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A B S T R A C T

The Lieb-Schultz-Mattis (LSM) theorem and its generalizations are a class of powerful no-go
theorems that rule out any short-range-entangled (SRE) symmetric ground state irrespective
of the specific Hamiltonian, based only on certain microscopic inputs, such as symmetries
and particle filling numbers. In this work, we introduce and provide physical arguments for
a new class of LSM-type theorems, where any symmetry-allowed SRE ground state must be a
symmetry-protected topological (SPT) phase with robust gapless edge states, such as topological
insulators and superconductors. The key ingredient is to replace the lattice translation symmetry
in usual LSM theorems by the magnetic translation symmetry. These theorems provide new
insights into realistic models and experimental realizations of SPT phases in interacting bosons
and fermions.

1. Introduction

The Lieb-Schultz-Mattis (LSM) theorem [1] and its descendants [2–13] are powerful theorems that dictate long-distance low-
energy (infrared) properties of a lattice-translation-invariant system from its microscopic (ultraviolet) input, such as a global
𝑈 (1) charge/spin conservation symmetry and the filling number per unit cell (u.c.). Irrespective of the microscopic Hamiltonian,
remarkably, these generic ultraviolet inputs imply that a lattice-translation-invariant ground state at a non-integer filling is either
gapless (e.g. in metals), or spontaneous breaks the 𝑈 (1) symmetry (e.g. in superconductors), or develops intrinsic topological
orders [14] (e.g. in fractional quantum Hall states). In all cases, the system forbids a short-range-entangled (SRE) ground state [15]
that preserves both global and lattice translation symmetries (e.g. a featureless Mott insulator without fractionalization). Since LSM
theorems apply to a generic interacting system, they provide great insights in the study of quantum many-body systems beyond one
spatial dimension (1d), which remains intractable in most analytic or numeric efforts.

While usual LSM theorems forbid a SRE symmetric ground state at fractional fillings, the interplay of symmetry and topology
gives rise to a rich structure of SRE symmetric states, coined symmetry protected topological (SPT) phases [16,17]. Characterized by
protected edge/surface states, topological insulators and superconductors [18,19] are the examples of SPT phases in non-interacting
fermions. In spite of extensive theoretical studies, so far strongly-interacting SPT phases are still in lack of realizations beyond 1d
spin chains [20,21].

In this work we intend to fill this gap by introducing and proving a new class of LSM theorems, summarized in Tables 1–2, whose
RE symmetric ground state must be a SPT phase. Focusing on two spatial dimensions (2d), we show that the key step is to replace
he pure lattice translations in usual LSM theorem by magnetic translations [22], with a rational 𝜙 = 2𝜋 𝑝𝑞 flux piercing through each

plaquette. We will always refer a unit cell (u.c.) as the original cell generated by Bravais lattice translations, in contrast to enlarged
magnetic unit cell containing one flux quantum (or 2𝜋 flux). We show that a symmetric SRE ground state with proper degrees of
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freedom (d.o.f.) per u.c. (typically a fractional filling 𝜌̄ ∉ Z) must be a SPT phase with protected edge modes. As will become clear
later, a key idea is the charge-flux binding in SPT phases, which is closedly related to the decorated-domain-wall picture of SPT
phases [23].

2. LSM theorems for fermion SPT phases

Topological insulators (TIs) and topological superconductors (TSCs) are well-known examples of fermion SPT phases. In the
Altland-Zirnbauer (AZ) 10-fold way of symmetry classes, nontrivial fermion SPT phases exist in 5 symmetry classes in each spatial
dimension [24,25]. In two spatial dimensions (2d), below we demonstrate that a LSM-type theorem favoring a SPT ground state
exists for 4 AZ symmetry classes: i.e. class D, DIII, A and AII as summarized in Table 1.

Symmetry class D describes superconductors with no symmetry, with a Z classification in 2d. Characterized by an integer-valued
topological index 𝜈 ∈ Z, they host chiral Majorana edge modes with a chiral central charge 𝑐− = 𝜈∕2[26]. The simplest 𝜈 = 1 SPT
phase is the chiral 𝑝𝑥 + i𝑝𝑦 superconductor of spinless (or spin-polarized) electrons in 2d. One significant property of a 𝜈 = odd
topological superconductor is an odd number of Majorana zero modes (MZMs) localized at each superconducting vortex core [27],
robust against any perturbations. One MZM can be viewed as ‘‘half’’ of a fermion and it has been proven that a unique symmetric
SRE ground state is not allowed in a translational invariant system with odd Majoranas per unit cell (u.c.) [28]. On the other hand,
magnetic translations allow a SRE TSC ground state, as our theorem states:

Theorem 2.1. For a generic interacting fermion system with an odd number of Majoranas per u.c., in the presence of magnetic translation
symmetry [22]

𝑇̃1𝑇̃2𝑇̃
−1
1 𝑇̃ −1

2 = 𝑒 i𝜙𝐹 , 𝐹 = total fermion number. (1)

with 𝜙 = 𝜋 flux per u.c., if there is a unique symmetric and gapped ground state on torus, it must be a 𝜈 = odd TSC in class D with chiral
Majorana edge states.

Now that all 𝜈 = odd chiral TSC necessarily breaks time reversal symmetry, there is a no-go theorem as a straightforward corollary
of Theorem 2.1:

For a generic interacting fermion system with an odd number of Majoranas per u.c., in the presence of time reversal and magnetic
translation symmetry (1) with 𝜙 = 𝜋, it is impossible to have a symmetry-preserving unique gapped ground state on torus.

We demonstrate Theorem 2.1 by a square lattice 𝜋-flux model with 1 Majorana 𝛾𝐫 at each site 𝐫 = (𝑥, 𝑦), as illustrated in Fig. 1.
Choosing a Landau gauge for magnetic translation algebra (1)

𝑇̃𝑦 = 𝑇𝑦, 𝑇̃𝑥 = 𝑇𝑥𝑒
i𝜙

∑

𝐫 𝑦𝐹𝐫 (2)

where 𝐹𝐫 is the fermion number on site 𝐫, the nearest neighbor (NN) 𝜙 = 𝜋-flux Hamiltonian writes

𝐻̂D
0 =

∑

𝐫
i [𝑡𝑥𝛾𝐫𝛾𝐫+𝑥̂ + 𝑡𝑦(−1)𝑥𝛾𝐫𝛾𝐫+𝑦̂] + ℎ.𝑐. (3)

It is straightforward to identify two zero-energy Majorana cones at (𝑘𝑥, 𝑘𝑦) = (0, 0) and (0, 𝜋) related by magnetic translation 𝑇̃𝑥 in
(2), and there is only one mass term 𝑚𝛤0 allowed by 𝑇̃𝑥,𝑦 symmetries (details in Appendix A.1), realized by e.g. next nearest-neighbor
(NNN) hoppings between Majoranas (see Fig. 1). In the usual band inversion story of TIs, opposite signs of mass 𝑚 lead to a trivial
insulator and a TI respectively. However for the Majorana cones in model (3), both signs of the mass term lead to a TSC in class D,
whose topological index 𝜈 = Sgn(𝑚) and chirality of edge modes depends on the mass sign. In Fig. 1 we show the chiral edge modes
of such a symmetry-enforced TSC on square lattice.

Symmetry class DIII describes time-reversal-invariant (TRI) superconductors, with a Z2 classification in 2d. The TSC in class DIII
is a triplet TRI 𝑝-wave superconductor [29], a 2d analog of 3He B phase. One of its defining character is one Kramers pair of MZMs
{𝛾↑, 𝛾↓} at each vortex core, stable against any time-reversal-invariant perturbations. One can also argue for a no-go theorem (see
Appendix B.2) that rules out any symmetric SRE ground state in a translational invariant system with an odd number of Majorana
Kramers pairs {𝛾𝑎,↑, 𝛾𝑎,↓|1 ≤ 𝑎 < 2𝑁} per u.c.. On the other hand, similar to class D, magnetic translation symmetry however allows
a SRE TSC ground state:

Theorem 2.2. For a generic interacting fermion system with an odd number of Majorana Kramers pairs per u.c., in the presence of time
reversal symmetry ̂ 2 = (−1)𝐹 and magnetic translation symmetry (1) with 𝜙 = 𝜋 flux per u.c., any unique symmetric and gapped ground
state on torus must be a TSC in class DIII with helical Majorana edge states.

To demonstrate Theorem 2.2, we again consider a square lattice NN 𝜋-flux model with one Kramers pair {𝛾𝐫,↑, 𝛾𝐫,↓} of Majoranas
per site 𝐫:

𝐻̂DIII
0 =

∑

𝐫,𝜎
i𝜎[𝑡𝑥𝛾𝐫,𝜎𝛾𝐫+𝑥̂,𝜎 + 𝑡𝑦(−1)𝑥𝛾𝐫,𝜎𝛾𝐫+𝑦̂,𝜎 ] + ℎ.𝑐. (4)

Similar to model (3) in class D, in the basis of 𝜙𝐤 = 1
√

𝐿𝑥𝐿𝑦∕2

∑

(𝑥,𝑦) 𝑒
− i (𝑘𝑥𝑥+𝑘𝑦𝑦)(𝛾(2𝑥,𝑦),𝜎 , 𝛾(2𝑥+1,𝑦),𝜎)𝑇 , it is straightforward to show that

N model (4) leads to two Dirac points at 𝐤 = (0, 0) and (0, 𝜋), described by low-energy Dirac Hamiltonian

𝐻̂DIII
0 → −

∑

𝛷†
𝐪(
𝑡𝑥
2
𝑞𝑥𝜏𝑥 + 𝑡𝑦𝑞𝑦𝜏𝑧𝜇𝑧)𝜎𝑧𝛷𝐪 + 𝑂(|𝐪|2), (5)
|𝐪|≪1
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Fig. 1. Majorana hopping model (3) with 𝜙 = 𝜋 flux per u.c. on square lattice (left) and its edge spectrum (right). Arrows represent the signs of Majorana
hoppings, while the green oval stands for the doubled magnetic u.c.. The edge spectrum is obtained on a 𝐿𝑦 = 50 open cylinder (periodic along 𝑥̂ direction),
where NNN coupling is chosen as 𝑡2∕𝑡1 = 0.3 with NN couplings 𝑡𝑥 = 𝑡𝑦 = 𝑡1. The two edge modes with opposite chirality are located on two open edges separately.

