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The breakdown of a Mott-insulator when subjected to intense laser fields is characterized by the formation of
doublon-hole pairs. This breakdown is furthermore evidenced by the production of high harmonics that can be
experimentally measured. Here, we present an approach for extracting the doublon-hole correlation length of a
Mott insulator. The method is based on a dynamical calculation of the Mott insulator’s rate of charge production
in response to an applied strong-field laser pulse. We find that coupling the Mott insulator to a metal drastically
increases the correlation length, in support of our recent hypothesis [Phys. Rev. B 108, 144434 (2023)] that cou-
pling to a metal enhances the charge fluctuations in the insulator. We confirm our conclusions using density
matrix renormalization group (DMRG) calculations. The proposed method can be applied to experimentally
measured observables, such as differential reflectivity or the high harmonic generation (HHG) spectrum to extract
doublon-hole correlation length. © 2024 Optica Publishing Group

https://doi.org/10.1364/JOSAB.515940

1. INTRODUCTION

Since the advent of the laser and its subsequent application to
probe states of matter, the theoretical study of strong-field phys-
ics has quickly gained momentum. The framework developed
by Keldysh [1] is generally accepted as the basic model describ-
ing the ionization of atoms and solid media under the influence
of strong electromagnetic fields with frequencies lower than the
ionization potential [2–5]. Keldysh realized that strong-field
ionization can be understood as a consequence of either quan-
tum tunneling or multiphoton absorption depending on the
laser and material parameters. The quantum tunneling regime,
which is dominant in the DC limit and is the relevant regime in
this study, is characterized by a threshold field, which must be
exceeded in order for ionization to occur. More recently, there
has been growing interest in the strong-field physics of corre-
lated quantum materials, with specific focus on Mott insulators
[6–13]. When driven with a strong-field pulse, a macroscopic
number of elementary charge excitations known as doublons
and holes is produced within the insulator [14–21]. The energy
required to produce a doublon-hole pair and the Mott gap
1Mott, along with their correlation length ξ , is central to the

strong-field physics involved since it determines the threshold
field required for efficient quantum tunneling,

Fth =1Mott/2ξ, (1)

and therefore dictates the field strength beyond which a
breakdown of the insulating state occurs.

Recently, we investigated the effect of coupling a Mott
insulator to a metal on the doublon production and produced
high-order harmonics at the interface [22]. We found that
an increased interfacial coupling enhances high harmonic
production inside the insulator and suggested an increased
doublon-hole correlation length as the reason behind this
lowered threshold for response. In the present paper, we aim
to verify this claim. We outline a method for extracting the
doublon-hole correlation length ξ in Mott insulators that are
coupled to a free conducting chain in a metal/insulator inter-
face. The method closely follows that of Oka [14] and relates
the static parameters ξ and1Mott to the dynamical rate of charge
production0 in response to a strong-field pulse. Moreover, since
0 was shown to be directly related to the differential reflectivity
1R/R [23], an experimental quantity, the method provides
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a way of accessing ξ experimentally. We find that an increased
interfacial coupling between metal and insulator does in fact
lead to an increased correlation length in the insulator, support-
ing our hypothesis. The result is further tested by comparison
with independent static DMRG calculations.

2. PROPERTIES OF THE UNCOUPLED MOTT
INSULATOR

A popular model exhibiting the Mott insulating phase is the
half-filled one-dimensional Hubbard chain:

H =−t0
L∑

i,σ

(
c †

i+1,σ c i,σ + h.c.
)

+U
L∑

i,σ

(
ni,↑ −

1

2

)(
ni,↓ −

1

2

)
. (2)

The model has a known analytic solution given by the Bethe
ansatz [24–26]. Charge excitations in this model constitute
doubly occupied sites (doublons) and empty sites (holes).
Additionally, charge conservation in the model necessitates that
doublons and holes are created in pairs. These doublon-hole
pairs are the elementary charge excitations in the Hubbard
model and are the central focus of our study.

