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Large enhancement of thermopower at low magnetic field in compensated semimetals
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The thermoelectric properties of conductors with low electron density can be altered significantly by an applied
magnetic field. For example, recent work has shown that Dirac and Weyl semimetals with a single pocket of
carriers can exhibit a large enhancement of thermopower when subjected to a sufficiently large field that the
system reaches the extreme quantum limit, in which only a single Landau level is occupied. Here we study
the magnetothermoelectric properties of compensated semimetals, for which pockets of electron- and hole-type
carriers coexist at the Fermi level. We show that, when the compensation is nearly complete, such systems
exhibit a huge enhancement of thermopower starting at a much smaller magnetic field, such that ωcτ > 1, and
the stringent conditions associated with the extreme quantum limit are not necessary. We discuss our results in
light of recent measurements on the compensated Weyl semimetal tantalum phosphide, in which an enormous
magnetothermoelectric effect was observed. We also calculate the Nernst coefficient of compensated semimetals,
and show that it exhibits a maximum value with increasing magnetic field that is much larger than in the single-
band case. In the dissipationless limit, where the Hall angle is large, the thermoelectric response can be described
in terms of quantum Hall edge states, and we use this description to generalize previous results to the multiband
case.
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I. INTRODUCTION

The thermoelectric effect is the generation of an electrical
voltage difference �V from a temperature difference �T
applied across a material. The thermoelectric effect has been
an important topic in physics for over a hundred years since it
allows one to convert waste heat into useful electrical power
[1,2]. The magnitude of the thermoelectric effect is quantified
by the thermopower, or Seebeck coefficient, which can be
defined as Sxx = −�V/(�T ), where both �V and �T are
both measured along the same direction x and in conditions
where no current is flowing. Alternatively, one can define the
thermopower (via an Onsager relation [3]) in terms of the
heat current JQx produced by a given electrical current Jex in
situations where the temperature T is uniform. Specifically,

Sxx = 1

T

JQx
Jex

. (1)

Throughout this paper, we generally describe the ther-
mopower in terms of this latter definition.

In a single-band conductor at low temperature, the Seebeck
coefficient is typically of order (kB/e) × kBT/εF , where kB
is Boltzmann’s constant, −e is the electron charge, and εF is
the Fermi energy (defined relative to the bottom of the band).
Heuristically, one can think that this small factor kBT/εF
arises because all electrons in the Fermi sea participate in car-
rying electric current, while only a small fraction of thermally
excited electrons having energies within ∼kBT of the Fermi
energy carry heat. For this reason, large Seebeck coefficient
typically arises only in systems with small Fermi energy, such
as doped semiconductors. Unfortunately, low-energy states

in semiconductors are prone to localization, which presents
a problem for efforts to achieve effective thermoelectrics.1

The recently discovered three-dimensional Dirac and Weyl
semimetals (see, e.g., Refs. [6,7] for reviews) therefore offer
significant promise as thermoelectrics (see, e.g., Refs. [8–11]
and [12] for a review), since they offer the combination of low
Fermi energy, high electrical mobility [13,14], and a gapless
electron spectrum that precludes the possibility of localization
[15–17].

A recent series of papers has shown that the thermopower
of a Dirac or Weyl semimetal grows sharply when it is sub-
jected to a sufficiently strong magnetic field that the system
reaches the extreme quantum limit (EQL), in which only
one Landau level is occupied [18–20]. Achieving the EQL
typically requires a relatively large magnetic field, of order
10 T × (ne [1017 cm−3])2/3, where ne is the three-dimensional
concentration of electrons. A variety of experiments, however,
have demonstrated a large enhancement of thermopower be-
ginning at much smaller magnetic field. For example, a recent
experiment in the Weyl semimetal tantalum phosphide (TaP)
exhibits an enhancement of Sxx by more than two orders of
magnitude, starting at a magnetic field of≈0.1 T, even though
the carrier concentration is of order 1019 cm−3 [21]. An older
experiment in elemental bismuth (a conventional semimetal)

1Insulators and lightly doped semiconductors may in fact have
relatively large thermopower, proportional to the activation energy
divided by kBT [4,5]. But the exponentially small electrical conduc-
tivity in the insulating state typically precludes them from providing
efficient power conversion.
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FIG. 1. An illustration of the band structure of a compensated
Dirac or Weyl semimetal. The band structure has two valleys, which
we refer to as the electron valley (blue) and the hole valley (red), with
their respective Dirac points offset in energy such that the chemical
potential μ is in the conduction band of the electron valley and the
valence band of the hole valley. Shaded areas represent occupied
states.

demonstrated a similarly huge enhancement of thermopower
beginning at low fields [22]. In both cases, the thermopower
reaches values in excess of 1000 μV/K at cryogenic tem-
peratures, much larger than the naive scale kB/e ≈ 86 μV/K.
Even more surprisingly, these experiments are in almost com-
pletely compensated systems, for which pockets of electron-
(e−) and hole- (h+) type carriers coexist at the Fermi level (as
illustrated in Fig. 1) and the corresponding concentrations ne
and nh of electrons and holes are nearly equal in magnitude.
Typically, in such systems the electron and hole contributions
nearly cancel in thermopower (unless the two bands have
very different mobility [23]), bringing the value of Sxx to a
small value that is proportional to (ne − nh)/(ne + nh). These
experimental results suggest that there is a mechanism for
enhancement of the thermopower by magnetic field that is
specific to compensated semimetals and does not require the
extreme quantum limit. Throughout this paper we neglect the
effects of phonon drag, which generally serve to increase the
thermopower [24–26].

