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Abstract

Transformer-based models are popular for time series forecasting
and spatiotemporal prediction due to their ability to infer semantic
correlations in long sequences. However, for human mobility pre-
diction, temporal correlations, such as location patterns at the same
time on previous days or weeks, are essential. While positional
encodings help retain order, the self-attention mechanism causes
a loss of temporal detail. To validate this claim, we used a simple
approach in the 2nd ACM SIGSPATIAL Human Mobility Prediction
Challenge, predicting locations based on past patterns weighted
by reliability scores for missing data. Our simple approach was
among the top 10 competitors and significantly outperformed the
Transformer-based model that won the 2023 challenge.
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1 Introduction

Human mobility is a critical component in the emerging field of
spatial intelligence and the science of human mobility has a plethora
of applications from infectious disease contact tracing to elder care
and crime detection [9, 10]. Recent works leverage human mobility
data to model and trace infectious diseases [5], analyzing human
behavior and detecting anomalies [1, 7, 17, 18], traffic monitoring
and prediction [2], and enhancing urban planning [3].
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Artificial intelligence techniques have increasingly been applied
to recognize patterns in human mobility data. Traditional methods,
such as machine learning [16] and deep learning [8], have demon-
strated significant potential in analyzing complex mobility patterns.
However, these approaches often struggle with the inherent chal-
lenges presented by such data, including temporal dependencies,
spatial irregularities, and high variability. To address these limi-
tations, generative models have recently emerged as promising
alternatives in the field, potentially filling the gaps left by more
conventional approaches [6]. By leveraging probabilistic frame-
works, generative models aim to improve predictive accuracy and
capture nuanced behaviors in human mobility data, advancing the
scope of analysis and enabling more sophisticated predictions about
movement patterns.

The introduction of Transformers [13] has marked a notable
advancement in optimizing deep learning for natural language
processing (NLP) tasks, and they have been successfully applied
beyond translation, including in areas like medical prediction [4].
Transformers have also been used for human mobility prediction.
For example, the winner of the Human Mobility Prediction Chal-
lenge 2023 [12] was based on the BERT transformer model and the
runner-up [11] was based on the GPT transformer model. Despite
their success in NLP, Transformers face challenges when applied
to time-series data [15]. Specifically, it has been shown that “the
nature of the permutation-invariant self-attention mechanism in-
evitably results in temporal information loss” [15]. Human Mobility
data is a special case of time-series, a time-series of observed loca-
tions of individual humans. For short-term predictions of human
mobility, such as the prediction of locations over the next minutes
or hours, Transformers have shown very good results [11, 12]. But
for the prediction of locations of the next days or even weeks, we
hypothesize that Transformer-based models may struggle.

To illustrate our intuition, think of the problem of predicting
the next words in a text document. The transformer model excels
at this problem. However, predicting the next 1000 words is very
challenging: Each predicted word has a chance of being incorrect
and this chance of errors accumulates until the 1000th word will
have a very low chance of being predicted correctly. The same
applies for human mobility data: The transformer may do well
predicting the next location and even the location afterward. But
predicting the chain of next locations for 15 days is likely to incur
errors upon which subsequent predictions will be based on.
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Table 1: Trajectory data representation

Type Temporal feature | Interval

Constant time interval (CTI) sample point constant
Variable time interval (VTI) sample point variable
Event-based interval (EBI) event variable
Constant time period (CTP) period constant

But can we do better for human mobility prediction? For next-
word text prediction, there is no seasonality or periodicity as words
don’t simply repeat every 100 words. But for human mobility predic-
tion, there is! We know that human mobility follows strong periodic
patterns: Rush hours occur every non-weekend non-holidays. Indi-
vidual humans are likely to be located at their home at 4am every
single day, or at work/school during the day on non-weekend non-
holidays. Individual humans may also visit the same grocery stores
and recreational places on weekends and holidays. If you were to
ask yourself: “Where will I be in exactly 14 days?”. When answering
this question, you’re likely not trying to predict your next locations
today, then prediction your first location tomorrow followed by
all further locations tomorrow, followed by your first location in
two days, until you reach 14 days. Instead, you would think of
your periodic patterns: Where am I usually on this day of the week
during the current time? Where am I right now? Where was I seven
and fourteen days ago? You may want to base your prediction on
your answer to the former questions.

With these insights, our approach is motivated to predict the
location of an individual in 392 hours (the same hour in 14 days),
rather than inductively predicting the location at hour i given the
locations until hour i — 1 (and accumulating prediction errors), we
look at where is the individual usually at this day of the week. Thus,
we exploit the periodicity of human mobility that a transformer is
not able to leverage.

