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Hilbert space fragmentation produces an effective attraction between fractons

Xiaozhou Feng and Brian Skinner
Department of Physics, The Ohio State University, Columbus, Ohio 43202, USA

(Received 30 May 2021; revised 9 November 2021; accepted 4 January 2022; published 26 January 2022)

Fracton systems exhibit restricted mobility of their excitations due to the presence of higher-order conservation
laws. Here we study the time evolution of a one-dimensional fracton system with charge and dipole moment
conservation using a random unitary circuit description. Previous work has shown that when the random unitary
operators act on four or more sites, an arbitrary initial state eventually thermalizes via a universal subdiffusive
dynamics. In contrast, a system evolving under three-site gates fails to thermalize due to strong “fragmentation”
of the Hilbert space. Here we show that three-site gate dynamics causes a given initial state to evolve toward a
highly nonthermal state on a timescale consistent with Brownian diffusion. Strikingly, the dynamics produces
an effective attraction between isolated fractons or between a single fracton and the boundaries of the system,
as in the Casimir effect of quantum electrodynamics. We show how this attraction can be understood by exact
mapping to a simple classical statistical mechanics problem, which we solve exactly for the case of an initial
state with either one or two fractons.
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I. INTRODUCTION

A fracton is a kind of excitation in certain quantum sys-
tems that exhibits reduced or fractionalized mobility, such
that no local operator can move the fracton without pro-
ducing additional excitations [1–8] (see also Refs. [9,10]
for reviews). Such reduced mobility can be framed in terms
of higher-order conservation laws [6,11,12]. A paradigmatic
example, which we focus on in this paper, is that of a one-
dimensional system with both charge and dipole moment
conservation. In this setting, a single charge can only move
in a given direction if a dipole is simultaneously created
from the vacuum that points in the opposite direction [6,13].
Such restricted mobility dynamics has led to intense recent
interest in fracton systems as candidates for quantum many-
body systems that fail to thermalize even at infinite time (e.g.,
Refs. [14–19]).

An important test case for fracton systems is the limit of
random dynamics (infinite temperature), in which one consid-
ers the equal-weight statistical average of all possible unitary
evolutions. In a typical quantum many-body system, such ran-
dom dynamics produces, in the long-time average, a thermal
ensemble of all states consistent with the conserved quan-
tities (the “symmetry sector”) [20–22]. However, in fracton
systems, the restricted mobility can lead to a “fragmentation”
of the symmetry sector into disconnected subsectors that are
not mutually accessible via unitary evolution [17,18]. Such
fragmentation precludes thermalization when it occurs in a
“strong” way, such that all subsectors occupy a small volume
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of the relevant Hilbert space. The question of which condi-
tions produce or preclude thermalization in fracton systems
continues to attract significant interest.

A useful method for describing random dynamics is using
the random unitary circuit [23–29], as depicted in Fig. 1(a),
in which the system evolves via discrete gates, each of which
is chosen randomly among the set of all possible operators
that conserve charge and dipole moment. More precisely, one
can consider a spin-1 chain, such that the “charge” at a given
site i corresponds to the expectation value of the operator
Szi , which has eigenstates −1, 0, or +1. In this description,
the “charge density” at site i is given by 〈Szi 〉 (where 〈...〉
denotes the quantum-mechanical expectation value) and the
total dipole moment of the system P = ∑

i xi〈Szi 〉, where xi is
the position of the ith site. Unfortunately, a direct simulation
of the quantum evolution of a large system is difficult due
to the exponentially large Hilbert space. However, a recently
proposed protocol called automaton dynamics (AD) [30–33]
overcomes this limitation by focusing on operators that take
any product state to another product state (multiplied by an
overall phase). Such dynamics can be sampled using classical
Monte Carlo, enabling the study of large system sizes and long
times.

Previous work has shown that for random unitary dynamics
with gate size larger than three, the fracton system is ther-
malized after a long enough time [17,34–37]. Under such
thermalizing dynamics, the expectation value of any observ-
able (such as the charge density) evolves to that of a thermal
ensemble consistent with the fixed charge and dipole moment.
The approach to thermalization is described by a universal
subdiffusive dynamics, for which a wave vector q is associated
with a relaxation timescale τ ∝ 1/q4 [34–38] (as compared to
Brownian diffusion, which has τ ∝ 1/q2). On the other hand,
in a circuit with three-site gates, the system fails to thermalize
even at infinite time [16,17]. That is, the system retains a
memory of the initial state even after infinite time.
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FIG. 1. (a) An example of a random unitary circuit acting on a
spin-1 chain with three-site gates. Each block represents a random
unitary operator that conserves charge and dipole moment. (b) An
illustration of the attraction between fractons (red dots). Fractons
move in a given direction by emitting dipoles in the opposite direc-
tion, or absorbing dipoles from the same direction. In a system with
three-site gates, opposite-facing dipoles cannot pass through each
other, and this causes inward-facing dipoles to return more quickly to
the fracton that emitted them, biasing the motion of fractons toward
each other. (c) An illustration of the mapping between fracton charge
(left) and the corresponding height field (right).