In the U = 0 limit the electrons are fully delocalized and,
in the ground state, occupy the lower half of a dispersing band
ε(k)=−2t0 cos k, forming a band metal. Since this limit does
not energetically distinguish between the four possible states
(|·〉, | ↑〉, | ↓〉, |↑↓〉) on a given site, the ground state average
doublon density is a quarter (Dg.s. = 1/4). The charge gap
in this limit is zero, and the correlation length diverges. The
opposite limit t0 = 0 results in the extreme localization of elec-
trons; no electron is allowed to hop from site to site. The ground
state is then a product of singly occupied sites, since double
occupancy requires an energy cost on the order of U , while the
correlation length becomes very small. For a small finite t0�U ,
a second-order perturbative correction adds an effective antifer-
romagnetic exchange J eff = 4t2

0/U between nearest-neighbor
sites. This can be understood intuitively on the basis of Pauli’s
exclusion principle. The nonzero hopping t0 favors electron
delocalization via virtual states of neighboring doublons and
holes. These virtual hopping processes would be blocked in the
case of parallel neighboring spins; thus, antiferromagnetism
is favored. In the intermediate regime, the average doublon
density will be 0< Dg.s. < 1/4. Thus,

Dg.s. ≡
1

L

L∑
i

〈
ψg.s.|ni,↑ni,↓|ψg.s.

〉
→ 0 (t0/U � 1)

→ 1/4 (t0/U � 1). (3)

Applying a large electric field to the Mott insulator can result
in dielectric breakdown, during which doublon-hole pairs are
produced, marking an increase in Dg.s.. It is therefore useful to
track Dg.s.(t) as a measure of dielectric breakdown as a driving
field is applied.

Finally, we note the analytical expressions for the Mott gap
1Mott and the correlation length ξ as functions of U/t0 within
the Hubbard model:

1Mott/t0 =−2+
U
2t0
+ 2

∫
∞

0

dω
ω

J1(ω)e
−

Uω
4t0

cosh Uω
4t0

,
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=

4t0
U

∫
∞

1
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ln
(

y +
√

y 2 − 1
)

cosh 2π t0 y
U

. (4)

The quantities are plotted later in Fig. 2(a).

3. DRIVING A METAL-INSULATOR INTERFACE

The model under consideration [Figs. 1(a) and 1(b)] couples
the one-dimensional Mott insulator to a metallic chain and to a
driving field F (t)=−∂ A/∂t , where

A(t)=
F0

ω0
sin2

(
ω0t
2N

)
sin(ω0t), (5)

where F0 is the maximum field amplitude and ω0 is the central
frequency. The Hamiltonian is

H =−t0
L∑

i,σ,α

e−iφ(t)c †
i+1,σ,αc i,σ,α + h.c.

− g
L∑

i,σ

e−iφ(t)c †
i,σ,Ac i,σ,B + h.c.

+U
L∑

i,σ

(ni,↑,A − 1/2)(ni,↓,A − 1/2), (6)

where the coupling to the field is introduced by the Peierls
substitution t0→ t0e−iφ(t), with φ(t)= a A(t) and a being
the lattice constant. Here we use a = 4 Å and t0 = 0.52 eV to
mimic the 1D Mott insulator Sr2CuO3 [14,15]. g is the tunable
interfacial coupling, and U is the tunable Hubbard repulsion.
Equation (6) with φ = 0 was used in [28] to model PdCrO2, a
magnetic oxide metal displaying Kondo lattice physics.

Let us first discuss the g = 0 limit. The response in this
limit depends on the dimensionless Keldysh parameter
γK ≡ ~ω0/ξ F0 and has been studied in [14]. In the tunnel-
ing regime, γK � 1, the dominant process exciting the charge
gap is the electric field F0 pulling apart doublon-hole pairs and
polarizing and breaking down the insulating state. This mecha-
nism is reminiscent of the Schwinger mechanism in vacuum
[29], where an electric field large enough (F vac

0 & 1018 V/m)
will polarize the vacuum, excite the charge gap 1vac = 2me c 2,
and create electron-positron pairs on a much lower energy scale.
The rate of pair production becomes exponentially sensitive
to the field strength, 0 ∝ exp{−π Fth

