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ABSTRACT

The thermal chiral anomaly is a new mechanism for thermal transport that occurs in Weyl semimetals (WSMs). It is attributed to the gen-
eration and annihilation of energy at Weyl points of opposite chirality. The effect was observed in the Bi1−xSbx alloy system, at x = 11% and
15%, which are topological insulators at zero field and driven into an ideal WSM phase by an external field. Given that the experimental
uncertainty on x is of the order of 1%, any systematic study of the effect over a wider range of x requires precise knowledge of the transition
composition xc at which the electronic bands at the L-point in these alloys have Dirac-like dispersions. At x > xc, the L-point bands are
inverted and become topologically non-trivial. In the presence of a magnetic field along the trigonal direction, these alloys become WSMs.
This paper describes how the temperature dependence of the frequency of the Shubnikov–de Haas oscillations F(x,T) at temperatures of the
order of the cyclotron energy can be used to find xc and characterize the topology of the electronic Fermi surface. Semimetallic Bi1−xSbx
alloys with topologically trivial bands have dF(x,T)/dT≥ 0; those with Dirac/Weyl fermions display dF(x,T)/dT < 0.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0068312

INTRODUCTION

Weyl semimetals (WSMs) are characterized by an electronic
band structure, which has linearly dispersing bands that intersect at
Weyl points (WPs) in a system that breaks time reversal symmetry
(TRS) or inversion symmetry (IS). The WPs come in pairs located
at specific points in the k-space, +k0 and –k0, which are the source
and sink of Berry curvatures. The dispersion relation near the WPs
is characteristic of massless particles and 3-dimensional,

E(k) ¼ +vF�hk, k ¼ (kx , ky , kz): (1)

Here, vF is the Fermi velocity, ħ is Planck’s constant, and k is mea-
sured relative to ±k0 for the respective WP in the pair. The electri-
cal and thermal transport properties of WSM display the chiral
anomaly. First predicted by Nielsen and Ninomiya,1 the chiral
anomaly manifests itself as an extra electrical conductivity that

appears in the samples in the presence of parallel electric (E) and
magnetic (B) fields applied in the direction of the WP separation
in the k-space, i.e., the direction from −k0 to +k0. In the extreme
quantum limit (EQL), when all electrons and holes are on the last
Landau level, this additional electrical conductivity is given by

σzz(Bz) ¼ Nw
e3vτ

4π2�h2
Bz , (2)

where Nw is the number of degenerate pairs of WPs in the
Brillouin zone, e is the electron charge, v is the electron velocity,
and τ is the inter-Weyl point scattering time. The thermal chiral
anomaly2 manifests itself as the creation of an additional electronic
thermal conductivity that appears in the samples in the presence of
parallel thermal gradient (∇T) and B applied in the direction of the
WP separation in the k-space. In the extreme quantum limit, it is
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given by2

κzz(Bz) ¼ NwT
π2

3
k2Bevτ

4π2�h2
Bz , (3)

where T is the temperature and kB is the Boltzmann constant. The
additional electrical conduction manifests itself in WSMs as a nega-
tive longitudinal magnetoresistance (NLMR). Unfortunately,
observing an NLMR is not a sufficient proof of the existence of the
anomaly because extrinsic effects caused by the applied magnetic
field on the current distribution in the sample, most notably
current-jetting effects,3,4 also give rise to an NMLR. The additional
thermal conductivity is observed as a positive longitudinal thermal
conductivity,2 which is a more reliable indicator of the existence of
the anomaly because no electrical current flows during thermal
conductivity measurements and because the lattice thermal con-
ductivity evens out the heat distribution lines and is insensitive to
field. In Ref. 2, the increase in both electrical and thermal conduc-
tivity was observed in high magnetic fields applied along the trigo-
nal (z) direction in Bi1−xSbx alloys with x = 10.5 ± 0.5 at. % and
15.1 ± 0.7 at. % (referred to nominally 11% and 15%).