In this paper, we examine such nonthermalizing dynamics,
focusing particularly on unitary circuits with three-site gates.
We restrict our attention to the evolution of a spin-1 chain
from initial states with a small number of fracton charges.
We show that both the final state and the timescale associ-
ated with approaching the final state are governed by very
different rules than in the thermalizing case. One of our most
striking results (first hinted at by numerical results presented
in Ref. [16]) is an effect reminiscent of the Casimir effect,
in which random fluctuations of the “dipole field” produce
an effective attraction between two initially separated fracton
charges.

One could anticipate this attraction, in a qualitative sense,
by imagining an initial state with two fractons in an other-
wise empty system [as in Fig. 2(c)]. Each fracton can move
(say, to the right) only by emitting a left-facing dipole to
its left or absorbing a right-facing dipole from its right. In
a common heuristic description (as, e.g., in Ref. [16]), one
imagines a dipole as a separate kind of particle, which diffuses
freely through the system until it encounters a fracton and
is absorbed. Importantly, however, under three-site gate dy-
namics two opposite-facing dipoles cannot pass through each
other, and consequently the two fractons effectively reflect
each other’s emitted dipoles. This reflection causes the dipoles
emitted inward to return more quickly than the dipoles emitted
outward, leading to a bias in the random motion of the fractons
that pulls them together [as depicted in Fig. 2(b)]. Below we
make this heuristic picture more precise, and show how the
attraction and its associated timescale can be described using
an exact mapping to a simple classical problem involving the
sliding of “blocks” in an area-preserving height field [depicted
in Fig. 2(c)].

FIG. 2. The average fracton charge density 〈Szi 〉 as a function of
the site index i for a thermalizing system with total charge Qtot = 2,
dipole moment Ptot = 7, and size L = 14. Red circles show the
results from the maximum-entropy simulation. Orange squares and
blue crosses show the results from AD simulations, starting from an
initial state with only two fractons (orange squares: initial positions
i = 2, 5; blue crosses: initial positions i = 3, 4). The black curve
shows the theoretical result of Eq. (9).

We emphasize that the attraction between fractons that
we discuss in this paper is qualitatively different, and of
different origin, than the “emergent gravity” between frac-
tons that is discussed in Refs. [13,39,40]. We are considering
random dynamics, which has no associated Hamiltonian or
conserved energy, while these previous references discuss sys-
tems characterized by a well-defined Hamiltonian. The major
point of our paper is to show that even completely random,
non-Hamiltonian dynamics produces an effective attraction
between fractons, but it requires the fragmentation of the
Hilbert space that is associated with limited operator size.

The reminder of this paper is organized as follows. We
begin in Sec. II by considering a random circuit with four-site
gates, and showing that the dynamics leads to a thermalized
state with a fracton charge density profile that is consistent
with a simple maximum-entropy derivation. Section III con-
siders three-site gate dynamics, and presents numeric results
for the evolution of initial states having either one or two frac-
tons. We present results for the final state and the timescale
associated with its approach. In Sec. IV, we propose an exact
mapping to a classical problem of randomly sliding blocks,
and we use it to use it to explain our numeric results. We
conclude in Sec. V with a summary and discussion of potential
future work.

II. SIMULATION METHOD AND THERMALIZATION
WITH FOUR-SITE GATES

The system we consider is a one-dimensional spin-1 chain
with L sites. The basis states of the system can be written as
strings of Sz values, with each character in the string denoting
the z component of spin at the corresponding site, which
takes one of the values +, 0, or −. The total fracton charge
is defined by Qtot = ∑

i〈Szi 〉, and the total dipole moment is
Ptot = ∑

i xi〈Szi 〉, where xi is the coordinate of site i. We define
our units and coordinate system such that xi = i, with the
index i running from 1 to L. Each gate in the quantum circuit
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conserves both the charge and the dipole moment, so that both
quantities are constant over time.

Recent work has shown that, under the dynamics of a
random unitary circuit with four-site gates, the spin-1 chain
thermalizes after a long enough time [17,34–37]. Conse-
quently, the entropy of a given observable is maximized within
the symmetry sector. In fact, even under four-site gate dynam-
ics, a given symmetry sector is fragmented into exponentially
many subsectors [17,18]. But in the thermodynamic limit one
of these subsectors becomes dominant, occupying nearly all
of the volume of the Hilbert space of the symmetry sector.
This “weak fragmentation” allows the dynamics to recover its
ergodicity.