F0
}, exhibiting a threshold

behavior. Here Fth =1Mott/2ξ , explaining the central role
both quantities play in strong-field physics. Noting that 1Mott

increases and ξ decreases monotonically (see Fig. 2) with U ,
we see that breakdown of the insulating state is possible for
small U but will fail for larger U as soon as F0 < Fth. For a field
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Fig. 1. (a) Model of the coupled metal/Mott-insulator system.
(b) Vector potential A(t) as a function of time. (c) In the uncoupled
one-dimensional Mott insulator, N hoppings t0 are required to create a
pair of size ξ = Na . (d) In the coupled system, a doublon-hole pair of
arbitrary size can be created by just two hoppings g as illustrated.

strength F0= 109 V/m, the insulating state is preserved for
values U >Uth ∼ 6t0 [15].

Here, we are always in the tunneling regime with γK � 1,
where the rate of doublon-hole pair production is

0tunnel ∝ exp−

{
π

2

1Mott

ξ F0

}
. (7)

Electrons must tunnel through a tilted barrier [Fig. 1(c)] to
create the doublon-hole pair [14]. As we start coupling the insu-
lator to a metal (g 6= 0), entirely new mechanisms of producing
the charge excitations emerge [Fig. 1(d)]. The metal leg can now
donate an electron on one site while removing an electron from
another distant site through just two interfacial hoppings g .
This is expected to considerably increase the correlation length ξ
from the uncoupled insulator limit g = 0.

To calculate this increase in ξ we drive the interface with
tunable intensity 109 V/m≤ F0 ≤ 3× 109 V/m and central
frequency ω0 = 32.9 THz. The whole range of intensities is
above Fth as evidenced by a finite increase in doublon density by
the end of the pulse [see for example Fig. 2(b)]. Since we are in

the tunnel ionization regime [Eq. (7)], we expect that plotting
0tunnel against F −1

0 on a log scale will produce a linear plot with
negative slope −π

2
1Mott
ξ

. We can then estimate the value of ξ
from the linear fits by assuming that 1Mott does not change
appreciably from its uncoupled value and deduce the effect of
coupling g on correlation length ξ .

We calculate the rate of production 0 = d D(t)/dt by plot-
ting the ground state doublon density [Eq. (3)] as a function of
time, fitting it to a tanh function,

D(t)= D0 + a
[
tanh b(t − tth)+ 1

]
, (8)

and extracting the slope [14]. Figure 2(b) shows D(t) as a func-
tion of time for F0 > Fth, along with the fitting curve. The
maximum production rate can be extracted as0 = ab, the slope
of the fit at the time of maximum doublon production.

Figure 3 shows log plots of 0 versus F −1
0 for small couplings

0.05t0 ≤ g ≤ 0.2t0 (with increasing coupling down the panels)
and U = 5t0. The downward sloping graphs can be fitted with
straight lines and ξ extracted from the slope m =−π

2
1Mott
ξ

. We
notice that as g is increased, ξ significantly increases even with a
very small increase in coupling.

The R-squared values are also calculated for the linear fits as

R2
= 1−

∑
i (y i − f )2∑
i (y i − ȳ i )

2 , (9)

where y i are the y -values for the data points, f is the value of
the linear fit, and ȳ is the average y -value. The values shown
for most of the plots in Fig. 3 are close to one, confirming the
exponential dependence of charge production on the driving
field [Eq. (7)] typical of the tunnel ionization regime.

To verify our results, we conducted independent DMRG
calculations which extracted ξ from calculations of the single-
particle Green’s functions G(|x |). Derived from the charge
stiffness, the correlation length is related to the equal time single-
particle Green’s function G(|x − x ′|)= 〈0|c †

x ′c x + c †
x c x ′ |0〉,

which is shown to scale as

G(|x |)∼ exp(−|x |/ξ). (10)

This definition of ξ , derived from the Green’s function, was
used in density matrix renormalization group (DMRG) calcula-
tions [30] presented here.

D
(t)

t [a. u.]

