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Abstract
Transformer-based models are popular for time series forecasting

and spatiotemporal prediction due to their ability to infer semantic

correlations in long sequences. However, for human mobility pre-

diction, temporal correlations, such as location patterns at the same

time on previous days or weeks, are essential. While positional

encodings help retain order, the self-attention mechanism causes

a loss of temporal detail. To validate this claim, we used a simple

approach in the 2nd ACM SIGSPATIAL Human Mobility Prediction

Challenge, predicting locations based on past patterns weighted

by reliability scores for missing data. Our simple approach was

among the top 10 competitors and significantly outperformed the

Transformer-based model that won the 2023 challenge.
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• Information systems→ Geographic information systems;
Location based services.
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1 Introduction
Human mobility is a critical component in the emerging field of

spatial intelligence and the science of humanmobility has a plethora

of applications from infectious disease contact tracing to elder care

and crime detection [9, 10]. Recent works leverage human mobility

data to model and trace infectious diseases [5], analyzing human

behavior and detecting anomalies [1, 7, 17, 18], traffic monitoring

and prediction [2], and enhancing urban planning [3].
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Artificial intelligence techniques have increasingly been applied

to recognize patterns in human mobility data. Traditional methods,

such as machine learning [16] and deep learning [8], have demon-

strated significant potential in analyzing complex mobility patterns.

However, these approaches often struggle with the inherent chal-

lenges presented by such data, including temporal dependencies,

spatial irregularities, and high variability. To address these limi-

tations, generative models have recently emerged as promising

alternatives in the field, potentially filling the gaps left by more

conventional approaches [6]. By leveraging probabilistic frame-

works, generative models aim to improve predictive accuracy and

capture nuanced behaviors in human mobility data, advancing the

scope of analysis and enabling more sophisticated predictions about

movement patterns.

The introduction of Transformers [13] has marked a notable

advancement in optimizing deep learning for natural language

processing (NLP) tasks, and they have been successfully applied

beyond translation, including in areas like medical prediction [4].

Transformers have also been used for human mobility prediction.

For example, the winner of the Human Mobility Prediction Chal-

lenge 2023 [12] was based on the BERT transformer model and the

runner-up [11] was based on the GPT transformer model. Despite

their success in NLP, Transformers face challenges when applied

to time-series data [15]. Specifically, it has been shown that “the

nature of the permutation-invariant self-attention mechanism in-

evitably results in temporal information loss” [15]. Human Mobility

data is a special case of time-series, a time-series of observed loca-

tions of individual humans. For short-term predictions of human

mobility, such as the prediction of locations over the next minutes

or hours, Transformers have shown very good results [11, 12]. But

for the prediction of locations of the next days or even weeks, we

hypothesize that Transformer-based models may struggle.

To illustrate our intuition, think of the problem of predicting

the next words in a text document. The transformer model excels

at this problem. However, predicting the next 1000 words is very

challenging: Each predicted word has a chance of being incorrect

and this chance of errors accumulates until the 1000th word will

have a very low chance of being predicted correctly. The same

applies for human mobility data: The transformer may do well

predicting the next location and even the location afterward. But

predicting the chain of next locations for 15 days is likely to incur

errors upon which subsequent predictions will be based on.
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Table 1: Trajectory data representation
Type Temporal feature Interval

Constant time interval (CTI) sample point constant

Variable time interval (VTI) sample point variable

Event-based interval (EBI) event variable

Constant time period (CTP) period constant

But can we do better for human mobility prediction? For next-

word text prediction, there is no seasonality or periodicity as words

don’t simply repeat every 100 words. But for humanmobility predic-

tion, there is! We know that humanmobility follows strong periodic

patterns: Rush hours occur every non-weekend non-holidays. Indi-

vidual humans are likely to be located at their home at 4am every

single day, or at work/school during the day on non-weekend non-

holidays. Individual humans may also visit the same grocery stores

and recreational places on weekends and holidays. If you were to

ask yourself: “Where will I be in exactly 14 days?”. When answering

this question, you’re likely not trying to predict your next locations

today, then prediction your first location tomorrow followed by

all further locations tomorrow, followed by your first location in

two days, until you reach 14 days. Instead, you would think of

your periodic patterns: Where am I usually on this day of the week

during the current time? Where am I right now?Where was I seven

and fourteen days ago? You may want to base your prediction on

your answer to the former questions.