In this section, we explicitly check the ergodicity of four-
site gate dynamics, and we derive a simple relation for the
charge density profile 〈Szi (xi )〉 based on a maximum-entropy
argument. We confirm this theoretical result using two differ-
ent, complementary numerical simulations. First, we directly
construct the maximum entropy result by summing over all
basis states within the symmetry sector–we refer to this pro-
cedure as the “maximum-entropy simulation”. Second, we
simulate the four-site dynamics using the AD method. We find
that the corresponding numerical results for 〈Szi 〉 agree both
with each other and with the theory.

The details of our AD simulation method are as follows.
We start with a well-defined initial state |ψ (0)〉, which is a
product state and represents a specific configuration of charge.
We then apply a random ordering of unitary gates on the initial
state, with each gate operating on a randomly chosen set of
three nearest-neighboring spins. Each gate is chosen randomly
from the set of operations that conserve both the charge and
dipole moment (the full set of these operations is enumerated
below for three-site gate dynamics, and for four-site dynamics
it is summarized in Table I of Ref. [16]). Under AD, the
resulting state remains a product state after the operation of
the gate [30,32]. A single time step is defined such that during
one time step each spin has, on average, been affected by one
gate (i.e., L/n gates constitute a time step for dynamics with
n-site gates). A single realization j of this protocol produces
a product state |ψ (t )〉 j , where t denotes the number of time
steps. To compute the expectation value of some physical
operator Â, we average the value of 〈ψ (t )| j Â |ψ (t )〉 j over
many independent realizations j.

Figure 2 shows the value of 〈Szi 〉 as a function of the site
index i for an example system with size L = 14, total charge
Qtot = 2, and total dipole moment Ptot = 7. The red circles
correspond to the maximum-entropy simulation, while orange
squares and blue crosses are taken from the AD simulation
with different initial states. For the AD simulation, the data
corresponds to the state of the system after 45000 time steps
and is averaged over 5000 independent realizations. The initial
state was chosen to have Szj = 1 at two specific sites j, with all
other sites i having Szi = 0. From Fig. 2, we see that choosing
j = 3, 4 and j = 2, 5 yield numerically indistinguishable re-
sults. The close equivalence of the simulation results implies
that the system is thermalized after a sufficiently long time,
and all information from the initial state is lost.

We can understand the curve 〈Sz(xi )〉 quantitatively using
a simple entropy maximization argument. Consider that each
site i has some probability pi(s) of having the Sz value s =

+, 0, or −, with
∑

s pi(s) = 1. In the limit where there are
many basis states in a given symmetry sector, we can take
the probabilities pi(s) to be independent for different sites
i, so that the probability of a given string {s1, s2, . . . , sL} is
given by

∏
i pi(si). The corresponding Shannon entropy of

the probability distribution is

H = −
∑
i,s

pi(s) ln pi(s). (1)

For a given symmetry sector, there are two constraints on the
probabilities pi(si ):

Qtot =
∑
i,s

spi(s), (2)

Ptot =
∑
i,s

xi × spi(s). (3)

We can extremize the value of H using the method of
Lagrange multipliers, which gives

pi(s) = es(λQ+xiλP )

1 + 2 cosh (λQ + xiλP )
. (4)

Here, λQ and λP are Lagrange multipliers whose values cor-
respond to the solutions of the nonlinear equations∑

i

2 sinh (λQ + xiλP )

1 + 2 cosh (λQ + xiλP )
= Qtot, (5)

∑
i

2xi sinh (λQ + xiλP )

1 + 2 cosh (λQ + xiλP )
= Ptot. (6)

In the limit |Qtot| � L and |Ptot| � L2, one can linearize
these equations to arrive at

λQ � 6LQtot + 3Qtot − 9Ptot

L(L − 1)
(7)

λP � −9(LQtot + Qtot − 2Ptot )

L(L2 − 1)
. (8)

In the same limit, the corresponding value of 〈Szi 〉 = pi(+) −
pi(−) is given by the simple linear equation〈

Szi
〉 � 2

3 (λQ + xiλP ). (9)

This analytical result is plotted as the black line in Fig. 2 using
the parameters from the simulations, Qtot = 2 and Ptot = 7.

III. NONTHERMALIZING DYNAMICS WITH THREE-SITE
GATES

As mentioned in the introduction, the dynamics of a ran-
dom circuit with three-site gates is very different from that
of a circuit with four-site gates. In the three-site gate case,
the system fails to thermalize due to strong fragmentation
of the symmetry sector [17], and the long-time behavior of
observables cannot be anticipated using maximum-entropy
arguments. Instead, different initial states within the same
symmetry sector may evolve to produce qualitatively different
values of a given observable. In this section, we consider the
dynamics of the charge density profile 〈Szi 〉 under three-site
gate dynamics, starting from initial states with only one or
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TABLE I. The set of all allowed three site gates that conserve
charge and dipole moment.

