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Abstract

I summarize recent progress on obtaining rigorous upper bounds on superconducting transition
temperature T, in two dimensions independent of pairing mechanism or interaction strength.
These results are derived by finding a general upper bound for the superfluid stiffness for a multi-
band system with arbitrary interactions, with the only assumption that the external vector potential
couples to the kinetic energy and not to the interactions. This bound is then combined with the
universal relation between the superfluid stiffness and the Berezinskii—Kosterlitz—Thouless 7 in
2D. For parabolic dispersion, one obtains the simple result that kg7, < Er / 8, which has been
tested in recent experiments. More generally, the bounds are expressed in terms of the optical
spectral weight and lead to stringent constraints for the 7, of low-density, strongly correlated
superconductors. Results for 7, bounds for models of flat-band superconductors, where the kinetic
energy vanishes and the vector potential must couple to interactions, are briefly summarized.
Upper bounds on 7 in 3D remains an open problem, and I describe how questions of universality

underlie the challenges in 3D.

Keywords: Superconductivity = strongly correlated electrons = flat bands = BCS-BEC crossover

1. Introduction

https://www.worldscientific.com/doi/full/10.1142/S0217984924300047 ?srsltid=AfmBOooDwWRZFbnhjpNKZMGNXmMmp_2Uvop3IKhLJCx0e2dI1AGo03...

119



4/1/25, 11:35 AM Bounds on the superconducting transition temperature | Modern Physics Letters B

transition temperature 7., where we have obtained sharp results in two dimensions (2D), with

connections to many interesting expe,riments.“’s’6

This is a contribution to a volume on 50 years of the renormalization group (RG), dedicated to the
memory of Michael E. Fisher, and it may seem ironic that I have chosen to focus on that most
non-universal of quantities, the transition temperature 7, even though it is a quantity of great
general interest for superconductivity! There are, however, many aspects of the analysis presented
in the following that I am sure Michael would have approved of. First, these are rigorous® bounds
on T, which do not make any mean-field or other uncontrolled approximations. Second, our
derivation of Tc bounds in 2D makes use in a crucial way universal results from the RG analysis
of the Berezinskii—Kosterlitz—Thouless (BKT) transition. Finally, universality and quantum
critical phenomena play an important role in understanding the unresolved challenges that arise in

attempting to prove similar bounds in 3D.

Let me note at the outset that there is no upper bound on the superconducting 7, measured in
Kelvin. Superconductivity at 250 K has been established in high-pressure experiments on
hydrogen-based materials like LaH.” It is widely believed that superfluidity of paired neutrons
occurs at T, ~ 10° K in neutron stars, but then all energy scales here are huge compared to

terrestrial quantum materials, e.g. the Fermi energy Er ~ 10 — 100 MeV.

An insightful way to organize data on diverse superconductors is the Uemura plot® of log 7.,
versus log Er in Fig. 1. There is considerable ambiguity in defining “the Fermi energy” Er in
strongly correlated and multi-band materials, nevertheless, the data strongly suggest that all
known superconductors have a T, that scales at most like a constant times Er. The systems that
come closest to a presumed bound are magic-angle twisted bilayer graphene,’ monolayer
FeSe/STO.® and ultracold Fermi gases “°K and ®Li in the BCS—BEC crossover,” which have little

in common except that they are all strongly correlated superconductors or paired superfluids.
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Fig. 1. (Color online) Uemura plot of critical temperature T . versus Fermi
temperature Tp = Er / kg for various superconductors; see text for more details.
There are many conventional BCS superconductors in the lower right region (below
the green shaded band) that are not shown, however there are no materials in the
upper left region. The “limit in 2D” line T, = T / 8 is the 2D bound derived in Ref. 1
for a parabolic dispersion. This bound, together with the Li,ZrNCl data (filled
diamonds) from Ref. 4, are discussed in Sec. 6. T}, bounds for arbitrary dispersion
and multi-band superconductors are described in later sections. We discuss in

Sec. 11 why the 3D BEC temperature Tz = 0. 218 T is not a bound on the
superconducting T, in three-dimensional systems. This figure from Ref. 4 is
reprinted with permission from AAAS.