In this paper, we elucidate this mechanism by calculating
the Seebeck and Nernst coefficients of compensated semimet-
als in a magnetic field. The key idea is that, when the field
is large enough that ωcτ � 1, where ωc is the cyclotron fre-
quency and τ is the transport scattering time, both electrons
and holes can contribute additively to the heat current JQx
via their motion through the �E × �B drift. On the other hand,
the longitudinal conductivity σxx is strongly reduced by the
magnetic field, so that the electric current Jex is reduced for
a given electric field strength. In this way there is a sharp
increase in Sxx = JQx /(T Jex ) once the field is large enough that
ωcτ � 1, even though such fields correspond to small Hall
angle and are well below the EQL. Indeed, this enhancement
mechanism relies on achieving simultaneously large ωcτ and
small Hall angle θH = arctan (σxy/σxx ) (where σxy is the Hall

conductivity). This set of conditions is generally not possible
in single-band systems. When both conditions are present,
however, the thermopower grows as B2, where B is the mag-
netic field strength. This B2 enhancement of thermopower is
generic for all semimetals with nearly complete compensa-
tion, |ne − nh| � ne + nh. In this paper we calculate the form
of Sxx(B) explicitly for both Dirac and Weyl semimetals and
for conventional semimetals with parabolic band dispersion.

The Nernst coefficient Sxy, which describes the off-
diagonal thermoelectric response [27–29], is also strongly
enhanced by the magnetic field. As we show below, in the
regime of ωcτ � 1 and σxy � σxx mentioned above, Sxy
grows linearly with B and achieves a maximum value propor-
tional to (ne + nh)/|ne − nh|.

The remainder of this paper is organized as follows. Sec-
tion II gives a semiquantitative derivation of our main result,
which is the B2 enhancement of thermopower. Section III
outlines our calculation method using two complementary ap-
proaches: a semiclassical description based on the Boltzmann
equation that is valid outside the EQL, and a calculation based
on quantum Hall edge states that is valid for all ωcτ � 1.
Sections IV and V present quantitative results for the Seebeck
and Nernst coefficients for compensated Weyl semimetals and
compensated semiconductors, respectively. In each of these
sections we consider the full range of magnetic field regimes,
from arbitrarily small values to deep in the extreme quantum
limit. We conclude in Sec. VI with a summary and discussion.

II. SEMIQUANTITATIVE DISCUSSION

Before giving an exact derivation of the thermopower as a
function of B, we first present a semiquantitative derivation of
the main result in this paper, namely, the large enhancement of
Sxx by magnetic field at ωcτ � 1. This section includes both a
general discussion of different regimes of magnetic field and a
conceptual, semiquantitative derivation of Sxx in each regime
outside the EQL.

A. Regimes of magnetic field

In usual conductors with a single band and large Fermi en-
ergy εF , the two relevant magnetic field regimes for describing
transport are ωcτ � 1 and ωcτ � 1. Here ωc is the cyclotron
frequency of electrons at the Fermi energy, which in Dirac and
Weyl semimetals increases with Fermi energy. We define the
field scale B1 such that at ωcτ = 1 at B = B1, which means
that B1 = m/(eτ ) in the usual case of parabolic bands with
mass m and B1 = εF/(eτv2

F ) in the case of Dirac and Weyl
semimetals with Fermi velocity vF . For simplicity, we assume
throughout this paper that τ is equal for both electron and hole
bands.

In single-band systems B1 is also the magnetic field scale
at which σxy becomes comparable to σxx, so that B � B1

corresponds to large Hall angle θH . In nearly compensated
bands, however, the Hall conductivity remains small at B1

due to near cancellation of electron and hole contributions, so
that arctan θH (B = B1) ≈ (ne − nh)/(ne + nh). The field scale
associated with large Hall angle σxy � σxx is therefore signif-
icantly larger than B1. We denote the field at which σxy = σxx

by BH ∼ B1 × ne/(�n), so that large Hall angle corresponds
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to B � BH . Here �n = ne − nh denotes the difference be-
tween electron and hole concentrations. Throughout this paper
we focus on the case where �n � ne, so that (�n)/ne is a
small parameter.

Whenever the magnetic field is low enough that the Landau
level spacing h̄ωc is much smaller than the Fermi energy
εF , one can describe thermoelectric transport in terms of
a quasiclassical picture in which the Landau quantization
of electron states is relatively unimportant. In the opposite
limit of h̄ωc � εF , however, nearly all electrons reside in
the lowest Landau level of transverse motion, and trans-
port must be described in terms of Landau levels. This
extreme quantum limit constitutes a different field scale BEQL,
which equals 21/3π4/3n2/3e h̄/(eg2/3) for Weyl semimetal and
π4/3n2/3e h̄/(21/3eg2/3) for semiconductor, such that at B >

BEQL all electrons reside in the lowest Landau level at zero
temperature. We use 2g to represent the band degeneracy of
each carrier type (including spin degeneracy); for instance,
in Dirac and Weyl semimetals, 2g represents the number of
electron- or hole-type Dirac nodes multiplied by the spin de-
generacy. Throughout this paper we assume that BEQL � BH ,
which corresponds to ne/(�n) � n1/3e τvF for compensated
semimetals and ne/(�n) � h̄n2/3e τ/m for parabolic bands, so
that Landau quantization effects are relatively unimportant
at all but the highest field scales. In Sec. VI we comment
briefly on the case where the compensation is so complete that
BEQL � BH .