0 + 0 ←→ + − +
0 − 0 ←→ − + −
+ − 0 ←→ 0 + −
− + 0 ←→ 0 − +

two fractons. We present numerical results here, and charac-
terize the effective attraction between fractons and between
fractons and the boundary of the system. Section IV provides
an analytical description of these phenomenona via an exact
mapping.

Under three-site gate dynamics, the set of operations is
very limited by the symmetry constraints. Table I gives the
full set. Only eight of the 33 possible three-site basis strings
admit a nontrivial operation that conserves charge and dipole
moment. In the heuristic language of the introduction, the top
line of Table I may be viewed as single fracton hopping left (or
right) while emitting a right-facing (left-facing) dipole. The
bottom two lines can be viewed as the free translation of a
dipole.

A. Single fracton initial state

A simple starting point for examining the dynamics of
nonthermalizing states is to consider initial states for which
there is only a single fracton charge (which, for definiteness,
we take to be positive) located at site index i0 (position x0).
In other words, the initial state is |ψ (0)〉 = |+〉i0 ⊗ ∏

i 
=i0
|0〉i.

The AD simulation method [34] allows us to extract the
charge density profile 〈Szi 〉 as a function of time. The result
is shown in Fig. 3 for the case where i0 corresponds to the
center of the system. As time increases, the delta-function
peak of charge spreads outward, as one would expect. How-
ever, rather than spreading to uniformly fill the system, as one
would naively anticipate from the maximum entropy state, at
late times the fracton charge accumulates at the boundaries
of the system. After a very long time, the fracton charge is

FIG. 3. The evolution of the charge density starting from a single
fracton peak. The data corresponds to AD simulations with three-
site gates for a system with size L = 51. At t = 0, we have a single
fracton peak in the middle of the system. As time progresses, the
peak gradually spreads outward, before eventually accumulating at
the system boundaries.

FIG. 4. The timescale τ associated with the approach to the final
state, plotted as a function of the half-system size L/2, given an
initial state with a single fracton at the center. The straight-line fit
(in log-log scale) with slope close to 2 implies a diffusive dynamics,
as opposed to the subdiffusive dynamics that arises in thermalizing
fracton systems. The standard error of the numeric points (dots) is
smaller than the symbol size.

completely concentrated into two delta-function peaks, one at
either boundary. The weight of the two delta-function peaks is
such that the charge and dipole moment from the initial state
are preserved [i.e., the right edge of the system has charge
(x0 − 1)/(L − 1) and the left edge has charge (L − x0)/(L −
1)]. In order to characterize the timescale associated with the
approach to the final state, we define the quantity

r(t ) =
√∑

i

〈
Szi

〉
(t ) × (xi − x0)2, (10)

which describes the effective width of the fracton peak as
a function of time. We consider the timescale τ such that
r(τ ) = L/4, given an initial state with x0 = L/2. Figure 4
shows the value of this timescale as a function of system size,
along with a power law fit. The fitted exponent (τ ∝ L2.03)
suggests a quadratic dependence of the dynamical timescale
on the system size, which stands in contrast to the universal
dynamics τ ∼ L4 of thermalizing fracton systems [34–38].

B. Attraction between fractons

We now consider the case where the initial state consists of
two fractons: |ψ (0)〉 = |+〉i1 ⊗ |+〉i2 ⊗ ∏

i 
=i1,i2
|0〉i, where i1

and i2 are the indices of the two initial fracton positions.
Figure 5 shows numerical results for the initial-time and

late-time charge density profiles for an initial state with i1 =
16 and i2 = 36 and system size L = 51, as given by an AD
simulation. As in the single-fracton case, the boundary of the
system exhibits delta-function peaks of charge density. More
striking, however, is the appearance of a persistent, localized
peak of charge density at the midpoint between the two ini-
tial fracton positions. This peak persists even in the limit of
infinite time, and has a width significantly smaller than the
distance between the two initial fracton positions.

