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Convolutional neural networks (CNNs) have been employed along with variational Monte Carlo methods for
finding the ground state of quantum many-body spin systems with great success. However, it remains uncertain
how CNNs, with a model complexity that scales at most linearly with the number of particles, solve the “curse of
dimensionality” and efficiently represent wavefunctions in exponentially large Hilbert spaces. In this work, we
use methodologies from information theory, group theory and machine learning, to elucidate how CNN captures
relevant physics of quantum systems. We connect CNNS to a class of restricted maximum entropy (MaxEnt) and
entangled plaquette correlator product state (EP-CPS) models that approximate symmetry constrained classical
correlations between subsystems. For the final part of the puzzle, inspired by similar analyses for matrix product
states and tensor networks, we show that the CNNs rely on the spectrum of each subsystem’s entanglement
Hamiltonians as captured by the size of the convolutional filter. All put together, these allow CNNs to simulate
exponential quantum wave functions using a model that scales at most linear in system size as well as provide
clues into when CNNs might fail to simulate Hamiltonians. We incorporate our insights into a new training
algorithm and demonstrate its improved efficiency, accuracy, and robustness. Finally, we use regression analysis
to show how the CNNs solutions can be used to identify salient physical features of the system that are the most
relevant to an efficient approximation. Our integrated approach can be extended to similarly analyzing other
neural network architectures and quantum spin systems.
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I. INTRODUCTION

A central concern in the study of a quantum many-body
system is to understand how macroscopic properties emerge
from microscopic interparticle interactions. However, this is
in general an extremely difficult question to answer due
largely to the fact that the dimension of the quantum Hilbert
space grows exponentially as the number of constituent par-
ticles increases. Ingenious numerical techniques have been
developed to study certain classes of many-body systems.
In recent years, convolutional neural networks (CNNs), aug-
mented with quantum Monte Carlo methods, have arisen as a
powerful class of variational ansatzes for numerically solving
quantum spin systems with many particles [1-6]. CNNs have
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often provided rapid and quite accurate numerical approxi-
mations comparable to the traditional algorithms that exist
in quantum physics. As a result, there has been a flurry of
research to improve the performance of these models and to
apply them to broader classes of quantum spin systems with
different physical constraints. However, compared to more
commonly used NN tools such as the restricted Boltzmann
machine (RBM) [7,8], the nature and form of the approx-
imation used by CNNs remain unclear, thus preventing the
interpretation of solutions and their domain of applicability,
not to mention the extraction of useful physical insights about
the quantum systems under study.

In this paper, we take a crucial step in filling this gap.
Specifically, we aim to give new insights into how even a
simple, one-hidden-layer CNN provides a solution to a quan-
tum spin problem. We show how physical features, such
as symmetries of the quantum spin system, naturally mani-
fest themselves in the final trained network and during the
optimization dynamics. We analyze the constraints these sym-
metries place on the variational parameters, and we use these
insights to construct a more efficient, accurate, and robust
training algorithm for CNNs. To further understand why the
CNN is so adept at approximating the system using linearly
many parameters, we interpret the convolutional operation in
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FIG. 1. (a) CNN architecture for a system of N sites with M = 2 internal states, one convolutional layer with kernel size K = 4, a ReLU
activation function o (-), and a cyclic padding. (b) Learned In v (s) and fidelity at different iterations. (c) Motif count matrix in the case N = 8§,
M =2,and K = 4. All M¥ = 2* = 16 motifs are labeled for each row and all () = (%) = 70 states for each column.

terms of its ability to capture the degrees of quantum entan-
glement using a CNN ansatz. We derive a mapping of the
CNN to other statistical and physical ansatzes such as max-
imum entropy (MaxEnt) and correlator product states (CPS)
[9-12], providing an interpretation of a CNN architecture in
the context of quantum many-body physics. Interestingly, a
multivariate regression analysis reveals which physical fea-
tures are the most relevant to the low-dimensional learned
solution and which ones the CNN captures correctly. Finally,
we discuss how our approach and new insights can be used to
design efficient approximations of complicated quantum spin
systems.

II. CONNECTING CNN TRAINING
TO SYMMETRY LEARNING

We focus on the one-dimensional Sutherland model with
periodic boundary conditions [13] and Hamiltonian H =
ZnN:I Py ny1, where P, ,4 is the operator exchanging the par-
ticles at positions n and n + 1, and the N particles are evenly
distributed among M different species. For M = 2, this system
reduces to the antiferromagnetic spin-1/2 Heisenberg model.