B. Mechanism for large enhancement of thermopower

In order to elucidate the mechanism for large field enhance-
ment of the thermopower, we now give a semiquantitative
derivation of the Seebeck coefficient Sxx in the three semiclas-
sical regimes of magnetic field B � B1, B1 � B � BH , and
B � BH . Discussion of the extreme quantum limit is deferred
until the subsequent sections. As mentioned in Sec. I, the See-
beck coefficient can be understood by considering situations
in which the temperature is spatially uniform while an electric
current flows along the x direction, so that Sxx is described by
Eq. (2).

For the sake of comparison, we begin by considering the
usual case of a single band of carriers with concentration ne
(which, for concreteness, we take to be electron type). As
mentioned in the Introduction, in such cases the thermopower
at low magnetic field is of order Sxx ∼ (kB/e) × kBT/εF ,
where εF is the Fermi energy. One can derive this expression
in a semiquantitative way by noting that the thermal energy
densityU at temperature T is of orderU ∼ k2BT

2ν, where ν is
the density of states and is typically of order ν ∼ ne/εF . The
heat current density JQx ∼ Uvd , where vd is the carrier drift
velocity in an applied electric field. Meanwhile, the electric
current density Jex ∼ −enevd . Combining these expressions
gives a thermopower

Sxx ∼ −kB
e

kBT

εF
. (2)

A magnetic field B � BEQL does not strongly change this
result since the heat current carried by electrons in a single
band at low temperature is always proportional to T 2 times the
electric current, and the field produces only weak modulations
of the density of states.

(a)

(b)

(c)

FIG. 2. An illustration of the semiclassical motion of electrons
and holes in different regimes of magnetic field. (a) At B � B1,
the magnetic field is negligible and electrons (blue) and holes (red)
have opposite drift velocity under the applied electric field, leading
to a near cancellation in the heat current and a small thermopower.
(b) When B1 � B � BH , the Hall angle θH remains small, but the
heat current is dominated by the x component of the �E × �B drift,
which allows electron and hole carriers to contribute additively. The
star symbols denote impurity scattering events, which limit the elec-
tric current. (c) When B � BH , the Hall angle θH is nearly 90◦ and
the �E × �B drift velocity is nearly aligned with the current direction
x, so that it determines both the heat current and electric current.

In a strongly compensated system, however, the situation is
very different. In the absence of a magnetic field, electrons and
holes move in opposite directions under an applied electric
field, and therefore they carry heat in opposite directions even
as they carry current in the same direction [see Fig. 2(a)].
That is, the drift velocity vd is opposite for electrons and
holes, so that the electric current is Jex ∼ −e(ne + nh)vd . The
heat current, on the other hand, is small in magnitude: JQx ∼
k2BT

2�n/εF . The resulting Seebeck coefficient

Sxx ∼ −kB
e

kBT

εF

�n

ne
, B � B1 (3)

is therefore suppressed by a factor (�n)/ne relative to the
single-band case. This result remains valid for all B � B1, for
which ωcτ � 1.

Now consider the regime of magnetic field B1 � B � BH .
At such fields the Hall conductivity remains small, σxy �
σxx, so that the electric current flows nearly parallel to the
applied electric field. The longitudinal conductivity σxx, how-
ever, declines in this regime as 1/B2. In particular, if we
define the electrical mobility μe, then the Drude formula
gives σxx = e(ne + nh)μe/[1 + (μeB)2] ∼ ene/(μeB2). (For
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FIG. 3. A schematic plot (in double-logarithmic scale) summa-
rizing the three regimes of magnetic field for the Seebeck coefficient
in nearly compensated semimetals outside the EQL.

Dirac and Weyl semimetals, the electric mobility μe =
eτεF/v2

F , while for the semiconductor case μe = eτ/m.)
Thus, if the electric field has a component Ex in the x direction,
then the electric current Jex ∼ eneEx/μeB2. The corresponding
heat current can be found by considering that when the electric
current flows along the x direction, there is a y component
of electric field Ey = −σxyEx/σxx ∼ −μeBEx�n/ne. This y
component implies that the �E × �B drift velocity has a com-
ponent in the x direction, which has the same sign for both
electrons and holes [see Fig. 2(b)]. Multiplying the magnitude
of this x component by the internal energy density gives a
heat current JQx ∼ −k2BT

2μeEx�n/εF . Combining these two
results, the Seebeck coefficient is

Sxx ∼ −kB
e

kBT

εF

�n

ne
μ2
eB

2, B1 � B � BH . (4)

This relation, Sxx ∝ [(�n)/ne]B2, is generic for compensated
semimetals, regardless of the details of the band dispersion,
and is one of the primary results of this paper.

