packet width below the lowest Landau level
limit. We also demonstrated the protocol’s effectiveness in
interacting BECs for relatively large anisotropy. Our work
provides a versatile tool for realizing diverse geometrically
squeezed states in rotating quantum gases, offering prospects
for experimental realization within current experimental
capabilities.
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