These data motivated us to see if one could prove such a bound. The rest of this paper summarizes

the progress we have made in 2D, recent experiments on Li:ZrNCI* that came after our theoretical
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superconductivity, and, finally, the unsolved problem in 3D.

2. Models

We consider a system of spin-1 / 2 fermions described by a general multi-band Hamiltonian of the

form

H = Hx + f%nt; Hy = Z em(k)CI{mUCI{mW

k,m,o

(1
where K is crystal momentum, m is a band label, and o the spin. 75 describes the kinetic energy
of the “low-energy” bands that are impacted by superconductivity; we ignore bands far from the
chemical potential that are either fully occupied or completely empty. The external vector
potential A enters 5 through the Peierl’s substitution in the tight-binding representation of 5¢%
or minimal subtraction in a continuum model. We consider an arbitrary interaction term 5, that
leads to pairing and superconductivity, with the single assumption that A does not couple to F;.
These are very natural assumptions in most theoretical models of superconductivity, including the
usual electron—phonon interaction, electron—electron interactions like in the Hubbard model, and
super-exchange in the tJ model. The assumptions are also valid for the Feshbach resonance that

leads to pairing of ultracold Fermi atoms, with rotation playing the role of the magnetic field.

We postpone until Sec. 10 the discussion of cases in which these assumptions are not valid, and
the analysis then becomes more involved.? We discuss in that section 7., bounds for models of
flat-band superconductivity, where 5% = 0, as well as topological bands, where the Wannier
functions are not exponentially localized, and thus, tight-binding and Peierl’s substitution cannot
be used straightforwardly. For now, we focus on the class of Hamiltonians described in the

preceding paragraph, which after all have very broad applicability.

3. Bounds on Superfluid Stiffness
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amplitude of the order parameter or (2) by destroying phase coherence, even though the amplitude
1s robust. BCS-Eliashberg mean-field theory falls into the first category, with the transition
temperature T, o< |A|, the superconducting gap. The BKT theory of vortex—antivortex unbinding
in 2D falls into the second category, as do the ideas of Uemura® and of Emery—Kivelson'’

3D. When phase fluctuations control the destruction of superconductivity 7, oc Dy, the superfluid

stiftness, and we will focus on bounding D

f dr|V6|? of distorting the phase of the

SC order parameter |A|e and is related to the London penetration depth in 3D via
1/ A2 = (4poe® / B%)D;. The stiffness is essentially the same as the helicity modulus 7" of

Michael Fisher and coworkers.!

Microscopically, D, can be calculated using linear response theory!>13 :

2

D,=D — ™ —Xj,.(a— 0,w=0),

2)
where D is the “diamagnetic term”, of central interest in this work, and Xij is the transverse
paramagnetic current—current correlation function. We use the Lehmann representation to obtain

Xj.;, (@ — 0,w = 0) > 0, as can be seen from

~BE: _ o-BE;
T Z[ e [T

3)
using (e=® —e™¥) / (y — x) > 0. Here, |2)’s are the exact eigenstates of S# of Eq. (1) with
eigenvalues F; and the partition function 2 = Tr[e~#*], with 8 = 1 / kgT. We thus obtain a

rigorous upper bound

D,(T) < D(T).

(4)
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Before turning to the question how one can calculate D, let us develop some intuition for what it
means and why it gives an upper bound on the superfluid stiffness. Using the Kubo formula for
the frequency-dependent conductivity o(w) and the Kramers—Kronig relation, it is straightforward

to derive the optical sum rule

o2me? —

/ dwReo(w) = > D,
0

(5)
where the frequency integration includes all the “low-energy” bands (but excludes the fully
occupied or completely empty bands that were not part of Eq. (1)). By identifying D with the
optical spectral weight, we see that it is gauge-invariant. Moreover, the second law of

thermodynamics implies that the dissipative response Re o(w) > 0, and thus, so is D.