When the magnetic field is further increased to the point
that B � BH , the Hall angle approaches 90◦, and the �E × �B
drift velocity becomes nearly aligned with the current direc-
tion x [see Fig. 2(c)]. In this limit, the flow of current is
nearly perpendicular to the electric field direction, and there-
fore it can be described as a dissipationless process, so that
the Seebeck coefficient is described by the simple relation
discussed in Refs. [18,30]: Sxx = (total entropy)/(net charge).
Since, as discussed above, the entropy is of order k2BT ne/εF ,
the Seebeck coefficient is

Sxx ∼ −kB
e

kBT

εF

ne
�n

, B � BH . (5)

Note that this “saturation” value of the Seebeck coefficient
represents a large enhancement over the value associated with
a single-band system [Eq. (2)], by a factor ne/(�n). These
three regimes are summarized in Fig. 3.

It should be emphasized that our arguments in this sec-
tion have focused on the semiclassical regime B � BEQL, in
which many Landau levels are occupied. When B � BEQL this
semiclassical description fails, and it should be replaced by
a calculation in terms of quantum Hall-type edge states; we
discuss such a calculation in Sec. III B.

One can also ask about the Nernst coefficient Sxy, which
is the off-diagonal component of the thermoelectric tensor

[defined as Sxy = (�V )y/(�T )x, or Sxy = JQy /(T Jex )]. Similar
semiquantitative arguments give

Sxy ∼kB
e

kBTμeB

εF
, B � BH (6)

Sxy ∼kB
e

kBT n2e
(�n)2μeBεF

, B � BH (7)

so that Sxy achieves a large maximum value proportional to
ne/(�n) at B ∼ BH .

III. ANALYTICAL DESCRIPTION

A. Semiclassical theory

At low temperature kBT � εF , the thermoelectric tensor Ŝ
can be calculated by the Mott formula [3]

Ŝ = −π2

3

kB
e
kBT σ̂−1 d σ̂

dε

∣∣∣∣
εF

. (8)

Thus, the Seebeck and Nernst coefficients are completely
defined by the relationship between the conductivity tensor
σ̂ and the energy ε at zero temperature. In the semiclassical
regime B � BEQL, this relationship can be obtained from the
Boltzmann equation, which we briefly recapitulate here.

For the case with both electrons and holes, the total con-
ductivity is [3]

σ̂ = σ̂ e + σ̂ h, (9)

where σ̂ e and σ̂ h are the electron and hole conductivity ten-
sors, respectively, given by

σ̂ e,h(ε) = e2τ (ε)
∫

dk
4π3

δ[ε − ε(k)]ve,h(k)v̄e,h(k), (10)

with

v̄(k) =
∫ 0

−∞

dt

τ (ε)
et/τ (ε) v(k(t )) (11)

and v(k) denoting the group velocity v(k) = ∇kε(k). The
time evolution of the momentum is given by the semiclassical
equation of motion

h̄k̇ = ∓e v(k) × B. (12)

The dependence of the scattering time τ on the quasiparticle
energy ε depends in general on the scattering mechanism, and
can have a variety of different functional forms. For the sake
of our discussion in this paper, we assume that τ is a constant
and independent of ε. If one includes an energy dependence
for τ , then certain numerical prefactors are modified in for-
mulas containing τ , but our primary results are unchanged.

With these assumptions, one can derive the conductivity
tensors as

σ̂ e(ε) = 1

3

e2νe(ε)v2
e (ε)τ

1 + ω2
cτ

2

(
1 ωcτ

−ωcτ 1

)
, (13)

σ̂ h(ε) = 1

3

e2νh(ε)v2
h (ε)τ

1 + ω2
cτ

2

(
1 −ωcτ

ωcτ 1

)
. (14)

Together with the Mott formula [Eq. (8)], Eqs. (13) and (14)
completely define the Seebeck and Nernst coefficients at tem-
peratures T � εF/kB.
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B. Dissipationless limit

When the magnetic field is large enough that σxy � σxx,
one can describe the thermopower in the dissipationless limit,
in which τ is effectively set to infinity. In this description,
all electrical and thermal current is carried by quantum Hall-
type edge states [31,32]. For nearly compensated systems,
the dissipationless limit requires B � BH , but it encompasses
both the limit where many Landau levels are occupied and the
extreme quantum limit B � BEQL.

The flow of electrical and thermal current is described by
the coupled transport equations [3](

Je

JQ

)
=

(
σ̂ −α̂

α̂T −κ̂

)(
E

∇T

)
, (15)

where κ̂ is the thermal conductivity tensor and the tensor α̂ is
related to the thermoelectric tensor Ŝ by Ŝ = σ̂−1α̂. (Here we
have written the transport coefficients in terms of intensive
quantities, rather than in terms of extensive differences in
voltage and temperature, as in the Introduction.) The Seebeck
coefficient is its diagonal term, which one can write as

Sxx = σxxαxx + σxyαxy

σ 2
xx + σ 2

xy

. (16)

In the dissipationless limit (τ → ∞), one has σxy � σxx and
αxyσxy � αxxσxx, so that the Seebeck coefficient is given sim-
ply by

Sxx = αxy

σxx
. (17)

Both σxy and αxy are well defined in the limit τ → ∞.
In compensated systems, σxy and αxy are given by the sum

of contributions from both electron valley and hole valleys.
The contribution from each valley can be calculated inde-
pendently. For concreteness, in the remainder of this section
we concentrate on the electron valley, briefly repeating the
derivation for the single-band case as presented in Ref. [19].
The hole valley is completely analogous.