Table 1
Summary of LSM theorems for SPT phases (i.e. topological insulators/superconductors) of a generic interacting fermion system in two dimensions. The trivial
insulators/superconductors have topological index 𝜈, 𝜎𝑥𝑦 = 0.

Physical systems Microscopic input Output of LSM theorem

AZ [30] class Applications Symmetry group d.o.f. per unit cell Flux per unit
cell

Topological invariant Edge states Chiral central
charge

D Majorana (−1)𝐹 Odd Majoranas
{𝛾1 ,… , 𝛾2𝑁−1}

𝜙 = 𝜋 𝜈 = odd Chiral Majorana 𝑐− = 𝜈∕2
vortex lattice [31] ∈ Z

DIII Kitaev-type spin
liquid [32]

̂ 2 = (−1)𝐹 Odd Majorana
Kramers pairs

𝜙 = 𝜋 𝜈 = 1 Helical Majorana 𝑐− = 0
∈ Z2 = {0, 1}

A Integer QHE in
Hofstadter models

𝑈 (1)charge Charge 𝑒 ⋅ 𝜌̄𝑓 𝜙 = 2𝜋 𝑝
𝑞

𝑝𝜎𝑥𝑦 = 𝑞𝜌̄𝑓 mod 𝑞 Chiral fermion 𝑐− = 𝜎𝑥𝑦
𝜎𝑥𝑦 ∈ Z mod 8 [26]

AII QSHE in 𝜋-flux
model [33]

𝑈 (1)charge
̂ 2 = (−1)𝐹

Charge 𝑒 ⋅ 𝜌̄𝑓 𝜙 = 𝜋 𝜈 = 1 Helical fermion 𝑐− = 0
(𝜌̄𝑓 = odd) ∈ Z2 = {0, 1}

where 𝜏, 𝜇 and 𝜎⃗ are Pauli matrices for sublattice (in a doubled magnetic cell), valley and spin indices. With the following symmetry
perations on Dirac spinor 𝛷𝐪:

𝛷𝐪
𝑇𝑦
⟶ 𝜇𝑧𝛷𝐪, 𝛷𝐪

𝑇̃𝑥
⟶ 𝜏𝑥𝜇𝑥𝛷𝐪, 𝛷𝐪


⟶ i𝜎𝑦𝛷−𝐪.

There is only one symmetric mass term for Dirac Hamiltonian (5) 𝛤0 = 𝜏𝑦𝜇𝑧𝜎𝑧, realized by e.g. TRI NNN couplings shown in Fig. 1.
Irrespective of the mass sign, the gapped Dirac Hamiltonian always leads to a TRI TSC with helical Majorana edge modes.

Symmetry class A describes fermion insulators (or metals) with 𝑈 (1) charge conservation symmetry, where lattice translation
symmetry allows a well-defined filling number 𝜌̄𝑓 per u.c.. The SPT phases in class A corresponds to Chern insulators characterized by
integer-valued Hall conductance 𝜎𝑥𝑦 ∈ Z (in unit of 𝑒2∕ℎ) [34]. In the usual LSM theorem [1–3] with lattice translations, an insulating
round state without fractionalization is impossible at non-integer fillings 𝜌̄𝑓 ∉ Z. However with 𝜙 flux per u.c. and associated
agnetic translation symmetry (1), an unfractionalized SPT ground state becomes a possibility even at a fractional filling [35].
pecifically the Hall conductance 𝜎𝑥𝑦 is constrained by the following LSM theorem [35]:

heorem 2.3. Consider a generic interacting fermion system preserving 𝑈 (1) charge conservation and magnetic translation symmetry (1),
ith charge density 𝜌̄ and flux density 𝜙 per u.c., if there is a unique symmetric and gapped ground state on torus, its Hall conductance 𝜎𝑥𝑦
atisfy the following condition:

𝜎𝑥𝑦 ⋅
𝜙
2𝜋

= 𝜌̄ mod 1. (6)

In a special case, half-filled (𝜌̄𝑓 = 1∕2) fermions with 𝜙 = 𝜋 must have an odd Hall conductance 𝜎𝑥𝑦 = 1 mod 2 for any unique
gapped ground state, therefore forbidding a unique gapped TRI ground state. This is consistent with the well-known Dirac spectrum
of NN 𝜋-flux model on square lattice [36].

Symmetry class AII describes half-integer-spin fermions preserving 𝑈 (1) charge conservation and time reversal symmetry  with
 2 = (−1)𝐹 . The SRE fermion phases are characterized by a Z2-valued index 𝜈 = 0, 1 where 𝜈 = 1 corresponds to a QSH insulator

with protected helical edge modes. With lattice translation symmetry, an unfractionalized insulating ground state is only possible at
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Table 2
Summary of LSM theorems for SPT phases of a generic interacting boson system in two dimensions. Hall conductance 𝜎𝑥𝑦 is defined in unit of 1∕ℎ, where the
unit charge of microscopic bosons is set to 1, (𝑝, 𝑞) are mutually-primed integers and 𝑎 ∈ Z.
Global symmetries and SPT classification Microscopic input Output of LSM theorem

Symmetry group 𝐺𝑠 Classification
3(𝐺𝑠 , 𝑈 (1))

Topological invariants Density/d.o.f. per unit
cell

Flux per unit cell Topological index

𝑈 (1) 2Z 𝜎𝑥𝑦 = even 𝜌̄ = 2𝑎
𝑞

𝜙 = 2𝜋 𝑝
𝑞

𝑝 ⋅ 𝜎𝑥𝑦 = 2𝑎 mod 𝑞
(BIQH states)

𝑈 (1)⋊𝑍
2 Z2 𝜈 = 0, 1 ∈ Z2 𝜌̄ ∈ Z + an odd number 𝜙 = 𝜋 𝜈 = 1

of Kramers doublets (BQSH state)

𝑍2 ×𝑍
2 Z2 × Z2 𝜈, 𝜈 = 0, 1 ∈ Z2 An odd number 𝜙 = 𝜋 𝜈 = 1

of Kramers doublets

𝑈 (1)𝐴 × 𝑈 (1)𝐵 (2Z)2 × Z 𝜎𝐴𝑥𝑦 , 𝜎
𝐵
𝑥𝑦 = even 𝜎𝐴𝐵𝑥𝑦 = 𝜎𝐵𝐴𝑥𝑦 ∈ Z (𝜌̄𝐴 , 𝜌̄𝐵 ) (𝜙𝐴 , 𝜙𝐵 ) (𝜎𝐴𝑥𝑦 , 𝜎

𝐵
𝑥𝑦 , 𝜎

𝐴𝐵
𝑥𝑦 ) satisfying (9)

𝑈 (1)𝐴 × (𝑍𝑞 )𝐵 2Z × (Z𝑞 )2 𝜎𝐴𝑥𝑦 = even 𝜈𝐵 , 𝜈𝐴𝐵 ∈ Z𝑞 𝜌̄𝐴 = 𝑎
𝑞

𝜙𝐵 = 2𝜋 𝑝
𝑞
𝜙𝐴 = 0, 𝜋 𝑝 ⋅ 𝜈𝐴𝐵 = 𝑎 mod 𝑞

even fermion filling 𝜌̄𝑓 ∈ 2Z[7]. Time reversal symmetry is only compatible with 𝜙 = 𝜋 flux per u.c., and the associated magnetic
translation symmetry (1) brings in a new possibility at an odd filling [33]:

Theorem 2.4. Consider a generic interacting fermion system preserving 𝑈 (1) charge conservation, time reversal  2 = (−1)𝐹 and magnetic
translation symmetry (1), with fermion density 𝜌̄𝑓 = 1 mod 2 and 𝜙 = 𝜋 flux per u.c., if there is a unique symmetric and gapped ground
state on torus, it must be a QSH insulator.

3. LSM theorems for boson SPT phases

While TIs and TSCs are realizable even in a system of non-interacting (free) fermions, in a boson system strong interactions are
necessary to evade Bose–Einstein condensation and to achieve a gapped symmetric ground state. Among them, boson SPT phases
with symmetry group 𝐺𝑠 are SRE symmetric ground states with 𝐺𝑠-symmetry-protected edge/surface excitations. Below we present
LSM theorems for various global symmetry 𝐺𝑠 (see Table 2) containing 𝑈 (1) ⊂ 𝐺𝑠 as a subgroup. We label the 𝑈 (1) charge density
per u.c. as 𝜌̄.

One minor (notational) difference from fermions is that magnetic translation algebra (1) will be written in a more generic context:

𝑇̃1𝑇̃2𝑇̃
−1
1 𝑇̃ −1

2 = 𝑒 i𝜙𝑁̂ , 𝑁̂ = total 𝑈 (1) charge. (7)

where 𝜙 is the flux per u.c. associated with the 𝑈 (1) symmetry. Similar to the TSC case, 𝑈 (1) charge conservation is not required
to define the above magnetic translation symmetry. Even if the 𝑈 (1) group is broken down to a discrete 𝑍𝑞 subgroup generated by
̂ 𝑞 ≡ 𝑒 i

2𝜋
𝑞 𝑁̂ , a flux of 𝜙 = 2𝜋𝑝

𝑞 (with 𝑝, 𝑞 ∈ Z) is still well-defined in (7).
Boson integer quantum Hall (QIHE) states: In a simplest case we consider a boson system with 𝐺𝑠 = 𝑈 (1). The associated

boson SPT phases are BIQH states, characterized by an even Hall conductance 𝜎𝑥𝑦 ∈ 2Z (in unti of 1∕ℎ where unit charge is set to
1). Analogous to symmetry class A of fermions, the usual LSM theorem forbids a unique gapped ground state at any non-integer
filling 𝜌̄ ∉ Z with lattice translation symmetry. In the presence of magnetic translation (7), a SPT ground state with 𝜎𝑥𝑦 ≠ 0 becomes
possible even at a fractional filling. Specifically, the LSM theorem for interacting bosons with 𝐺𝑠 = 𝑈 (1) symmetry has the same
orm as Theorem 2.3 for fermions, also yielding the constraint (6).
For any rational flux density 𝜙 = 2𝜋 𝑝𝑞 and commensurate charge density 𝜌̄ =

2𝑎
𝑞 , we have 𝑝𝜎𝑥𝑦 = 2𝑎 mod 𝑞 for any SRE symmetric

ground state shown in Table 2. This necessarily leads to a nonzero Hall conductance, thus a BIQH state.
Bosonic quantum spin Hall (BQSH) states: With both 𝑈 (1) charge conservation and time reversal symmetry i.e. 𝐺𝑠 = 𝑈 (1)⋊𝑍