The evolution of the band extrema in Bi1−xSbx alloys as a
function of x at zero field is shown schematically in Fig. 1(a).5 In
topologically trivial semiconductors or semimetals, the states with a
symmetric wavefunction (here denoted s) constitute the conduction
band, whereas the valence band consists of states with an antisym-
metric (here denoted a) wavefunction. This is the case in Bi1−xSbx
alloys for x < xc. With increasing Sb content, the gap Eg between

the Ls and La bands closes until it reaches zero at a concentration
xc (≈5 ± 1 at. %).4 The green line in Fig. 1(a) represents the
minimum of a second valence band at the T-point of the Brillouin
zone. Holes in that band have conventional parabolic dispersions
and, at any value of x, are topologically trivial. For x > xc, the bands
are inverted: the conduction band has a symmetry (denoted La)
and the valence band has s symmetry (denoted Ls). At x > 8% or
9%, the T-hole-band maximum falls below the Ls valence band,
and the alloys become direct-gap topological insulators, in fact, the
first topological insulators identified experimentally by ARPES
measurements.6 At zero field, the 11% and 15% alloys are direct-
gap semiconductors with gaps (Eg≈ 13 meV at x = 11% and
Eg≈ 30 meV at x = 15%) at the L-points of the Brillouin zone. In
the presence of a strong magnetic field oriented along the trigonal
z-axis, their bandgap closes with increasing field2 because of the
extremely large Landé g-factor in these alloys.7 Above a critical
applied magnetic field Bz, the x = 11% and 15% alloys form ideal
WSMs, meaning that the dispersions are given by Eq. (1), and the
electrochemical potential μ is at the WP energy (μ = 0) within the
experimental energy range. The WPs are centered around the
L-points of the Brillouin zone and separated along a direction that
is mostly aligned with the trigonal z-axis so that κzz(Bz) shows a
strong thermal chiral anomaly, which gives rise to a very large
increase in electronic thermal conductivity in the magnetic field.2

There are also no trivial bands at energy μ and no unintentional
doping. Thus, μ is pinned to the WPs because those points have
the minimum system density of states (DOS); an ideal WSM dis-
plays no Shubnikov–de Haas (SdH) oscillations. The Fermi surface

FIG. 1. (a) Evolution of the band structure of Bi1−xSbx alloys as a function of antimony concentration x (in at. %). The insets show the dispersion relation in the topologi-
cally trivial phase (x < xc) and at the composition xc at which the L-point bands have a Dirac dispersion. xc≈ 5 ± 1 at. %.5 The blue dots schematically show the magnitude
of effective mass of carriers distributed over kBT around EF = μ(T = 0); it does not change in a parabolic band but decreases with energy in a Dirac band. This gives rise to
a change in the frequency of the quantum oscillations with temperature. (b) Schematic of a physical origin of a temperature-dependent SdH oscillation frequency change.
Heavier, higher-energy charge carriers are less likely to complete cyclotron orbits before encountering a phonon that perturbs the phase coherence of their wavefunction.
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of these ideal WSMs consists only of degenerate pairs of WPs with
opposite Berry curvatures.

While the experiments in Ref. 2 were carried out on ideal
WSMs, only alloys with 9% < x < 18% are expected to fall in that
category.4,8 Above about x≈ 18%, a new trivial valence band, the
Η-band, crosses the Ls band, making the alloys indirect-gap semi-
conductors at zero field, and above x≈ 22%, it crosses the La band,
making the alloys antimony-like semimetals.4 In order to extend
the thermal chiral anomaly to room temperature, it is necessary to
investigate Bi1−xSbx alloys with as wide range of x as possible
because Bi1−xSbx is expected to give rise to a WSM phase in the
magnetic field as a function of x, even if those WSMs are not ideal.
This means μ in them falls in a band and not at the WPs and if
their Fermi surfaces contain trivial pockets. Weyl physics is
expected to remain even if μ falls inside but within the bandwidth
of the Weyl bands. Here, we focus our work on alloys in the
0% < x < 7% range.