Now, in any superconductor Re o(w) = (4me? / h?)Ds6(w) + Re 0yeq(w), Where the singular
term describes the infinite d.c. conductivity of the condensate and the “regular” term is a non-
negative contribution arising from excitations. Using the sum rule (5), it is easy to understand the

inequality of Eq. (4).

Next, we turn to computing the optical spectral weight for our model. From the linear response

calculation that leads to Eq. (2), we see that D is essentially (025 / 0A2), and thus, we find

km'o

D(T)= — ’ M (k) (el el ).

(6)
For a simple parabolic band with dispersion (k) = #2k? / 2m, the optical spectral weight
D = h’n / 4m is proportional to the plasma frequency. For non-parabolic dispersion or multiple

bands, however, one cannot uniquely decompose D into the ratio of a density and a mass. In the
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is replaced by the density matrix (/ is the volume of the system).

The inverse mass matrix is given by

M@@ziﬁ%&ﬁﬁﬁz

U m’ k y
~ PTTR

(7)
where o, 3 label orbitals/sites within a unit cell (labeled by 7) of a Bravais lattice, ¢,5(k) is the
Fourier transform of the hopping matrix element t,g(ria — rja), and Ua, m (k) is the unitary
transformation that diagonalizes t,s(k) to obtain the band structure:
Upn,a(K)tas(k)Ug (k) = €m(k)dy,m - Note that M ~! depends only on band dispersion and
Bloch wave functions, and not on interactions or temperature. The density matrix <0Lmackm'g> n
Eq. (6), on the other hand, depends in general on both interactions and temperature, since the

equilibrium expectation value is computed using exp(—5¢ / kT) | Z.

5. 7. Bounds in Two Dimensions

The optical spectral weight bound on the superfluid stiffness is valid in any dimension. Now, we
restrict attention to two dimensions (until Sec. 11), since it is only in 2D that there is a universal
relation between the BKT transition temperature and the superfluid stiffness. D,(T') exhibits a
jump discontinuity at T.. and the RG analysis'* of Nelson and Kosterlitz leads to the celebrated
result kT, = wDs(T. ) / 2. Remarkably, the ‘amplitude ratio’ 7 / 2 is universal; it is related to
value of the critical exponent n(T,. ) =1/ 4.

Combining this result with Eq. (4), we obtain a bound on 7¢, namely
kpT. < + D(T),

(8)
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strength, but is it useful? In the rest of this paper, | show that there are many situations where this
bound leads to insights into the 7. of strongly correlated superconductors with low-density and
narrow bands, systems where the standard BCS-Eliashberg mean-field approach fails. Conversely,
in regimes where mean-field theory works, the bound is still valid but not useful, since it gives a

huge overestimate.

6. Parabolic Bands and 2D BCS-BEC Crossover

Consider the problem of superconductivity in a 2D parabolic band with dispersion A2k? / 2m,
density n, or Fermi energy Er = mh? / n / m, and arbitrary interaction that leads to pairing. We
can then write the stiffness D, (T) = A?n,(T) / 4m in terms of the superfluid density n,(T), and
our bound of Eq. (4) reduces to the simple statement that the superfluid density ns(T") < n is the
total density. Equation (8) then leads to the inequality

1
kpT. < g Er.

)

Plotting the line kg7, = Er / 8 on the Uemura plot looks very nice and gives a general scale for
the limits on T, as seen in Fig. 1. But we should caution that only few of the systems on that plot
fulfill the condition of parabolic bands in 2D. In that sense, this is like a “Drude model” result that
gives a sense of what should happen, but if one looks at multi-band systems with complicated

band structures, only the optical spectral weight bound is justified.