N/M 4
We choose this Hamiltonian for two reasons. First, it is simple
enough that we can benchmark the CNN’s solution by com-
paring its energy to the exact value given by the Bethe ansatz
[13]. Second, it is complex enough that the exact solution
consists of O(M") unique numbers, while we choose a CNN
that has at most O(N) variational parameters to work with.
In order to succeed, CNNs must find a way to represent an
approximation to the exact solution efficiently, and we seek to
understand the nature of this approximation.

We start with a basic CNN parameterized by (v, w, b) €
R x RE*M » R, which contains a single convolutional layer
with one filter of kernel size K, followed by a fully connected
layer [see Fig. 1(a)]:

N
In N (s) = v Za(w “Siivk—1+b), Vs € Sy, (1)

i=1

where s is a one-hot encoded input spin configuration (see
1(a) and s;.;4x—1 is the substring of s of length K starting at
index i. We call these substrings K motifs or simply motifs.
¥ (s) is the wave function at s and o is the ReLU nonlinearity.
Since the Sutherland model does not allow for changes in total
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FIG. 2. (Top) Relative difference between Iny“N(s) and
In ““N(Ls), where s =111} 1|, tracked throughout the CNN
training. Multiple runs with different hyperparameters are included.
(Bottom) The grand sum value at different training iterations. It starts
with a relative large value ~1, and slowly stabilizes around a smaller
number A1 x 1073, For both panels, N = 8.

magnetization, we have restricted our input spin configura-
tions s to have zero net magnetization. We also prove that
a sufficiently large kernel size (K > |N/3]) is necessary to
assign unique wave-function values to each basis element, but
not necessary for a good approximation. For more details, see
Ref. [14].

Thus CNNs glean information indirectly through K motifs.
Global symmetries of the Hamiltonian can be learned by the
CNN only through the statistics of observed occurrences of
the K motifs, which are visualized via a motif count matrix
shown in Fig. 1(c) (the matrix concatenates the count vector
of all motifs for all possible states [14]). As we will see later,
motifs are the key to understanding why a low-dimensional
approximation to the ground state exists and why the CNN is
particularly suited for this task.

Visualizing the states and motifs also informs us how the
symmetries of the problem appear within CNNs. By compar-
ing the learning process of the CNN wavefunction shown in
Fig. 1(b) with the input states shown in Fig. 1(c), we can see
that a pattern emerges: the states that have similar In ¥ (s)
are the ones that are connected to each other by a combina-
tion of symmetry operations of the Hamiltonian: translations,
reflections around any point, and permutations of the spin
labels. We call each set of connected s an equivalence class
[14]. Essentially, the CNN efficiently captures the symmetry
constraints of the wavefunction after training. In particular, we
can show that the symmetries constrain the CNN parameters
via Theorem 1 (see proof in Ref. [14]).

Theorem 1. For systems with M =2, if the grand sum
condition holds, defined as grandsum(w) + 2b = 0, then the
CNN wave function has the label-permutation symmetry, i.e.,
In NN () = In ' NN(Ls).

where grandsum(w) is the sum of all elements in a matrix
w and Ls is the action of permuting the spin labels in 5. We
also use the term grand sum value to refer to grandsum(w) +
2b. In Fig. 2 (top), we empirically verify that the grand sum
value is indeed a sufficient condition for the label-permutation
symmetry, as when the grand sum value is O, the difference

between In NN (s) and In wNN(Ls) is also 0. Here we use
s =M1l ] as an example. Figure 2 (bottom) confirms
that CNN slowly learns to satisfy this condition by updat-
ing its parameters. Thus, if we could enforce the grand sum
condition, the Hamiltonian symmetry would be even more
respected.

Although this condition does not directly guarantee the
reflection symmetry, for strings in certain equivalence classes
[e.g., the orange and red classes in Fig. 1(c)], we note that
applying a reflection is equivalent to first permuting the spin
labels followed by a proper translation. Then, since the output
of our CNN is shift-invariant by construction, imposing the
grand sum condition ensures that the strings in these equiva-
lence classes will also have reflection symmetry. Interestingly,
as we will show later, enforcing the grand sum condition
improves the CNN performance.