Note that the experimental accuracy with which x is reported
in the literature is only about ±1%. Furthermore, because the
parameters for band structure calculations are adjusted to repro-
duce the experimental data for the gaps,2 the calculated band struc-
tures also have about the same uncertainty. An experimental study
is, therefore, necessary to determine which range of alloy composi-
tions have topologically trivial and which have topologically non-
trivial L-point bands, irrespective of the presence of a trivial
T-point band. He et al.9 describe a method to identify topologically
non-trivial properties of the band structure, whereby the Landau
level index is plotted vs 1/B. In Weyl semimetals, the plot does not
extrapolate to zero, but to a value β that comes from a Berry phase.
The problem with this method is that many other factors affect the
phase of quantum oscillations: Shoenberg10 mentions that depar-
tures from the LK predictions (about phase) may occur if complica-
tions such as spin-dependent impurity scattering or sample
inhomogeneity are relevant. Experimentally, it is safer to rely on
the period of the oscillations than on their phase. In this article, we
describe a method for this condition based on the temperature
dependence of the frequency F(T) of SdH oscillations. At T = 0, F
(T = 0) itself is a measure of the cross-sectional area of the Fermi
surface A(EF) = (e/h) F normal to the direction of the applied field
[the Fermi energy is EF = μ(T = 0)]. At finite temperature, F(T)
probes the cross-sectional area of the Fermi surface A(μ, T) aver-
aged over an energy range ∼kBT near μ, as depicted in Fig. 1(b).
This potentially contains two mechanisms that give rise to
dF(T)
dT = 0. First, there is a change in μ(T) with T, called the
“Sommerfeld correction.”11 The second mechanism is reported by

Guo et al.12 and is present even when μ is constant (e.g., at EF). It
shown in that publication to be larger than the first in Dirac bands.
From Lifshitz–Kosevich theory13 combined with Roth’s deriva-
tion,14 a Taylor expansion of SdH oscillation frequency as a func-
tion of temperature is given by12

F(μ, T) ¼ F0(μ)� π2

4
(kBT)

2

μB

@mc

@E

����
����, (4)

where μB is the Bohr magneton. At temperatures such that
2π2kBT . �hωC , where ωC is the electron cyclotron frequency, the
temperature dependence of the quantum oscillation frequency F(T)
is a measure of � @mC

@E

�� �� and the energy derivative of the cyclotron
mass mc. In topologically trivial bands with a parabolic dispersion,
the effective mass is constant, which means that � @mC

@E

�� �� is zero.
When the dispersion is Dirac-like and given by Eq. (1) (the case
depicted in Fig. 1 at the x = xc range), the effective mass increases

as E moves away from the Dirac point @(logmc)
@E ¼ 1

jμj
� �

and the

� @mC
@E

�� �� correction term, which is proportional to vF
−1. What physi-

cally happens [see Fig. 1(b)] is that the heavier, higher-energy
charge carriers are less likely to complete cyclotron orbits before
encountering a phonon that perturbs the phase coherence of their
wavefunction shown in Fig. 1(b). The thermal average of the Fermi
surface area A(μ, T) that gives rise to F(T) is thus skewed toward
lower-energy electrons in the Fermi distribution; these have a
smaller Fermi surface cross section so that the measured quantum
oscillation F(T) at finite temperature decreases with increasing T.
The experimental test for an alloy composition to have reached
x = xc is, therefore, to observe that dF(T)

dT , 0. One does have to
verify on a case by case basis that this Dirac term is larger than the
Sommerfeld correction,11 which in the semimetallic Bi1−xSbx
(x < xc) alloy system is done in the Appendix.

EXPERIMENT

A series of Bi1−xSbx samples with nominal concentration of
antimony, (x = 2.1%, 3.3%, 4.1%, 5.3%, and 7.2%) were prepared by
the traveling molten zone (TMZ) method described elsewhere.2

The sample properties are summarized in Table I. The trigonal
direction was identified visually and verified by X-ray diffraction
(XRD). The nominal antimony concentration was obtained from
these XRD spectra at 300 K and comparing the positions of the
(009) peaks with the values given by Cucka and Barrett15 for alloys

TABLE I. Properties of the Bi1−xSbx samples studied here. The nominal concentration was obtained from x-ray diffraction and from the position of the (009) peaks. The con-
centration was double-checked by x-ray fluorescence. The carrier concentration and mobility were obtained from low-field measurements of the Hall coefficient ρzx(By) and
resistivity ρzx. The Shubnikov–de Haas frequency (F) is obtained in Rzz(Bz).