This raises the question: Can one experimentally test this bound for parabolic bands? This can
definitely be tested in the BCS—BEC crossover in 2D (which we discuss in the following) in
experiments and in quantum Monte Carlo simulations of the ultracold Fermi gases. But,
surprisingly, the first experimental test has been in a quantum material. To investigate the BCS—
BEC crossover, one needs to tune A / Ep, the ratio of the gap to Fermi energy. Unlike cold

atoms, where the Feshbach resonance is used to control A, there is no way in general to tune the

https://www.worldscientific.com/doi/full/10.1142/S0217984924300047 ?srsltid=AfmBOooDwWRZFbnhjpNKZMGNXmMmp_2Uvop3IKhLJCx0e2dI1AGo3...  8/19
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intercalation and ionic liquid gating, the Iwasa group was able to change the density, and thus the
Fermi energy, by two orders of magnitude and investigate the BCS—BEC crossover in Li, ZrNC1.4

Electronic structure calculations!® show that this 2D material has a parabolic band.

The experiments measure the electron density using the Hall effect and probe superconducting
properties, like the pair size £, (from the upper critical field) and energy gap A (from tunneling).
As the density is decreased by gating, the measured values of 1 / (kr&y) and A / Ep show clear
evidence of tuning into the strongly interacting BCS—BEC crossover regime, as well as the

characteristic normal state pairing pseudogap seen in tunneling.

Remarkably, the measured values of kg7, / EF increase upon approaching the crossover regime

and then saturate at a value of 0. 12, very close to the predicted 1/8, as can be seen in Fig. 1.

We next discuss in more detail the BCS—-BEC crossover in 2D dilute Fermi gases; see Fig. 2.
These systems are dilute in the sense that the range of the interaction is much smaller than 1 / kp.
The 2D crossover for s-wave pairing is parametrized by the dimensionless interaction

log(E;, / Er), where Ej, is the binding energy of the two-body bound state in vacuum.!® In the
weak-coupling BCS limit B, / Er < 1, the pair size £y > 1 / kp. The mean field T, has a BCS
essential singularity and is exponentially smaller than our bound. In the opposite BEC limit

E, /| Ep > 1, the bosons of size £y < 1 / kr have mass 2m, density n / 2 and an inter-boson
scattering length a;, which has been computed!” in terms of Ej,. Here too, our bound is larger than
kgT. ~ Ep / loglog(const. Ey / Er),'®1 valid in the regime loglog > 1. Thus, T, — 0 in the
extreme BEC limit, as it must for non-interacting bosons, but does so extremely slowly. These
results are shown in a schematic phase diagram in Fig. 1, where we see that Er / 8 is likely to be

saturated in the crossover regime with pair size &y or order the interparticle spacing 1 / kp.

https://www.worldscientific.com/doi/full/10.1142/S0217984924300047 ?srsltid=AfmBOooDwWRZFbnhjpNKZMGNXmMmp_2Uvop3IKhLJCx0e2dI1AGo3...  9/19
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Fig. 2. (Color online) Schematic phase diagram of the BCS-BEC crossover in a 2D
Fermi gas with short-range attractive interactions. The ratio of the inter-particle
separation 1 / kg to the pair size £, shows how the attraction between fermions
increases from the BCS regime of large pairs to the BEC of tightly bound pairs. The
blue curve is the schematic transition temperature T, (in units of the Fermi
temperature Tr = Ep / k), which interpolates between known results in the BCS
and BEC limits; see text. T . vanishes in the extreme BEC limit in 2D, but does so very
slowly (double logarithm), as indicated by the dotted asymptote; see text. The black
dashed line is the pseudogap temperature T'* below which pairs form, while
superconductivity develops only below the BKT 7. The red dashed line is the
theoretical limit T'c < T / 8 for parabolic dispersion.