III. CNN AS A CLASSICAL MAXIMUM ENTROPY ANSATZ

Given that the CNN is a fundamentally motif-based ansatz
and is agnostic to everything else, it is then natural to compare
the CNN to a classical maximum entropy (MaxEnt) ansatz
constrained by the expectation values of the motif counting
operators my (s), defined as the number of times that a motif
s" appears in a string s. By exploiting the positive definiteness
of the ground state wave function of our model, we define
the classical probability distribution P(s) = | (s)|> without
sacrificing any information about the wave function. Thus our
quantum variational problem becomes a classical information
theory problem of maximizing entropy with the constraint that
the K-particle motif expectation values (MEVs) defined as
(my) = )" P(s)my(s) should match those of the ground state
wavefunction, i.e., (my) = (my)gs, Vs'.

This results in a MaxEnt ansatz for our wave function [15]

ln 1)[,MaxEnt(S) — Z)\_Szms/ (S), (2)

where each Ay is a Lagrange multiplier associated with the
constraint on (my) (for full derivation, see Ref. [14]).

It is immediately apparent that our CNN ansatz [Eq. (1)]
can be rewritten as a restricted classical MaxEnt ansatz con-
strained on K marginals of contiguous substrings [Eq. (2)], by
converting between a sum over motifs to a sum over positions

In () = ZASC,NNmX, (s) 3)

’

s

with AS"N = vo(w - ' + b). Both are exponential distribu-
tions, and both are agnostic to information about the full input
s other than the motif frequencies. The ReLU CNN is inher-
ently a classical solution to a quantum problem. It treats the
quantum wavefunction as a classical probability distribution,
maximizing the quantal entropy [16].

A stronger connection between CNN and MaxEnt comes
when we consider the effect of the Sutherland Hamiltonian’s
symmetries on the constraints. As derived in the next sec-
tion, motifs §', s” that are connected via reflection and label
switching have the same my = my . We can thus group motifs
into motif equivalence classes M := J, M,. Motifs in the
same equivalence class M, have the same MEV and so the
MaxEnt constraints are then degenerate. Taking into account
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TABLE I. Connections between CNN, CPS, and MaxEnt ansatzes. The equation unifying these three frameworks is given by In ¢4 =

Zs’ Cx’ my (S)

Method/Ansatz CNN CPS MaxEnt

Field machine learning physics statistics

Coefficients Cy vo(ws + b) In ¢y Lagrange multipliers Ay

Functional Form product and exponential product exponential

Training Goal minimize energy any maximize entropy

Known Information Hamiltonian effective range of interactions moment constraints and symmetries
Parameters v, w,b ¢ A

Hyperparameters filter size K plaquette size K K-marginal distributions preserved

such degeneracies, the symmetric constraints MaxEnt ansatz
is (see Fig. S1 in Ref. [14])
In Y M (5) = 3 Ao, (s). “)

ee M

The CNN thus can be understood as a particular choice of the
classical MaxEnt ansatz constrained over K marginals where
we have only | M| < M¥X Lagrange multipliers A,, one for
each equivalence class. In other words, we have “gauge” free-
dom in assigning the individual Ay in A, = Zy M, Ay for each
equivalence class M,. While the A, are linearly independent,
the individual Ay are not [14]. The CNN becomes a particular
gauge choice where, for label-switched pairs of motifs, one of
the Lagrange multiplers is set to zero by the ReLU function.
We thus have a connection between the MaxEnt parameters
and the CNN’s variational parameters.

IV. CNN AS A CORRELATOR PRODUCT
STATE (CPS) ANSATZ

Interestingly, another formal connection can be drawn
between the CNN ansatz and the correlator product state
ansatzes. The CPS ansatz has already widespread use in 1D
and 2D spin systems, and its wave function is given by

1"[¢>s, e )

where ¢y, .., , is the wave function for ith plaquette. Our
CNN then is a disguised CPS with correlator parameters ¢y
set to "7 +P) and constrained to be real and positive. In
this respect, the CPS ansatz can also be interpreted as a less
constrained classical MaxEnt ansatz on the K-marginal distri-
butions. This also reinforces that CPS ansatzes are different
from purely quantum ansatzes.

The formal connections between the CNN, CPS, and Max-
Ent wave functions are shown in Table I, where each ansatz is
expressed as

CPS(S)

Iny =Y Comy(s). (6)

A full discussion of the derivation and mapping is given in
Ref. [14]. One prediction from our result is that the {).} are
constrained to be the same for CNN and CPS. We confirm this
by running a regression analysis of ASNN using ASPS as pre-
dictors on a CNN trained with K = 3 for an N = 16 system.
We obtain a coefficient of 0.9770 £ 0.002 and R? = 1.000.