Nominal x (XRD, %) 2.1 ± 0.7 3.3 ± 0.7 4.1 ± 0.6 5.3 ± 0.8 7.2 ± 0.6
Concentration x (XRF, %) 1.9 ± 0.3 3.1 ± 0.3 4.6 ± 0.4 5.7 ± 0.4 6.8 ± 0.3
Carrier concentration (cm−3) at 10 K 8.9 × 1016 (n) 8.3 × 1016 (n) 4.5 × 1016 (n) 1.4 × 1016 (n) 3.2 × 1015 (p)
Mobility (cm2 V1 s−1) at 10 K 1.8 × 106 1.9 × 106 3.5 × 106 1.3 × 106 4.9 × 105

SdH frequency F (T) at 2 K 4.31 ± 0.35 3.50 ± 0.34 2.47 ± 0.59 … …
Fermi surface area (m−2) normal to the z-axis 4.11 ± 0.48 × 1016 3.34 ± 0.45 × 1016 2.36 ± 0.70 × 1016 … …

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 130, 225106 (2021); doi: 10.1063/5.0068312 130, 225106-3

Published under an exclusive license by AIP Publishing

 22 January 2025 20:01:36

https://aip.scitation.org/journal/jap


in the same composition range. The error bar was obtained by
repeating the experiment multiple times and taking the standard
deviation around the average value. The main source of error
comes from small misalignments of the sample surface vis-à-vis the
diffracting surface. The concentration was verified using X-ray fluo-
rescence (XRF) based on the composition of polycrystalline alloys
prepared by quenching. Table I shows that the two methods gave
consistent results.

The samples were cut into a cuboid shape of approximate
dimensions 0.5 × 0.5 × 3 mm for transport measurements, with the
sample long dimension along the trigonal (z) axis. Resistivity and
Hall effect measurements were made using an AC bridge, Lake
Shore 370, in a Quantum Design PPMS system using the AC resis-
tivity/Hall puck, at temperatures from 300 to 2 K and in magnetic
fields of up to 7 T.

RESULTS AND DISCUSSION

The convention used here for galvanomagnetic transport mea-
surements of a resistivity labeled ρij(Bk) is that the first index (i) is
that of the crystallographic direction of the current applied to the
sample, the second ( j) is the measured electric field, and the third
(k) is the direction of the applied magnetic field. Thus, ρzz(Bz) is
the longitudinal magnetoresistance along the trigonal axis, and
ρzx(By) is the transverse Hall effect in the bisectrix (y) magnetic
field. The temperature dependence of the zero-field trigonal resis-
tivity is shown in Fig. 2(a). The Hall resistivity ρzx(By) at low field
(−0.5 to 0.5 T) is shown in Fig. 2(b).

The magnetic-field dependence of the Hall resistivity ρzx(By)
is extremely non-linear due to the simultaneous presence of elec-
trons and holes.16 This electron/hole compensation makes it
impossible to derive the properties of the majority carrier from

Hall measurements when the field is along the trigonal direction.
However, in the low-field limit of ρzx(By), it is possible to derive
the carrier concentration and mobility of the carrier with the
highest mobility (here the carriers in the L-point bands) from the
equations in Ref. 17,

n ¼ limBy!0
eBy

ρzx(By)
,

μm ¼ limBy!0
ρzx(By)

ρzz(0)
,

(5)

where μm denotes the mobility. These values are shown as a func-
tion of temperature in Fig. 3(a). The mobility of all samples reaches
several million cm2/V s at 10 K, indicative of the excellent sample
quality. The electron concentration in the 5.3% sample and the
hole concentration in the 7.2% sample decrease steadily with
decreasing T and reach very low values at 10 K (shown in Table I).
Since there are about 6 × 1022 atoms/cm3 in Bi, a residual carrier
concentration of 3.2 × 1015 cm−3 in the semiconducting 7.2% alloy
indicates that the concentration of residual dopants in these alloys
is of the order of 5 × 10−8 atom fraction. With the most common
residual impurities in Bi being Pb and Sn, both acceptors,16 the
p-type nature of the 7.2% alloy can be attributed to impurities in
the starting materials. The mobility of the 7.2% sample below 30 K
decreases with decreasing temperature, indicating ionized impurity
scattering, which is also consistent with this hypothesis. The 7.2%
alloy is thus a semiconductor and, at a temperature above 20 K
where the charge carrier concentration becomes activated, is an
intrinsic semiconductor. In the presence of a magnetic field, it is
expected to become an ideal WSM, as did the samples in Ref. 2.