To conclude this section, we note that a transition temperature of Er / 8 was seen in various
approximate calculations (using mean-field theory plus fluctuations) for 2D models for cold
atoms2%2! and for quantum materials?2, with parabolic band structures and specific choices of
pairing interactions. But the generality of the result as an upper bound independent of the nature
of the interactions was not recognized. In fact, some of these approximate calculations?? obtained
the erroneous result that E / 8 was the T, in the extreme BEC limit, where, in fact the 7T is

known to vanish, as discussed above.

7. Non-Parabolic Dispersion

For a single band with arbitrary dispersion €(k), Eq. (6) simplifies to
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v % ol n\K),

(10)
where n(k) = ( Lackg) is the momentum distribution. For the specific case of nearest neighbor
hopping on a square lattice (k) = —2t[cos(k,a) + cos(k,a)] and D is proportional to the
thermal expectation value of the kinetic energy (KE). The optical spectral weight in lattice
systems is often just called “kinetic energy.” This identification is true neither for a single band
with arbitrary dispersion nor for a multi-band system. (In the latter case, Eq. (6) depends not only

on the dispersion but also on the single-particle wave functions through the U-matrix.)

It is instructive to compare our bound for the single band D with sign-problem-free Quantum
Monte Carlo (QMC) simulations?? of the attractive Hubbard model on a 2D square lattice, with
Hny = —|U| D _;(nip — 1/ 2)(n;, — 1/ 2). For adensity n # 1, the system has a
superconducting ground state, exhibiting a crossover from a weak coupling BCS state (

[U| / t < 1) to a BEC of hard-core on-site bosons (|U| / t > 1). The QMC result?® for T is a
non-monotonic function of |U| / t at a fixed density n. The BCS mean-field theory correctly
describes the weak coupling T, ~ texp(—t / |U|), but for |U| / ¢t 2 2, the mean field “T,”

represents a pseudogap*+*>

crossover temperature T * below which pairs form and which lies well
above the QMC T, at which phase coherence is established. The two scales exhibit quantitatively

different behaviors at large |U| / t, where T* ~ |U|, while T, ~ t* / |U| the effective boson
hopping.

Using the triangle inequality and n(k) < 1, it is easy to see that we get

kpT, <7D /2 < (7 /4V) ko |0%€ / OK2|. This U-independent bound is obviously better than
the MFT “T.” that diverges as |U| at strong coupling. The use of n(k) < 1 is too crude, however,
to capture the t* / |U| asymptotic behavior of T,.. We can use n(k) as obtained from the Leggett
crossover theory of the BCS-BEC crossover® in Eq. (10) to get an estimate (rather an exact
bound) on T,. This leads to an “approximate bound” that goes to a constant at small |U| and

crosses over to 2 / |U| behavior at large |U|. In summary, we see that at weak coupling, the D
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Hubbard model. The reader is referred to Fig. 2 and related discussion in Ref. 1 for details.

8. Multi-Band Systems

In the general multi-band case, we need to deal with the density matrix of the interacting system
about which we have little a priori knowledge. We can, however, proceed as follows. D > 0 from
the optical sum rule, and we use the triangle inequality to obtain

D < % > k' o ]MT;;,(k)||<chackm'a> |. Next, we define an inner product in the space of
operators (A, B) = (A'B) in terms of a thermal expectation value. This allows us to use the
Cauchy—Schwarz inequality |<0ngckm‘a>\ < [np (k) nmf(k)]l/ ? where n,, (k) = (chUckmU> is
the momentum distribution of the m** band. Now, for any Fermi system, n,,,(k) < 1, and we

. . . " oY h2 -1
obtain by this sequence of inequalities that D < =%, . [M__ .(k)|.

In fact, a better bound is obtained by first transforming the sum on right-hand side of Eq. (6) to a
basis in which Mn:;,ln (k) is diagonalized and then using this sequence of inequalities, we then

obtain

T~ T k2
kpT. < 5 D(To) < 557 D e,

k,a,0

(11)
where A\, (k)’s are the eigenvalues of Mn:;(k) We have greatly degraded the bound, so the final
result is likely to be a large overestimate, nevertheless, we have arrived at a general multi-band
bound that depends only on the band structure and is independent of the mechanism of

superconductivity.