Furthermore, we formally derive the slope and intercept of the
learned model, which precisely match the empirical values.
See Ref. [14] and Table S1 for details and more discussion
regarding the case of K = 6.

V. EFFICIENTLY APPROXIMATING
THE MAXENT CONSTRAINTS

We now see how the CNN reduces the O(M") problem to
a solution in O(MX) space. We are still left with the mystery
of how it further approximates the solution using only O(K)
training parameters. To investigate this, we look into where
there is a lower dimensional approximation possible of the
MEYV constraints themselves.

Our first insight comes noting that the classical marginal
probability distributions my are directly connected to quantum
reduced density matrix px = ), e *|a){c| as [17]

Ze“ (s o) |? @)

The set {«} is known as the entanglement spectrum and has
size MX. However, if the underlying Hamiltonian has area
law quantum entanglement (as for the Sutherland Hamilto-
nian, see also Fig. S2 in Ref. [14]), then the entanglement
spectrum can be approximated statistically using a O(K) size
truncated set i.e., ZZI;(-) ~ Y o¢(-) where o, ~ O(K). Thus,
while the CNN is a classical MaxEnt solution to a quantum
wave function, its success in simulating the MaxEnt using
O(K) parameters depends in part on the range of the quantum
correlations.

To make this observation more explicit, we write px =
e PHx /7, where Hg is the effective entanglement Hamil-
tonian, B the inverse entanglement temperature, and Z =
Tr[e PH¥] the partition function [18]. Calculating the sym-
metries of Hg provides us the symmetry constraints on the
MEVs we use to construct the motif symmetric MaxEnt in the
previous section. In our case, 8 and Hk are obtainable using
results from conformal field theory (CFT) [19], from which
we can derive that the eigenvalues of px decays sufficiently
fast to allow the partition function to be efficiently represented
by only O(K) terms (see Fig. S1 in Ref. [14]), analogous
to the truncation of the entanglement spectrum necessary for
matrix product states [20—-22]. This means that the expectation
values of any observables (such as my(s)) can be sufficiently
approximated using only O(K) values instead of MX.

(my) = (s'|pxls’)
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TABLE II. Regression Results for MEVs vs Physical Features of Interest. R* = 0.786, number of observations = 64, condition number

= 42.4 (x indicates significance at the 99.9% level).

Variable Intercept

dneel Niike

dNeel * Miike

Coeff. (std. error) 8.95%(0.60)

—2.97%(0.35)

—3.60%(0.30) 1.25%(0.13)

We now explore if characteristic physical features correlate
strongly with the MEVs, and whether a further lower-
dimensional description of the MEVs exists. We perform this
analysis using two physically-informed features based on the
Hamiltonian: (1) njk(s”), the number of pairs of adjacent like
spins in motif s’, and (2) dyee1(s'), the edit distance from each
motif s’ to the closest Neel motif.

Both these metrics are rooted in the physical features of
the system. (1) ik (m): the Heisenberg model eigenspectrum
can be thought of as one that favors having unlike pairs in
basis states and penalizes having like pairs. The Neel states
with the highest In v (s) are the states with the least number
of like pairs, whereas the ferromagnetic states with the lowest
In 1/ (s) have the highest number of like pairs. (2) dneer(s'):
the Sutherland Hamiltonian can be thought of as generating
swaps of adjacent spins at position n, and all basis states of
the Sutherland system can be generated using iterative local
swaps from the Neel states.

We focus on the N = 60 system and examine the CNN
with a kernel size K = 6 with the best training hyperparame-
ters, algorithm, and random seed, which gives §p = —2.27%,
where 8; = (Ey — Ep) /(E1 — Ey) is the error between the pre-
dicted and actual ground state energy relative to the energy
gap between the first excited state and the ground state. In
Table II, we show our best regression model. The model has
a high R?> = (0.786, and shows that larger m (s”) and dyeei (s')
lead to lower MEVs. This effect saturates since the coefficient
for the interaction term is positive but relatively small. This
regression analysis reveals that MEVs, the MaxEnt constraints
which are crucial to the CNN ansatz, have a much simpler
dependence on the physics of the system than anticipated and
that an accurate low-dimensional approximation of the CNN
exists.

VI. EXPLOITING UNDERSTANDING
TO IMPROVE CNN PERFORMANCE

In this section, we show how our novel understanding of
the CNN ansatz can be exploited to design a better-performing
architecture. Theorem 1 motivates us to directly impose sym-
metry into the CNN by enforcing the grand sum condition. We
show that in this way, we can improve the accuracy, robustness
to initial conditions, and training speed.