FIG. 2. Temperature dependence of (a) the resistivity at zero magnetic field. (b) The Hall resistivity at 10 K vs magnetic field (b).
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The other alloys are n-type. The 2.1%, 3.3%, and 4.1% alloys’
electron concentrations at 10 K are in the high-1016 cm−3 range
and temperature independent up to 20–30 K, which is an indica-
tion that they are semimetals in which the presence of the T-point
band determines the position of μ. This conclusion is again consis-
tent with the observation that their mobility shows no trace of
decrease with decreasing temperature, indicating that if ionized
impurities are present, their scattering effect is screened by free
electrons that do not arise from doping. The charge neutrality con-
dition in semimetals imposes that there are as many electrons as
holes within the density of acceptor impurities. Because all samples
were prepared from the same starting materials and using the same
synthesis procedure, we can assume that this density is of the order
of 3 × 1015 cm−3 as in the semiconducting 7.2% alloy. In the semi-
metals, the low-field Hall effect still mostly measures the concentra-
tions of electrons, reported in Table I, because the electron mobility
in the L-point conduction bands is much higher than that in the
T-point hole band in Bi,18 a situation that is reasonable to assume
that it extends to the semimetallic Bi1−xSbx alloys that have similar
band structures. The 5.3% sample represents an intermediate case.

The resistance and longitudinal magnetoresistance Rzz(Bz) of
the samples are reported in Fig. 4 at 2, 3, 5, 10, 15, and 20 K. The
2.1%, 3.3%, and 4.1% samples, which the Hall effect measurements
reveal to be semimetals with μ in the L-point valence band, clearly
show quantum oscillations at one single frequency, the SdH effect.
The background shows a NLMR, but this cannot be taken as being
a real physical magnetoresistance because Bi and its alloys are
extremely prone to displaying current jetting4 and only extraordi-
nary precautions2 can avoid this. The behavior of the 5.3% sample
is ambiguous, as either the period of oscillations, if they exist,
cannot be resolved in the fields available, or the sample reached the

extreme quantum limit (EQL) already at 2 T, as do the semicon-
ducting samples in Ref. 2, or the observed features in the MR are
due to current jetting. The 7.2% sample shows no oscillations at all.

After background subtraction, it is possible to Fourier
transform the oscillations’ frequency in 1/B and derive a frequency
F(x,T) at each concentration and temperature. The values for F(x,
T = 2 K) are reported in Table I. The corresponding values for
the Fermi surface cross section A(μ T) are also reported. In order
to establish that the observed oscillations arise from the L-point
electrons, and not the T-point holes, the following procedure
was developed. In Bi, the T-point hole bands are parabolic and
the Fermi surfaces are ellipsoids of revolution with an effective
mass along the trigonal axis mT,z = 0.67 me and masses in the
trigonal plane of mT,x =mT,y = 0.064 me (me is the free electron
mass).5 Assuming that the T-hole band masses remain the same in
Bi1−xSbx for x < 5%, it is thus possible to calculate the hole concen-
tration from the Fermi surface cross section. We obtain for the
2.1% sample p = 1.6 × 1017 cm−3, for the 3.3% sample
p = 1.2 × 1017 cm−3, and for the 4.1% sample p = 7.1 × 1016 cm−3

numbers that are clearly not compatible with the densities obtained
by the Hall measurements in Table I. The lack of correspondence
invalidates the hypothesis that the oscillations are due to T-point
holes and thus points to the oscillations being due to electrons at
the L point. The L-point bands change strongly from more para-
bolic to Dirac-like with increasing x so that assuming their con-
stancy with x is not an acceptable hypothesis.

It is now possible to plot the change of F(x,T) as a function of
temperature, which is done in Fig. 5. The theoretical prediction10

that dF(T)
dT , 0 in an alloy of composition such that the L-point

band has a Dirac dispersion, and not in trivial bands, is strikingly
confirmed by the experiment. The Sommerfeld correction to the

FIG. 3. Temperature dependence of (a) the mobility along the trigonal direction vs temperature. (b) The low-field electron (samples 2.1%–5.3%) or hole (7.2% sample)
concentration.
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SdH frequency is considered and shown in the Appendix to be
much smaller than the effect of the Dirac dispersion in the semi-
metallic Bi–Sb alloys. The error bars were determined from the full-
width half maximum of the Lorentzian fit made through the
Fourier transform of the data. It is also interesting to note that,
while the alloys with trivial bands see a decay of this bandwidth, so
much that the error bars on the 2.1% and 3.3% samples at 15 and
20 K are prohibitively large, the oscillations on the 4.1% sample
remain well resolved even at 20 K. We submit that this experiment
is another experimental proof of the validity of the theory in
Ref. 10 and may even be somewhat more systematic than the proof
offered there because the authors in Ref. 10 had to compare data
on completely different systems (Cd3As2, LaRhIn5, and Bi2O2Se),
whereas here, we show the evolution of dF(T)

dT within one system.