Since the dynamics in our system is explicitly reversible,
this effective attraction between the two fracton peaks can be
said to have an entropic origin. That is, within the subsector
that includes the initial state, basis states tend to have posi-
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FIG. 5. The initial and final charge density profile 〈Szi 〉 for an
initial state with two fractons that evolves under three-site-gate dy-
namics. The effective attraction between fractons is manifest in a
persistent peak of charge density that forms at the midpoint between
the initial fracton positions after a long time (red curve). In this
example, the system size L = 51 and the two initial fracton positions
are i1 = 16 and i2 = 36, respectively (blue curve).

tive charge near the midpoint between the two initial fracton
peaks. An intuitive rationale for this peak is similar to the
one given in the introduction: a single fracton moves by emit-
ting dipoles, but under three-site gate dynamics these dipoles
cannot pass through each other or through another fracton
charge. In this sense each fracton serves like a “boundary
condition” for the dipoles emitted by other fractons, in loose
analogy with the fluctuations of the electromagnetic field that
drive the Casimir effect, and the total configurational entropy
of the emitted dipoles is maximized when the two fractons
are pushed together. Below we provide a more precise way
of describing this effect, which does not rely on an artificial
separation of the system’s + and − charges into “fractons”
and “dipoles.”

In order to study the timescale associated with the attrac-
tion between the two fracton peaks, we define the quantity 〈r′〉

r′(t ) =
∑
i>L/2,
i 
=L

〈
Szi

〉
(t ) × xi −

∑
i<L/2,
i 
=1

〈
Szi

〉
(t ) × xi. (11)

Starting from an initial state where the two fracton peaks
are equidistant from the center of the system, this quantity
represents the average distance between charge at x < L/2
and x > L/2. In the definition of r′(t ), we neglect the charge
peaks at the two boundaries. We define a timescale τ based on
the time at which the two fracton peaks approach each other
to half their initial separation: r′(τ ) = �/2, where � is the
initial distance between the two fractons.

Figure 6 shows the behavior of this timescale as a function
of the distance �, with the ratio �/L kept constant. As in
the single fracton case, the timescale τ increases quadratically
with the length scale �, suggesting that the dynamics is gov-
erned by Brownian diffusion rather than by subdiffusion.

IV. AN EXACT MAPPING SOLUTION

In the previous section, we showed, numerically, two
dynamical phenomena associated with nonthermalizing dy-

FIG. 6. The timescale τ associated with attraction between two
fractons under three-site-gate dynamics is plotted as a function of
their initial separation �. Blue points correspond to AD simulations
with fixed ratio �/L = 1/2. The red curve is a power-law best fit,
which gives an exponent τ ∝ �1.97. The error bars for each point are
smaller than the symbol size.

namics that are starkly different from the thermalizing case.
First, we showed that fractons exhibit an effective attrac-
tion both to each other and to the boundaries of the system.
Second, we showed that the timescale associated with the
evolution of the fracton charge density is diffusive, τ ∝ L2,
rather than subdiffusive (τ ∝ L4) as in the thermalizing case.
In this section, we provide a derivation for these behav-
iors by mapping to a simple problem of classical statistical
mechanics.

The key idea is that the fracton charge as a function of posi-
tion can be mapped to a height field, which evolves according
to simple dynamical rules. For a charge distribution 〈Szi 〉(t ),
we define the “height”

hi(t ) =
∑
j�i

〈
Szi

〉
(t ), 0 � i � L, (12)

so that h0 = 0 and hL is equal to the total charge Qtot. In
this mapping, the charge at site i corresponds to the discrete
derivative 〈

Szi
〉 = hi − hi−1. (13)

Importantly, the total area under the height field

L−1∑
i=1

hi(t ) = LQtot − Ptot (14)

is constant as a function of time. Thus the fracton dynamics
corresponds to area-preserving deformations of the height
field hi(t ).

We note that the same height field mapping is used in
Ref. [37] to study thermalizing dynamics, and to derive a gen-
eralized hydrodynamic relation. The entropy of height fields
with fixed area has also been studied in the mathematical
physics literature (e.g., Refs. [41,42]). These previous results,
however, correspond to the ergodic situation, where the full
set of height fields (with fixed area and fixed end points) can
be explored. As we now show, under three-site-gate dynamics
only a restricted set of height fields is explored. We mention
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TABLE II. Above: the set of all charges and their corresponding
height fields. The site locates at the middle of the height field. Below:
the set of all possible three-site gates and their corresponding height
fields. The left column shows their effects on the fracton charge. The
right column shows the representation of this change in the height
field. Each operation can be viewed as a single block sliding either
right (the fourth or sixth rows) or left (the fifth and seventh rows).

Fracton Charge Height Field

also that Ref. [19] uses a different, but equivalent classical
mapping to label the subsectors of three-site-gate dynamics.

In the language of the height field, the three-site gate op-
erations listed in Table I correspond to simple operations in
which a single “block” with unit height and width is slid either
to the right or left. This correspondence is outlined in Table II.

In this language, the height field can be viewed as a col-
lection of blocks, stacked on top of each other to form some
profile hi(t ). Under the action of the random circuit these
blocks are moved around according to the following simple
rules.

(1) A three-site gate corresponds to a single block sliding
either to the left or to the right by one unit. Blocks may not
slide through each other.

(2) Any move that would cause the height field to change
by two units at one position i is prohibited.