2 Methodology

In this section, we describe the methodology, including the dataset
representation of trajectories, the preprocessing techniques used to
prepare the data for further analysis, the creation of the confidence
matrix, and, finally, the prediction model.

2.1 Trajectory Data Representation

There are several representations of trajectory data, as illustrated
in Table 1. One advantage of constant time interval (CTI) data is
that it enables a model to learn the distribution of all locations at
synchronized timestamps. In contrast, variable time interval (VTI)
data is often used to compress important segments, facilitating the
recovery of data from its compressed form. Event-based interval
(EBI) representation is particularly effective for compressing data
and identifying semantic sequence patterns, which is advantageous
for sequence pattern learning. In this study, we utilize constant
time period (CTP) representation to train our model, assuming that
the most frequent locations during the period are used. Compared
to CTI, CTP requires fewer resources for data representation and
allows the model to learn the distribution of all locations within a
synchronized time frame. If locations are uncertain, CTP can pro-
vide better estimates by averaging the most frequent locations over
the defined period, thereby smoothing out noise and capturing un-
derlying patterns more effectively. This averaging effect enhances
the model’s robustness, especially in scenarios where data might
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Figure 1: Ideas of data preprocessing. Each color represents a
unique location of an individual. Gray is the missing data.

be sparse or exhibit high variability. Additionally, CTP representa-
tion can facilitate better generalization by focusing on significant
location trends rather than being influenced by outlier data points.

In our analysis of the YJMob100K dataset [14], we identified
that the trajectory data can be categorized into VTI and EBI based
on different hypotheses. Hypothesis 1 (VTI) posits that there is
a genuine absence of location observations for the individual at
a given time, indicating that the data is missing. Hypothesis 2
(EBI) suggests that the user remained in the same location until the
next observation, meaning that the data is not missing but rather
omitted for the purpose of data compression.

We also observed that individuals are rarely recorded in the
same location, which poses a challenge for the EBI hypothesis.
However, given the spatial resolution of 500m X 500m and the
temporal resolution of 30min, it is expected that individuals would
primarily remain within the same spatial cell, except during travel.
This leads us to strongly favor the second hypothesis as the more
plausible explanation. Additionally, we found that many individuals
had no recorded data in the initial days, with some users lacking any
data for the first 40 out of 75 days. We attribute this phenomenon to
the varying starting times of data collection for different individuals.

2.2 Preprocessing Approaches

Based on these observations and assumptions, we employed three
distinct data imputation approaches to transform the data into CTP
format. These methods are illustrated in Figure 1 and described in
detail below:

Imputation 1. We treated all missing locations using Hypoth-
esis 2. For each missing data points, we simply assume that the
individual has not moved since their previous observation. Thus,
each missing location is replaced with the location of the individuals
most recent observation. For missing locations before the individ-
ual’s first observation, we use the location of the first observation.
This approach is shown in the second row of Figure 1 where the
imputed locations change when a new location is observed.

Imputation 2. If Hypothesis 2 holds true, then the data points
correspond to change-of-location events. In the withheld test data,
we would also need to predict these change-of-location events
rather than predicting current locations. This makes a difference.
For example, assume a very boring individual who goes to work
between 8-9am every day, comes back home from work between
5-7pm every day, and never visits any other place. Now, if you were
asked to predict the location of this individual on a day at 4:30pm,
what location would you predict? If you were tasked to predict
their current location, you'd likely respond “at work”, because this
user is always at work at that time. But if your task is to predict the
location of a change-of-location event at 4:30pm, then the answer
should be “at home”: That’s because it is much more likely for the
user to arrive at home at 4:30pm (30 minutes earlier than usually)
than to arrive at work at 4:30pm (7.5 hours later than usually).
Using this intuition of predicting change-of-location events, we
may predict that any time before around 1pm is likely a (possibly
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very late) arrive-at-work event, and any time after 1pm is likely a
(possibly very early) arrive-at-home event. Imputation 2 formalizes
this intuition. Using Imputation 2, we calculate the length of each
missing time block. If such length is larger than a (small) temporal
threshold (such as 1 hour), we fill the first half of the missing data
with the previous location and the remainder with the next location.
Otherwise, if the gap is smaller than the threshold, we still fill the
entire block with the previous location as done for Imputation 1.
An example of Imputation 2 is shown in the third line of Figure 1.
Imputation 3. Similar to Imputation 2, we assume the locations
may have changed during an extended period of missing data. But
now, we assume that an user would stay at the previously observed
location for no more than a threshold of time. We fill the gap with
the previous location until the threshold. After that, we concede that
we have no idea where the individual may be, and we simply fill the
remainder of the gap with the individual’s most common location.
This approach is shown in the last line of Figure 1 assuming that
the “green” location is the individual’s most common location.