We start by considering a Hall brick with length Lx, Ly, and
Lz, respectively. The magnetic field is assumed to be along the
z direction and the electric field is assumed to be along the x
direction. The Landau gauge is chosen, with vector potential
�A = (0,Bx, 0). It is safe to assume that each Landau level
is constant in energy in the bulk along the x direction and
increases sharply at the edge of the Hall brick. The contri-
bution of the electron valley to the electric current along the y
direction is

Iy = − e

Ly

∑
states

vynF (ε − μ), (18)

where nF is the Fermi-Dirac distribution andμ is the chemical
potential. Given that the electric field is small, the Fermi-Dirac
distribution can be expanded to first order in the potential
difference �Vx along the x direction. The nth Landau level
εn(ky, kz ) in the bulk is almost flat (independent of ky) and
gives little contribution to the current. Only the contribution
of edge states ky = ±Lx/2l2B needs to be included, where lB =√
h̄/(eB) is the magnetic length. The corresponding electric

current

Iy = e2Lz�Vx
2π h̄

∫ ∞

−∞

dkz
2π

[∑
εn>0

NnnF [εn(kz ) − μ]

−
∑
εn<0

Nn{1 − nF [εn(kz ) − μ]}
]
, (19)

where Nn is the degeneracy of the nth Landau level at a given
momentum kz. For a given ne, the chemical potentialμ is fixed
by the condition∫ ∞

0
dε

eB

2π h̄

∑
kz,n

Nn δ[ε − εn(kz )]nF [ε − μ]

+
∫ 0

∞
dε

eB

2π h̄

∑
kz,n

Nnδ[ε − εn(kz )](1 − nF [ε − μ]) = ne.

(20)

The resulting Hall conductivity of the electron valley

σ e
xy = −ene

B
. (21)

The heat current in the electron valley is obtained in a
similar way:

IQy = − e

h̄

�Vxl2B
LxLy

∑
kz,ky,n

Nnky [εn(ky, kz ) − μ]

× ∂εn(ky, kz )

∂ky

∂

∂ε
nF [εn(ky, kz ) − μ]. (22)

The thermoelectric Hall conductivity is defined by

αe
xy = IQy

T�VxLy

= e

2π h̄Lz

∑
n,kz

Nns

(
εn(kz ) − μ

kBT

)
. (23)

The function s(x) represents the average entropy per electron
for a given quantum state

s(x) = −kB{nF (x) ln nF (x) + [1 − nF (x)] ln [1 − nF (x)]}.
(24)

The reader is referred to Ref. [19] for a more detailed presen-
tation.

As mentioned before, the discussion containing Eqs. (18)–
(24) focused on the electron valley. But this calculation can
be repeated to get the corresponding contributions σ h

xy and αh
xy

for the hole valley. The total Seebeck coefficient is given by

Sxx = αe
xy + αh

xy

σ e
xy + σ h

xy

. (25)

IV. COMPENSATED DIRAC AND WEYL SEMIMETAL

We now present results for the Seebeck and Nernst coeffi-
cients for compensated Dirac and Weyl semimetals, using the
two complementary calculations outlined in the previous sub-
sections. As mentioned above, in Dirac and Weyl semimetals
the cyclotron frequency ωc = eBv2

F/ε depends on the energy
ε relative to the Dirac point. Since the Mott formula is defined
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in terms of the zero-temperature conductivity, we need only
consider the cyclotron frequency at the Fermi energy ε = εF .
In the remainder of this section we use ωc to denote this value.

Plugging Eqs. (13) and (14) into the Mott formula (8) gives
for the Seebeck coefficient

Sxx ≈ − π4/3g1/3

37/3
kB
e

kBT�n

h̄vFn
4/3
e

, B � B1 (26)

Sxx ≈ − g

6

kB
e

kBT�ne2B2τ 2vF

n2e h̄
3 , B1 � B � BH (27)

Sxx ≈ − 2π4/3g1/3

31/3
kB
e

kBT n2/3e

h̄vF�n
, BH � B � BEQL (28)

where the band degeneracy g is equal to the number of Dirac
nodes. Notice that these three regimes are equivalent to the
ones discussed Sec. II.

In Fig. 4 we plot the Seebeck coefficient obtained using
the Mott formula, together with the asymptotic expressions of
Eqs. (26)–(28). We use dimensionless units for the values of
B and Sxx such that the curve Sxx(B) is parametrized by only
three dimensionless constants: the degeneracy g, the scattering
time τ in units of 1/(vFn1/3e ) (which is of the order of the
Fermi time), and the relative compensation �n/ne.