2 ,
SRE symmetric boson states are classified by a Z2-valued index 𝜈 = 0, 1, where 𝜈 = 1 corresponds to the nontrivial BQSH state [37].
In addition to protected edge states [37] there is another defining character for BQSH states: each 𝜋 flux in the bulk is bound to a
Kramers doublet transformed as  2 = −1. This is equivalent to the decorated-domain-wall picture of BQSH state [23], since a 𝜋 flux
can be viewed as the end/boundary of a 1d domain wall corresponding to symmetry element 𝑒 i𝜋𝑄̂, 𝑄̂ being the total 𝑈 (1) charge.
n the 2d BQSH state, the domain wall of 𝑒 i𝜋𝑄̂ symmetry is decorated by a 1d SPT phase with 𝐺𝑠 = 𝑈 (1)⋊𝑍

2 symmetry, and hence
𝜋 flux as its boundary must carry the edge mode of the 1d SPT phase, which is nothing but a Kramers doublet. A half-integer spin
s an example of a Kramers doublet in contrast to an integer spin. If there is an odd number of Kramers doublets per u.c., usual LSM
heorems with lattice translation symmetry forbids any SRE symmetric ground state [7]. In the presence of magnetic translation (7)
ith TRI 𝜙 = 𝜋 flux per u.c., however, a BQSH ground state with an odd number of Kramers doublets per u.c. becomes possible:

heorem 3.1. Consider a generic interacting boson system preserving 𝑈 (1) charge conservation, time reversal  and magnetic translation
ymmetry (7), with charge density 𝜌̄ ∈ Z, flux density 𝜙 = 𝜋 and an odd number of Kramers doublets (e.g. spin-1∕2’s with  2 = −1) per
.c., if there is a unique symmetric and gapped ground state on torus, it must be a BQSH state.
4 
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The boson system in Theorem 3.1 consists of two parts: charged bosons that transform as Kramers singlets ( 2 = +1), and
half-integer spins that transform as Kramers doublets ( 2 = −1). Therefore the 𝜋 flux per u.c. is only visible to charge d.o.f. but
not to spins. In fact, the 𝑈 (1) symmetry above can be broken down to a discrete 𝑍2 subgroup, resulting in a symmetry group
𝐺𝑠 = 𝑍2 ×𝑍

2 . The associated SRE symmetric states have a (Z2)2 classification [16,37], where one Z2 index (𝜈 in Table 2) comes
from the binding of each 𝜋 flux to a Kramers doublet [23]. Although the charge will no longer conserve with 𝐺𝑠 = 𝑍2 × 𝑍

2 , the
flux per u.c. is still well-defined and our LSM states that any unique gapped ground state on torus with an odd number of Kramers
oublets per u.c. must be a SPT state where a 𝜋 flux is bound to a Kramers doublet (see Appendix B.5).
Two-component BIQH states: For a two-component system with two species of conserved bosons, symmetry group 𝐺𝑠 =

(1)𝐴 × 𝑈 (1)𝐵 leads to (2Z)2 × Z classification of SRE symmetric states. They are characterized by a (real symmetric) 2 × 2 Hall
conductance tensor 𝜎𝛼,𝛽𝑥𝑦 , 𝛼, 𝛽 = 𝐴,𝐵. While the intra-species Hall conductance 𝜎𝐴𝑥𝑦, 𝜎𝐵𝑥𝑦 ∈ 2Z must be even integers, the inter-species
all conductance 𝜎𝐴𝐵𝑥𝑦 = 𝜎𝐵𝐴𝑥𝑦 ∈ Z can take any integer value. The magnetic translation symmetry here is defined by two flux 𝜙𝐴
nd 𝜙𝐵 for the two components:

𝑇̃1𝑇̃2𝑇̃
−1
1 𝑇̃ −1

2 = 𝑒 i (𝜙𝐴𝑁̂𝐴+𝜙𝐵𝑁̂𝐵 ). (8)

ur LSM theorem states the following:

heorem 3.2. Consider a generic interacting boson system of two components A and B, separately conserved with a symmetry group
𝑠 = 𝑈 (1)𝐴 ×𝑈 (1)𝐵 . In the presence of magnetic translation symmetry (8), with charge density (𝜌̄𝐴, 𝜌̄𝐵) and flux density (𝜙𝐴, 𝜙𝐵) per u.c.,
f there is a unique symmetric and gapped ground state on torus, its Hall conductance tensor must satisfy

1
2𝜋

(

𝜎𝐴𝑥𝑦 𝜎𝐴𝐵𝑥𝑦
𝜎𝐵𝐴𝑥𝑦 𝜎𝐵𝑥𝑦

)(

𝜙𝐴
𝜙𝐵

)

=

(

𝜌̄𝐴
𝜌̄𝐵

)

mod 1 (9)

This can be viewed as a generalization of Theorem 2.3 with 𝐺𝑠 = 𝑈 (1), and can be further generalized to a multi-component
ystem. At any fractional filling i.e. 𝜌𝐴,𝐵 ∉ Z, the Hall conductance tensor cannot vanish identically, leading to a SPT ground state.
urthermore, one of the two 𝑈 (1) symmetries here can be broken down to a 𝑍𝑞 subgroup, as we discuss below.
Two-component magnets: In a two-component magnetic system where species 𝐴 has a 𝑈 (1) conservation (e.g. of 𝑧̂-component

pin) and species 𝐵 with only a discrete 𝑍𝑞 symmetry, the global symmetry 𝐺𝑠 = 𝑈 (1)𝐴 × (𝑍𝑞)𝐵 leads to a 2Z × (Z𝑞)2 classification
f 2d SPT phases [16]. Compared to previous 𝐺𝑠 = 𝑈 (1)𝐴 ×𝑈 (1)𝐵 case, while 𝜎𝐴𝑥𝑦 ∈ 2Z still serves as a valid topological index with
(1)𝐴 symmetry, 𝜎𝐴𝐵𝑥𝑦 = 𝜎𝐵𝐴𝑥𝑦 and 𝜎𝐵𝑥𝑦 are only well-defined modular 𝑞 once 𝑈 (1)𝐵 is broken down to (𝑍𝑞)𝐵 , yield two Z𝑞-valued
ndices:

𝜈𝐴𝐵 ≡ 𝜎𝐴𝐵𝑥𝑦 = 𝜎𝐵𝐴𝑥𝑦 mod 𝑞, 𝜈𝐵 ≡ 𝜎𝐵𝑥𝑦 mod 2𝑞.

ur LSM theorem for this case reads the following:

heorem 3.3. Consider a generic interacting two-component (A and B) spin system with global symmetry 𝐺𝑠 = 𝑈 (1)𝐴 × (𝑍𝑞)𝐵 , in the
resence of magnetic translation symmetry (8), with conserved 𝑈 (1)𝐴 density 𝜌̄𝐴 and flux density (𝜙𝐴, 𝜙𝐵 = 2𝜋 𝑝𝑞 ) per u.c., if there is a
nique symmetric and gapped ground state on torus, its topological indices must satisfy

𝜎𝐴𝑥𝑦
𝜙𝐴
2𝜋

+ 𝜈𝐴𝐵
𝜙𝐵
2𝜋

= 𝜎𝐴𝑥𝑦
𝜙𝐴
2𝜋

+ 𝜈𝐴𝐵
𝑝
𝑞
= 𝜌̄𝐴 mod 1. (10)

Now that 𝜎𝐴𝑥𝑦 is an even integer, by choosing flux 𝜙𝐴 = 0, 𝜋 condition (10) immediately leads to 𝑝 ⋅ 𝜈𝐴𝐵 = 𝑞𝜌̄𝐴 mod 𝑞 as shown
in Table 2. This indicates any SRE symmetric ground state at fractional filling 𝜌̄𝐴 ∉ Z must be a SPT state with 𝜈𝐴𝐵 ≠ 0 mod 𝑞.

4. Physical picture and sketch of arguments

What are the basic ideas behind these LSM theorems for SPT phases? Given the global and lattice translation symmetries, the
usual LSM theorems dictate the ‘‘integer filling’’ (per u.c.) conditions on the Hilbert space that allow a symmetric SRE ground state:
e.g. integer filling 𝜌̄ per u.c. for conserved 𝑈 (1) charges [1–3], an even number of Kramers doublets per u.c. for TRI systems [7], and
an even number of Majorana fermions per u.c. for superconductors [28]. When pure lattice translations are replaced by magnetic
translations, there is an additional ‘‘background flux’’ in each u.c., in addition to ‘‘bare’’ symmetry charges (the ‘‘filling number’’).
A key feature of many SPT phases is the binding of a ‘‘fractionalized’’ symmetry charge to a symmetry flux [38]: e.g. charge-flux
binding in quantum Hall states, the binding of a Kramers doublet to each 𝜋-flux in QSH states [39,40], and the binding of a MZM
to each 𝜋 flux in a chiral TSC [27]. For SPT states with magnetic translation symmetries, a ‘‘background polarization charge’’ comes
together with the background flux, leading to a total symmetry charge different from the ‘‘bare’’ symmetry charges. This explains
why a SPT ground state at fractional filling evades the usual LSM theorem requiring integer fillings, with the help of magnetic
translations.

Take 𝐺𝑠 = 𝑈 (1) as an example, with bare symmetry charge 𝜌̄ and background polarization charge −𝜎𝑥𝑦
𝜙
2𝜋 , the ‘‘total charge’’ per

u.c. 𝜌total = 𝜌̄ − 𝜎𝑥𝑦
𝜙
2𝜋 must be an integer as dictated by the usual LSM theorem. This is exactly the condition (6) in Theorem 2.3.