CONCLUSIONS

We experimentally show how the temperature dependence of
the frequency of quantum oscillations can be used as a diagnostic
tool for the Dirac nature of bands. The uncertainty in composition
x of Bi1−xSbx alloys is of the order of 1%; this makes it difficult to
establish from the literature exactly at which composition xc the
bands are Dirac-like, even if the literature reports a value around
5 ± 1 at. %. Therefore, in a systematic study of the thermal chiral
anomaly as a function of x, it is necessary to establish xc experi-
mentally. We prove here that the method of checking for dF(T)

dT , 0
is practical and functional.
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APPENDIX: THE SOMMERFELD CORRECTION IN
SEMIMETALS

The Sommerfeld correction to the SdH frequency quantifies
the effect of the shift in the chemical potential of the sample with
temperature on the SdH frequency F(T). In semimetals, unlike in
metals or degenerately doped semiconductors, the chemical poten-
tial μ is set by the local charge neutrality condition that requires
that the density of electrons, n, equals the density of holes, p.
Expressing the charge carrier densities as a function of integrals
over energy of the density of states (De and Dh for electrons and
holes, respectively), assuming that the bands are parabolic with
density of states mass m*d,e for electrons and m*d,h for holes, and
integrating by parts, we have19

n(T) ¼
ð1
0

De(E)f0(E)dE ¼ D0,e

ð1
0

� @f0
@E

� �
μ¼μe

E3/2dE,

p(T) ¼
ð1
0

Dh(E)f0(E)dE ¼ D0,h

ð1
0

� @f0
@E

� �
μ¼μh

E3/2dE,

D0,e ¼ 2
ffiffiffi
2

p

3

(m*
d,e)

3/2

π2�h3
; D0,h ¼ 2

ffiffiffi
2

p

3

(m*
d,h)

3/2

π2�h3
,

(A1)

where the integrals are taken from the band extrema to infinity and
the electron and hole chemical potential and μe and μh are defined
with respect to those band extrema. The latter condition imposes
that their sum equal the band overlap Eo of the semimetal at each
temperature,

μe(T)þ μh(T) ¼ Eo: (A2)

Using the Sommerfeld–Bethe expansion of the integrals, the
charge neutrality condition n(T) ¼ p(T) becomes19

Do,e(μe(T))
3/2 1þ π2

8
kBT
μe(T)

� �2
 !

¼ Do,h(μh(T))
3/2 1þ π2

8
kBT
μh(T)

� �2
 !

: (A3)

The roots of the system of Eqs. (A2) and (A3) can be esti-
mated numerically given that the Fermi energies are known20 for

elemental Bi to be μe (T = 0 K) = 27.2 meV and μh
(T = 0 K) = 10.8 meV and thus, Eo = 38 meV and the ratio Do,e/Do,h

= 0.25. The result is that μe (T = 20 K) = 27.34 meV and μh
(T = 20 K) = 10.66 meV, less than 2% change from the T = 0 K
values. F(T) and the Fermi surface cross sections are proportional
to the chemical potential; therefore, the Sommerfeld correction is

FIG. 6. Raw traces of Rzz(Bz) in bismuth showing the Shubnikov–de Haas
oscillations.

FIG. 7. Temperature dependence of the Shubnikov–de Haas frequency for
bismuth.
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thus expected to be of the order of a few percent and smaller than
the effect of the Dirac bands.

To verify this conclusion experimentally, temperature-
dependent Shubnikov–de Haas data were acquired on a single
crystal of elemental Bi with the field oriented along the trigonal
axis (Fig. 6). These oscillations are due to holes in the parabolic
valence band at the T-point of the Brillouin zone. The same data
treatment was given; these data were as the ones on the Bi–Sb
alloys, and the SdH frequency is given as a function of temperature
in Fig. 7. No variation of the frequency can be resolved within the
accuracy of the measurement, confirming that the Sommerfeld cor-
rection is very small.
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