With these insights, our approach is motivated to predict the

location of an individual in 392 hours (the same hour in 14 days),

rather than inductively predicting the location at hour 𝑖 given the

locations until hour 𝑖 − 1 (and accumulating prediction errors), we

look at where is the individual usually at this day of the week. Thus,

we exploit the periodicity of human mobility that a transformer is

not able to leverage.

2 Methodology
In this section, we describe the methodology, including the dataset

representation of trajectories, the preprocessing techniques used to

prepare the data for further analysis, the creation of the confidence

matrix, and, finally, the prediction model.

2.1 Trajectory Data Representation
There are several representations of trajectory data, as illustrated

in Table 1. One advantage of constant time interval (CTI) data is

that it enables a model to learn the distribution of all locations at

synchronized timestamps. In contrast, variable time interval (VTI)

data is often used to compress important segments, facilitating the

recovery of data from its compressed form. Event-based interval

(EBI) representation is particularly effective for compressing data

and identifying semantic sequence patterns, which is advantageous

for sequence pattern learning. In this study, we utilize constant

time period (CTP) representation to train our model, assuming that

the most frequent locations during the period are used. Compared

to CTI, CTP requires fewer resources for data representation and

allows the model to learn the distribution of all locations within a

synchronized time frame. If locations are uncertain, CTP can pro-

vide better estimates by averaging the most frequent locations over

the defined period, thereby smoothing out noise and capturing un-

derlying patterns more effectively. This averaging effect enhances

the model’s robustness, especially in scenarios where data might

Figure 1: Ideas of data preprocessing. Each color represents a
unique location of an individual. Gray is the missing data.

be sparse or exhibit high variability. Additionally, CTP representa-

tion can facilitate better generalization by focusing on significant

location trends rather than being influenced by outlier data points.

In our analysis of the YJMob100K dataset [14], we identified

that the trajectory data can be categorized into VTI and EBI based

on different hypotheses. Hypothesis 1 (VTI) posits that there is

a genuine absence of location observations for the individual at

a given time, indicating that the data is missing. Hypothesis 2
(EBI) suggests that the user remained in the same location until the

next observation, meaning that the data is not missing but rather

omitted for the purpose of data compression.

We also observed that individuals are rarely recorded in the

same location, which poses a challenge for the EBI hypothesis.

However, given the spatial resolution of 500𝑚 × 500𝑚 and the

temporal resolution of 30𝑚𝑖𝑛, it is expected that individuals would

primarily remain within the same spatial cell, except during travel.

This leads us to strongly favor the second hypothesis as the more

plausible explanation. Additionally, we found that many individuals

had no recorded data in the initial days, with some users lacking any

data for the first 40 out of 75 days. We attribute this phenomenon to

the varying starting times of data collection for different individuals.

2.2 Preprocessing Approaches
Based on these observations and assumptions, we employed three

distinct data imputation approaches to transform the data into CTP

format. These methods are illustrated in Figure 1 and described in

detail below:

Imputation 1. We treated all missing locations using Hypoth-

esis 2. For each missing data points, we simply assume that the

individual has not moved since their previous observation. Thus,

eachmissing location is replaced with the location of the individuals

most recent observation. For missing locations before the individ-

ual’s first observation, we use the location of the first observation.

This approach is shown in the second row of Figure 1 where the

imputed locations change when a new location is observed.

Imputation 2. If Hypothesis 2 holds true, then the data points

correspond to change-of-location events. In the withheld test data,

we would also need to predict these change-of-location events

rather than predicting current locations. This makes a difference.