When the magnetic field is sufficiently large that σxy �
σxx, which encompasses both the regime of Eq. (28) and B �
BEQL, the current flow becomes nearly dissipationless, and one
can calculate the thermoelectric tensor using the picture of
dissipationless edge states (Sec. III B). The Landau levels in
the bulk of a Dirac or Weyl semimetal are given by [33]

εn(kz ) = vF sign(n)
√
h̄2k2z + 2eh̄B|n|, (29)

where n is the Landau level index and h̄kz is the momentum in
the field direction. Inserting this spectrum into Eqs. (23) and
(25) gives for the Seebeck coefficient

Sxx ≈ − 2π4/3g1/3

31/3
kB
e

kBT n2/3e

�nvF h̄
, BH � B � BEQL (30)

Sxx ≈ − g

3

kB
e

kBTeB

h̄2vF�n
, B � BEQL. (31)

Notice that Eq. (30) agrees exactly with the semiclassical
result in Eq. (28). Equation (31) indicates a linear-in-B en-
hancement of thermopower in the EQL, as first derived in
Ref. [18]. Note, however, that the value of Sxx in the EQL
is enhanced relative to the single-band case by a large factor
∼ne/(�n).

In Fig. 5, the red curve shows the Seebeck coefficient
calculated via quantum Hall edge states, and the blue curve
shows the semiclassical calculation. The two results match in
the regime of magnetic field BH � B � BEQL.

The Mott formula also allows us to calculate the Nernst
coefficient Sxy in the semiclassical limit. This calculation gives

Sxy ≈ 4π2/3g2/3

35/3
kB
e

kBTeBτ

h̄2n2/3e

, B � B1 (32)

Sxy ≈ π2/3g2/3

32/3
kB
e

kBTeBτ

h̄2n2/3e

, B1 � B � BH (33)

Sxy ≈ 4π2 kB
e

kBT n2e
(�n)2eBv2

F τ
, B � BH . (34)

FIG. 4. The Seebeck coefficient in a nearly compensated Dirac
or Weyl semimetal as a function of B, plotted in dimensionless
units and in double-logarithmic scale. The magnetic field B � BEQL

everywhere in this plot. The scattering time and degree of compen-
sation are such that τ = 8000v−1

F n−1/3
e and �n = 0.01ne. The band

degeneracy g = 6. Each regime of magnetic field is labeled by the
corresponding asymptotic equation that describes it (dashed lines).
Compare the three regimes derived semiquantitatively in Sec. II.

These formulas imply that Sxy grows linearly with magnetic
field at B � BH , achieving a maximum value Sxy ∼ (kB/e) ×
(kBT/εF ) × ne/(�n) at B ∼ BH , and then declines again as
1/B when B � BH . These behaviors are shown in Fig. 6. At
magnetic fields B � BEQL, the value of the Nernst coefficient
depends on the details of the relevant scattering processes, and
it is not well defined in the dissipationless limit. We therefore
leave analysis of Sxy in the EQL to a later work.

The results in this section can be compared to a recent
experimental work [21], which demonstrates an enormous
enhancement of Seebeck and Nernst coefficients as a function
of magnetic field in the compensated Weyl semimetal
TaP. TaP has 12 pairs of Weyl nodes, 4 of which are at
energies below the chemical potential (electron type) and 8
of which are above (hole type). In order to make a rough,
but quantitative, comparison to the experiment, we use the
parameters reported in Ref. [21] for the electron density

FIG. 5. The Seebeck coefficient of a nearly completely com-
pensated Dirac or Weyl semimetal as a function of magnetic field,
showing both the semiclassical (blue) and dissipationless limit (red)
calculations. The material parameters are taken to be the same as in
Fig. 4. The two asymptotic results applicable to the dissipationless
limit are shown as dashed lines.
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FIG. 6. The Nernst coefficient Sxy of a nearly completely com-
pensated Dirac or Weyl semimetal as a function of magnetic field.
The material parameters are taken to be the same as in Figs. 4
and 5. The Nernst coefficient achieves a peak value of order Sxy ∼
(kB/e)(kBT/εF ) × ne/(�n) when B ∼ BH .

ne = 2.4 × 1019 cm−3, hole density nh = 2.35 × 1019 cm−3,
and transport scattering time τ = 9.76 × 10−12 s. Since our
results depend only weakly on the band degeneracy, we use
g = 6 for both electron- and hole-type pockets. For the Fermi
velocity, we use geometric of the three orthogonal Fermi
velocities reported in Ref. [34]. The resulting calculation
is compared to experimental data in Fig. 7, using data
corresponding to T = 50 K. There are no fitting parameters
in the calculation.

As can be seen in Fig. 7, our calculation captures both the
order of magnitude of the experimental result and the quali-
tative trend of strongly increasing Sxx and Sxy. However, the
agreement is not very strong, particularly at small magnetic
field. This deviation may arise in part from the nonlinearity of
the dispersion relation ε(�k) in TaP, for which the dispersion is
only “Weyl type” at energies very close to the Weyl points. A
more accurate calculation that is specific to TaP is beyond the
scope of this paper.

V. COMPENSATED SEMICONDUCTORS

So far, we have focused primarily on compensated Dirac
and Weyl semimetals, but the general mechanism for field
enhancement of thermopower outlined in Sec. II is generic
to any compensated system. In order to demonstrate this gen-
erality, in this section we consider the case of a compensated
semiconductor. As an example, we examine the simple sit-
uation in which two parabolic bands with identical effective
mass m, one electron type and one hole type, intersect the
chemical potential with nearly identical Fermi energy. In this
case the cyclotron frequency ωc = eB/m is a constant that
does not depend on energy.