This simple physical picture not only provides a generic construction of these LSM theorems, but also allows us to argue for

their validity. Below we only sketch the physical arguments, leaving details to the Appendices. Consider a many-body system on a
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𝐿𝑥 ×𝐿𝑦 torus (or an infinitely-long cylinder, periodic along 𝑦̂ direction with a finite circumference 𝐿𝑦). In the presence of magnetic
translation symmetry (1) or (7) with 𝜙 flux per u.c., we choose a circumference 𝐿𝑦 satisfying 𝜙𝐿𝑦 ≠ 0 mod 2𝜋: e.g. for 𝜙 = 𝜋
flux we choose 𝐿𝑦 = odd. In the Landau gauge (2) with pure lattice translation symmetry 𝑇̃𝑦 = 𝑇𝑦 along 𝑦̂ direction, clearly the
boundary condition along 𝑦̂ direction changes with the coordinate 𝑥 (hence no well-defined magnetic translation 𝑇̃𝑥). Specifically the
̂-direction boundary condition 𝛩𝑦 of a many-body state |𝛹 (𝛩𝑦)⟩ with wavefunctions 𝛹 (𝐗1,𝐗2,…) can be defined as [41] (𝐗𝑖 ≡ (𝑥𝑖, 𝑦𝑖)
are coordinates of 𝑖th particle)

𝛹 (𝐗1 + 𝐿𝑦𝑦̂,𝐗2,…) = 𝑒 i𝛩𝑦𝛹 (𝐗1,𝐗2,…). (11)

Equivalently it can be written as 𝑒 i𝐿𝑦𝐾̂
1
𝑦
|𝛹 (𝛩𝑦)⟩ = 𝑒 i𝛩𝑦 |𝛹 (𝛩𝑦)⟩, where 𝐊̂1 is the momentum of one single particle. Although magnetic

translation 𝑇̃𝑥 is absent on the torus/cylinder of chosen size 𝐿𝑦, the change of boundary condition 𝛩𝑦 upon pure lattice translation

𝑥
𝑇̂𝑥
→ 𝑥 + 1 leads to an important condition:

𝑇̂𝑥|𝛹 (𝛩𝑦)⟩ = |𝛹 (𝛩𝑦 + 𝜙𝐿𝑦)⟩. (12)

which imposes a strong constraint on any gapped and symmetric ground state on this torus/cylinder.
Take 𝐺𝑠 = 𝑈 (1) (Theorem 2.3) for example, a SRE insulator can be characterized by a well-defined polarization [42,43]

𝑃𝑥 ≡ 𝑒
2𝜋
𝐿𝑥

∑

𝐫 𝑥𝑛̂𝐫 where 𝑛̂𝐫 labels the 𝑈 (1) charge on lattice site 𝐫. Due to the non-commutative algebraic relation 𝑇̂𝑥𝑃𝑥𝑇̂ −1
𝑥 = 𝑒− i𝐿𝑦 𝜌̄𝑃𝑥,

condition (12) implies the change of ground state polarization ⟨𝑃𝑥⟩ upon twisting boundary condition (11):

⟨𝛹 (𝛩𝑦)|𝑃𝑥|𝛹 (𝛩𝑦)⟩ = 𝑒 i𝐿𝑦 𝜌̄⟨𝛹 (𝛩𝑦 + 𝜙𝐿𝑦)|𝑃𝑥|𝛹 (𝛩𝑦 + 𝜙𝐿𝑦)⟩

ince polarization is physically the ‘‘center of mass’’ of all charges, its change indicates pumping of a charge 𝐿𝑦𝜌̄ upon insertion of
lux 𝜙𝐿𝑦 (and hence change of boundary condition). This is a direct evidence for nontrivial Hall conductance 𝜎𝑥𝑦 ≠ 0 in the gapped
round state. Similar arguments apply to Theorems 3.2–3.3 as well.
Generally with global symmetry 𝐺𝑠, the change of ‘‘generalized polarization’’ under translation 𝑇̂𝑥 must be compatible with

he pumping of ‘‘generalized symmetry charges’’ upon flux insertion (i.e. boundary condition twist). This implies a symmetric
RE ground state must be a SPT phase with certain (generalized) flux-charge binding. For instance in fermion symmetry class
(Theorem 2.1), we consider ‘‘fermion parity polarization’’ which is nothing but the total fermion parity (−1)𝐹 on 𝐿𝑦 = odd torus:

t changes sign by either translation 𝑇̂𝑥. The only compatible SRE ground state is a 𝜈 = odd chiral TSC in class D, such as spinless
𝑥+ i𝑝𝑦 superconductor [27], whose fermion parity changes upon switching between periodic and antiperiodic boundary conditions.
n other examples with time reversal symmetry (Theorems 2.4–3.1) and an odd number of Kramers doublets in each u.c., one can
bserve the change of ‘‘time reversal polarization’’ [44] under translation 𝑇̂𝑥: it is detected by the presence/absence of Kramers pairs
n entanglement spectra [7,45] at different entanglement cuts related by 𝑇̂𝑥 (e.g. 𝑥̄ and 𝑥̄+1 in Fig. 1). This implies the pumping of
ne Kramers doublet by switching between periodic and antiperiodic boundary conditions (𝜙𝐿𝑦 = 𝜋 mod 2𝜋), only compatible with
QSH ground state [44,46]. All theorems in Tables 1–2 can be argued following this line of thoughts as we show in Appendix B.

. Applications

Majorana vortex lattice: The simplest application of Theorem 2.1 (fermions in symmetry class D) is the vortex lattice of a 2d
hiral 𝑝-wave TSC [27], or of a 3d TI-superconductor heterostructure [47]. In both cases there is a single MZM in each vortex core.
agnetic translation symmetry also naturally emerges in a vortex lattice.
As shown in Ref. [31], on a Majorana vortex lattice whose plaquette is a polygon of 𝑛 vortices, there is a (𝑛 𝜋2 − 𝜋) flux per

plaquette in a Majorana hopping model between the vortices. Therefore on both triangular (𝑛 = 3) and square (𝑛 = 4) lattice, there
s only one Majorana fermion per u.c. whose tunneling amplitudes preserve magnetic translation (1) with a flux density of 𝜙 = 𝜋.
ccording to Theorem 2.1, any unique gapped ground state of the Majoranas must be a 𝜈 = odd TSC with chiral Majorana edge
odes. This is precisely the case for a triangular vortex lattice, as shown in Fig. 2.
Quantum spin liquids[48] provide another platform to realize magnetic translation of fermionic spinons with an emergent

auge flux of 𝜙 = 𝜋 per u.c.[36]. On square lattice, Lieb’s theorem [49] dictates a 𝜋-flux per square plaquette in lowest-energy
spinon ground state, in the presence of particle-hole symmetry.

One well-known example is the 𝑈 (1) Dirac spin liquid in square-lattice large-𝑁 Heisenberg model [36], where 𝑁-flavor fermionic
spinons at half filling (𝜌̄ = 1

2 for each flavor) hop in the background of 𝜙 = 𝜋 flux per plaquette. According to Theorem 2.3, gapping
out the Dirac spectrum of the 𝑈 (1) spin liquid without breaking translation symmetry will result in an odd Chern number 𝜎𝑥𝑦 = 1
mod 2, corresponding to a chiral spin liquid [50,51] in the context of a spin system.

Another example is in Kitaev-type 𝑍2 spin liquids [26], where fermionic spinons form a ‘‘superconductor’’ and they can see a
background 𝑍2 gauge flux of 𝜙 = 0, 𝜋. Due to particle-hole symmetry in superconductors, Lieb’s theorem [49] again applies and
points to a 𝜋-flux ground state on square lattice. Ref. [32] introduces such a NN square-lattice model, where one Kramers pair of
Majorana spinons {𝛾𝐫,↑, 𝛾𝐫,↓} per site 𝐫 hops under an emergent 𝜙 = 𝜋 flux as described in (4). According to Theorem 2.2, gapping
out the Dirac spinon spectrum of NN model (A.1) while preserving translation symmetry must lead to a TSC of Majorana spinons:
as realized by 3-spin interactions involving NNNs [32].

BIQH states[37,52] are also important applications of LSM theorems in Table 2. In Hofstadter models [53] of bosons hopping
in a magnetic field of 𝜙 flux per u.c., the Hall conductance of a unfractionalized insulator ground state must satisfy relation (6) for
6 
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Fig. 2. The NN tunneling model of MZMs on a triangular vortex lattice (left) and its edge spectrum (right). The doubled magnetic unit cell is labeled by the
reen oval. The edge spectrum is obtained on a 𝐿𝑦 = 50 cylinder periodic along 𝑇̃𝑥 direction, where two counter-propagating edge modes are located separately
n two opposite edges.

ne-component bosons, or relation (9) for two-component bosons. Hence we can use LSM theorems to choose proper boson fillings
hat enforces a BIQH ground state.
One example is the correlated hopping model of half-filled bosons on honeycomb lattice introduced in Ref. [54]. With only

oppings within the same sublattice, there are two 𝑈 (1) conservation laws (one on each sublattice) with 𝜌̄𝐴 = 𝜌̄𝐵 = 1
2 , and in the

resence of 𝜙𝐴 = 𝜙𝐵 = 𝜋 flux we must have 𝜎𝐴𝐵𝑥𝑦 = 1 mod 2 for a unique gapped ground state, as dictated by Theorem 3.2. Indeed
his is the SPT state observed in numerical studies of Ref. [54].

6. Discussions

In this work we introduce and provide physical arguments for a new class of LSM theorems in 2d, which relies on magnetic
translation symmetries in contrast to the usual LSM theorems with pure lattice translations. While no symmetric SRE ground states
is allowed in usual LSM theorems, our theorems imply that a symmetric SRE ground state at fractional filling must belong to a
SPT phase with protected edge modes. As summarized in Table 1–2, our LSM theorems apply to many different physical systems
with various global symmetries. They will serve as useful guidance to construct realistic models of interacting (especially bosonic)
SPT phases, and to future experimental realizations of SPT phases. While the current work focuses on 2d systems with magnetic
translation symmetries, it will be interesting to generalize these ideas to other magnetic space group symmetries and to higher
spatial dimensions such as 3d, which we leave for future work.

Although the magnetic translation symmetry plays a crucial role in establishing these LSM theorems for SPT phases, we emphasize
that the SPT phases discussed in this work are all strong SPT phases, which by themselves do not require the protection of magnetic
translation symmetry. They are not weak SPT phases which are protected by both on-site and translational symmetries [55–58].