For example, assume a very boring individual who goes to work

between 8-9am every day, comes back home from work between

5-7pm every day, and never visits any other place. Now, if you were

asked to predict the location of this individual on a day at 4:30pm,

what location would you predict? If you were tasked to predict

their current location, you’d likely respond “at work”, because this

user is always at work at that time. But if your task is to predict the

location of a change-of-location event at 4:30pm, then the answer

should be “at home”: That’s because it is much more likely for the

user to arrive at home at 4:30pm (30 minutes earlier than usually)

than to arrive at work at 4:30pm (7.5 hours later than usually).

Using this intuition of predicting change-of-location events, we

may predict that any time before around 1pm is likely a (possibly
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very late) arrive-at-work event, and any time after 1pm is likely a

(possibly very early) arrive-at-home event. Imputation 2 formalizes

this intuition. Using Imputation 2, we calculate the length of each

missing time block. If such length is larger than a (small) temporal

threshold (such as 1 hour), we fill the first half of the missing data

with the previous location and the remainder with the next location.

Otherwise, if the gap is smaller than the threshold, we still fill the

entire block with the previous location as done for Imputation 1.

An example of Imputation 2 is shown in the third line of Figure 1.

Imputation 3. Similar to Imputation 2, we assume the locations

may have changed during an extended period of missing data. But

now, we assume that an user would stay at the previously observed

location for no more than a threshold of time. We fill the gap with

the previous location until the threshold. After that, we concede that

we have no idea where the individual may be, and we simply fill the

remainder of the gap with the individual’s most common location.

This approach is shown in the last line of Figure 1 assuming that

the “green” location is the individual’s most common location.

2.3 Confidence Matrices
From the preprocessing step, we obtained a dataset with each user

having location information at each half-hour time stamp. However,

we can no longer discriminate between observed data and imputed

data. Intuitively, the further the imputed time is from the nearest

(previous or next) observation, the lower the confidence that this

data is imputed correctly. For example, for a user missing three

days of data, our confidence in the imputation locations on the

second day of missing data is very low. But if the imputed value

is immediately after an observed location, our confidence in this

computation is higher. Thus, we create a confidence matrix to avoid

confusing our model by using imputed data. For an individual 𝑖

and time 𝑡 , let 𝑡𝑖𝑝𝑟𝑒𝑣 and 𝑡
𝑖
𝑛𝑒𝑥𝑡 denote the time of the previous and

next observation of 𝑖 , respectively. We let Δ𝑡𝑖 denote the smaller

absolute difference between 𝑡 and {𝑡𝑖𝑝𝑟𝑒𝑣, 𝑡𝑖𝑛𝑒𝑥𝑡 }, that is:

Δ𝑡𝑖 := min

𝑡 ′∈{𝑡𝑖𝑝𝑟𝑒𝑣 ,𝑡𝑖𝑛𝑒𝑥𝑡 }
|𝑡 − 𝑡 ′ |

Then we define a confidence matrix that computes a confidence

value for each individual 𝑖 and each time interval 𝑡 as:

C[𝑖, 𝑡] = 𝑒−
(Δ𝑡𝑖 )𝑃

𝐷

where 𝐷 is a normalization parameter that we simply call Denomi-

nator and 𝑃 is a parameter simply called Power that controls the

exponential decay of confidence as the temporal distance to an ob-

servation increases. This equation maps each individual-time pair

to a confidence value in [0, 1] having a confidence of 𝑒0 = 1 for lo-

cations that are not imputed but observed and thus have a distance

of Δ𝑡𝑖 of zero. For our experiments, we test various combinations

of denominators and powers as described in Table 2.

2.4 Prediction Model
For the SIGSPATIAL Human Mobility Prediction Challenge 2024

prediction task, locations are masked for a validation set 𝑉 of ind-

viduals (the number of which depends on the City to be prediction)

for days 61-75 in the dataset which corresponds to time intervals

[2880, 3600] as each day has 48 time intervals of 30 minutes each.

We denote the set of pair (𝑖, 𝑡) where 𝑖 ∈ 𝑉 and 𝑡 ∈ [2880, 3600] as
the prediction window.