We now show that this simple description of sliding blocks
permits an exact solution for both the single-fracton and two-
fracton problems.

A. Single fracton block mapping

We first consider the case where the initial state contains
only a single fracton at position p. In this situation the height
field at time zero satisfies

hi(0) =
{

0, i < p,
1, i � p.

(15)

This mapping is illustrated by Fig. 7, with the blue area corre-
sponding to L − p contiguous blocks. At the initial time, the
only allowed move is for the leftmost block to slide by one
unit to the left. Over time, vacancies open up in the chain
of blocks, allowing others to move, and the distribution of
blocks becomes more uniform. This process of diffusion with
excluded volume is described mathematically by the so-called
simple exclusion process [43]. In the continuous limit (L, t 

1), the physics is controlled by the usual one-dimensional

FIG. 7. An illustration of the block mapping that describes three-
site-gate dynamics for initial states with a single fracton. The top
plot shows an initially empty state with only a single fracton charge
at position p. The white arrow shows the mapping to a collection
of L − p contiguous blocks on the right side of the system (middle
plot). The height field at positions i = 0 and i = L is fixed to h0 = 0
and hL = 1, respectively. The black arrow indicates time evolution
to a state where the blocks are uniformly scattered across the system
(bottom plot).

diffusion equation [43]

∂ρ(x, t )

∂t
= a

∂2ρ(x, t )

∂t2
. (16)

Here, ρ(x, t ) is the average block density and a (the diffusion
constant) is an order-1 parameter determined by the details of
the circuit. Although an exact analytical solution for ρ(x, t ) is
mathematically complicated due to the boundary conditions
in our problem, Eq. (16) gives an immediate explanation for
the diffusion-like timescale τ ∝ L2 shown in Fig. 5.

This mapping also gives a simple explanation for the delta-
function peaks of charge density that appear at the boundaries
of the system after a long time. In the block description, it
is clear that after a very long time the block density becomes
spatially uniform, ρi = (L − p)/(L − 1). Thus the height field
adopts an average value 〈hi〉 = (L − p)/(L − 1) for all i in the
interval 1, . . . ,L − 1. On the other hand, h0 = 0 and hL = 1
are fixed, so that taking the discrete derivative [Eq. (13)] gives

〈
Szi

〉 =
⎧⎨
⎩

(L − p)/(L − 1), i = 1
0, 0 < i < L − 1
(p− 1)/(L − 1), i = L

. (17)

This expression is consistent with the numeric results shown
in Fig. 3, and one can check that it preserves the total charge
Qtot = 1 and dipole moment Ptot = p.

It is worth noting that this simple reasoning can similarly
be applied to any initial state containing an alternating pattern
of + and − charges (with any arrangement of 0′s between
them). Hamiltonian dynamics of such states was considered
in detail in Ref. [19]. In the language of the height field,
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FIG. 8. An illustration of the mapping that describes the dy-
namics of a two-fracton initial state (top plot). At t = 0, the
corresponding height field comprises a layer of blocks with h = 2
(purple, second plot) atop a layer of blocks with h = 1 (orange). A
further mapping (third plot) describes site with h = 2 as particles
(blue blocks) and sites with h = 0 as holes (red blocks), separated
by a movable piston (gray block). The random circuit causes the
particles and holes to diffuse inward (bottom plot), filling the empty
space between them.

such states correspond to a height field that remains always
between 0 and 1 (or between 0 and −1), so that it can be
viewed as a single-tiered arrangement of some number of
blocks. Thus the final state similarly exhibits only two delta-
function peaks of charge, whose heights can be determined
simply by counting the number of blocks.

B. Double fracton block mapping

A more complicated case is the initial state with two
fractons. In this case, mapping to the height field gives two
layers of blocks, as shown in Fig. 8. In principle, one can
directly apply the dynamical rules listed at the beginning of
this section to both layers of blocks in order to understand the
dynamics. However, a further mapping makes the dynamics
easier to understand. We introduce the modified height field

h′
i = hi − 1, (18)

which is defined such that the reference state (h′ = 0) is a
filled first layer of blocks (h = 1). We can then discuss two
different kinds of excitations in the modified height field:
“particles” (denoted by blue blocks in Fig. 8) that correspond
to h′ = 1 and “holes” (red blocks in Fig. 8) that correspond
to h′ = −1. The dynamical evolution of the system consists
of the particles and holes diffusing to fill the empty middle

FIG. 9. The late-time charge density 〈Szi 〉 of a system with two
fractons in the initial state, as given by three-site-gate dynamics. In
this example the two fractons are initially at positions i = −20 and
i = 20, respectively. The red curve shows the result of numerical
simulations, and the blue curve is our analytical result.

region of the system, like two gases expanding into a region of
vacuum between them. One subtlety is that, since the height
field may not change by two units at one site, the leftmost
particle cannot be immediately adjacent to the rightmost hole.
Instead, these two must be separated by at least one space,
which we describe by a freely sliding “piston” (gray block in
Fig. 8) that separates the two “gases”.