(a) (b)

Fig. 2. (a) Mott gap 1/t0 [24] (in blue) and doublon-hole correlation length ξ/a [27] (in orange), as functions of Hubbard repulsion U/t0.
(b) Doublon density as a function of time. D(t) starts at a low value and increases as the pulse ramps up and saturates at a higher value. The curve is
fitted to a tanh function [Eq. (8)] to extract the slope [14].
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Fig. 3. ln 0 versus F −1
0 plots for small couplings 0.05t0 ≤ g ≤ 0.2t0 (with increasing coupling to the right) for two values of Hubbard U = 4t0

(a)–(d) and U = 5t0 (e)–(h). Notice how even a small coupling to a metal drastically increases the correlation length.

Fig. 4. DMRG results plotting single-particle Green’s function versus lattice site for the Hubbard chain (red) and the metallic chain (blue). The
interchain coupling g = 0.2t0 for all plots, and the Hubbard value is given on top of each plot. The plots are semi-log, showing the exponential decay
of the Green’s function and indicating the gapping of the charge mode. We see the usual trend of ξ decreasing with increasing U .
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/

/ 0

Fig. 5. Correlation length ξ for the uncoupled (g = 0) insulator
[27] [same as in Fig. 2(a)] and for small coupling g = 0.2t0 from
DMRG results.

The geometry of the model considered was extended to a
2× 64 ladder with the open boundary conditions, keeping
4096 SU(2) multiplets and discarding weights smaller than
10−7. The results are shown in Fig. 4 for the value of g = 0.2t0
and varying values of U . The plots show G(|x |) for both
Hubbard and free chain. The Hubbard chain, which is the focus
of our results, shows a linear trend with negative slope in the
long-distance behavior. This should be expected as we anticipate
G(|x |)∼ exp{x/ξ}. From the slope, we can therefore extract ξ .
These values are displayed in the bottom-right of each plot and
are plotted in Fig. 5 to be compared with g = 0, again showing
the significant increase in ξ as a result of increasing g . Another
observation from Fig. 4 is that while the function G(|x |) slopes
down linearly on the whole, it also displays oscillatory behav-
ior on the short length scale with a period equal to 2a . This
can be related to the fact that the lowest energy single-particle
excitations in the model occur at k = π

2a [31].

4. CONCLUSION

In conclusion, we proposed a method for extracting the
doublon-hole correlation length from a highly nonlinear
response of a Mott insulator driven by a strong laser field. We
then applied this method to demonstrate that the correlation
length inside the Mott insulator is significantly increased by the
presence of a metallic layer, allowing for an increased mobility
of carriers. The tunability of interlayer coupling, g , between
the magnetic insulator and the metallic layer could lead to
significant advances in the application of Mott insulators as
memristors in a neuromorphic network [32,33]. In particu-
lar, increasing the coupling value, g , could model long-term
potentiation, a key mechanism underlying learning in a neural
network, whereby the cell has a lower threshold for a response. In
our model, this would correspond to a lowered threshold in the
driving electric field needed for the Mott insulator breakdown.
As described above, this lower threshold is physically imple-
mented by the increased correlation length with an increasing
value of g . The fact that correlation length increases dramati-
cally even for small increases in coupling suggests that this type
of control is experimentally feasible and could be mediated by

decreasing the distance between the metallic and insulating
layers (by increasing external pressure, for instance).

Furthermore, our work can be used to extract correlation
length from experimental measurements of a Mott insulator
driven by strong laser fields in the tunneling regime, corre-
sponding to a small value of the Keldysh parameter, γK . The
relevant experimental observable has to correlate with the rate
of doublon-hole production in the tunneling regime, given
by Eq. (7). This can be found in high harmonic generation
experiments, where it was previously shown that the rate of
doublon-hole production correlates closely with the intensity
of high harmonics [15,22]. Alternatively, recent experiments
measuring differential reflectivity 1R/R [23] can also be used
to obtain the rate of doublon-hole production, 0, and thereby
extract the doublon-hole correlation length. The ability to
extract correlation length directly from experimental data can
be used to experimentally validate existing theoretical models of
correlated electronic systems.
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