First, we use the imputation method described in Section 2.2 to

impute all the missing values outside of the prediction value, that is

for all agents 𝑖 ∉ 𝑉 (at any time), and for all times 𝑡 ∉ [2880, 3600]
(for all agents). The result of this imputation is a matrix that is full

(no missing values) outside of the prediction window. For any time

𝑡 ∈ [0, 2879] and any individual 𝑖 ∈ 𝑉 we let 𝐼𝑚𝑝𝑢𝑡𝑒 [𝑖, 𝑡] denote the
imputed location for 𝑖 at 𝑡 . Next, we create the confidence matrix

Confidence[𝑖, 𝑡] as described in Section 2.3.

To predict the location of user 𝑖 ∈ 𝑉 during time 𝑡 ∈ [2880, 3600],
we iteratively look at the location of 𝑖 at multiples of seven days (336

30-minute intervals) ago. Thus, we look up location 𝐼𝑚𝑝𝑢𝑡𝑒 [𝑖, 𝑡 −𝑘 ·
336], 1 ≤ 𝑘 ≤ 10. For each location found this way, we add a weight

to that location corresponding to the confidence confidence[𝑖, 𝑡 −
𝑘 · 336], 1 ≤ 𝑘 ≤ 10. We then chose the location having the largest

aggregate weight (choosing ties arbitrarily).

As an example, assume we want to predict the location of indi-

vidual 𝑖 during time interval 𝑡 = 3500. We first check Impute[𝑖, 𝑡 −
1 ·336] = Impute[𝑖, 3164]. Since time interval 3164 is also part of the

predictionwindow, there is no imputed value, thus Impute[𝑖, 3164] =
None. We continue one week further in the past by looking at

Impute[𝑖, 𝑡−2·336] = Impute[𝑖, 2828]. Since time 2828 is not part of

the prediction window, we will find an imputed value. Let location

[12, 18] be the imputed location. Also assume that this location was

directly observed (not imputed), such that confidence[𝑖, 2828] = 1.

We increment the weight of location [12, 18] by 1.0. Next, we

look at [𝑖, 𝑡 − 3 · 336] = Impute[𝑖, 2492]. Assume that this look-

up yields a different location [10, 25] having a low confidence

confidence[𝑖, 2492] = 0.1. We increment the weight of location

[10, 25] by 0.1. We repeat this process using the previous weeks

Impute[𝑖, 2156], Impute[𝑖, 1820], Impute[𝑖, 1484], Impute[𝑖, 1148],
Impute[𝑖, 812], Impute[𝑖, 476], and Impute[𝑖, 140]. Then, we use the
location having the highest sum of weights as our predicted location.

In this example, assume that location [10, 25] has been observed

(not imputed) once for an addition weight of 1.0 for a total weight

of 1.1, and assume that no other location has a higher total weight,

so we would predict location [10, 25] in this example. A formal

algorithm of our prediction approach is found in Algorithm 1.

Algorithm 1 Location prediction of user 𝑖 at day 𝑑 and time 𝑡

Input: Impute Matrix I[𝑖, 𝑡], Confidence Matrix C[𝑖, 𝑡], User
ID 𝑖 , and Time 𝑡

Output: location of the user 𝑖 at time 𝑡

1: procedure PreviousWeeks

2: 𝑠𝑐𝑜𝑟𝑒 ←𝑚𝑎𝑝 () ⊲ 𝑘𝑒𝑦: location, 𝑣𝑎𝑙𝑢𝑒: sum confidence

3: for 𝑘 ← 1 to 10 do ⊲ At most 10 previous weeks

4: 𝑡𝑝𝑟𝑒𝑣 ← 𝑡 − 𝑘 · 7 · 48
5: 𝑠𝑐𝑜𝑟𝑒 [I[𝑖, 𝑡𝑝𝑟𝑒𝑣]]+ = C[𝑖, 𝑡𝑝𝑟𝑒𝑣]
6: end for
7: 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ← argmax𝑠𝑐𝑜𝑟𝑒.𝑘𝑒𝑦 (𝑠𝑐𝑜𝑟𝑒)
8: end procedure