Since both gases expand outward via the diffusion equa-
tion, the observed timescale τ ∝ �2 (see Fig. 6) is natural.
The final state is also easy to understand: it corresponds to
a uniform spatial distribution of blocks (red and blue com-
bined). That is, ρred(x, t ) + ρblue(x, t ) becomes approximately
constant as a function of position at late times (with the only
caveat being the single piston block). The localized peak in
fracton charge 〈Szi 〉 is dictated by the statistics of the interface
between the two gases. Specifically, since blue particles cor-
respond to positive h′ and red holes to negative h′, the charge
density is given by〈

Szi
〉
(x) = ρblue(xi ) − ρblue(xi−1) − [ρred(xi ) − ρred(xi−1)].

(19)
The charge density therefore has a peak at the midpoint be-
tween the two gases, where ρred is declining with increased
index i while ρblue is increasing. The width of this peak is of
order

√
�, which is much smaller than the initial distance �

between the two fractons.
A full derivation of the charge density 〈Szi 〉 at late times

is presented in Appendix A. The resulting analytical curve is
plotted in Fig. 9 (blue curve), and it very closely matches the
numerical result.

V. CONCLUSION

In this paper we have explored the dynamics of nonther-
malizing fracton systems, focusing on the case of a spin-1
chain operated on by a random unitary circuit that conserves
charge and dipole moment. In the case where the circuit
contains four-site gates, the dynamics is thermalizing. We
have shown, in particular, that in this case the distribution of
charge density after a long time can be captured by a simple
maximum-entropy argument, and there is no need to know
the specific initial state. On the other hand, the dynamics
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with only three-site gates is highly nonthermalizing, such that
different initial states within the same symmetry sector evolve
to produce strongly different distributions of charge density
after a long time.

Most striking among our results is that initial peaks of
fracton charge density exhibit an effective attraction toward
each other and toward the boundaries of the system. The
tightly localized peaks of charge density which appear at late
times are in strong contrast to the thermalizing case, for which
early time peaks of charge density tend to spread uniformly
across the system. This difference arises fundamentally from
the strong fragmentation of the Hilbert space that occurs in the
nonthermalizing case.

We explain the dynamics in the nonthermalizing case using
a simple, exact mapping to a classical statistical mechanics
problem of sliding blocks in a height field. The mapping
gives a natural explanation for both the appearance of local-
ized charge peaks at infinite time and for the diffusion-like
timescale τ ∝ L2 associated with the system’s approach to the
steady state.

In principle, the mapping we present gives a natural way
to describe the dynamics of arbitrary initial states. So far,
however, we have only focused on two simple cases, which
correspond to the height field having either one or two tiers.
Generalizing our approach to a more generic set of initial
states may be a promising direction for future work.

Unfortunately, the height field mapping does not imply an
obvious generalization to higher dimensions. However, the
question of whether a similarly simple statistical mechanics
description can capture the dynamics of two-dimensional or
higher-dimensional nonthermalizing fracton systems is an in-
teresting one.
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APPENDIX A: THE EXACT SOLUTION OF THE FINAL
STATE FOR TWO-FRACTON PROBLEM

In this Appendix, we present the full derivation of the
late-time charge distribution for an initial state with two frac-
tons. As mentioned in Sec. IV B, we map the problem onto
the problem of two kinds of blocks, red and blue, diffusing
to fill the initially empty space between them. The average
densities of the two kinds of blocks are given by ρred(x, t ) and
ρblue(x, t ), respectively.

Separating the two kinds of blocks is a movable ‘piston’,
which can be viewed as a special boundary between them. The
densities of red and blue blocks can be written as

ρred(x, t ) =
∑

ξ

W (ξ, t )ρred(x, t ; ξ ), (A1)

ρblue(x, t ) =
∑

ξ

W (ξ, t )ρblue(x, t ; ξ ). (A2)

Here, ξ labels the position of the piston and ρ(x, t ; ξ ) means
the average density for those states with the piston located at
ξ at time t . W (ξ, t ) is a weight function that represents the
probability distribution of ξ at time t .