Using the Mott formula (8), we calculate the Seebeck co-
efficient in each of the three semiclassical field regimes as

Sxx ≈ − π2/3g2/3

2 × 35/3
kB
e

kBTm�n

h̄2n5/3e

, B � B1 (35)

Sxx ≈ − π2/3g2/3

2 × 32/3
kB
e

kBT�ne2τ 2B2

mh̄2n5/3e

, B1 � B � BH (36)

Sxx ≈ − 2π2/3g2/3

32/3
kB
e

kBTmn1/3e

h̄2�n
, BH � B � BEQL. (37)
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FIG. 7. A comparison between the Seebeck (a) and Nernst
(b) coefficients calculated in this work (blue lines) and the values
reported in Ref. [21] for the compensated Weyl semimetal TaP
(brown points). The material parameters used for the calculation are
taken from Refs. [21,34], and there are no fitting parameters. The
data correspond to a temperature T = 50 K. The lack of quantitative
agreement, particularly at small magnetic field, may arise in part
from nonlinearity of the dispersion relation in TaP.

Here, g is the degeneracy of each band (including spin). These
results are equivalent to the three regimes outlined in Sec. II.
A full semiclassical calculation is presented in Fig. 8, along

FIG. 8. The Seebeck coefficient Sxx for a nearly completely com-
pensated semiconductor as a function of magnetic field, plotted
in double-logarithmic scale. The material parameters used for this
calculation are g = 1, τ = 1600m/(h̄n2/3e ), and �n = 0.01ne. The
range of field values in this plot correspond to B < BEQL, at which
the semiclassical description is valid. Compare the three regimes
described in Sec. II.
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with the relevant asymptotic expressions. The units of our
calculation are such that the curve Sxx(B) depends only on
three dimensionless material parameters: the degeneracy g,
the transport scattering time τ in units of m/(h̄n2/3e ), and the
degree of compensation (�n)/ne. These three semiclassical
regimes are plotted in Fig. 8.

In the dissipationless limit B � BH , the Seebeck coeffi-
cient can be described in terms of quantum Hall edge states,
as outlined in Sec. III B. The Landau levels for Schrödinger
particles satisfy

εn(kz ) = h̄2k2z
2m

+ h̄ωc

(
n + 1

2

)
, (38)

where n is the Landau level index and h̄kz is the momentum in
the magnetic field direction. Using Eqs. (17), (21), and (23),
one can derive the Seebeck coefficient as

Sxx ≈ − 2π2/3g2/3

32/3
kB
e

kBTmn1/3e

h̄2�n
, BH � B � BEQL (39)

Sxx ≈ − 2g2

3π2

kB
e

e2kBTmB2

h̄2ne�n
, BEQL � B � BT (40)

Sxx ≈ − 2
kB
e

ne
�n

ln (B/BT ), B � BT . (41)

Here, we have defined a new field scale BT =√
2π h̄2ne/(ge

√
mkBT ), such that at B � BT the Fermi

energy (relative to the bottom of the conduction band)
becomes smaller than kBT .

Equation (39) is identical to the semiclassical result in
Eq. (37), and corresponds to the limit where many Landau
levels are occupied. Once the EQL is reached, and only a
single Landau level is occupied, the Fermi energy (relative
to the minimum energy h̄ωc/2 of the conduction band) begins
to fall with increased field as 1/B2, which is a consequence of
the strongly enhanced density of states in the lowest Landau
level [19,35]. The B2 enhancement of the thermopower at
BEQL � B � BT reflects this falling Fermi energy, and the
associated rise of the fraction of thermally excited electrons.
However, when the Fermi energy falls so far that it becomes
much smaller than kBT , the chemical potential falls into the
band gap and the electron energies are well described by a
classical Boltzmann distribution. The electron entropy, which
determines the thermopower in the dissipationless limit, is
therefore given by an analog of the Sackur-Tetrode equation
for the entropy of an ideal gas, leading to the logarithmic
dependence in Eq. (41) [19]. This logarithmic regime B � BT

does not exist in the Dirac or Weyl case because there is no
band gap and therefore no regime in which the electrons obey
classical, Boltzmann statistics.

In Fig. 9 we plot the Seebeck coefficient as a function of
magnetic field across the full range of different regimes of
magnetic field. In addition to the three semiclassical regimes
given by Eqs. (35)–(37), the three regimes corresponding to
the dissipationless limit, Eqs. (39)–(41), can also be seen.
The semiclassical (blue curve) and dissipationless (red curve)
calculations coincide in the interval BH � B � BEQL.

FIG. 9. The Seebeck coefficient Sxx for a nearly completely com-
pensated semiconductor as a function of magnetic field B, including
all regimes of B. The material parameters are the same as in Fig. 8.
The temperature is chosen such that T = 0.1h̄2n2/3e /(mkB ); in the
units of our plot this choice affects only the largest field regime B �
BT . The blue curve represents the semiclassical result calculated
by Mott formula. The red curve corresponds to the dissipationless
limit. The onset of the EQL is marked by a vertical dashed line, and
dashed lines labeled by equations describe different regimes in the
dissipationless limit.

The Nernst coefficient can also be derived from the Mott
formula in the semiclassical regime. This derivation gives

Sxy ≈π2/3g2/3

32/3
kB
e

kBTeτB

h̄2n2/3e

, B � BH (42)

Sxy ≈4π2/3g2/3

32/3
kB
e

kBTm2n4/3e

eh̄2τB(�n)2
, B � BH . (43)

As in the Dirac or Weyl case, the value of Sxy grows linearly
with B at B � BH and achieves a maximum of order Sxy ∼
(kB/e) × (kBT/εF ) × ne/(�n) at B ∼ BH . This behavior is
shown in Fig. 10.