3 Experimental Results
Conducted Experiments. Our proposed approach has three

hyperparameters: The normalization parameter 𝐷 , the exponen-

tial imputation decay 𝑃 , and the choice among the three proposed

imputation methods. To tune these hyperparameters, we used the

first 45 days of training and the next 15 days for testing where
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Table 2: Accuracy of models with all combinations of prepro-
cessing approaches and confidence matrices

Denominator 24 18 28

Power 8 3 0.7 0.7 0.7

Imputation 1 0.2341 0.2347 0.2348 0.2343 0.2350

Imputation 2 0.2322 0.2330 0.2330 0.2328 0.2331

Imputation 3 0.2343 0.2353 0.2364 0.2357 0.2368

Table 3: Evaluation metrics of the experimental results
City Model ACC GeoBleu DTW Time

A

Transformer 0.2186 0.2704 30.45 6 (h)

Proposed 0.2772 0.3180 34.86 45 (m)

B

kNN 0.1840 0.2085 28.52 4 (m)

Proposed 0.2529 0.2841 32.02 35 (m)

C

kNN 0.1729 0.1960 22.47 3 (m)

Proposed 0.2578 0.2750 23.65 33 (m)

D

kNN 0.1417 0.2101 58.76 2 (m)

Proposed 0.2368 0.3036 52.56 30 (m)

the ground truth is available. Due to the runtimes for the GeoBleu

and DTW evaluation metrics, we only use the exact-match Accu-

racy (ACC) using the smaller City D for tuning. Table 2 shows our

hyperparameter tuning results. Based on the results, we chose Im-

putation 3 with a confidence matrix 𝑒 (−(𝑑𝑡/28)
0.7 )

for our challenge

submission.

Comparison to Baselines. We evaluated our approach with

60 days of training and 15 days of validation on City A and with

45 days of training and 15 days of validation on Cities B, C, and

D. We also implemented two baseline methods: Transformer (last

year’s challenge winner, with a similar setup but different datasets)

and k-Nearest-Neighbor Imputation (the inspiration for our pro-

posed method). The evaluation results are shown in Table 3. The

kNN approach, specifically the 1-NN variant, identifies the most

similar training time slot for each testing time slot and uses the

corresponding locations of individuals from the selected time slot

as the predicted values. We currently only have the result for the

Transformer on City A and for kNN on City B, C, and D. Both ap-

proaches require specific resources for training, namely a high-end

GPU (i.e. NVIDIA H100) for the Transformer, or a large RAM for

kNN. The baseline models for the remaining cities are still training

at the time of this submission.

Our proposed method outperforms both the Transformer-based

approach and the kNN approach using both ACC and GeoBleu as

evaluation metrics for all four datasets. However, our result worse

using DTW. One reason for this phenomenon is that we chose the

parameter by only optimizing the accuracy and hence GeoBleu.

Besides, GeoBleu and DTW have competing optimization goals.

GeoBleu gives only a few credits to the predicted ones close to the

truth, but with DTW, it would be better to predict every location

close to the truth.

4 Conclusion
We propose an embarrassingly simple approach for long-term pre-

diction of future human mobility. Our approach starts by imputing

missing data and then simply uses the individuals’ location at the

same time as in previous weeks. Our approach is highly efficient,

requiring only milliseconds to predict the location of individuals

even for large datasets. In contrast, existing Transformer-based

approaches require high-end computing environments and incur

excessive compute or memory cost. Despite the simplicity and

the efficiency of our proposed algorithm, our results are compet-

itive with the state-of-the-art. Using exact-match accuracy and

the GeoBleu metric, our approach outperforms the state-of-the-art

while using DTW, our approach is not far behind. Implementation

details of our proposed approach can be found in our GitHub repos-

itory at https://github.com/RuochenKong/HuMob_Cucumber.git.
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