It is insightful to comment on the relation between the LSM theorems for SPT phases in this work and the usual LSM theorems [1]
which forbid SRE ground states. Both the usual LSM theorems and the new LSM theorems discussed in this work can be understood
in the language of UV-IR anomaly matching [59]. In the usual LSM theorems with e.g. the usual lattice translation symmetry, the
UV data describing the degree of freedom (d.o.f.) in each unit cell must match the IR data of the ground state properties, if the
ground state is compatible with the microscopic d.o.f. while preserving the translational symmetry. For example, a fractional charge
per unit cell is not compatible with any symmetric insulator without intrinsic topological order, which has an integer charge per
unit cell. In our LSM-SPT theorems with magnetic translation symmetry, since the magnetic translation associates each unit cell
with a global (on-site) symmetry flux, the anomaly matching condition changes accordingly. For the ground state to be a SRE phase
without intrinsic topological order, the global symmetry flux in the SRE ground state (IR data) must match the microscopic d.o.f. in
each unit cell (UV data). For example, in a 𝜋-flux system of symmetry class DIII (see Theorem 2.2), if there is a Majorana Kramers
air in each unit cell, it must match the 𝜋-flux in each unit cell in the ground state, and therefore such a SRE ground state must be
topological superconductor in class DIII.
After this work was posted on arXiv, a number of related works of LSM theorems for SPT phases have been published, such as
concurrent work for bosonic SPT phases in two dimensions [60], and follow-up works on 3d SPT phases [61–63].
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ppendix A. Proofs for LSM theorems for free fermions

.1. Symmetry class D

.1.1. Majorana hopping model (3) on square lattice
With only nearest neighbor hoppings on square lattice, the 𝜋-flux model with one Majorana 𝛾𝐫 per site 𝐫 writes

𝐻̂𝐷
0 =

∑

𝐫
i [𝑡𝑥𝛾𝐫𝛾𝐫+𝑥̂ + 𝑡𝑦(−1)𝑥𝛾𝐫𝛾𝐫+𝑦̂] + ℎ.𝑐. (A.1)

= −
∑

𝐤
𝜙𝑇−𝐤

[

2𝑡𝑦 sin 𝑘𝑦𝜏𝑧 + 𝑡𝑥
(

sin 𝑘𝑥𝜏𝑥 + (1 − cos 𝑘𝑥)𝜏𝑦
)]

𝜙𝐤

here we define 2-component spinor

𝜙𝐤 ≡ 1
√

𝐿𝑥𝐿𝑦∕2

∑

𝑥,𝑦
𝑒− i (𝑘𝑥𝑥+𝑘𝑦𝑦)

(

𝛾2𝑥,𝑦
𝛾2𝑥+1,𝑦

)

(A.2)

and 𝜏 are Pauli matrices for the sublattice index in a doubled magnetic unit cell (u.c.). Clearly the dispersion vanishes at two
Majorana cones (two ‘‘valleys’’) at (𝑘𝑥, 𝑘𝑦) = (0, 0) and (0, 𝜋). A mode expansion around these Majorana cones leads to 4-component
spinor

𝐻̂𝐷
0 = −

∑

𝐪
𝛷𝑇

−𝐪
[

𝑡𝑥𝑞𝑥𝜏𝑥 + 2𝑡𝑦𝑞𝑦𝜏𝑧𝜇𝑧
]

𝛷𝐪 + 𝑂(|𝐪|2), (A.3)

𝛷𝑇
𝐪 ≡

(

𝜙𝑇𝐪 , 𝜙
𝑇
(0,𝜋)+𝐪

)

.

here 𝜇 are Pauli matrices for the valley index. Under magnetic translations the Majoranas transform as

𝛾(𝑥,𝑦)
𝑇𝑦
⟶ 𝛾(𝑥,𝑦+1),

𝛾(𝑥,𝑦)
𝑇̃𝑥
⟶ (−1)𝑦𝛾(𝑥+1,𝑦). (A.4)

Therefore the 4-component low-energy spinor transforms as

𝛷𝐪
𝑇𝑦
⟶ 𝜇𝑧𝛷𝐪, (A.5)

𝛷𝐪
𝑇̃𝑥
⟶ 𝜏𝑥𝜇𝑥𝛷𝐪. (A.6)

It is straightforward to see that among all possible mass terms 𝜏𝑦𝜇0,𝑥,𝑧 and 𝜏𝑧𝜇𝑦 to Dirac Hamiltonian (A.3), the only mass that
preserves magnetic translation {𝑇̃𝑥, 𝑇𝑦} is

𝑀̂ = 𝑚 ⋅ 𝛤0, 𝛤0 = 𝜏𝑦𝜇𝑧 (A.7)

This symmetric mass drives the system into a spinless 𝑝𝑥 ± i𝑝𝑦 TSC, whose chirality 𝜈 = Sgn(𝑚) depends on the sign of the mass
term. This mass term can be realized by next nearest neighbor (diagonal) hoppings that preserve magnetic translations.

A.1.2. Proof of Theorem 2.1 for free fermions
For a generic free-fermion system with an odd number of Majoranas per u.c., one can go beyond perturbing around nearest

neighbor model (A.1), and prove Theorem 2.1 non-perturbatively. In particular, the momentum-space spinor 𝜙𝐤 transforms under
magnetic translations as

𝜙𝐤
𝑇𝑦
⟶ 𝑒 i 𝑘𝑦𝜙𝐤, (A.8)

𝜙(𝑘 ,𝑘 )
𝑇̃𝑥
⟶

(

0 1
i 𝑘

)

𝜙(𝑘 ,𝑘 +𝜋) (A.9)

𝑥 𝑦 𝑒 𝑥 0 𝑥 𝑦

8 
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Generically a gapped 2d superconductor in class D can be diagonalized as

𝐻̂𝐷 =
∑

𝐤
𝜙𝑇−𝐤ℎ̂𝐤𝜙𝐤 =

∑

𝐤
𝛤 𝑇−𝐤𝛬̂𝐤𝛤𝐤, (A.10)

𝛬𝐤 = i ⊕𝐤

(

0 𝐸𝐤
−𝐸𝐤 0

)

, 𝐸𝐤 > 0,

𝛤𝐤 = 𝑊𝐤𝜙𝐤, 𝑊−𝐤 = 𝑊 ∗
𝐤 . (A.11)

here 𝑊𝐤 is a unitary matrix representing the Bloch wavefunction at momentum 𝐤. As shown in [27,64], the parity of topological
ndex 𝜈 for a 2d superconductor in class D is given by

(−1)𝜈 = Sgn
(

Pf(ℎ̂𝑘𝑥=0) ⋅ Pf(ℎ̂𝑘𝑥=𝜋 )
)

= Sgn
(

∏

𝐐=−𝐐
det𝑊𝐐

)

(A.12)

where Pf(ℎ̂) denotes the Pfaffian of antisymmetric matrix ℎ̂. Here 𝐐 = −𝐐 represents the 4 time reversal invariant momenta (TRIM)
.e. (0, 0), (0, 𝜋), (𝜋, 0) and (𝜋, 𝜋). Meanwhile magnetic translation symmetry (A.9) dictates that

𝑊(𝑘𝑥 ,𝑘𝑦+𝜋) = 𝑊(𝑘𝑥 ,𝑘𝑦) ⋅
(

0 1
𝑒 i 𝑘𝑥 0

)

(A.13)

and hence we have (notice that det𝑊𝐐 = ±1 for any TRIM 𝐐)

det𝑊(0,0) ⋅ det𝑊(0,𝜋) = det
(

0 1
1 0

)

= 1,

det𝑊(𝜋,0) ⋅ det𝑊(𝜋,𝜋) = det
(

0 1
−1 0

)

= −1.

Therefore we have proven that 𝜈=odd for any gapped superconductor i.e. Theorem 2.1 for any free-fermion system.

A.2. Symmetry class DIII

For simplicity, we consider a 𝜋-flux model on square lattice, with an 𝑁𝑓 = odd number of Kramers pairs {𝛾𝑎𝐫,↑, 𝛾
𝑎
𝐫,↓|1 ≤ 𝑎 ≤ 𝑁𝑓 }

per u.c. 𝐫. We can therefore define an odd number of complex fermions per u.c.:

𝑓𝐫,𝑎 ≡
𝛾𝑎𝐫,↑ + i𝛾𝑎𝐫,↓

2
. (A.14)

Under time reversal symmetry (TRS) each complex fermion transforms as a Kramers doublet

𝑓𝐫,𝑎

⟶ −i𝑓 †

𝐫,𝑎,  2 = (−1)𝐹 =
∏

𝐫,𝑎
( i𝛾𝑎𝐫,↑𝛾

𝑎
𝐫,↓). (A.15)

where 𝜏 are Pauli matrices for the Nambu indices. Meanwhile, clearly there is also a particle-hole symmetry (PHS) for the Nambu
spinor 𝜓𝐫 ≡ (𝑓𝐫 , 𝑓

†
𝐫 )𝑇

𝜓𝐫 = 𝜏𝑥𝜓
∗
𝐫 . (A.16)

In this Nambu basis, the BdG Hamiltonian for superconductors is mapped to a Bloch Hamiltonian for band insulators, where the
above PHS is essentially a half-filling condition (𝑁𝑓 particles per u.c.) for the ‘‘band insulator’’. In the meantime, TRS (A.15) is
mplemented as

𝜓𝐫

⟶ 𝜏𝑦𝜓𝐫 (A.17)

In the presence of magnetic translational symmetry with 𝜋-flux per u.c., a magnetic u.c. consists of 2 u.c. and the Bloch spinor
in momentum space is defined as

𝛹𝐤=(𝑘𝑥 ,𝑘𝑦) ≡
1

√

𝑁∕2

∑

𝑥,𝑦
𝑒− i (𝑥𝑘𝑥+𝑦𝑘𝑦)

(

𝜓(2𝑥,𝑦)
𝜓(2𝑥+1,𝑦)

)

. (A.18)

Under PHS and TRS it transforms as

𝛹𝐤
PHS
= 𝜏𝑥𝛹

∗
−𝐤, 𝛹𝐤


⟶ 𝜏𝑦𝛹−𝐤 (A.19)

Meanwhile under magnetic translations in the Landau gauge

𝑇̃𝑥 = 𝑇𝑥 ⋅ (−1)
∑

𝐫 𝑦
∑

𝑎 𝑓
†
𝐫,𝑎𝑓𝐫,𝑎 (A.20)

the ‘‘Bloch’’ spinor 𝛹𝐤 transforms as

𝛹𝐤
𝑇̃𝑥
⟶

(

0 1
i 𝑘𝑥

)

𝛹(𝑘𝑥 ,𝑘𝑦+𝜋), 𝛹𝐤
𝑇𝑦
⟶ 𝑒 i 𝑘𝑦𝛹𝐤. (A.21)
𝑒 0 𝜇
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Clearly the magnetic translation 𝑇̃𝑥 shifts the 𝑘𝑦 component by 𝜋. We use Pauli matrices 𝜇 for sublattice index, and 𝜏 for the Nambu
index.