2.3 Confidence Matrices

From the preprocessing step, we obtained a dataset with each user
having location information at each half-hour time stamp. However,
we can no longer discriminate between observed data and imputed
data. Intuitively, the further the imputed time is from the nearest
(previous or next) observation, the lower the confidence that this
data is imputed correctly. For example, for a user missing three
days of data, our confidence in the imputation locations on the
second day of missing data is very low. But if the imputed value
is immediately after an observed location, our confidence in this
computation is higher. Thus, we create a confidence matrix to avoid
confusing our model by using imputed data. For an individual i

and time ¢, let t;),ev and t}, , denote the time of the previous and

next observation of i, respectively. We let At’ denote the smaller
absolute difference between t and {t,,, L4, }» that is:

At = min [t =t

t'e {t;i)reu’t:;ext }

Then we define a confidence matrix that computes a confidence
value for each individual i and each time interval ¢ as:
aH?

Clit]=e D
where D is a normalization parameter that we simply call Denomi-
nator and P is a parameter simply called Power that controls the
exponential decay of confidence as the temporal distance to an ob-
servation increases. This equation maps each individual-time pair
to a confidence value in [0, 1] having a confidence of ® = 1 for lo-
cations that are not imputed but observed and thus have a distance
of At! of zero. For our experiments, we test various combinations
of denominators and powers as described in Table 2.

2.4 Prediction Model

For the SIGSPATIAL Human Mobility Prediction Challenge 2024
prediction task, locations are masked for a validation set V of ind-
viduals (the number of which depends on the City to be prediction)
for days 61-75 in the dataset which corresponds to time intervals
[2880, 3600] as each day has 48 time intervals of 30 minutes each.
We denote the set of pair (i,¢) where i € V and t € [2880,3600] as
the prediction window.
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First, we use the imputation method described in Section 2.2 to
impute all the missing values outside of the prediction value, that is
for all agents i ¢ V (at any time), and for all times ¢ ¢ [2880, 3600]
(for all agents). The result of this imputation is a matrix that is full
(no missing values) outside of the prediction window. For any time
t € [0,2879] and any individual i € V we let Imputeli, ] denote the
imputed location for i at ¢. Next, we create the confidence matrix
Confidence|i, t] as described in Section 2.3.

To predict the location of user i € V during time ¢ € [2880, 3600],
we iteratively look at the location of i at multiples of seven days (336
30-minute intervals) ago. Thus, we look up location Impute[i, t —k-
336],1 < k < 10. For each location found this way, we add a weight
to that location corresponding to the confidence confidencel[i, t —
k - 336],1 < k < 10. We then chose the location having the largest
aggregate weight (choosing ties arbitrarily).

As an example, assume we want to predict the location of indi-
vidual i during time interval ¢ = 3500. We first check Impute[i, t —
1-336] = Impute[i, 3164]. Since time interval 3164 is also part of the
prediction window, there is no imputed value, thus Impute[i, 3164] =
None. We continue one week further in the past by looking at
Impute[i, t—2-336] = Impute[i, 2828]. Since time 2828 is not part of
the prediction window, we will find an imputed value. Let location
[12, 18] be the imputed location. Also assume that this location was
directly observed (not imputed), such that confidence[i, 2828] = 1.
We increment the weight of location [12,18] by 1.0. Next, we
look at [i,t — 3 - 336] = Impute[i, 2492]. Assume that this look-
up yields a different location [10,25] having a low confidence
confidence(i, 2492] = 0.1. We increment the weight of location
[10,25] by 0.1. We repeat this process using the previous weeks
Imputel[i, 2156], Impute[i, 1820], Impute[i, 1484], Impute|[i, 1148],
Impute[i, 812], Impute[i, 476], and Impute[i, 140]. Then, we use the
location having the highest sum of weights as our predicted location.
In this example, assume that location [10, 25] has been observed
(not imputed) once for an addition weight of 1.0 for a total weight
of 1.1, and assume that no other location has a higher total weight,
so we would predict location [10, 25] in this example. A formal
algorithm of our prediction approach is found in Algorithm 1.