9. 2D Materials

In this section, we apply our bound to various strongly correlated 2D superconductors. We have
already discussed the gate-controlled BCS-BEC crossover in Li:ZrNCI* in Sec. 6. Here, we
briefly discuss Monolayer FeSe/STO and magic angle twisted bilayer graphene.
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K, with some reports of T as high as 109 K; for a review, see Ref. 6. This is remarkable since
bulk FeSe has a 7, around 10 K and free-standing monolayers are not superconducting even at
temperatures as low as 2 K. There is no consensus on the pairing mechanism and the role of the
substrate in increasing 7. Our bound is useful here because it is agnostic to the pairing

mechanism, symmetry of the order parameter, and other issues under debate.

We use an effective two-orbital model consistent with k - p perturbation theory that describes the

two electron pockets around the M-point of the Brillouin zone,?”-*8

and fit the parameters of the
electronic structure to ARPES data.?? The orbitals derive from the same two-dimensional
irreducible representation and the Fermi surfaces are small so we can truncate the k - p dispersion
at quadratic order in k, and k,. We thus find that the inverse mass Mn;; (k) turns out to be
proportional to d,,, ,,, and k-independent. Thus, the k-sum in Eq. (6) is simply proportional to the

Fermi energy, and we find 7. < 164 K; see Ref. 26.

Magic angle twisted bilayer graphene (MA-TBG): There has been an explosion of interest in
MA-TBG, where superconductivity was first reported? in the vicinity of correlation-induced
insulating state. This is not the place to review the large, and ever-growing, experimental and
theoretical literature on this topic; however, it is safe to say that there is at present no consensus on
the pairing mechanism (phonons versus correlations) or the symmetry of superconducting order

parameter.

The electronic band structure of MA-TBG is complex. There are 8 (= 4 x 2 for spin degeneracy)
narrow bands,>® with a total bandwidth < 10 meV, and these bands have non-trivial topology.3!3?
There is much discussion in the literature about whether inclusion of additional bands may help
deal with both the topology and the interactions. There is also the issue of whether one can write
down a tight-binding model for the low-energy bands and have an effective interaction such that

the vector potential couples only to the kinetic energy. We address these questions in Sec. 10,

where we obtain 7, bounds for simple models of flat-band superconductivity.

For now, we simply focus on models of MA-TBG that meet the conditions spelled out at the

outset in Sec. 2. We use the tight-binding model of Ref. 33, which is a multi-parameter fit to the

https://www.worldscientific.com/doi/full/10.1142/S0217984924300047 ?srsltid=AfmBOooDwWRZFbnhjpNKZMGNXmMmp_2Uvop3IKhLJCx0e2dI1AGo... 13/19
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tight-binding models®* for MA-TBG. We compute the inverse mass matrix Mﬂ;; (k) from the
tight-binding model and then use Eq. (11) to find that T, < 48 K. This is a large overestimate

because we have degraded the inequality in Sec. 8 as explained above.

10. Flat-Band Superconductors

In recent years, there has been interest in the effect of correlations in flat bands that has only
intensified following the discovery of superconductivity in magic-angle-twisted bilayer graphene
(MA-TBQG). There has been important progress on the mean-field theory (MFT) of flat-band

35,36,37.38.39 i attractive (negative U) Hubbard models. The gap scale was found

superconductivity
to be proportional to |U| and the superfluid stiffness proportional to |U| times the trace of the
quantum metric ) ,, Trg(k) for the flat-band wave functions. The quantum metric g, (k) defined
by ds? =1 — |[(¢(k + dk)|v(k))|* = gup(k)dk,dk;, characterizes the distance between states in