As shown in Ref. [44,65], the 𝑍2-valued bulk invariants of topological superconductors in symmetry class DIII is quite similar
to the QSHE in symmetry class AII [44], given by the ‘‘time reversal polarization’’

𝜈 = (−1)𝑃𝛩(𝑘𝑦=0)−𝑃𝛩(𝑘𝑦=𝜋) ∈ ±1 (A.22)

In particular, the time reversal polarization is given by [44]

(−1)𝑃𝛩(𝑘𝑦) = 𝑒
i
2 (∫

𝜋
0 d𝑘𝑥−∫

0
−𝜋 d𝑘𝑥)𝐴

𝑥
𝐤
Pf[𝑤(𝑘𝑥 = 𝜋, 𝑘𝑦)]
Pf[𝑤(𝑘𝑥 = 0, 𝑘𝑦)]

(A.23)

We define the Berry connection for all filled bands

𝐀𝐤 = (𝐴𝑥𝐤, 𝐴
𝑦
𝐤) ≡ i

∑

𝛼=filled
⟨𝐤, 𝛼|∇⃗𝐤|𝐤, 𝛼⟩ (A.24)

and the anti-symmetric ‘‘time reversal’’ matrix

𝑤𝛼,𝛽 (𝐤) ≡ ⟨−𝐤, 𝛼| |𝐤, 𝛽⟩, 𝛼, 𝛽 = filled. (A.25)

In our case with magnetic translational symmetry (A.21), it is straightforward to show that

𝐴𝑥(𝑘𝑥 ,𝑘𝑦) − 𝐴
𝑥
(𝑘𝑥 ,𝑘𝑦+𝜋)

= −
∑

𝛼=filled
⟨𝐤, 𝛼|

(

1 0
0 0

)

𝜇
|𝐤, 𝛼⟩

= −
∑

𝛼=filled
⟨(𝑘𝑥, 𝑘𝑦 + 𝜋), 𝛼|

(

0 0
0 1

)

𝜇
|(𝑘𝑥, 𝑘𝑦 + 𝜋), 𝛼⟩

(A.26)

ote that one can always choose a (smooth) gauge so that time reversal symmetry (A.19) leads to

𝑤𝐐 ≡ ( i𝜏𝑦)⊗ 1̂𝑁𝑓×𝑁𝑓 (A.27)

t the four TRIM 𝐐 = −𝐐. Therefore the Pfaffians in (A.23) cancels out each other, and the 𝑍2-valued invariant is simply given by

𝜈 = (−1)𝑃𝛩(𝑘𝑦=0)−𝑃𝛩(𝑘𝑦=𝜋)

= 𝑒−
i
2 ∫ 𝜋0 d𝑘𝑥

∑

𝛼=filled⟨(𝑘𝑥 ,0),𝛼|(𝑘𝑥 ,0),𝛼⟩

= 𝑒− i𝜋
2𝑁𝑓
2 = (−1)𝑁𝑓 (A.28)

As a result, we have shown that a gapped superconducting ground state can only be a 𝜈 = −1 topological superconductor in symmetry
lass DIII, if we have 𝑁𝑓 = odd Kramers pairs of Majorana fermions per u.c..

.3. Symmetry class AII and A

Symmetry class AII corresponds to topological insulators, with a Z2 classification in 2d associated with quantum spin Hall effects.
ts bulk topological invariant is also given by time reversal polarization [44] in (A.22)–(A.23). In the presence of magnetic translation
ymmetry (A.21) with 𝜋-flux per u.c., the bulk invariant can be computed in complete parallel to previous case of class DIII. One
an similarly show that 𝜈 = (−1)𝜌̄𝑓 when there is 𝜌̄𝑓 spin-1∕2 fermions per u.c.. Therefore a gapped ground state can only be a
uantum spin Hall insulator with 𝜈 = −1, at half-filling with 𝜌̄𝑓 = odd.
In the case insulators (symmetry class A) with 𝜙 flux and 𝜌̄𝑓 fermions per u.c., the theorem

𝜎𝑥𝑦
𝜙
2𝜋

= 𝜌̄𝑓 mod 1. (A.29)

was proved in the context of free fermion band theory [66]. In the special case of 𝜙 = 2𝜋∕𝑞 and 𝜌̄𝑓 = 𝑝∕𝑞, it reduces to the formula

𝜎𝑥𝑦 = 𝑝 mod 𝑞 (A.30)

Appendix B. Physical arguments for LSM theorems for interacting systems

Without loss of generality, we always consider a square lattice for simplicity. In the case of square lattice, each u.c. consists of just
one site, therefore we also refer it to a site in proper context. We will always choose Landau gauge for simplicity, where translation
along 𝑦̂ direction is the pure crystal translation 𝑇𝑦, while along 𝑥̂ direction there is a magnetic translation 𝑇̃𝑥. Our arguments however
do not depend on the lattice geometry, as long as magnetic translation symmetries are preserved.
10 
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B.1. Fermion: Symmetry class D

Consider a generic interacting system with 𝑁𝛾 = odd Majorana fermions {𝛾𝐫,𝑎|1 ≤ 𝑎 ≤ 𝑁𝛾} per site 𝐫 on a 𝐿𝑥 × 𝐿𝑦 torus, where
𝐿𝑦 = odd and 𝐿𝑥 = even. On such a 𝐿𝑦 = odd torus, although translation 𝑇𝑦 is still intact, the magnetic translation 𝑇̃𝑥 in (A.4) is
in fact broken. As shown in Fig. 1, in contrast to periodic boundary condition along 𝑥̂ direction, the boundary condition along 𝑦̂
irection will switch between periodic and antiperiodic in different columns. If we translate the torus along 𝑥̂ direction by one u.c.,
he boundary condition along 𝑦̂ direction will be twisted by a phase factor of 𝑒 i𝜋 = −1. In other words, denoting a ground state |𝛹⟩
ith boundary condition 𝑒 i𝛩𝑦 :

𝛹 (𝐗1 + 𝐿𝑦𝑦̂,𝐗2,…) = 𝑒 i𝛩𝑦𝛹 (𝐗1,𝐗2,…). (B.1)

s |𝛹 (𝛩𝑦)⟩, we have

𝑇̂𝑥|𝛹 (𝛩𝑦)⟩ = |𝛹 (𝛩𝑦 + 𝜙𝐿𝑦)⟩. (B.2)

here 𝜙𝐿𝑦 = 𝜋 mod 2𝜋 here.
Note that with 𝐿𝑦𝑁𝛾 = odd Majorana fermions per column of the torus, the crystal translation 𝑇𝑥 plays the role of a

supersymmetry [28] which changes fermion parity (−1)𝐹 :

𝑇𝑥(−1)𝐹 = (−1)𝐹 𝑇𝑥 ⋅ (−1)
𝐿𝑦𝑁𝛾 = −(−1)𝐹 𝑇𝑥 (B.3)

Therefore the two ground states in (B.2) related by switching periodic/antiperiodic boundary conditions will have opposite fermion
arities if 𝑁𝛾 = odd:

⟨𝛹 (𝛩𝑦)|(−1)𝐹 |𝛹 (𝛩𝑦)⟩ =

(−1)𝐿𝑦𝑁𝛾 ⟨𝛹 (𝛩𝑦 + 𝜋𝐿𝑦)|(−1)𝐹 |𝛹 (𝛩𝑦 + 𝜋𝐿𝑦)⟩ (B.4)

In symmetry class D, all superconductors are classified by an integer index 𝜈 ∈ Z. Among them, 𝜈 = odd topological supercon-
uctors (e.g. spinless 𝑝𝑥 + i𝑝𝑦 superconductor has 𝜈 = 1) are distinguished from 𝜈 = even ones with 3 sharp features [26,27,67]:
i) an odd number of chiral Majorana modes on an open boundary, with half-integer-valued chiral central charge 𝑐− = 𝜈∕2; (ii)
ne robust Majorana zero mode in each vortex (i.e. 𝜋 flux) core; (iii) change of fermion parity if the boundary condition along one
irection (𝑦̂-direction in our case) is switched from periodic to anti-periodic.
The last feature (iii) i.e. change of fermion parity upon twisting boundary condition along one (say 𝑦̂) direction can be intuitively

nderstood as the following, by making a connection to the well-known feature (ii) i.e. a single Majorana zero mode trapped at each
flux. Twisting boundary condition along 𝑦̂ direction is equivalent as dragging a 𝜋 flux across the whole system along 𝑥̂ direction.
ow that a Majorana bound state is localized around each 𝜋 flux in a 𝜈 = odd topological superconductor, bringing this single
ajorana fermion across the system will necessarily change the fermion parity [28,64].
Therefore in our case with magnetic translation symmetry, as dictated by condition (B.4) with 𝐿𝑦 = odd, the only unique gapped

ground state compatible with feature (iii) must be a 𝜈 = odd topological superconductor. This argument justifies the LSM theorem
for class D.

B.2. Fermion: Symmetry class DIII

B.2.1. A no-go theorem for translational symmetric system
Before arguing for our LSM theorem with magnetic translation symmetries, we first justify a related theorem for a system with

the usual crystal translation symmetry. The no-go theorem states the following:

Theorem B.1. For a generic interacting fermion system with a 𝑁𝑓 = odd number of Kramers pairs of Majoranas {𝛾𝐫,𝑎,𝜎 |𝜎 =↑ ∕ ↓, 1 ≤ 𝑎 ≤
𝑁𝑓 } per u.c. 𝐫, there is no unique gapped ground state that preserves both translations and time reversal symmetry.

The argument of the theorem is simple. With crystal translational symmetry, we are allowed to put the many-body system on
any periodic lattice [2], and we choose a 𝐿𝑥 × 𝐿𝑦 torus where both lengths are odd:

𝐿𝑥, 𝐿𝑦 = 1 mod 2. (B.5)

Notice that under time reversal symmetry, the Majorana fermions transform as Kramers doublets
(

𝛾𝐫,𝑎,↑
𝛾𝐫,𝑎,↓

)


⟶

(

𝛾𝐫,𝑎,↓
−𝛾𝐫,𝑎,↑

)

(B.6)

and therefore

 ( i𝛾𝐫,𝑎,↑𝛾𝐫,𝑎,↓) −1 = −i𝛾𝐫,𝑎,↑𝛾𝐫,𝑎,↓ (B.7)

Note that the total fermion parity is given by

(−1)𝐹 =
∏

( i𝛾𝐫,𝑎,↑𝛾𝐫,𝑎,↓) (B.8)

𝐫,𝑎
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Therefore the fermion parity and time reversal symmetry satisfy the following algebra

 (−1)𝐹  −1(−1)𝐹 = (−1)𝑁𝑓𝐿𝑥𝐿𝑦 (B.9)

This means on a odd by odd torus, time reversal symmetry  serves as a supersymmetry [29] that changes the fermion parity. Since
ime reversal and fermion parity anticommutes with each other, they cannot be both preserved in a unique symmetric ground state.
herefore we have justified the no-go theorem.