Algorithm 1 Location prediction of user i at day d and time ¢
Input: Impute Matrix I[i, t], Confidence Matrix C[i, ], User
ID i, and Time t
Output: location of the user i at time ¢

1: procedure PREVIOUSWEEKS

2 score «— map() > key: location, value: sum confidence
3 for k < 1to 10 do > At most 10 previous weeks
4 tpreo <t —k 748

5 score[I[i, tprev] 1+ = Cli, tpreo]

6 end for

7 location « argmaxcq, ey (sCOTE)

8: end procedure

3 Experimental Results

Conducted Experiments. Our proposed approach has three
hyperparameters: The normalization parameter D, the exponen-
tial imputation decay P, and the choice among the three proposed
imputation methods. To tune these hyperparameters, we used the
first 45 days of training and the next 15 days for testing where
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Table 2: Accuracy of models with all combinations of prepro-
cessing approaches and confidence matrices

Denominator 24 18 28

Power 8 3 0.7 0.7 0.7

Imputation 1 | 0.2341 0.2347 0.2348 | 0.2343 | 0.2350
Imputation 2 | 0.2322 0.2330 0.2330 | 0.2328 | 0.2331
Imputation 3 | 0.2343 0.2353 0.2364 | 0.2357 | 0.2368
Table 3: Evaluation metrics of the experimental results

City Model ACC GeoBleu DTW Time
A Transformer 0.2186  0.2704 3045 6 (h)
Proposed 0.2772 0.3180 34.86 45 (m)

B kNN 0.1840 02085 2852 4 (m)
Proposed 0.2529 0.2841 32.02 35 (m)

o kNN 01729  0.1960 2247 3 (m)
Proposed 0.2578 0.2750 23.65 33 (m)

5 kNN 0.1417 02101 5876 2 (m)
Proposed 0.2368 0.3036 52.56 30 (m)

the ground truth is available. Due to the runtimes for the GeoBleu
and DTW evaluation metrics, we only use the exact-match Accu-
racy (ACC) using the smaller City D for tuning. Table 2 shows our
hyperparameter tuning results. Based on the results, we chose Im-
putation 3 with a confidence matrix e(=(dt/28)") for our challenge
submission.

Comparison to Baselines. We evaluated our approach with
60 days of training and 15 days of validation on City A and with
45 days of training and 15 days of validation on Cities B, C, and
D. We also implemented two baseline methods: Transformer (last
year’s challenge winner, with a similar setup but different datasets)
and k-Nearest-Neighbor Imputation (the inspiration for our pro-
posed method). The evaluation results are shown in Table 3. The
kNN approach, specifically the 1-NN variant, identifies the most
similar training time slot for each testing time slot and uses the
corresponding locations of individuals from the selected time slot
as the predicted values. We currently only have the result for the
Transformer on City A and for kNN on City B, C, and D. Both ap-
proaches require specific resources for training, namely a high-end
GPU (i.e. NVIDIA H100) for the Transformer, or a large RAM for
KkNN. The baseline models for the remaining cities are still training
at the time of this submission.

Our proposed method outperforms both the Transformer-based
approach and the kNN approach using both ACC and GeoBleu as
evaluation metrics for all four datasets. However, our result worse
using DTW. One reason for this phenomenon is that we chose the
parameter by only optimizing the accuracy and hence GeoBleu.
Besides, GeoBleu and DTW have competing optimization goals.
GeoBleu gives only a few credits to the predicted ones close to the
truth, but with DTW, it would be better to predict every location
close to the truth.

4 Conclusion

We propose an embarrassingly simple approach for long-term pre-
diction of future human mobility. Our approach starts by imputing
missing data and then simply uses the individuals’ location at the
same time as in previous weeks. Our approach is highly efficient,
requiring only milliseconds to predict the location of individuals
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even for large datasets. In contrast, existing Transformer-based
approaches require high-end computing environments and incur
excessive compute or memory cost. Despite the simplicity and
the efficiency of our proposed algorithm, our results are compet-
itive with the state-of-the-art. Using exact-match accuracy and
the GeoBleu metric, our approach outperforms the state-of-the-art
while using DTW, our approach is not far behind. Implementation
details of our proposed approach can be found in our GitHub repos-
itory at https://github.com/RuochenKong/HuMob_Cucumber.git.