VI. CONCLUSION

In this paper we have presented a generic result for strong
magnetic field enhancement of the thermopower in compen-
sated conductors. The large magnitude of thermopower in

FIG. 10. A plot of the Nernst coefficient Sxy for an almost com-
pletely compensated semiconductor. The material parameters are the
same as in Figs. 8 and 9.
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these systems is somewhat surprising since in the absence
of magnetic field compensated systems have very small ther-
mopower, owing to the near cancellation of the electron and
hole contributions. In a magnetic field, however, electrons
and holes have a component of their �E × �B drift motion that
allows them to contribute additively to the heat current (see
Sec. II), and this large heat current drives the thermopower up.

We emphasize that at sufficiently large magnetic field the
thermopower is enhanced not just above their small zero-field
value, but well above the value Sxx ∼ (kB/e) × (kBT/εF ) as-
sociated with single-band conductors. This field enhancement
begins as soon as the magnetic field becomes large enough
that ωcτ � 1, and it does not require the much more stringent
conditions associated with large Hall angle or the extreme
quantum limit, which are necessary in order to see magnetic
field enhancement of thermopower in the single-band case
[18,19].

Our primary result, which is the ∼B2 enhancement of
thermopower beginning at B > B1, requires the simultaneous
existence of two strong inequalities. The first is ωcτ � 1,
which enables strong �E × �B drift of carriers that enhances
the heat current JQx . The second condition is σxy � σxx, which
implies that the electrical resistance ρxx grows quadratically
with magnetic field and therefore the electrical current Jex is
reduced for a given applied voltage. These two conditions
cannot be achieved simultaneously in single-band systems,
and arise only because of the existence of a small parameter
(�n)/ne. While our analysis has focused on the simplified
case where both electron and hole bands have the same mo-
bility, the generic material requirement for the existence of a
regime Sxx ∝ B2 is

�n � (μene + μhnh)
min{μe, μh}

μeμh
, (44)

where μe and μh are the electron and hole mobilities,
respectively.

We have also calculated the behavior of the thermopower
within the EQL, using a picture based on quantum Hall edge
states. We find that Sxx behaves similarly to the results derived
in Refs. [18,19], except that it is enhanced by an overall factor
ne/(�n) that is very large when the degree of compensation is
nearly complete.

The Nernst coefficient also exhibits an enhancement with
increasing magnetic field, growing linearly with B and attain-
ing a large maximum value Sxy ∝ ne/(�n) at sufficiently large
fields that σxy is comparable to σxx.

We have not attempted to make a careful quantitative
description of any particular experiment in this paper, but
our results provide a potential explanation for the huge
magnetothermoelectric effect observed in Ref. [21] in the

compensated Weyl semimetal TaP. A calculation using no free
parameters provides an estimate for Sxx and Sxy that is consis-
tent both in trend and in order of magnitude with their results
(Fig. 7). Our results may also provide an explanation for older
experimental results on elemental bismuth [22], although a
careful analysis remains to be done.

Throughout this paper we have assumed that the EQL is
achieved only at relatively large magnetic fields BEQL � BH ,
so that the Hall angle is large throughout the EQL. In closing,
let us briefly comment on the opposite case of BEQL � BH , for
which �n is so small that σxy is still small compared to σxx at
the onset of the EQL. In this case the EQL does not coincide
with the “dissipationless limit,” and the thermopower in the
regime BEQL � B � BH must depend on the transport scat-
tering rate. Describing current flow in this regime is difficult
since one cannot use the naive Boltzmann description (which
is invalid inside the EQL) nor the description based on quan-
tum Hall edge states (which does not account for scattering).
If one nonetheless uses a naive Drude-type expression for the
conductivity tensor in the regime BEQL � B � BH , together
with the expression for αxy in the EQL [20], one arrives
at a result Sxx ∼ (kB/e) × (e3kBT vFτ 2�n)B3/(h̄4n8/3e ). This
result smoothly matches the semiclassical one [Eq. (27)] at
B ∼ BEQL, as well as the expression for large Hall angle within
the EQL [Eq. (31)] at B ∼ BH , so we suspect that it is broadly
correct. A more careful analysis remains to be done, however,
in order to understand this regime.

Finally, let us comment on the constraints imposed by
Onsager symmetry on the field dependence of the Seebeck and
Nernst coefficients. These symmetries demand that the value
of the Seebeck coefficient is independent of the sign of the
magnetic field (whether it points in the +z or −z direction),
while the Nernst coefficient changes sign when B is flipped.
These dependencies are apparent in our semiclassical calcula-
tions [Eqs. (26)–(28) and (35)–(37) for Sxx and Eqs. (32)–(34)
and (42), (43) for Sxy]. In the dissipationless limit, however,
one should be careful to note that the sign of the heat current
IQy carried by edge states depends on the field direction. Our
Eq. (22) assumes that B points in the +z direction; when
the magnetic field is flipped, the sign of Eq. (22) is inverted.
Inserting this sign correctly gives the invariance of Sxx with
field direction.
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