We expect that after the final state is reached, the weight
function no longer changes with time and can be written as
W (ξ ). Also, since the densities of blocks no longer change,

∂ρred

∂t
=

∑
ξ

W (ξ )
ρred(x, t ; ξ )

∂t
= 0, (A3)

∂ρblue

∂t
=

∑
ξ

W (ξ )
ρblue(x, t ; ξ )

∂t
= 0, (A4)

which lead to a simple solution
∂ρred(x, t ; ξ )

∂t
= ρblue(x, t ; ξ )

∂t
= 0. (A5)

This equation means that a static solution is reached for red
and blue blocks with a specific ξ . Recalling that the diffusion
equation is satisfied for red and blue blocks respectively, a
static solution should be a constant function or a linear func-
tion. The latter is forbidden since a nonzero slope means the
change of block density on the boundaries. Thus we conclude
that for the final state,

ρred(x, ξ ) =
{ L/2−�/2

L/2+ξ
, x < ξ,

0, x > ξ,
(A6)

ρblue(x, ξ ) =
{

0, x < ξ,
L/2−�/2
L/2−ξ

, x > ξ.
(A7)

Here the origin of the x axis is chosen to be the middle of
the system. � is the distance between the two initial fracton
peaks, and for the initial state, we have chosen the two peaks
to be symmetric about the middle of the system. The position
positions obeys

−�/2 < ξ < �/2. (A8)

This condition is consistent with the conservation of the block
area.

To derive the weight function W (ξ ), we use the fact that
in the final state, the rate at which the piston jumps from ξ to
ξ + 1 is equal to the rate at which it jumps from ξ + 1 to ξ .
The corresponding equilibrium condition is

P (ξ → ξ + 1)W (ξ ) = P (ξ + 1 → ξ )W (ξ + 1). (A9)

In other words,

P (ξ + 1 → ξ )

P (ξ → ξ + 1)
= W (ξ )

W (ξ + 1)
. (A10)

In order for the piston to jump left or right, the target site
must be empty of blue or red blocks. Since the piston has same
probability to jump to left or right,

P (ξ → ξ + 1) ∝ 1 − ρblue(ξ + 1, ξ ), (A11)

P (ξ → ξ − 1) ∝ 1 − ρred(ξ − 1, ξ ). (A12)

Plugging Eqs. (A6), (A7), (A11), and (A12) into Eq. (A10),
we get

W (ξ + 1)

W (ξ )
= �/2 − ξ

L/2 − ξ

L/2 + ξ

�/2 + ξ
. (A13)
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For ξ � �,L,

dW (ξ )

dξ
≈ −4(L − �)ξ

L�
W (ξ ). (A14)

The solution to this equation is a Gaussian function with width
1
2

√
L�

(L−�) � �,L. So the assumption ξ � �,L is reasonable

when L → ∞ and �/L is a finite number. So the weighting
function

W (ξ ) �
√

2(L − �)√
�Lπ

e− 2ξ2 (L−�)
L� . (A15)

Plugging Eqs. (A6), (A7), and (A15) into Eqs. (A1) and
(A2), the densities of red and blue blocks are

ρred(x) =
∫ �/2

−�/2
W (ξ )

L/2 − �/2

L/2 + ξ
dξ, −L

2
< x < −�

2
,

ρred(x) =
∫ �/2

x
W (ξ )

L/2 − �/2

L/2 + ξ
dξ, −�

2
< x <

�

2
,

ρred(x) = 0,
�

2
< x <

L

2
, (A16)

and

ρblue(x) = 0, −L

2
< x < −�

2
,

ρblue(x) =
∫ x

−�/2
W (ξ )

L/2 − �/2

L/2 − ξ
dξ, −�

2
< x <

�

2
,

ρblue(x) =
∫ �/2

−�/2
W (ξ )

L/2 − �/2

L/2 − ξ
dξ,

�

2
< x <

L

2
.

(A17)

Using the fact 〈Sz(x)〉 � −dρred/dx + dρblue/dx (here the
discrete derivative in the height mapping has been approx-
imated with a continuous derivative), we get the charge
distribution

〈Sz(x)〉 =

⎧⎪⎨
⎪⎩

0 − L
2 < x < L

2

W (x) (L/2−�/2)L
L2/4−x2 −�

2 < x < �
2

0 �
2 < x < L

2

. (A18)

This solution gives a localized peak of charge density in the
center of the system in the limit of infinite time, as shown in
Fig. 9. The width of this peak is ∼√

�, much smaller than the
initial fracton separation when � 
 1.

For the charge on the boundaries of the system (x =
±L/2), we point out that two additional conditions,

ρred = 1 x < −L

2
, (A19)

ρblue = 1 x >
L

2
, (A20)

are needed to make the block system consistent with the
fracton system. Using these equations, the charge on boundary
can be obtained

〈Sz(x)〉 = 1 −
∫ �/2

−�/2
W (ξ )

L/2 − �/2

L/2 + ξ
dξ, x = ±L

2
.

(A21)
Equation (A18), together with the value for the boundaries
from Eq. (A21), is plotted as the blue line in Fig. 9.
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