Hilbert space.40-41

But to what extent should one trust MFT in a problem where the attractive interaction |U| is much
larger in the bandwidth, in fact, infinitely larger in the flat-band limit? Our goal was to find an
exact bound on D, for which we need to face up to multiple challenges. First, if we use the multi-
band bound derived above, we find that it is far from optimal, since it includes optical spectral
weight from inter-band transitions, while we would like to focus only on intra-band spectral
weight to get a tight bound. Second, if one projects down to the flat band to focus on the intra-
band spectral weight, there is no kinetic energy term, and thus one cannot couple the vector
potential A to flat-band KE as we had done above. Finally, there is a lot of interest in topological
flat bands, motivated by MA-TBG. Non-trivial band topology, however, acts as an obstruction to
finding exponentially localized Wannier functions obeying all the symmetries of the problem, and

one cannot write down a tight-binding Hamiltonian describing the topological bands alone.

All of these challenges have been addressed for both non-topological and topological flat bands
with an attractive Hubbard interaction in Ref. 2. Omitting all technical details of the derivations,
we summarize the main results. Note that flat bands cannot exist “in isolation” and arise in

models, such as the Lieb lattice, with multiple orbitals in each unit cell. We work in a regime
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w < |U| < Ey, the gap between the flat band and other bands. We project onto the flat band and
focus on the low-energy (intra-band) optical spectral weight Dy, = (A2 / 27e?) fOA dwReo(w),
where the upper cutoff satisfies |U| < A < Ej.

For the Lieb lattice, one finds an exactly flat band at zero energy and two p—h symmetric
dispersive bands, using “staggered hopping” to open up the gap E,. We can then derive an upper
bound Doy, < A|U|Q / 2. Quite naturally, |U]| sets the scale of the optical weight, since there is
no transport in a flat band in the absence of interactions. The dependence on the density » comes
in via 77 = min(n, 2 — n), which vanishes, as expected for a completely empty/full flat band.
Finally, Q is the Marzari—Vanderbilt*! spread of the flat-band Wannier function (WF). The optimal
bound on D, is thus obtained by choosing the most highly localized WFs. The quantum metric
prevents us from reducing this as much as we please, since 2 > Y, Trg(k). The Lieb lattice has
non-topological flat bands, and thus, the system can be continuously deformed into a trivial
insulator where individual unit cells (each with three sites) become decoupled from each other. In

this limit, {2 — 0 so that the optical spectral weight vanishes and that there is no transport.

Using D, < Doy and the BKT relation between T, and D,, we obtain kT, < n7|U|min 2 / 4.
We note that for the Lieb lattice with its particle-hole symmetric band structure, it is natural to say
that in the flat-band regime, Er = 0. This re-emphasizes the point that there is in general no upper

bound on T, / Er and the only general bound on T, is in terms of the optical spectral weight.

Many authors have emphasized lower bounds on D, arising from a mean-field
approximation.637-38:3 Using the well-known inequality,*! Trg(k) > %, it is easy to see that the
mean field D, proportional to the trace of the quantum metric, is bounded below by the Chern
number &, We emphasize that these mean-field ‘bounds’ are not exact lower bounds, since

fluctuations ignored in mean-field theory would be expected to reduce the superfluid stiffness.

We can also obtain an exact lower bound on Dy, at T = 0 by exploiting rigorous mathematical
physics results*® on the off-diagonal long-range order (LRO) in the ground state of the attractive

Hubbard model on the Lieb lattice. (This result is the U < 0 counterpart of Lieb’s theorem on
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Diow > 1), Trg(k) / 72.