.2.2. Arguments for LSM Theorem 2.2 for class DIII
Now let us turn to the case with magnetic translation symmetry (A.20). This time we consider an infinite cylinder which is finite

long 𝑦̂ direction, but infinite along 𝑥̂ direction. Again we choose the circumference length 𝐿𝑦 along 𝑦̂ direction to be odd. Quite
imilar to the class D case, the boundary condition along 𝑦̂ direction switches between periodic and antiperiodic in different columns
f the cylinder. When we translate the physical system by one u.c. along 𝑥̂ direction, we twist the 𝑦̂-direction boundary condition
y a phase of 𝑒 i𝜋 = −1.
To argue for the LSM theorem, we first assume a unique gapped ground state that preserves magnetic translation and time

eversal symmetries. Using symmetry properties of the entanglement spectrum of a SRE state [7,68], we are able to show that this
RE ground state must be a topological superconductor in class DIII.
Next we consider the Schmidt decomposition of unique SRE ground state |𝛹 (𝛩𝑦)⟩ with boundary condition (B.1) across an

entanglement cut along 𝑦̂ direction located at 𝑥0 − 1 < 𝑥̄ < 𝑥0 (see Fig. 1):

|𝛹 (𝛩𝑦)⟩ =
∑

𝛼
𝜆
𝛩𝑦
𝑥̄,𝛼|𝛼,𝛩𝑦⟩𝑥̄,𝐿|𝛼,𝛩𝑦⟩𝑥̄,𝑅 (B.10)

where 𝜆𝑥̄,𝛼 are Schmidt weights. Note that in a generic Hamiltonian of Majorana fermions, the fermion number is not conserved
and the Schmidt eigenstates do not generally have a fixed particle number. In the presence of time reversal symmetry  , although
fermion parity (−1)𝐹 can fluctuate for each Schmidt state, {|𝛼⟩𝑥̄,𝐿∕𝑅} must form a representation of the following algebra

 (−1)𝐹  −1(−1)𝐹 |𝛼,𝛩𝑦⟩𝑥̄,𝐿 = 𝑒 i𝛷𝑥̄ |𝛼,𝛩𝑦⟩𝑥̄,𝐿 (B.11)

here 𝑒 i𝛷𝑥̄ = ±1 is a phase factor depending on the entanglement cut (at 𝑥̄), but independent of Schmidt eigenstate |𝛼⟩𝑥̄,𝐿. Similar
o the class D case, the many-body symmetry (B.2) for ground state boundary condition exists in class DIII as well. According to
elation (B.2), a Schmidt decomposition (B.10) of |𝛹 (𝛩𝑦)⟩ at entanglement cut 𝑥̄ leads to the same entanglement spectrum as that
of |𝛹 (𝛩𝑦 + 𝜋𝐿𝑦)⟩ at entanglement cut 𝑥̄ + 1 (see Fig. 1)

|𝛹 (𝛩𝑦 + 𝜋𝐿𝑦)⟩ =
∑

𝛽
𝜆
𝛩𝑦+𝜋𝐿𝑦
𝑥̄+1,𝛼 |𝛼,𝛩𝑦 + 𝜋𝐿𝑦⟩𝑥̄,𝐿|𝛼,𝛩𝑦 + 𝜋𝐿𝑦⟩𝑥̄,𝑅 (B.12)

with

𝜆
𝛩𝑦+𝜋𝐿𝑦
𝑥̄+1,𝛼 = 𝜆

𝛩𝑦
𝑥̄,𝛼 , (B.13)

|𝛼,𝛩𝑦 + 𝜋𝐿𝑦⟩𝑥̄+1,𝐿∕𝑅 = 𝑇̂𝑥|𝛼,𝛩𝑦⟩𝑥̄,𝐿. (B.14)

n comparison, the original ground state |𝛹 (𝛩𝑦)⟩ has the following Schmidt decomposition at entanglement cut 𝑥̄ + 1:

|𝛹 (𝛩𝑦)⟩ =
∑

𝛽
𝜆
𝛩𝑦
𝑥̄+1,𝛽 |𝛽, 𝛩𝑦⟩𝑥̄+1,𝐿|𝛽, 𝛩𝑦⟩𝑥̄+1,𝑅 (B.15)

In the following, we will compare the Schmidt decompositions (B.15) and (B.12) for two ground states with two boundary
onditions differed by 𝜋𝐿𝑦 = 𝜋 mod 2𝜋, at the same entanglement cut 𝑥̄ + 1. First according to (B.11) and (B.14), clearly Schmidt
igenstates of |𝛹 (𝛩𝑦 + 𝜋𝐿𝑦)⟩ has a symmetry character 𝑒 i𝛷𝑥̄ :

 (−1)𝐹  −1(−1)𝐹 |𝛼,𝛩𝑦 + 𝜋𝐿𝑦⟩𝑥̄+1,𝐿 = 𝑒 i𝛷𝑥̄ |𝛼,𝛩𝑦 + 𝜋𝐿𝑦⟩𝑥̄+1,𝐿, ∀ 𝛼. (B.16)

hat about Schmidt eigenstates |𝛽, 𝛩𝑦⟩𝑥̄+1,𝐿 of ground state |𝛹 (𝛩𝑦)⟩? Note that the Schmidt eigenstates of |𝛹 (𝛩𝑦)⟩ at the two different
uts (B.10) and (B.15) are related by

|𝛽, 𝛩𝑦⟩𝑥̄+1,𝐿 =
∑

𝑝,𝛼
𝑀𝑝

𝛽,𝛼|𝑝⟩𝑥0 ⊗ |𝛼,𝛩𝑦⟩𝑥̄,𝐿 (B.17)

here {|𝑝⟩𝑥0} is a set of orthonormal basis for Hilbert space on column 𝑥0. Note that we have a 𝐿𝑦 = odd number of Majorana
ramers pairs on column 𝑥0, and therefore

 (−1)𝐹  −1(−1)𝐹 |𝑝⟩𝑥0 = (−1) ⋅ |𝑝⟩𝑥0 . (B.18)

s a result, the symmetry character of Schmidt eigenstates (B.15) at cut 𝑥̄ + 1 have a symmetry character

 (−1)𝐹  −1(−1)𝐹 |𝛽, 𝛩𝑦⟩𝑥̄+1,𝐿 = 𝑒 i𝛷𝑥̄+1 |𝛽, 𝛩𝑦⟩𝑥̄+1,𝐿 = 𝑒 i (𝛷𝑥̄+𝜋)|𝛽, 𝛩𝑦⟩𝑥̄+1,𝐿 (B.19)

Comparing (B.19) and (B.16), we can see that after twisting boundary condition along 𝑦̂ direction, for the same entanglement

ut at 𝑥̄ + 1, the entanglement spectrum of a ground state |𝛹 (𝛩𝑦 + 𝜋𝐿𝑦)⟩ with twisted boundary condition has different symmetry

12 



Y.-M. Lu

c

a

𝑇
t

B

o
2
f

Annals of Physics 470 (2024) 169806 
character  (−1)𝐹  −1(−1)𝐹 = 𝑒 i𝛷𝑥̄ , as compared to the original ground state |𝛹 (𝛩𝑦)⟩ whose entanglement spectrum has symmetry
character  (−1)𝐹  −1(−1)𝐹 = 𝑒 i𝛷𝑥̄+1 = −𝑒 i𝛷𝑥̄ .

What kind of symmetric SRE ground state is compatible with the change of Schmidt eigenstate symmetry character upon twisting
boundary condition? As discussed in the case of class D, twisting the boundary condition along 𝑦̂ direction can be viewed as dragging
a 𝜋 flux across the cylinder along 𝑥̂ direction. In symmetry class DIII, there are two classes (𝜈 ∈ Z2 classification) of time-reversal-
symmetric (TRS) SRE superconductors: the trivial one with 𝜈 = 0 and the topological superconductor with 𝜈 = 1. While the 𝜋 flux
in a trivial superconductor has no stalbe low-energy bound states, the 𝜋 flux in a 2d topological superconductor features a zero-
energy Majorana Kramers pair [29] {𝛾↑, 𝛾↓}. Therefore, dragging a 𝜋-flux across the cylinder along 𝑥̂ direction will also move this
Kramers pair of Majoranas across the entanglement cut (at 𝑥̄+1). Now that  (−1)𝐹  −1(−1)𝐹 = −1 when acting on an odd number of
Majorana Kramers pairs, the symmetry character of entanglement spectrum will be switched by twisting boundary condition in such
a topological superconductor. Therefore in the presence of magnetic translation with 𝜋 flux per u.c., the only TRS SRE compatible
with the above entanglement spectrum symmetry character is the 𝜈 = 1 topological superconductor. Indeed, viewing the 2d 𝜈 = 1
topological superconductor on a cylinder as a 1d system along 𝑥 direction, upon twisting the boundary condition along 𝑦 direction,
the 1d system must change from a trivial superconductor to a topological one in class DIII, which has a Z2 classification in 1d. This
justifies the LSM theorem for symmetry class DIII.

B.3. Symmetry group 𝐺𝑠 = 𝑈 (1)𝐴 × 𝑈 (1)𝐵

In the presence of a global 𝑈 (1) symmetry, an insulating ground state |𝛹⟩ on a 𝐿𝑥 × 𝐿𝑦 torus can be characterized by its

polarization 𝑃𝑥 ≡ 𝑒
2𝜋
𝐿𝑥

∑

𝐫 𝑥𝑛̂𝐫 (and 𝑃𝑦 can be defined similarly), where 𝑛̂𝐫 is the 𝑈 (1) charge on lattice site 𝐫 [42,43,69]. Physically the
polarization describes the center of mass of all 𝑈 (1) charges. In contrast to metals with no well-defined polarization i.e. ⟨𝛹 |𝑃𝛼|𝛹⟩ = 0,
insulators generally have a non-vanishing complex expectation value of each polarization component 𝑃𝑥 and 𝑃𝑦.