Based on the grand sum condition, we propose two
symmetry-forcing algorithms: SYMFORCE-INIT, which en-
forces the grand sum condition only at initialization, and
SYMFORCE-TRAJ, which enforces the grand sum condition
throughout the entire learning trajectory (i.e., after each pa-
rameter update at every iteration, see Alg. S2 and Alg. S3
for details). Both are computationally efficient, simple to
implement, and compatible with any training scheme since
calculating the grand sum is just summing over 2K + 1
parameters (typically K < N). Note that there are multiple

ways to implement this constraint. Our algorithm sets v < v,
w < w — (grandsum(w) 4 2b)/(2K) and b < b after updat-
ing (v, w, b) at each iteration. In addition, we can prove that
(see theorem S2) once the CNN has learned the symmetries,
the update of ¥ (s) equals the update of ir(gs) for any state s
and transformations g of interest. This means once the sym-
metry is learned, it will be retained throughout the rest of the
training. Thus we can expect SYMFORCE-INIT to have a similar
performance to SYMFORCE-TRAJ.

We adopt the variational Monte Carlo (VMC) learning
framework from Ref. [23] and modify the CNN imple-
mented in the paper to a shallow CNN. We focus on
very large SU(2) systems, where N € {60,240} and M =
2. We use both the shallow and deep CNNs as baselines,
labeled as “Original” and “Deep (L layers),” respectively.
See Ref. [14] for more hyperparameter settings and tuning
details.

We monitor the number of iterations until convergence
T.v and the error between the predicted and actual ground
state energy Ap = Eo — E; for each experiment setting, av-
eraging over five random initializations. T, is defined as the
first iteration when the relative change of the rolling aver-
age of £, compared to that at the previous five iterations is
smaller than 0.01%. Since we train the models for a max-
imum of 500 iterations, T, is set to 500 if this criterion is
never met.

Figure 3 shows that for both N values, the proposed algo-
rithms can indeed improve the CNN training. The top panel
shows that the symmetry-forcing algorithms reduce T, by
roughly 1/3 ~ 1/2 compared to the original training algo-
rithm, achieving efficiency similar to that of deeper CNNs.
Interestingly, the bottom panel shows that with our symmetry-
forcing algorithms, the shallow CNNs can achieve the same
level of accuracy as the deeper CNNSs, even only using orders
of magnitude fewer parameters, while still being robust to
initial conditions and choice of hyperparameters. Without the
SYMFORCE algorithms, deep networks become more sensitive
to initial conditions and the choice of hyperparameters as we
reduce the number of parameters. We can see this from the
large error bars and the fact that only one set of hyperpa-
rameters works for CNNs with two layers when the number
of parameters is <10?. Also, it is more difficult to interpret
deeper CNNS, since higher-level features tend to be more
abstract. In addition, we observe that SYMFORCE-INIT and
SYMFORCE-TRAJ have similar behavior in all aspects, which
verifies theorem S2.

VII. CONCLUSION

Our work adds to the interpretability of neural networks
when employed to solve quantum systems, which joins re-
cent investigations of the success of neural quantum states
[24] and the role of quantum entanglement. Convolutional
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FIG. 3. (Top) The number of iterations until convergence Teonvergence VS kernel size K for N = 60 and N = 240. (Bottom) The error between
the predicted and actual ground state energy Ag = Ey — E, vs the number of parameters in @ CNN Nyypams (in a logarithmic scale) for N = 60
and N = 240. We select the hyperparameters for each algorithm and K € {3, 6, 12, 24} corresponding to the minimum Jg, averaged over five
random initializations. We use the same color map for the algorithms in both panels.

neural networks are essentially classical maximum entropy
models that are constrained to replicate the correct marginal
probability distributions of the underlying quantum wavefunc-
tion. We also show that correlator product states, a popular
ansatz in quantum physics, can also be unified with CNNs
and MaxEnts. CNNs’ success in replicating the correct con-
straints using O(K) parameters relies on the existence of
lower-dimensional structure in the marginal probability con-
straints via area law entanglement and strong correlation with
two physics-informed features rooted in the Hamiltonian. We
develop a training algorithm that performs as well as deep
CNNs by applying our understanding of the symmetries of
the marginal probability distributions and how they constrain
the CNN parameters. We believe that our analysis can be
extended to other spin-1/2 systems and informs us of both the
aptitude and limitations of CNNs when applied to quantum
Hamiltonians.
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