5 Acknowledgements

Supported by the Intelligence Advanced Research Projects Activ-
ity (IARPA) via Department of Interior/ Interior Business Center
(DOI/IBC) contract number 140D0423C0025. The U.S. Government
is authorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or
implied, of IARPA, DOI/IBC, or the U.S. Government.

References

[1] Hossein Amiri, Ruochen Kong, and Andreas Zufle. 2024. Urban Anomalies: A

Simulated Human Mobility Dataset with Injected Anomalies. arXiv:2410.01844

Wengiang Chen, Tao Wang, et al. 2022. Lane-based Distance-Velocity model for

evaluating pedestrian-vehicle interaction at non-signalized locations. Accident

Analysis & Prevention 176 (2022), 106810.

[3] Sibren Isaacman, Richard Becker, et al. 2012. Human mobility modeling at

metropolitan scales. In MobiSys’12. 239-252.

Seibi Kobara, Alireza Rafiei, et al. 2024. Social Media as a Sensor: Analyzing

Twitter Data for Breast Cancer Medication Effects Using Natural Language Pro-

cessing. In International Conference on Artificial Intelligence in Medicine. Springer,

345-354.

[5] Will Kohn, Hossein Amiri, and Andreas Ziifle. 2023. EPIPOL: An Epidemiological
Patterns of Life Simulation (Demonstration Paper). In SIGSPATIAL SpatialEpi’23
Workshop. 13-16.

[6] Xishun Liao, Brian Yueshuai He, et al. 2024. Deep Activity Model: A Generative
Approach for Human Mobility Pattern Synthesis. arXiv preprint arXiv:2405.17468
(2024).

[7] Yueyang Liu, Lance Kennedy, Hossein Amiri, and Andreas Ziifle. 2024. Neural

Collaborative Filtering to Detect Anomalies in Human Semantic Trajectories.

arXiv preprint arXiv:2409.18427 (2024).

Massimiliano Luca, Gianni Barlacchi, Bruno Lepri, and Luca Pappalardo. 2021. A

survey on deep learning for human mobility. ACM Computing Surveys (CSUR)

55, 1 (2021), 1-44.

Mohamed Mokbel, Mahmoud Sakr, Li Xiong, et al. 2024. Mobility Data Science:

Perspectives and Challenges. ACM Transactions on Spatial Algorithms and Systems

10 (2024). Issue 2.

[10] Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Ziifle, et al. 2022. Mobil-

ity data science (dagstuhl seminar 22021). In Dagstuhl reports, Vol. 12. Schloss

Dagstuhl-Leibniz-Zentrum fir Informatik.

Aivin V Solatorio. 2023. GeoFormer: Predicting Human Mobility using Generative

Pre-trained Transformer (GPT). In HuMob-Challenge "23. 11-15.

[12] Haru Terashima, Naoki Tamura, Kazuyuki Shoji, Shin Katayama, Kenta Urano,
Takuro Yonezawa, and Nobuo Kawaguchi. 2023. Human Mobility Prediction
Challenge: Next Location Prediction using Spatiotemporal BERT. In HuMob-
Challenge °23. 1-6.

[13] A Vaswani. 2017. Attention is all you need. Advances in Neural Information

Processing Systems (2017).

Takahiro Yabe, Kota Tsubouchi, et al. 2024. YJMob100K: City-scale and longitu-

dinal dataset of anonymized human mobility trajectories. Scientific Data 11, 1

(2024), 397.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. 2023. Are transformers

effective for time series forecasting?. In JAAI’24, Vol. 37. 11121-11128.

[16] Ying Zhang, Zhiwen Yu, et al. 2024. Predictability in human mobility: From

individual to collective (vision paper). ACM TSAS 10, 2 (2024), 1-17.

Zheng Zhang, Hossein Amiri, et al. 2023. Large Language Models for Spatial

Trajectory Patterns Mining. arXiv e-prints (2023), arXiv-2310.

[18] Zheng Zhang, Hossein Amiri, et al. 2024. Transferable Unsupervised Outlier
Detection Framework for Human Semantic Trajectories. arXiv:2410.00054

[2

[4

8

[

[11

[14

[15

[17


https://github.com/RuochenKong/HuMob_Cucumber.git
https://arxiv.org/abs/2410.01844
https://arxiv.org/abs/2410.00054

	Abstract
	1 Introduction
	2 Methodology
	2.1 Trajectory Data Representation
	2.2 Preprocessing Approaches
	2.3 Confidence Matrices
	2.4 Prediction Model

	3 Experimental Results
	4 Conclusion
	5 Acknowledgements
	References