Similar to previous cases, the boundary condition along 𝑦̂ direction generally changes on different columns of the torus. As a
result, pure lattice translation 𝑇̂𝑥 can twist the 𝑦̂-direction boundary condition as shown in (B.2). Meanwhile if there is a unique
symmetric ground state separated from excitation states by a finite energy gap, one can adiabatically insert flux through the hole
along 𝑥̂ direction without closing the gap, and 𝑦̂-direction boundary condition can be adiabatically twisted in this flux insertion
process:

̂𝑦(𝜙𝐿𝑦)|𝛹 (𝛩𝑦)⟩ = 𝑒 i𝜙0 |𝛹 (𝛩𝑦 + 𝜙𝐿𝑦)⟩. (B.20)

where 𝜙0 is an unimportant phase factor, and 𝑦(𝜙𝐿𝑦) is the adiabatic 𝜙𝐿𝑦-flux insertion operator.
Therefore according to (B.2) and (B.20), the system on a 𝐿𝑥 ×𝐿𝑦 torus has an emergent symmetry in the unique gapped ground

state:

𝑇 ′
𝑥 = −1

𝑦 (𝜙𝐿𝑦) ⋅ 𝑇𝑥 (B.21)

if we choose Landau gauge (i.e. preserving lattice translation 𝑇̃𝑦 ≡ 𝑇𝑦) for the magnetic translation algebra (7) and (8). Now that
the insulator ground state has a non-vanishing expectation value for polarization 𝑃𝑥, the emergent symmetry operation (B.21) must
preserve the polarization operator 𝑃𝑥 [35].

In the presence of two 𝑈 (1) charge conservation symmetries 𝐺𝑠 = 𝑈 (1)𝐴×𝑈 (1)𝐵 , we have a more complicated magnetic translation
algebra (8). There are also two polarization operators 𝑃𝐴𝑥 = 𝑒

2𝜋
𝐿𝑥

∑

𝐫 𝑥𝑛̂
𝐴
𝐫 and 𝑃𝐵𝑥 = 𝑒

2𝜋
𝐿𝑥

∑

𝐫 𝑥𝑛̂
𝐵
𝐫 , and the emergent symmetry (B.21) on

𝐿𝑥 × 𝐿𝑦 torus becomes the following:

𝑇 ′
𝑥 =

[

𝐴
𝑦 (𝜙𝐴𝐿𝑦)

𝐵
𝑦 (𝜙𝐵𝐿𝑦)

]−1
⋅ 𝑇𝑥 (B.22)

Therefore both polarizations 𝑃𝐴𝑥 and 𝑃𝐵𝑥 must be preserved by the above emergent symmetry operation. Making use of the following
ommutation relations:

𝑇𝑥𝑃
𝛼
𝑥 𝑇

−1
𝑥 = 𝑒−2𝜋 i 𝜌̄𝛼𝐿𝑦𝑃 𝛼𝑥 , 𝛼, 𝛽 = 𝐴,𝐵; (B.23)

𝛼
𝑦 (𝜙𝛼𝐿𝑦)𝑃

𝛽
𝑥
[

𝛼
𝑦 (𝜙𝛼𝐿𝑦)

]−1 = 𝑒 i 𝜎
𝛽𝛼
𝑥𝑦 𝜙𝛼𝐿𝑦𝑃 𝛽𝑥 . (B.24)

nd by requiring [𝑃 𝛼𝑥 , 𝑇
′
𝑥] = 0 we can immediately obtain relation (9). Therefore we have established Theorem 3.2.

Clearly, 𝐺𝑠 = 𝑈 (1) is a special case of the above discussions, and one can easily justify relation (6) and Theorem 2.3 by requiring
′
𝑥 in (B.21) commutes with polarization 𝑃𝑥. This is studied in detail in Ref. [35]. Notice that in all discussions, we have not involve
he statistics of microscopic particles, therefore the conclusions apply to interacting bosons and/or fermions.

.4. Symmetry group 𝐺𝑠 = 𝑈 (1)𝐴 × (𝑍𝑞)𝐵

As mentioned in main text, breaking 𝑈 (1)𝐴 ×𝑈 (1)𝐵 down to its subgroup 𝐺𝑠 = 𝑈 (1)𝐴 × (𝑍𝑞)𝐵 leads to a 2Z × (Z𝑞)2 classification
f 2d SPT phases. They are characterized by Hall conductance 𝜎𝐴𝑥𝑦 of conserved 𝑈 (1)𝐴 charges, a 𝜈𝐵 ∈ Z𝑞 invariant associated with
d (𝑍𝑞)𝐵-SPT phases, plus another 𝜈𝐴𝐵 ∈ Z𝑞 invariant describing the binding of 𝑈 (1)𝐴 charges to (𝑍𝑞)𝐵 flux. Specifically, each 2𝜋

𝐴𝐵
lux of (𝑍𝑞)𝐵 symmetry will trap 𝜈 ∈ Z𝑞 units of 𝑈 (1)𝐴 charges.
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Again on 𝐿𝑥 × 𝐿𝑦 torus under Landau gauge (preserving 𝑇𝑦 translation), the ground state |𝛹 (𝛩𝐴𝑦 , 𝛩
𝐵
𝑦 )⟩ satisfy

𝑇̂𝑥|𝛹 (𝛩𝐴𝑦 , 𝛩
𝐵
𝑦 )⟩ = |𝛹 (𝛩𝐴𝑦 + 𝜙𝐴𝐿𝑦, 𝛩𝐵𝑦 + 𝜙𝐵𝐿𝑦)⟩. (B.25)

The polarization 𝑃𝐴𝑥 has the following dependence on 𝑦̂-direction boundary conditions:

𝑒− i𝐿𝑦 𝜌̄𝐴 ⋅ ⟨𝛹 (𝛩𝐴𝑦 , 𝛩
𝐵
𝑦 )|𝑃

𝐴
𝑥 |𝛹 (𝛩𝐴𝑦 , 𝛩

𝐵
𝑦 )⟩ = (B.26)

⟨𝛹 (𝛩𝐴𝑦 + 𝜙𝐴𝐿𝑦, 𝛩𝐵𝑦 + 𝜙𝐵𝐿𝑦)|𝑃𝐴𝑥 |𝛹 (𝛩𝐴𝑦 + 𝜙𝐴𝐿𝑦, 𝛩𝐵𝑦 + 𝜙𝐵𝐿𝑦)⟩

Now that twisting 𝑦̂-direction boundary condition can be achieved by flux insertions through the hole along 𝑥̂-direction, we
immediately reach the relation (10). Therefore we have justified Theorem 3.3.

B.5. Symmetry group 𝐺𝑠 = 𝑈 (1)⋊𝑍
2 and 𝐺𝑠 = 𝑍2 ×𝑍

2

We first consider a boson system with symmetry group 𝐺𝑠 = 𝑈 (1) ⋊ 𝑍
2 , consisting of two parts: (i) integer-spin 𝑈 (1)-charged

bosons transformed as Kramers singlest ( 2 = +1), and (ii) charge-neutral half-integer spin moments ( 2 = −1). As stated in
Theorem 3.1, we consider an odd number of half-integer spins together with 𝜙 = 𝜋 flux of 𝑈 (1) symmetry in each unit cell. On a
circumference-𝐿𝑦 cylinder which is infinitely long along 𝑥̂ direction and wrapped around along 𝑦̂-direction, we consider a unique
gapped ground state |𝛹 (𝛩𝑦)⟩ where 𝛩𝑦 ∈ [0, 2𝜋) denotes the boundary condition (11) along 𝑦̂ direction. Again the relation (B.2)
holds on this infinite cylinder, imposing strong constraints on the ground state properties.

Similar to the arguments for Theorem 2.2, we again consider the Schmidt decompositions of two states |𝛹 (𝛩𝑦)⟩ and |𝛹 (𝛩𝑦 + 𝜋𝐿𝑦)⟩
at the same entanglement cut 𝑥̄+1. General relations (B.10) and (B.12)–(B.15) still holds in this case, while the symmetry characters
of the Schmidt eigenstates in this case becomes:

 2
|𝛼,𝛩𝑦⟩𝑥̄,𝐿 = 𝑒 i𝛷𝑥̄ |𝛼,𝛩𝑦⟩𝑥̄,𝐿, 𝑒 i𝛷𝑥̄ = ±1, ∀ 𝛼, (B.27)

 2
|𝛼,𝛩𝑦 + 𝜋𝐿𝑦⟩𝑥̄+1,𝐿 = 𝑒 i𝛷𝑥̄ |𝛼,𝛩𝑦 + 𝜋𝐿𝑦⟩𝑥̄+1,𝐿, 𝑒 i𝛷𝑥̄ = ±1, ∀ 𝛼, (B.28)

 2
|𝛽, 𝛩𝑦⟩𝑥̄+1,𝐿 = 𝑒 i𝛷𝑥̄+1 |𝛽, 𝛩𝑦 + 𝜋𝐿𝑦⟩𝑥̄+1,𝐿, 𝑒 i𝛷𝑥̄+1 = ±1, ∀ 𝛽. (B.29)

Again due to relation (B.17) and the fact

 2
|𝑝⟩𝑥0 = (−1)𝐿𝑦 |𝑝⟩𝑥0 , ∀ 𝑝. (B.30)

e can easily show that

𝑒 i𝛷𝑥̄+1 = 𝑒 i (𝛷𝑥̄+𝜋), if 𝐿𝑦 = 1 mod 2. (B.31)

herefore on a 𝐿𝑦 = odd cylinder, the  2 = ±1 symmetry character of Schmidt eigenstates of ground state |𝛹 (𝛩𝑦)⟩ at entanglement
ut at 𝑥̄ + 1 changes sign when boundary condition 𝛩𝑦 is changed by 𝜋. This indicates the pumping of one Kramers doublet across
he cylinder as induced by the 𝜋 flux insertion, which is only compatible with a BQSH state where 𝜋 flux is bound to a Kramers
oublet. Therefore we have justified Theorem 3.1.
Clearly the above argument goes through even if 𝑈 (1) symmetry is broken down to a discrete subgroup 𝐻 ∈ 𝑈 (1), as long as 𝐻

ontains 𝑍2 as a subgroup. Therefore the LSM theorem for 𝐺𝑠 = 𝑍2 ×𝑍
2 is also established.

The argument of Theorem 2.4 is very similar to the above discussions, also making use of Schmidt decomposition and symmetry
haracters of the Schmidt eigenstates. It is discussed in details by Ref. [33].
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