Finally, we briefly summarize our bounds on D, in topological flat bands. The tight-binding
model of Ref. 44 has flat bands with Z, odd topology, and one cannot obtain localized WFs with a
finite spread 2. There are two degenerate, (nearly) flat bands |k7) and |k|) with spin Chern
numbers %} | = +1. Using the methodology developed in Refs. 45 and 46, we “unwind the
topology” and find two linear combinations |k 1) and |k 2), both of which have zero Chern
number. The price we pay is that the corresponding exponentially localized WFs are not a
Kramers pair and the states have a non-local representation of time-reversal symmetry.
Nevertheless, this allows us to proceed with our analysis, and the resulting upper bound on Dy
is proportional to |U|, to # = min(n, 2 — n), and to a generalized second moment of the WFs.
The bound is also found to compare favorably with D, computed using sign-problem-free QMC

simulations?” for the same model; see Ref. 2 for details.

11. T in Three Dimensions

Given the success in bounding 7. in 2D, it is natural to ask: What about 3D? Experiments seem to
suggest at first sight that there might well be such a bound on 7 in 3D systems; see the Uemura
plot in Fig. 1. For example, the BCS—BEC crossover in 3D experiments and quantum Monte Carlo
calculations suggest that max T, ~ 0. 22E / kp; see Ref. 9 for a more detailed discussion and
references. But there are no rigorous bounds available on 7 in 3D even though the optical
spectral weight bound on the superfluid stiffness of Eq. (4) is valid in any dimension. We now

discuss the challenges for deriving such bounds and whether they even exist.

First, there is a widespread misconception that the non-interacting BEC temperature

kgTgec = [n/2¢(3/ 2)]2/371'112 / m ~ 0.218E¢ of tightly bound pairs (bosons with density

n / 2 and parabolic dispersion with mass 2m) provides an “upper bound” to the transition
temperature of a strongly coupled superconductor. However, it is now rigorously established in the
mathematical physics literature that the 7}, of the dilute Bose gas in 3D is higher than the non-
interacting BEC temperature. The reader is directed to Ref. 48 for the proof, as well as a summary

of the decades-long history of incorrect statements on this issue by a long list of luminaries!
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cost for phase distortions # = == [ dr|V0|*, we see that D, has dimensions of energy only in
2D, and this underlies the universal relation between 7, and D in the BKT theory. If thermal
phase fluctuations govern the 3D transition, then following Ref. 10, kg7, = ¥ D,(0)a, where a is
a “cutoff” length scale, the scale up to which one has to coarse-grain the underlying fermionic
model to derive an effective XY model, and € is a non-universal constant. Given a cutoff a, one

would need to bound % to get a bound on T,. See Ref. 1 for further discussion.

From a practical point of view, one is interested in learning how high 7. can be in a class of
models or materials. But, if a general bound were to exist, it should be equally valid in situations
where both T, and D, are driven to zero near a quantum critical point (QCP). Quantum Josephson
scaling®® implies D, (0) ~ §**9=2)" in the vicinity of a QCP tuned by the dimensionless
parameter § — 0", where v is the correlation length exponent and z the dynamical exponent in d

spatial dimensions. Using T, ~ 6%, one obtains T, ~ Dj/ (zd=2) Thus, in 2D, one finds T, ~ D,

~ Dj/ (ZH), a sub-linear scaling sufficiently

, independent of z. However, in 3D, one obtains 7
close to the QCP which necessarily violates any proposed upper bound on 7 that scales linearly
with D,. Such a sub-linear scaling is indeed observed in experiments in highly underdoped>®>!
and highly overdoped®*>3 cuprates, with T, ~ Di/ ? consistent with z = 1. Thus, the linear scaling
between T, and D, central to the 2D bounds presented above, is necessarily violated near a 3D

QCP.

12. Conclusions

In conclusion, I take this opportunity to record my gratitude to Michael Fisher for taking me under
his wing when I first moved to Cornell as a graduate student, even though his sabbatical plans led
me to eventually do my thesis research under Jim Sethna’s supervision. I am grateful for much

5455 that I wrote with him (and one

that I learned from Michael while working on the two papers
that we never finished) and for his amazing lectures on critical phenomena and RG, whose notes I

still refer back to after so many years.
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